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Abstract

Given a Gaussian process X , its canonical geometric rough path lift X, and a solution Y to
the rough differential equation (RDE) dYt = V (Yt) ○ dXt, we present a closed-form correction
formula for ∫ Y ○dX−∫ Y dX , i.e. the difference between the rough and Skorohod integrals of Y
with respect to X . When X is standard Brownian motion, we recover the classical Stratonovich-
to-Itô conversion formula, which we generalize to Gaussian rough paths with finite p-variation,
p < 3, and satisfying an additional natural condition. This encompasses many familiar examples,
including fractional Brownian motion with H > 1

3
. To prove the formula, we first show that

the Riemann-sum approximants of the Skorohod integral converge in L2(Ω) by using a novel
characterization of the Cameron-Martin norm in terms of higher-dimensional Young-Stieltjes
integrals. Next, we append the approximants of the Skorohod integral with a suitable compen-
sation term without altering the limit, and the formula is finally obtained after a re-balancing
of terms.

1 Introduction

Gaussian processes are used in modeling natural phenomena, from rough stochastic volatility models
in high-frequency trading [BFG15], to models of vortex filaments based on fractional Brownian
motion [NRT03]. To analyze stochastic processes with regularity lower than standard Brownian
motion, one can employ the theory of rough paths [LCL07]. In particular, given a Gaussian process
X, one can lift it canonically to a geometric rough path X [FV10a], and this allows one to study
the properties of rough differential equations (RDEs)

dYt = V (Yt) ○ dXt, Y0 = y0 ∈ Re, (1)

and of rough integrals of the form

∫
T

0
Yt ○ dXt. (2)

Furthermore, this geometric calculus generalizes Stratonovich’s stochastic calculus, and as such, it
finds natural applications, e.g. in stochastic geometry where the change-of-variable formula allows
one to give an intrinsic and coordinate-invariant definition of a rough path on a general smooth
manifold, cf. [CLL12], [CDL15].

Itô integrals, by contrast, preserve the local martingale property, which is a useful feature when
computing probabilistic quantities such as exit distributions and conditional expectations. One can

1

http://arxiv.org/abs/1604.06846v2


often gain insight into a problem by transforming Stratonovich integrals to Itô integrals and vice
versa, depending on the requirement at hand.

Now if Y and X are two continuous semi-martingales, both R
d-valued, it is well-known that the

difference between the two integrals is given in terms of the quadratic covariation through the
formula, cf. [KS98], [RY05],

∫
T

0
⟨Yt,○dXt⟩ = ∫

T

0
⟨Yt,dXt⟩ + 1

2
[Y,X]T .

In the case where Yt solves RDE (1) and Xt is taken to be standard Brownian motion Bt, this
becomes

∫
T

0
⟨Yt,○dBt⟩ = ∫ T

0
⟨Yt,dBt⟩ + 1

2
∫

T

0
tr [V (Yt)] dt, (3)

where in the second term on the right side we have the usual trace of V (Yt) ∈ Rd ⊗R
d considered

as a d-by-d matrix.

On the other hand, if Yt ≡ ∇f(Xt), where f is sufficiently smooth, then we get Itô’s formula,

f(XT ) − f(X0) = ∫ T

0
⟨∇f(Xt),○dXt⟩ = ∫ T

0
⟨∇f(Xt), dXt⟩ + 1

2
∫

T

0
∆f(Xt)dR(t), (4)

where the first term on the right side is the Skorohod integral of ∇f(X) with respect to X, and R(t)
is the variance E [(X(1)t )2]. This has been well-studied for general Gaussian processes, particularly

fractional Brownian motion, over the past two decades; see [Pri98], [AMN01], [CCM03], [NOL11],
and in particular [HJT13], which uses rough path techniques to prove the formula.

Our main result is the following theorem, where the driving signal X is constructed from the limit
of the piecewise-linear approximations of a Gaussian process with i.i.d. components.

Theorem. For 2 ≤ p < 3, let Y ∈ Cp−var ([0, T ];Rd) denote the path-level solution to

dYt = V (Yt) ○ dXt, Y0 = y0,
where V ∈ C6b (Rd;Rd ⊗R

d) and X ∈ C0,p−var ([0, T ];G⌊p⌋ (Rd)). We assume the covariance function

is of finite 2D ρ-variation, 1 ≤ ρ < 3
2
, and satisfies

∥R(t, ⋅) −R(s, ⋅)∥ρ−var;[0,T ] ≤ C ∣t − s∣ 1ρ , (5)

for all s, t ∈ [0, T ]. Then almost surely, we have

∫
T

0
Yt ○ dXt = ∫

T

0
Yt dXt + 1

2
∫

T

0
tr [V (Yt)] dR(t)

+ ∫[0,T ]2 1[0,t)(s)tr [JX

t (JX

s )−1 V (Ys) − V (Yt)] dR(s, t). (6)

Here, JX

t denotes the Jacobian of the flow map y0 → Yt. The last term on the right side of (6) is
a proper 2D Young-Stieltjes integral with respect to the covariance function. When X is standard
Brownian motion, it vanishes since the integrand is zero on the diagonal and dR(s, t) = δ{s=t} dsdt.
This, together with the fact that R(t) = t, allows us to recover the usual Itô-Stratonovich conversion
formula (3).
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Hence, an immediate contribution of the theorem is the generalization of formula (3) to the setting
where the integrands are solutions to Gaussian RDEs. Here, we are able to give a formula for
integrators other than standard Brownian motion without restriction on the regularity of the inte-
grand; compare this to [Dec00] e.g., where essentially Young complementary regularity is required.
Furthermore, the novel 2D Young-Stieltjes integral can be understood as measuring the failure of
the commutativity of V with respect to the covariance of the Gaussian process. For studying the dy-
namics of Gaussian processes in cases where the correction formula is indispensable, e.g. Gaussian
processes evolving on manifolds, this could lead to new insights.

We now provide the main idea behind the proof of the theorem. Denoting X = (1,X,X2), the
solution Y to RDE (1) can be integrated against this rough path and

∫
T

0
Yt ○ dXt = lim

∥π∥→0
∑
i

Yti (Xti,ti+1) + V (Yti) (X2
ti,ti+1

) (7)

almost surely. Continuing, we devote Section 4 to proving two claims. The first is that Y lies in
the domain of the Skorohod integral operator w.r.t. X, and the second is that, as a limit in L2(Ω)
we have

∫
T

0
Yt dXt = lim

∥π∥→0
∑
i

[Yti (Xti,ti+1) − ∫ ti

0
tr [JX

ti
(JX

s )−1 V (Ys)] R(∆i, ds)] . (8)

Proving these facts is less obvious than in the case where Yt = ∇f(Xt), and we need to use the tail
estimates of [CLL13] in a fundamental way. In Section 5, we use condition (5) to prove that

∑
i

V (Yti)((X2
ti,ti+1

) − 1

2
E [(X(1)ti,ti+1)2]Id) (9)

has a vanishing L2(Ω) limit as ∥π∥→ 0. The proof of this relies on estimates coming from a delicate
interplay between the theory of Malliavin calculus and Gaussian rough paths; see Proposition 5.1.
After augmenting (9) to (8) and extracting an almost sure subsequence, we can take the difference
between this subsequence and (7). A careful rearrangement of the terms in this difference will then
yield the correction term.

We now outline the structure of the paper, as well as highlight other contributions that are of
independent interest. We begin in Section 2 with a summary of Gaussian rough path concepts
and a primer on the Malliavin calculus as applied to RDE solutions. In Section 3.1, we provide a
general closed-form expression and a novel bound for the higher-order Malliavin derivatives of RDE
solutions relative to the driving rough path (cf. [HP13], [Ina14], [CHLT15]). This will be then used
in Section 5 to show that (9) has vanishing L2(Ω) limit.

In Section 4, we give a new characterization of the Cameron-Martin norm in terms of multi-
dimensional Young-Stieltjes integrals. We show that one can identify Cp−var([0, T ]) with a dense
subspace of H1, the Hilbert space generated by the indicator functions which is isomorphic to the
Cameron-Martin space. In particular, for f ∈ Cp−var([0, T ]), we have

∥f∥H1
=
√
∫[0,T ]2 ftfs dR(s, t). (10)

We also give a corresponding characterization with regards to the tensor product of the Cameron-
Martin space in Section 4.2, and revisit the classical Ito-Skorohod isometry in Section 4.3 by giving
it a new formulation in terms of multi-dimensional Young-Stieltjes integrals. Finally, Section 4 is
concluded with a proof of (8).

The main theorem and its proof is given in Section 6.
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2 Preliminaries

The following is a summary of basic notation that will be used throughout the paper.

We will use {ej}, j = 1, . . . , d, to denote the canonical basis for Rd, and ∣⋅∣ will denote the standard
Euclidean norm.

∧ and ∨ will be used to denote the min and max operators respectively, and C, with or without
subscript, will always denote a finite constant which may vary from line to line.

The notation Cnb will be used when denoting a class of functions which have bounded derivatives
up to nth-order.

Given vector spaces A and B, L(A;B) will denote the space of linear maps from A to B.

Frequently, we will canonically identify a tensors
k

∑
i=1

l

∑
j=1

aij ei ⊗ ej (or co-tensors
k

∑
i=1

l

∑
j=1

aij dei ⊗ dej)

in R
k ⊗R

l with a k-by-l matrix.

For simplification, we will denote both tensor spaces and co-tensor spaces with R
k ⊗ R

l, and if

A ∈ Rk ⊗R
k, trA ∶=

k

∑
i=1

aii will denote the usual trace operation.

Ik ∶=
k

∑
j=1

ej ⊗ ej will be used to denote the k-by-k identity matrix.

2.1 Rough paths, p-variation topology and controls

We begin by reviewing the basic concepts and notation of rough paths theory. The standard
references in this area include [Lyo98], [LQ03], [FH14] and [FV10b].

Given x ∈ C ([0, T ];Rd), i.e. a continuous Rd-valued path defined on the time interval [0, T ], where
T is some arbitrary but fixed terminal time, a rough path x includes the higher-order iterated
integrals of x in addition to the first-order increment xs,t ∶= xt − xs. To account for these higher-
order increments, the right space for x to take values in turns out to be the step-n nilpotent group,
which we will define below.

First, let T n (Rd) denote the truncated tensor algebra up to degree n:

T n (Rd) ∶= R⊕R
d ⊕⋯⊕ (Rd)⊗n .
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Addition and scalar multiplication are defined in the usual fashion, and given
a = (a0, a1, . . . , an) , b = (b0, b1, . . . , bn) ∈ T n (Rd), multiplication is performed by

a⊗ b ∶= (c0, c1, . . . , cn) , ck =
k

∑
i=0

ai ⊗ bk−i, ∀0 ≤ k ≤ n,

where here we abuse the notation by re-using the same symbol for the tensor product in R
d.

The tangent space of T n(Rd) at the unit element e = (1,0 . . . ,0) is given by

AnT (Rd) ∶= 0⊕R
d ⊕⋯⊕ (Rd)⊗n .

We will define the exponential map exp ∶ AnT (Rd)→ T n(Rd) by
exp(a) ∶= n

∑
i=0

a⊗i

i!
, (11)

(for a ∈ Rd we will occasionally abuse the notation by denoting exp(a) ∶= exp((0, a,0))), and the
logarithm map log ∶ T n(Rd)→ AnT (Rd) by

log(a) = n

∑
i=1

(−1)i+1 (a − e)⊗i
i

. (12)

Definition 2.1. The step-n nilpotent group (with d generators), denoted by Gn (Rd), is the subgroup
of T n (Rd) corresponding to the sub-Lie algebra of AnT (Rd) generated by the Lie bracket [a, b] =
a⊗ b − b⊗ a.
One can check that the inverse of any element a = e + ã ∈ Gn (Rd) is given by

a−1 =
n

∑
k=0

(−1)kã⊗k; (13)

see Lemma 7.16 in [FV10b].

Gn (Rd) will be equipped with the topology induced from the symmetric, sub-additive homogeneous
norm

∥g∥ = max
i=1,...,n

(i! ∣gi∣) 1i . (14)

Consider now x ∈ C ([0, T ];Gn (Rd)), a continuous Gn (Rd) valued path on [0, T ]. We define the
increment by setting xs,t ∶= x−1s ⊗xt. Such a path is called a multiplicative functional (cf. [LCL07])
as it satisfies Chen’s equality

xs,t = xs,u ⊗ xu,t ∀ s,u, t ∈ [0, T ], s ≤ u ≤ t. (15)

We now define the p-variation distance as

dp−var;[0,T ](x,y) ∶= sup
π
(∑
i

d(xti,ti+1 ,yti,ti+1)p)
1

p

, (16)

where the supremum runs over all partitions π = {ti} of [0, T ]. We also define

∥x∥p−var;[0,T ] ∶= dp−var;[0,T ](x,0),
where 0 denotes the constant path yt = e for all t ∈ [0, T ].
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Definition 2.2. For p ≥ 1, the weakly geometric p-rough paths, which we will denote by
Cp−var ([0, T ];G⌊p⌋ (Rd)), is the set of continuous functions x from [0, T ] onto G⌊p⌋ (Rd) such that∥x∥p−var;[0,T ] <∞.

The simplest example of a weakly geometric p-rough path is as follows, given a bounded-variation
path x in R

d, we can compute the signature of x in G⌊p⌋ (Rd):
S⌊p⌋(x)s,t = (1,x1

s,t,x
2
s,t, . . . ,x

⌊p⌋
s,t ) ,

where xks,t is the conventional k-th iterated integral of the path x over the interval [s, t]:
xks,t =

d

∑
j1,...,jk=1

(∫
s<r1<⋯<rk<t

dx(j1)r1
⊗⋯⊗ dx(jk)rk

) ej1 ⊗⋯⊗ ejk .
Let C∞ ([0, T ];G⌊p⌋ (Rd)) denote the subset of weakly-geometric rough paths which are also of

bounded variation. Then the signature of x is in C∞ ([0, T ];G⌊p⌋ (Rd)), and we also have the
following definition.

Definition 2.3. For p ≥ 1, the space of geometric p-rough paths, which we will denote by
C0,p−var ([0, T ];G⌊p⌋ (Rd)), is defined to be the closure of C∞ ([0, T ];G⌊p⌋ (Rd)) in
Cp−var ([0, T ];G⌊p⌋ (Rd)) with respect to the topology given by the p-variation distance (16).

Remark 2.4. In finite dimensions, the difference between weakly-geometric rough paths and geo-
metric rough paths is fairly minor, as we have the following relation

C0,p−var ([0, T ];G⌊p⌋ (Rd)) ⊂ Cp−var ([0, T ];G⌊p⌋ (Rd)) ⊂ C0,p+ε−var ([0, T ];G⌊p⌋ (Rd)) ,
where ε > 0 can be chosen arbitrarily small, cf. [FV06].

We will now extend the notion of finite p-variation to general metric spaces. Given a metric space(E,d), a path f ∶ [0, T ] → E is said to have finite p-variation if

∥f∥p−var;[s,t] ∶= sup
π
(∑
i

d(fti , fti+1)pE)
1

p

<∞. (17)

We will use Cp−var ([0, T ];E) to denote the set of continuous functions which satisfy (17). We
will also use the notation Cp−varpw ([0, T ];E) to denote the subset of functions which are piecewise
continuous, i.e. f in Cp−varpw ([0, T ];E) implies that there exists a partition {ti} of [0, T ] such that
f is in Cp−var ([ti, ti+1];E) for all i.
We have the following simple proposition; cf. Proposition 5.3 in [FV10b].

Proposition 2.5. Let f ∈ C([0, T ];E). Then if 1 ≤ p ≤ p′ <∞,

∥f∥p′−var;[0,T ] ≤ ∥f∥p−var;[0,T ] .
In particular, Cp−var ([0, T ];E) ⊂ Cp′−var ([0, T ];E).
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We will use the notation ∥f∥p−var;[s,t] when the supremum is taken over partitions of [s, t] ⊂ [0, T ].
Proposition 5.8 in [FV10b] tells us that

ω(s, t) ∶= ∥f∥p
p−var;[s,t]

defines a control, i.e. a continuous, non-negative, real-valued function that is super-additive and
vanishes on the diagonal, i.e. ω(t, t) = 0 for all t ∈ [0, T ]. We also note the following lemmas about
controls.

Lemma 2.6. Assume ω1 and ω2 are controls.

(i) If φ is a positive convex function, then φ(ω1) is a control.

(ii) Given α,β > 0 with α + β ≥ 1, ωα1 ωβ2 is also a control.

Proof. Exercises 1.8 and 1.9 in [FV10b]. ∎
Lemma 2.7 (Proposition 5.10 in [FV10b]). Let ω be a control on [0, T ] and let p ≥ 1. Then the
point-wise estimate

d(fs, ft)p ≤ C ω(s, t) ∀s < t ∈ [0, T ]
implies the p-variation estimate

∥f∥p−var;[s,t] ≤ C 1

p ω(s, t) 1p ∀s < t ∈ [0, T ].
If E also has a norm ∥⋅∥E , we will also use the notation ∥f∥Vp;[0,T ] to denote the norm

∥f∥Vp;[0,T ] ∶= ∥f∥p−var;[0,T ] + sup
t∈[0,T ]

∥ft∥E
≤ ∥f0∥E + 2 ∥f∥p−var;[0,T ] .

For a function defined on [0, T ]2, f ∶ [0, T ]2 → E is said to be of finite 2D p-variation if

∥f∥p−var;[0,T ]2 ∶= sup
π

⎛⎝∑i,j ∥f (
ui, ui+1
vj , vj+1

)∥p
E

⎞⎠
1

p

<∞,

where π = {(ui, vj)} is a partition of [0, T ]2, and the rectangular increment is given by

f (ui, ui+1
vj, vj+1

) ∶= f(ui, vj) + f(ui+1, vj+1) − f(ui, vj+1) − f(ui+1, vj). (18)

On occasion, we will use the notation

f(∆i, v) ∶= f(ui+1, v) − f(ui, v),
f(u,∆j) ∶= f(u, vj+1) − f(u, vj). (19)

Given f ∈ Cp−var ([0, T ]2;E) and ε > 0, we will use ωf,ρ+ε to denote the 2D control

ωf,ρ+ε([s, t] × [u, v]) ∶= sup
Π
∑
i

∣f (ai bi
ci di

)∣ρ+ε , (20)
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where the supremum runs over all partitions Π = {[ai, bi] × [ci, di]}, where the rectangles have
disjoint interiors and satisfy ⋃i[ai, bi] × [ci, di] = [s, t] × [u, v]. Note that this includes partitions
which are not grid-like, in contrast to ∥f∥ρ

ρ−var;[s,t]×[u,v], which is not super-additive and thus does

not yield a control; see [FV11].

However, there exists a finite constant depending on ε such that

ωf,ρ+ε([s, t] × [u, v]) ≤ Cε ∥f∥ρ+ερ−var;[s,t]×[u,v] <∞,
for all [s, t] × [u, v] ⊂ [0, T ]2. The reason to use ρ + ε regularity instead of ρ is that otherwise (20)
might be infinite; cf. Example 1 in [FV11].

The reader is invited to refer to [FV11] for a more detailed discussion of 2D controls.

Definition 2.8. We say that the 2D Young-Stieltjes integral of f with respect to g exists if there
exists a scalar I(f, g) ∈ R such that

lim
∥π∥→0

RRRRRRRRRRR∑i,j f (ui, vj) g (
ui ui+1
vj vj+1

) − I(f, g)RRRRRRRRRRR → 0, (21)

i.e. for each ε > 0, there exists a δ > 0 such that for all partitions π = {(ui, vj)} of [0, T ]2 with∥π∥ < δ, the quantity on the left of (21) is less than ε. In this case, we use ∫[0,T ]2 f dg to denote

I(f, g), or ∫[s,t]×[u,v] f dg whenever we restrict ourselves to any particular subset [s, t] × [u, v] of[0, T ]2.
Definition 2.9. We say that f ∈ Cp−var([s, t] × [u, v]) and g ∈ Cq−var([s, t] × [u, v]) have comple-
mentary regularity if 1

p
+ 1
q
> 1.

The significance of this definition lies in the following theorem, which gives the existence of the
Young-Stieltjes integral and Young’s inequality in two dimensions; see [LCL07], [FH14], [FV10b]
for the one-dimensional version.

Theorem 2.10. Let f ∈ Cp−var([s, t] × [u, v]) and g ∈ Cq−var([s, t] × [u, v]) have complementary
regularity. Then the 2D Young-Stieltjes integral exists and the following Young’s inequality holds;

∣∫[s,t]×[u,v] f dg∣
≤ Cp,q (∣f(s,u)∣ + ∥f(s, ⋅)∥p−var;[u,v] + ∥f(⋅, u)∥p−var;[s,t] + ∥f∥p−var,[s,t]×[u,v]) ∥g∥q−var,[s,t]×[u,v] .

(22)

Proof. See [Tow02], [FV10a]. ∎

2.2 Gaussian rough paths

We will work with a stochastic process

Xt = (X(1)t , . . . ,X
(d)
t ) , t ∈ [0, T ],

which denotes a centered (i.e. zero-mean), continuous Gaussian process in R
d with i.i.d. components

and starting at the origin.
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This process is defined on the canonical probability space (Ω,F ,P), where Ω = C ([0, T ];Rd),
the space of continuous R

d-valued paths equipped with the supremum topology, F is the Borel
σ-algebra and P is the unique Borel measure under which X (ω) = (ωt)t∈[0,T ] has the specified
Gaussian distribution. We will use

R(s, t) ∶= E [X(1)s X
(1)
t ]

to denote the covariance function common to the components. The variance R (t, t) will be denoted
simply by R(t), and we will also use the notation

σ2(s, t) ∶= R(s t

s t
) = E [(X(1)s,t )2] ; (23)

recall the definition of the rectangular increment in (18).

The triple (Ω,Hd,P) denotes the abstract Wiener space associated to X, where Hd =⊕d
i=1H is the

Cameron-Martin space (or reproducing kernel Hilbert space). The Cameron-Martin space, which
is densely and continuously embedded in Ω, is the completion of the linear span of the functions

{R(t, ⋅)(u) ∶= R(t, ⋅)eu ∣ t ∈ [0, T ], u = 1, . . . , d}
under the inner-product

⟨R(t, ⋅)(u),R(s, ⋅)(v)⟩
Hd
= δuvR(t, s), u, v = 1, . . . , d.

By definition, Hd satisfies the following reproducing property; for any f = (f (1), . . . , f (d)) ∈ Hd,
⟨f⋅,R(t, ⋅)(u)⟩Hd

= f (u)t , t ∈ [0, T ].
We assume that there exists ρ < 2 such that R has finite 2D ρ-variation. The following theorem
in [FV10a] (see also [CQ02] in the case of fractional Brownian motion) then shows that one can
canonically lift X via its piecewise linear approximants Xπ to a geometric p-rough path for p > 2ρ.
Theorem 2.11. Assume X is a centered continuous R

d-valued Gaussian process with i.i.d. com-
ponents. Let ρ ∈ [1,2) and assume that the covariance function has finite 2D ρ-variation.

(i) (Existence) There exists a random variable X = (1,X1,X2,X3) on (Ω,F ,P) which takes

values almost surely in C0,p−var ([0, T ];G3(Rd)) for p > 2ρ, i.e. the set of geometric p−rough
paths for p ∈ (2ρ,4), and which lifts the Gaussian process X in the sense that X1

s,t = Xt −Xs

almost surely for all s, t ∈ [0, T ].
(ii) (Uniqueness and consistency) The lift X is unique in the sense that it is the dp−var-limit in

Lq(Ω), q ∈ [1,∞), of any sequence S⌊p⌋(Xπ) with ∥π∥→ 0. Furthermore, if X has a.s. sample
paths of finite [1,2)-variation, X coincides with the signature of X.

Moreover, Proposition 17 in [FV10a] shows that for all h ∈ Hd,

∥h∥ρ−var;[0,T ] ≤ ∥h∥Hd

√∥R∥ρ−var;[0,T ]2 , (24)
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which implies that Hd ↪ Cρ−var([0, T ];Rd) whenever R has finite 2D ρ-variation. Thus if ρ ∈ [1, 3
2
),

corresponding to 2 ≤ p < 3, we have complementary regularity between X and any path in the
Cameron-Martin space, i.e. 1

p
+ 1
ρ
> 1.

We will need to impose further conditions on the covariance function. For all s, t ∈ [0, T ], we assume
there exists C <∞ such that

∥R(t, ⋅) −R(s, ⋅)∥ρ−var;[0,T ] ≤ C ∣t − s∣ 1ρ . (25)

This bound will be later used to control the L2(Ω) norm of the iterated integrals. An immediate
consequence of the bound is illustrated in the following lemma.

Lemma 2.12. Let X be a continuous, centered Gaussian process in R and assume its covariance
function satisfies

∥R(t, ⋅) −R(s, ⋅)∥q−var;[0,T ] ≤ C ∣t − s∣ 1ρ , ∀s < t ∈ [0, T ],
for some q, ρ ≥ 1. Then

(i) R(t) ∶= R(t, t) is of bounded ρ-variation.

(ii) For p > 2ρ, X has a 1
p
-Hölder continuous modification.

Proof. Let fs,t(⋅) denote R(t, ⋅) −R(s, ⋅). Then for any partition {ti} of [0, T ], we have

∑
i

∣R (ti+1) −R (ti)∣ρ ≤∑
i

∣R (ti+1, ti+1) −R (ti, ti+1) +R (ti, ti+1) −R (ti, ti)∣ρ
≤ 2ρ−1∑

i

∣fti,ti+1 (ti+1) − fti,ti+1(0)∣ρ + ∣fti,ti+1 (ti) − fti,ti+1(0)∣ρ
≤ 2ρ∑

i

∥fti,ti+1(⋅)∥ρq−var;[0,T ]
≤ C∑

i

∣ti+1 − ti∣ ≤ C T.
For the second part, for all n ∈ N we have

E [X2n
s,t ] ≤ CnE [X2

s,t]n ≤ Cn ∣fs,t(t) − fs,t(s)∣n
≤ Cn ∥R(t, ⋅) −R(s, ⋅)∥nq−var;[0,T ]
≤ Cn ∣t − s∣nρ , s < t ∈ [0, T ].

By Kolmogorov’s continuity theorem, there exists a γ-Hölder continuous modification of X for all
γ < 1

2ρ
.

∎

2.3 Malliavin calculus

We will primarily work with the following Hilbert space which is isomorphic to Hd.

10



Definition 2.13. Let Hd1 denote the completion of the linear span of

{1(u)[0,t)(⋅) ∶= 1[0,t)(⋅)eu ∣ t ∈ [0, T ], u = 1, . . . , d}
(cf. [AMN01], [Nua06]) with respect to the inner-product given by

⟨1(u)[0,t)(⋅),1(v)[0,s)(⋅)⟩Hd
1

= δuvR(t, s).
Furthermore, let Φ ∶ Hd1 → Hd denote the Hilbert space isomorphism obtained from extending the

map 1
(u)
[0,t)(⋅)↦ R(t, ⋅)(u), t ∈ [0, T ], u = 1, . . . , d.

We record some basic properties about the Malliavin calculus. For simplicity, we assume here that
d = 1. First we recall that the map 1[0,t) ↦ Xt extends to a unique linear isometry I from H1 to

L2 (Ω). It follows that I (h) is a mean-zero Gaussian random variable with variance ∥h∥2H1
. The

set S of smooth cylinder functionals is the subset of random variables taking the form

F = f(I (h1) , . . . , I (hn)),
where h1, . . . , hn ∈ H1 and f ∶ Rn → R is infinitely differentiable with bounded derivatives of all
orders. The Malliavin derivative DF is the H1-valued random variable which is defined for smooth
cylinder functionals as follows:

DF ∶=
n

∑
i=1

∂f

∂xi
(I (h1) , . . . , I (hn))hi.

It can be shown that D is a closable operator, see e.g. Proposition 1.2.1 in [Nua06]. For p ≥ 1 we
let D1,p denote the closure of S with respect to the norm

∥F ∥p1,p ∶= ∥F ∥pLp(Ω) + ∥DF ∥pLp(Ω;H1) .

If K is a separable Hilbert space, the higher-order derivatives Dn and the corresponding Sobolev
spaces Dn,p(K) can be defined iteratively.

Moving to the case p = 2, for any F in D
1,2, we let DhF ∶= ⟨DF,h⟩H1

. The divergence operator δX

is defined to be the adjoint of D. The domain of this operator consists of all h ∈ L2 (Ω;H1) such
that

∣E [DhF ]∣ ≤ C ∥F ∥L2(Ω)

for all F ∈ S, whereupon δX (h) is characterized as the unique random variable in L2 (Ω) for which
E [⟨DF,h⟩H1

] = E [FδX (h)] .
We will use the notation δX(h) and ∫ T0 hs dXs interchangeably. It is well-known that the domain
of δX contains D1,2 (H1), see e.g. Proposition 1.3.1 in [Nua06].

Fixing a multi-index a = (a1, . . . , aM ) where ∣a∣ ∶= ∑Mi=1 ai = n, we define In ∶H⊗n1 → R as follows:

In (h⊗a11 ⊗⋯⊗ h⊗aMM
) = a! M∏

i=1

Hai(δX(hi)),
11



where a! ∶=∏Mi=1 ai! and Hm(x) denotes the mth Hermite polynomial. The following duality formula
is then classical;

E [FIn(h)] = E [⟨DnF,h⟩H⊗n
1

] . (26)

For f ∈ H⊗n1 , g ∈ H⊗m1 , both f and g symmetric, we also have the following product formula (cf.
Proposition 1.1.3 in [Nua06])

In(f)Im(g) = n∧m∑
r=0

r!(n
r
)(m

r
) In+m−2r (f ⊗̃rg) . (27)

Here f ⊗̃rg denotes the symmetrization of the tensor f ⊗r g, which in turn denotes the contraction
of f and g of order r; i.e. given an orthonormal basis {hm} of H1,

f ⊗r g ∶=
∞

∑
k1,...,kr=1

⟨f,hk1 ⊗⋯⊗ hkr⟩H⊗r
1

⊗ ⟨g,hk1 ⊗⋯⊗ hkr⟩H⊗r
1

∈H⊗(n+m−2r)1 ;

cf. [NNT10].

Remark 2.14. One can also define operators equivalent to D and δX directly on the abstract
Wiener space (Ω,H,P). To make the presentation clear we summarize the correspondence here.
First, for every l in the topological dual Ω∗ = C ([0, T ] ,R)∗, there exists a unique hl in H such that
l (h) = ⟨hl, h⟩. Under this identification, the random variable I (hl) ∶ ω ↦ l (ω) is a centered normal
random variable with variance ∥hl∥2H. Second, it can be shown that the set {hl ∶ l ∈ Ω∗} is dense in
H, whereupon I extends uniquely to an isometry between H and L2(Ω), and is called the Paley-
Wiener map. It is simple to see that I and I are related by I (h) = I (Φ(h)) for all h ∈ H1, and
therefore any smooth cylinder functional F can be represented as F = f (I (Φ(h1)) , . . . ,I (Φ(hn))),
and a derivative operator D can be defined analogously to D by setting

DF ∶=
n

∑
i=1

∂f

∂xi
(I (Φ(h1)) , . . . ,I (Φ(hn)))Φ(hi) = Φ(DF ).

This implies that

DΦ(h)F = ⟨DF,Φ(h)⟩H = ⟨DF,h⟩H1
= DhF, ∀h ∈ H1.

The exposition above presents Shigekawa’s definition of the Sobolev-type space D
n,p (K) for K-

valued Wiener functionals, where K is a separable Hilbert space. Although this is the one most
often used in the literature, there are equivalent characterizations of these spaces. One of these,
which is attributed to Kusuoka and Stroock (cf. [Sug85]), is especially convenient to study stochastic
differential equations for which bounds on the directional derivatives can be computed explicitly.
The definition relies on two properties. First, a measurable function F ∶ Ω → K is called ray
absolutely continuous (RAC) if for every k ∈ H, there exists a measurable map F̃k ∶ Ω → K such
that

F (⋅) = F̃k (⋅) , P − a.s., (28)

and for any ω ∈ Ω the function s↦ F̃k (ω + sk) is locally1 absolutely continuous in s ∈ R. Second, F
has the property of being stochastically Gâteaux differentiable (SGD) if there exists a measurable

1Local absolute continuity is important here and is a point often missed in the literature where RAC is sometimes
stated by demanding that s ↦ F̃k (ω + sk) is absolutely continuous in s ∈ R. See however Definition 8.2.3 and Theorem
8.5.1 in [Bog10] for a proof that local absolute continuity is enough.

12



G ∶ Ω→LHS (H,K), such that for any k ∈ H
1

ε
[F (⋅ + εk) − F (⋅)] P

→ G (ω) (k) as t→ 0,

where LHS (H,K) denotes the space of linear Hilbert-Schmidt operators from H to K. In this case,
the derivative G is unique P-a.s. and we denote it by DKSF . Higher order derivatives are defined
inductively in the obvious way: if Dn−1KS F is SGD then DnKSF ∶= DKS (Dn−1KS F).
Next, we define the spaces Dn,pKS (K) for 1 < p <∞ inductively, first for n = 1 by setting

D
1,p
KS
(K) ∶= {F ∈ Lp (K) ∶ F is RAC and SGD,DKSF ∈ Lp(LHS (H,K))} ,

and then analogously for n = 2,3, . . . by
D
n,p
KS
(K) ∶= {F ∈ Dn−1,p

KS
(K) ∶ DKSF ∈ Dn−1,pKS

(LHS (H,K))} .
We have the following theorem.

Theorem 2.15 (Theorem 3.1 in [Sug85]). For 1 < p <∞ and n ∈ N we have D
n,p
KS
(K) = Dn,p (K),

and for any element F in this space, DKSF = DF holds P-a.s.

Remark 2.16. By applying the same result iteratively it follows that Dk
KS
F = DkF holds P-a.s for

k = 2, . . . , n.

2.4 Rough integration and controlled rough paths

In this subsection, we will review rough integration via the theory of controlled rough paths. We
will develop the concepts in p-variation topology rather than the usual Hölder topology (cf. [Gub04]
and [FH14]), and henceforth, U ,V will denote finite-dimensional vector spaces.

We begin with the following definition.

Definition 2.17. Let x = (1, x,x2) ∈ Cp−var ([0, T ] ;G2 (Rd)). A pair of paths (φ,φ′), where φ ∈
Cp−var ([0, T ];U) and φ′ ∈ Cp−var ([0, T ];L(Rd;U)), is said to be controlled by x if for all s, t ∈ [0, T ],

φs,t = φ′sxs,t +Rφs,t, (29)

where the remainder term satisfies

Rφ ∈ C p

2
−var ([0, T ] ;U) .

If we define the controlled variation norm as

∥φ∥p−cvar ∶= ∥φ∥Vp;[0,T ] + ∥φ′∥Vp;[0,T ] + ∥Rφ∥ p
2
−var;[0,T ] ,

then the preceding definition says that (φ,φ′) is controlled by x if ∥φ∥p−cvar <∞.

Theorem 2.18. Let x = (1, x,x2) ∈ Cp−var ([0, T ];G2(Rd)), where 2 ≤ p < 3.

13



Let φ ∈ Cp−var ([0, T ];L(Rd;Re)) and φ′ ∈ Cp−var ([0, T ];L(Rd;L(Rd;Re))). If (φ,φ′) is controlled
by x, we can define the rough integral

∫
t

0
φr ○ dxr ∶= lim

∥π∥→0,π={0=r0<...<rn=t}

n−1

∑
i=0

(φrixri,ri+1 + φ′rix2
ri,ri+1

) , (30)

where we have made use of the canonical identification L(Rd;L(Rd;Re)) ≃ L(Rd ⊗ R
d;Re). Fur-

thermore, denoting

zt ∶= ∫
t

0
φr ○ dxr, z′t ∶= φt,

(z, z′) is again controlled by x, and we have the bound

∥z∥p−cvar ≤ Cp ∥φ∥p−cvar (1 + ∥x∥p−var;[0,T ] + ∥x2∥p
2
−var;[0,T ]) . (31)

The following propositions will provide us with various ways to construct controlled rough paths
from existing ones.

Proposition 2.19. For p ≥ 2, let

y ∈ Cp−var ([0, T ];U) ,
y′ ∈ Cp−var ([0, T ];L (Rd;U)) ,

and let φ be a C2b map from U to V.
Then φ(y) ∈ Cp−var ([0, T ];V) and ∇φ(y)y′ ∈ Cp−var ([0, T ];L(Rd;V)). Furthermore, if (y, y′) is

controlled by x ∈ Cp−var ([0, T ];G2 (Rd)), then (φ(y),∇φ(y)y′) is also controlled by x and we have

∥φ(y)∥p−var;[0,T ] , ∥∇φ(y)y′∥p−var;[0,T ] ≤ ∥φ∥C2b ∥y∥Vp;[0,T ] (1 + ∥y′∥Vp;[0,T ]) , (32)

and

∥Rφ(y)∥
p

2
−var;[0,T ]

≤ ∥φ∥C2
b
(∥y∥2p−var;[0,T ] + ∥Ry∥p

2
−var;[0,T ]) . (33)

Proposition 2.20. (Leibniz rule) For p ≥ 2, let

φ ∈ Cp−var ([0, T ];L(U ;V)) ,
φ′ ∈ Cp−var ([0, T ];L(Rd;L(U ;V))) ,

and we assume that (φ,φ′) is controlled by x ∈ Cp−var ([0, T ];G2 (Rd)).
(i) Let ψ ∈ Cp−var ([0, T ];U), ψ′ ∈ Cp−var ([0, T ];L(Rd;U)), and suppose that (ψ,ψ′) is controlled

by x. Then the path φψ ∈ Cp−var([0, T ];V) given by the composition of φ and ψ is also
controlled by x, with derivative process (φψ)′ = φ′ψ + φψ′. In addition, we have the bound

∥φψ∥p−cvar ≤ 2 ∥φ∥p−cvar ∥ψ∥p−cvar (34)
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(ii) Suppose that ψ ∈ C p

2
−var([0, T ];U). Then φψ ∈ Cp−var([0, T ];V) is also controlled by x, with

derivative process (φψ)′ = φ′ψ. Moreover, we have the bound

∥φψ∥p−cvar ≤ ∥φ∥p−cvar ∥ψ∥V p
2 ;[0,T ] . (35)

Remark 2.21. The second part of the proposition clearly holds true if the roles of φ and ψ are
reversed. Furthermore, it asserts that one can trade increased regularity in place of a controlled
rough path structure in ψ (or φ) for the composition to remain a controlled rough path.

The proofs of the preceding theorem and propositions are routine and hence deferred to the Ap-
pendix.

2.5 Rough differential equations

Now consider the following equation

dy(t) = V (t, y(t))dx(t), y(0) = y0, (36)

where V ∈ C⌊p⌋
b
(R ×Re;L (Rd;Re)) is a differentiable function with bounded derivatives up to degree⌊p⌋. Given x ∈ C∞ ([0, T ];G⌊p⌋ (Rd)), the unique solution y = S⌊p⌋ (y) can be obtained simply by

solving (36) as a regular ODE. Furthermore, we have the following theorem (see [Lyo98]).

Theorem 2.22. (Universal Limit Theorem)

The Ito map I ∶ x ↦ y is continuous from C∞ ([0, T ],G⌊p⌋ (Rd)) to itself with respect to the p-
variation topology and thus admits a unique extension to the space of all p-geometric rough paths
C0,p−var ([0, T ],G⌊p⌋ (Rd)).
The Universal Limit Theorem allows one to transfer geometric results in the smooth case to geo-
metric rough paths, i.e. rough paths that satisfy the change-of-variable rule. This effectively allows
a generalization of the Stratonovich integral to processes with higher p-variation.

We will mainly be considering RDEs with time-homogeneous vector fields driven by Gaussian
geometric rough paths. Furthermore, although the RDE

dYt = V (Yt) ○ dXt, Y0 = y0, (37)

outputs a full rough path Yt, we will be concerned only with the first level/path-level solution,
which satisfies

Yt = y0 + ∫
t

0
V (Ys) ○ dXs,

and ignore the higher iterated integral terms. We will use the following notation; writing V (Y ) as
the co-tensor

e

∑
i=1

d

∑
j=1

V
(i)
j (Y )dei ⊗ dej ∈ Re ⊗R

d,

we will denote

∇V (Y )(V (Y )) ∶= e

∑
i,m=1

d

∑
j,k=1

∂V
(i)
k

∂em
(Y )V (m)j (Y )dei ⊗ dej ⊗ dek ∈ Re ⊗R

d ⊗R
d.
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Theorem 2.23. For all s < t ∈ [0, T ], ∥Y ∥p−var;[s,t] is in Lq(Ω) for all q > 0.

Proof. From equation 10.15 in [FV10b], we have

∥Ys,t∥p−var;[s,t] ≤ Cp (∥V ∥C⌊p⌋
b

∥X∥p−var;[s,t] ∨ ∥V ∥p
C
⌊p⌋
b

∥X∥p
p−var;[s,t]) ,

and ∥X∥p−var;[s,t] has moments of all orders; see Corollary 66 in [FV10a]. ∎

We will now show that

Yt ∈ D∞ (Re) ∶= ⋂
p>1

∞

⋂
k=1

D
k,p (Re) , for t ≥ 0,

where Y solves RDE (1) with smooth vector fields. To do so, we make use of the fact (cf. [CFV09])
that there exists a measurable subset Ω̃ ⊂ Ω with P(Ω̃) = 1 such that for all ω ∈ Ω̃ we have the
identity

X (ω +Φ(h)) = TΦ(h)X (ω) ∀h ∈ Hd1,
i.e. TΦ(h)X denotes the rough path translation of X by Φ(h) (see [CF11]), which is well-defined
via Young-Stieltjes integration due to complementary regularity.

We then obtain

Yt (ω + sΦ(h)) ∶= Y X(ω+sΦ(h))
t = Y TsΦ(h)X(ω)

t ,

which is smooth in s and hence locally absolutely continuous. It follows that Yt is RAC; indeed,
in this case we can even take the version F̃Φ(h) in (28) to be independent of Φ(h). Using Theorem
2.15, it is immediate from the definition of DKSYt and the directional derivatives that

DKSYt (ω) (Φ(h)) = DhYt (ω) , P-a.s.,
for all h ∈ Hd1, and henceforth we will use the latter notation exclusively.

Moving on to the higher order derivatives, given h1, . . . , hn ∈ Hd1, we can take the directional
derivatives of Yt in the directions Φ(h1), . . . ,Φ(hn) in Hd by setting

Dnh1,...,hnYt ∶=
∂n

∂ε1 . . . ∂εn
Y
ε1,...,εn
t ∣

ε1=...=εn=0

, (38)

where Y ε1,...,εn
t solves

dY ε1,...,εn
t = V (Y ε1,...,εn

t ) ○ d (Tε1Φ(h1)+⋯+εnΦ(hn)X)t , Y
ε1,...,εn
0 = y0.

The path (38) again has finite p-variation and in Section 3.1, we will give it an explicit expression
in terms of a sum of rough integrals and/or Young-Stieltjes integrals when n ≥ 2. It only remains
to show that these derivatives are Hilbert-Schmidt operators with norms having moments of all
orders, and this has been proved in [Ina14].

When n = 1 the first-order derivative is given by (cf. [FV10b], [CF11])

DhYt = ∫
t

0
JX

t (JX

s )−1 V (Ys) dΦ(h)(s). (39)
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Here JX

t denotes the Jacobian of the flow map y0 → Yt and satisfies

dJX

t = ∇V (Yt) (○dXt)JX

t , JX

0 = Ie. (40)

On occasion, we will use the shorthand

JX

t←s ∶= JX

t (JX

s )−1 , 0 ≤ s < t ≤ T,

and for future reference, we also note that its inverse (JX)−1 satisfies

d (JX

t )−1 = − (JX

t )−1∇V (Yt) (○dXt) , (JX

0 )−1 = Ie. (41)

To bound the Jacobian, we will need the following definitions. Following [CLL13] we define, for
a given interval [s, t] ⊂ [0, T ] and β > 0, the so-called greedy sequence {τi(β)}, a finite increasing
sequence given by

τ0(β) = s,
τi+1(β) = inf {u ∈ (τi, t] ∣ ∥X∥pp−var;[τi,u] ≥ β} ∧ t.

We then denote

NX

β;[s,t] ∶= sup{n ∈ N ∪ {0} ∣ τn(β) < t} , (42)

and note the following theorem.

Theorem 2.24. Let X be an R
d-valued centered Gaussian process with i.i.d. components. For

1 ≤ p < 4, assume that X has a natural lift to X ∈ C0,p−var ([0, T ];G⌊p⌋ (Rd)), and that Hd ↪
Cq−var ([0, T ];Rd), where 1

p
+ 1
q
> 1. Then we have

P [NX

β;[0,T ] > n] ≤ C1 exp (−C2β
2n

2

q ) .
Proof. See the proof of Theorem 6.3 in [CLL13]. ∎
Theorem 2.25. For all s < t ∈ [0, T ], ∥JX∥

p−var;[s,t] is in Lq(Ω) for all q > 0.

Proof. Using the fact that NX

1;[s,t] has Gaussian tails from the previous theorem, we see that

E [exp (C2qN
X

1;[s,t])] <∞ for all q > 0, s < t ∈ [0, T ]. Now from equation (4.10) in [CLL13], we have

the bound

∥JX∥
p−var;[s,t] ≤ C1 ∥X∥p−var;[s,t] exp (C2N

X

1;[s,t]) . (43)

The statement of the theorem then follows immediately using Cauchy-Schwarz since ∥X∥p−var;[s,t]
also has moments of all orders. ∎
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3 High-order directional derivatives for solutions to RDEs

We first begin with the following theorem.

Theorem 3.1. Consider the system of RDEs

dyt = V (yt) ○ dxt, y0 = a ∈ Re,
dJx

t = ∇V (yt) (○dxt)Jx

t , Jx

0 = Ie,
where x = (1, x,x2) ∈ Cp−var ([0, T ];G2 (Rd)), 2 ≤ p < 3, and V is in C3b (Re;Re ⊗R

d).
In this case, both (y,V (y)) and (Jx, (Jx)′) are controlled by x. Moreover, we have the bounds

∥y∥p−cvar ≤ Cp (1 + ∥V ∥C2
b
)4 (1 + ∥x∥p−var;[0,T ])3 , (44)

and

∥Jx∥p−cvar ≤ C1 (1 + exp (C2N
x

1;[0,T ]))4 (1 + ∥x∥p−var;[0,T ])3 , (45)

where C1, C2 depend on p and ∥V ∥C3
b
.

Proof. (i) From Corollary 10.15 in [FV10b], for γ > p and s, t ∈ [0, T ], we have

∣ys,t − V (ys)xs,t −∇V (ys)(V (ys))x2
s,t∣ ≤ Cp (∥V ∥C2

b
∥x∥p−var;[s,t])γ .

This implies that

∣Rys,t∣p2 ≤ Cp (∣∇V (ys)(V (ys))x2
s,t∣p2 + (∥V ∥C2

b
∥x∥p−var;[s,t]) γp

2 )
≤ Cp (∥V ∥pC2

b

∥x∥p
p−var;[s,t] + ∥V ∥γp2C2

b

∥x∥ γp2
p−var;[s,t]) ,

(46)

and thus

∥Ry∥p
2
−var;[0,T ] ≤ Cp (∥V ∥2C2

b
∥x∥2p−var;[0,T ] ∨ ∥V ∥γC2

b

∥x∥γ
p−var;[0,T ]) ,

from the super-additivity of the right side of (46). We will choose γ to be in the interval (p,3),
and since

∥V (y)∥p−var;[0,T ] ≤ ∥V ∥C2
b
∥y∥p−var;[0,T ]

and

∥y∥p−var;[0,T ] ≤ Cp (∥V ∥C2
b
∥x∥p−var;[0,T ] ∨ ∥V ∥pC2

b

∥x∥p
p−var;[0,T ]) ,

we obtain (44).

From Proposition 5 in [FR13], we have

∥Jx∥p−var;[0,T ] ≤ exp (Cp,∥V ∥C3
b

(Nx

1;[0,T ] + 1)) ,
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which gives us

∥Jx∥
∞
≤ 1 + exp(Cp,∥V ∥

C3
b

(Nx

1;[0,T ] + 1)) =∶ 1 +M. (47)

For each i = 1, . . . , d, we can construct Ui ∈ C3b (Re × Re2 ;Re ⊗ R
d) which is equal to the vector

field (y, z) ↦ ∇Vi(y)z on the set W1 = {z ∈ Re2 ∣ ∣z∣ ≤M + 1} and vanishes outside the set W2 =
{z ∈ Re2 ∣ ∣z∣ <M + 2}. Hence we have

∥Ui∥C3
b
≤ sup
z∈W2

∥∇Vi(⋅)z∥∞ + ∥∇Vi(⋅)∥∞
= ∥V ∥C3

b
(M + 3), i = 1, . . . , d.

Then the solution to

dyt = V (yt) ○ dxt, y0 = a ∈ Re,
dJx

t = U(yt, Jx

t ) ○ dxt, Jx

0 = Ie,
where U = (U1, . . . ,Ud), will be the same as the solution to the original system on R

e ×W1, and it
can be rewritten as

dỹt = Ṽ (ỹt) ○ dxt, ỹ0 = (a,Ie),
where ỹ = (y, Jx) ∈ Re ×Re2 and ∥Ṽ ∥C3

b

≤ ∥V ∥C3
b
(M + 3).

Hence, we can apply (44) to obtain

∥ỹ∥p−cvar ≤ Cp (1 + ∥V ∥C3
b
(M + 3))4 (1 + ∥x∥p−var;[0,T ])3 ,

and since Jx is a component of ỹ, we obtain (45). ∎

3.1 Upper bounds on the high-order directional derivatives

We now use the preceding theorem as well as results on controlled rough paths from Section 2.4 to
obtain upper bounds on the directional derivative

Dnh1,...,hnyt ∶=
∂n

∂ε1 . . . ∂εn
y
ε1,...εn
t ∣

ε1=...=εn=0

. (48)

To condense the notation we will write D∣A∣
A
yt, for any finite subset A = {h1, . . . , hn}, instead of

Dnh1,...,hnyt, noting that the symmetry of the derivative ensures this is well-defined. For i ∈ {1, ..., n}
we then let Ani (⋅) ∶ [0, T ] → (Re)⊗i be defined by

Ani (t) ∶= ∑
π={π1,...,πi}∈P({h1,...,hn})

D∣π1∣π1
yt⊗̃⋯⊗̃D∣πi∣πi

yt, t ∈ [0, T ] . (49)

Here ⊗̃ denotes the symmetric tensor product, and the summation is over the set of all partitions
of {h1, . . . , hn} containing exactly i elements. For all i ∈ {1, . . . , n − 1} and j ∈ {1, . . . , n} we also let
Bn
i,j (⋅) ∶ [0, T ]→ (Re)⊗i be defined by

Bn
i,j (t) ∶= ∑

π={π1,...,πi}∈P({h1,...,hj−1,hj+1,...,hn})
D∣π1∣π1

yt⊗̃⋯⊗̃D∣πi∣πi
yt. (50)

The following result gives an integral equation for the formula for Dnh1,...,hnyt in terms of these paths
(cf. [HP13], [Ina14], [CHLT15]).
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Theorem 3.2. For p ≥ 1, let x ∈ C0,p−var ([0, T ];G⌊p⌋ (Rd)) and y be the path-level solution to the
RDE

dyt = V (yt) ○ dxt, y0 ∈ Re given, (51)

where V ∈ C⌊p⌋+n
b

(Re;Re ⊗R
d). We assume that Hd ⊂ Cq−var([0, T ];Rd) for q complementary to p.

Let n ∈ N, n ≥ 2, and suppose that h1, . . . , hn ∈ Hd1. Then the nth-order directional derivative (48)
satisfies the RDE

dDnh1,...,hnyt =
n

∑
i=1

∇iV (yt)Ani (t) ○ dxt + n−1∑
i=1

n

∑
j=1

∇iV (yt)Bn
i,j (t) dΦ(hj)(t), Dnh1,...,hny0 = 0, (52)

wherein Ani and Bn
i,j are respectively defined by (49) and (50).

Remark 3.3. We will continue to draw the distinction between h in Hd1 and Φ(h) in Hd, and use
the notation DhF rather than DΦ(h)F (see Remark 2.14) in accordance with the rest of the paper.

Remark 3.4. The symmetry of the higher order derivatives of V ensures that we may simplify
∇iV (yt)Ani (t) in (49) by replacing the symmetric tensor product with the usual tensor product to
give

∇iV (yt)Ani (t) = ∑
π={π1,...,πi}∈P({h1,...,hn})

∇iV (yt)D∣π1∣π1
yt ⊗⋯⊗D∣πi∣πi

yt.

The terms ∇iV (yt)Bn
i,j (t) may also be simplified similarly. For this reason it is sufficient to prove

(52) for paths Ani and Bn
i,j whose symmetrizations coincide with the right sides of (49) and (50)

respectively.

Proof. Since x is a geometric rough path, all the following computations that follow can first be
done with smooth paths x(n) that converge to x in p-variation topology, and the result will follow
after an application of the Universal Limit Theorem.

We begin with the case n = 2. Taking the directional derivative of Dh1yt (see (39)) in the direction
of h2, we see that D2

h1,h2
yt solves the RDE

dD2
h1,h2

yt = ∇V (yt) (D2
h1,h2

yt) ○ dxt +∇2V (yt) (Dh1yt,Dh2yt) ○ dxt
+∇V (yt) (Dh2yt) dΦ(h1)(t) +∇V (yt) (Dh1yt) dΦ(h2)(t). (53)

The proof is finished by induction. Assuming (52) is true for n = 2, . . . , k, one can take the directional
derivative of Dh1,...,hkyt in the direction hk+1 to obtain the identity

Dk+1h1,...,hk+1
yt =

k

∑
i=1

Dhk+1 ∫
t

0
∇iV (ys)Aki (s) ○ dxs + k−1∑

i=1

k

∑
j=1

Dhk+1 ∫
t

0
∇iV (ys)Bk

i,j (s) dΦ(hj)(s)
=
k+1

∑
i=1
∫

t

0
∇iV (ys) Ãk+1i (s) ○ dxs + k

∑
i=1

k+1

∑
j=1
∫

t

0
∇iV (ys) B̃k+1

i,j (s) dΦ(hj)(s),
where the coefficients Ãk+1i and B̃k+1

i are the (Re)⊗i-valued paths defined for t ∈ [0, T ] by
Ãk+1i (t) =

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Dhk+1Ak1 (t) , i = 1,
Dhk+1Aki (t) +Aki−1 (t)⊗Dhk+1yt, i = 2, . . . , k,
Akk (t)⊗Dhk+1yt, i = k + 1,

(54)
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and

B̃k+1
i,j (t) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

Dhk+1Bk
1,j (t) , i = 1, j = 1, . . . , k,

Dhk+1Bk
i,j (t) +Bk

i−1,j (t)⊗Dhk+1yt, i = 2, . . . , k − 1, j = 1, . . . , k,
Bk
i−1,j (t)⊗Dhk+1yt, i = k, j = 1, . . . , k,

Aki (t) , i = 1, . . . , k, j = k + 1.
(55)

To finish the inductive step we first show that for every t ∈ [0, T ],
Ãk+1i (t) =̃Ak+1i (t) ∀i = 1, . . . , k + 1, (56)

where a=̃bmeans that the symmetrizations of the tensors a and b are equal. From this it immediately
follows that ∇iV (yt) Ãk+1i (t) = ∇iV (yt)Ak+1i (t) for all i = 1, ..., k + 1. We check (56) for the
boundary cases first. For i = 1 the induction hypothesis gives at once that

Ãk+11 (t) = Dk+1h1,...,hk+1
yt,

whereas the case i = k + 1 follows from

Ãk+1k+1 (t) = Akk (t)⊗Dhk+1yt
=̃Akk (t) ⊗̃Dhk+1yt
= Dh1yt⊗̃⋯⊗̃Dhk+1yt = Ak+1k+1 (t) .

For the remaining cases i = 2, . . . , k we note that any partition of {h1, . . . , hk+1} of size i can be
formed from a partition π of {h1, . . . , hk} in one of two ways. The first way is that π = {π1, . . . , πi}
itself has size i and hk is assigned to one of the subsets π1, . . . , πi. The second way is that π ={π1, . . . , πi−1} has size i − 1 and {hk+1} is adjoined as a singleton to give {π1, . . . , πi−1,{hk+1}}.
The two terms in (54) obtained by differentiation and the tensor product respectively correspond
to these operations. By the induction hypothesis, Aki (resp Aki−1) includes a summation over all
partitions of {h1, . . . , hn} of size i (resp. i − 1), thus every partition of {h1, . . . , hk+1} of size i is
accounted for in (54). It follows immediately that

Ãk+1i (t) =̃Ak+1i (t) .
Finally we show that for every t ∈ [0, T ],

B̃k+1
i,j (t) =̃Bk+1

i,j (t) ∀i = 1, . . . , k, j = 1, . . . , k + 1.
Again we treat the boundary cases separately. For j = k + 1, from the definition of B̃ and A, we
have

B̃k+1
i,k+1 (t) = Aki (t) = Bk+1

i,k+1 (t) , ∀i = 1, . . . , k.
For i = 1 we have ∀j = 1, . . . , k

B̃k+1
1,j (t) = Dhk+1Bk

1,j (t)
= Dhk+1Dk−1h1,...,hj−1,hj+1,...,hk

yt

= Dkh1,...,hj−1,hj+1,...,hk+1yt = Bk+1
1,j (t) .

The remaining terms are dealt with by exactly the same argument used for the non-boundary Ã
terms, and the induction is thereby complete. ∎
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The following corollary makes explicit the expression given in Proposition 11.5 of [FV10b].

Corollary 3.5. Under the conditions of the preceding theorem, Dnh1,...,hnyt equals
n

∑
i=2
∫

t

0
Jx

t (Jx

s )−1∇iV (ys)Ani (s) ○ dxs + n−1∑
i=1

n

∑
j=1
∫

t

0
Jx

t (Jx

s )−1∇iV (ys)Bn
i,j (s) dΦ(hj)(s) (57)

for all n ≥ 2.

Proof. From formula (52) and the fact that

An1 (s) = Dnh1,...,hnys,
(57) can be recovered using Duhamel’s principle. ∎

We now arrive at the main result of this section.

Proposition 3.6. Let p ∈ [2,3), q ∶= p
2
and n ∈ N. Let y be the solution to the RDE

dyt = V (yt) ○ dxt, y0 ∈ Re given,

where x ∈ C0,p−var ([0, T ];G2 (Rd)) and V ∈ C2+nb (Re;Re ⊗ R
d). Then there exists a polynomial

Pd(n) ∶ R+ ×R+ → R+ of finite degree d(n) for which

∥Dnh1,...,hny⋅∥Vp;[0,T ] ≤ Pd(n) (∥x∥p−var;[0,T ] , exp (CNx

1;[0,T ])) n

∏
i=1

∥Φ(hi)∥q−var;[0,T ] , (58)

for any h1, . . . , hn ∈ Hd1. Here Nx

1 is defined as in (42), and the constant C as well as the coefficients
of Pd(n) depend only on ∥V ∥C2+n

b
and p.

Proof. The proof will proceed by induction. First, we denote

F it ∶= (Jx

t )−1∇iV (yt), i = 0,1, . . . .
Applying Theorem 3.1 together with Proposition 2.19 to ∇iV (y), we see that there exists an integer
k1 such that

∥∇iV (y)∥
p−cvar

≤ C1 (1 + ∥x∥p−var;[0,T ])k1 , (59)

(note from (14) that ∥xk∥ p
k
−var;[0,T ] ≤ C ∥x∥kp−var;[0,T ] for all k) and again from Theorem 3.1, we

know that there exist k2 and l such that

∥Jx∥p−cvar , ∥(Jx)−1∥
p−cvar

≤ C2 (1 + exp (C3N
x

1;[0,T ]))k2 (1 + ∥x∥p−var;[0,T ])l . (60)

Now applying Leibniz rule, i.e. Proposition 2.20, we have, for some integer k,

∥F i∥
p−cvar

≤ C1 (1 + exp (C2N
x

1;[0,T ]))k (1 + ∥x∥p−var;[0,T ])l , (61)

where C1 and C2 depend only on p and ∥V ∥C2+i
b

.
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We now begin with the base case n = 1. Let φt denote Jx

t and ψt denote ∫ t0 (Jx

s )−1 V (ys)dΦ(h(s)).
Then Dhyt = φtψt and applying Young’s inequality to ψt, we obtain

∥∫ t

0
(Jx

s )−1 V (ys)dΦ(h(s))∥
q−var;[0,T ]

≤ Cp ∥(Jx)−1 V (y)∥Vp;[0,T ] ∥Φ(h)∥q−var;[0,T ] . (62)

Continuing, the second part of Proposition 2.20 tells us that Dhy is controlled by x, and from the
bounds (61) and (60), we have

∥Dhy⋅∥p−cvar ≤ C3 (1 + exp (CNx

1;[0,T ]))k (1 + ∥x∥p−var;[0,T ])l ∥Φ(h)∥q−var;[0,T ] . (63)

The cases n ≥ 2 are proved in the same manner. Let znt denote

znt ∶= Dnh1,...,hnyt,

where {hi}ni=1 ∈ Hd1 is arbitrary, and the induction hypothesis is as follows:

Assume that for all n = 1, . . . , k, zn is controlled by x, and that

∥zn∥p−cvar ≤ Pd(n) (∥x∥p−var;[0,T ] , exp (CNx

1;[0,T ])) n

∏
i=1

∥Φ(hi)∥q−var;[0,T ] .
To show the result for n = k + 1, first recall from Theorem 3.2 that zk+1t = Dk+1h1,...,hk+1

yt equals

Jx

t (Hk+1
t +Gk+1t ) ,

where

Hk+1
t ∶= ∫

t

0

k+1

∑
i=2

F isA
k+1
i (s) ○ dxs

and

Gk+1t ∶= ∫
t

0

k

∑
i=1

k+1

∑
j=1

F isB
k+1
i,j (s) dΦ(hj)(s).

From the induction hypothesis and Leibniz rule, for a partition π = {π1, . . . , πi}
in P ({h1, . . . , hk+1}), we have the bound

∥D∣π1∣π1
y⋅⊗̃⋯⊗̃D∣πi∣πi

y⋅∥
p−cvar

≤
i

∏
l=1

Pd(∣πl∣) (∥x∥p−var;[0,T ] , exp (CNx

1;[0,T ])) k+1∏
m=1

∥Φ(hm)∥q−var;[0,T ] ,
(64)

and similarly for a partition π = {π1, . . . , πi} ∈ P ({h1, . . . , hj−1, hj+1, . . . , hk+1}) we have the bound

∥D∣π1∣π1
y⋅⊗̃⋯⊗̃D∣πi∣πi

y⋅∥
p−cvar

≤
i

∏
l=1

Pd(∣πl∣) (∥x∥p−var;[0,T ] , exp (CNx

1;[0,T ])) k+1

∏
m=1,i≠j

∥Φ(hm)∥q−var;[0,T ] .
(65)
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Recalling the definition of Ak+1i (s) in (49), we use (64) together with bound (61) and apply Leibniz
rule. After summing over i and invoking Theorem 2.18, we see that Hk+1 is controlled by x, and
there exists a polynomial P̃1 such that

∥Hk+1∥
p−cvar

≤ P̃1 (∥x∥p−var;[0,T ] , exp (CNx

1;[0,T ])) k+1∏
i=1

∥Φ(hi)∥q−var;[0,T ] .
For Gk+1, we will show that its q-variation is bounded similarly, and then add it to the remainder
term of Hk+1 to make Hk+1 +Gk+1 a controlled rough path (with the appropriate bounds). Fixing
i and j, from Young’s inequality we have

∥∫ ⋅

0
F isB

k+1
i,j (s) dΦ(hj)(s)∥

q−var;[0,T ]
≤ Cp ∥F i∥Vp;[0,T ] ∥Bk+1

i,j ∥Vp;[0,T ] ∥Φ(hj)∥q−var .
Now if we recall the definition of Bk+1

i,j (s) in (50) and use (65) in the above expression, after

summing over all i and j, we obtain some polynomial P̃2 such that

∥Gk+1∥
q−var;[0,T ] ≤ P̃2 (∥x∥p−var;[0,T ] , exp (CNx

1;[0,T ])) k+1∏
i=1

∥Φ(hi)∥q−var;[0,T ] . (66)

Finally, applying Leibniz rule to zk+1t = Jx

t (Hk+1
t +Gk+1t ) shows us that zk+1 is controlled by x with

the bound

∥zk+1∥
p−cvar

≤ Pd(k+1) (∥x∥p−var;[0,T ] , exp (CNx

1;[0,T ])) k+1∏
i=1

∥Φ(hi)∥q−var;[0,T ] .
∎

4 An isomorphism and dense subspace of the Cameron-Martin

space

In this section, we will identify a dense subspace of the Cameron-Martin space which will be of
importance later. The motivation is as follows: let Y be a solution to RDE (37). We would like to
show that Y ∈ D1,2(Hd1), which in turn implies that Y is Skorohod integrable. To do so, consider a
partition π = {ri} of [0, T ], and observe that

Y π(t) ∶=∑
i

Yri1[ri,ri+1)(t)
is almost surely an element of Hd1. Using Ito-Skorohod isometry, we have

E [δX (Y π − Y )2] ≤ E [∥Y π − Y ∥2Hd
1

] + E [∥DY π −DY ∥2Hd
1
⊗Hd

1

] .
Thus if we can show that almost surely, ∥Y π − Y ∥Hd

1

and ∥DY π −DY ∥Hd
1
⊗Hd

1

both vanish as ∥π∥→ 0,
then with further integrability assumptions one can apply dominated convergence to show that
δX(Y π) converges to δX(Y ) in L2(Ω).
We will investigate the (almost sure) regularity required of Y to identify it as an element of Hd1
and to have ∥Y π − Y ∥Hd

1

→ 0. We first note the following lemma, which is a direct consequence of
Theorem 2.10.
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Lemma 4.1. Let f ∈ Cp−varpw ([0, T ];Re) and R be continuous and of finite ρ-variation where we
assume that 1

p
+ 1
ρ
> 1. For any partition π = {ri} of [0, T ], let fπ denote

fπ(t) ∶=∑
i

f(ri)1[ri,ri+1)(t).
Then

lim
∥π∥→0

∣∫[0,T ]2 ⟨fπs − fs, fπt − ft⟩Re dR(s, t)∣ = 0.
Proof. Let ωf denote the control

ωf([s, t] × [u, v]) ∶= ∥f∥pp−var;[s,t] ∥f∥pp−var;[u,v] .
Continuing,

ω([s, t] × [u, v]) ∶= ω 1

θp

f
([s, t] × [u, v])ω 1

θ(ρ+ε)

R,ρ+ε ([s, t] × [u, v]), (67)

is again a control, where ε is chosen such that θ ∶= 1
p
+ 1
ρ+ε
> 1.

Now we have

∣∫[0,T ]2 ⟨fπs − fs, fπt − ft⟩Re dR(s, t)∣ ≤∑
i,j

∣∫ ri+1

ri
∫

rj+1

rj
⟨fs − fri , ft − frj⟩Re dR(s, t)∣ .

By Young’s inequality (22) and the fact that ⟨fs − fri , ft − frj⟩Re vanishes at (ri, rj) for all i, j, the
expression above is bounded by

∑
i,j

∥f∥p−var;[ri,ri+1] ∥f∥p−var;[rj ,rj+1] ∥R∥ρ+ε−var;[ri,ri+1]×[rj ,rj+1]
≤ Cp,ρ∑

i,j

ωθ([ri, ri+1] × [rj , rj+1])
≤ Cp,ρmax

i,j
ωθ−1([ri, ri+1] × [rj , rj+1])ω([0, T ]2),

which tends to zero as the mesh of the partition goes to zero. ∎

4.1 A dense subspace of Hd1

We now give a novel characterization of a subspace of Hd1 using Young-Stieltjes integrals. Let R be
of finite 2D ρ-variation, where ρ ∈ [1,2). We define

Wd
ρ ∶= ⋃

p<
ρ

ρ−1

Cp−varpw ([0, T ];Rd)
and equip it with the inner product

⟨f, g⟩Wd
ρ
∶= ∫[0,T ]2 ⟨fs, gt⟩Rd dR(s, t). (68)

One can check that ⟨⋅, ⋅⟩Wd
ρ
defines a semi-inner product; it is bilinear due to the linearity of the

Young-Stieltjes integral, and positive semi-definite as well as symmetric because the covariance
function R is positive semi-definite and symmetric. We will identify f and g to be in the same
equivalence class if ⟨f − g, f − g⟩Wd

ρ
= 0, and quotient Wd

ρ with respect to these classes. This then

makes ⟨⋅, ⋅⟩Wd
ρ
a proper inner product.
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Proposition 4.2. Wd
ρ is a dense subspace of Hd1, and the inclusion map i ∶ (Wd

ρ , ⟨⋅, ⋅⟩Wd
ρ
) →

(Hd1, ⟨⋅, ⋅⟩Hd
1

) is an isometry.

Proof. Let f ∈ Wd
ρ and let π(n) = {r(n)i } be a sequence of partitions whose mesh vanishes as

n→∞. As usual, we denote

fπ(n) ∶=∑
i

f (r(n)i )1[r(n)
i

,r
(n)
i+1)
(t).

Now the key point to note is that for each n, fπ(n) is in Wd
ρ ∩Hd1; moreover

∥fπ(n)∥2
Hd

1

=∑
i,j

⟨f
r
(n)
i

, f
r
(n)
j

⟩
Rd

⟨1[r(n)
i

,r
(n)
i+1)

,1[r(n)
j

,r
(n)
j+1)
⟩
H1

=∑
i,j

⟨f
r
(n)
i

, f
r
(n)
j

⟩
Rd

R
⎛⎝r
(n)
i r

(n)
i+1

r
(n)
j r

(n)
j+1

⎞⎠
= ∥fπ(n)∥2

Wd
ρ

.

(69)

From Lemma 4.1, ∥fπ(n) − f∥Wd
ρ
→ 0, which means that fπ(n) is Cauchy and from (69) and the

completeness of Hd1, limn→∞ f
π(n) exists in Hd1. We identify f with this limit and under this

identification we have

∥f∥2Hd
1

= ∫[0,T ]2 ⟨fs, ft⟩Rd dR(s, t). (70)

Since Wd
ρ contains all the generating functions {1(u)[0,t)(⋅)} of Hd1, its completion, and hence closure,

is all of Hd1. ∎
Remark 4.3. We recall the following non-degeneracy condition on Gaussian processes which is
featured in [CFV09]. We say that R (or, equivalently, X) is non-degenerate on [0, T ] if the following
implication holds:

∫[0,T ]2 ⟨fs, ft⟩Rd dR(s, t) = 0 ⇒ f = 0 a.e.. (71)

Under this condition, each equivalence class of Wd
ρ would then consist of functions which agree

almost everywhere.

4.2 The Malliavin derivative and convergence in the tensor norm

We will now extend the results of the last section to the tensor space Hd1 ⊗Hd1. Let
X ∈ C0,p−var ([0, T ];G⌊p⌋ (Rd)) and assume that for all h ∈ Hd1, Φ(h) can be embedded in

Cq−var ([0, T ] ;Rd) where 1
p
+ 1
q
> 1. Then the Malliavin derivative of Y satisfying

dYt = V (Yt) ○ dXt, Y0 = y0,
is given by

DhYt = ∫
t

0
JX

t (JX

s )−1 V (Ys) dΦ(h)(s) = ∫ T

0
1[0,t) (s)JX

t (JX

s )−1 V (Ys) dΦ(h)(s).
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If we denote

DsYt = 1[0,t)(s)JX

t (JX

s )−1 V (Ys) =∶ g(s, t),
then with respect to any partition π = {ri} of [0, T ], we also have

DsY π
t =∑

i

DsYri1[ri,ri+1)(t)
=∑

i

g (s, ri)1[ri,ri+1)(t).
We will proceed to show that DY π lies in Hd1 ⊗Hd1 almost surely, and under suitable regularity
assumptions on DY , we have ∥DY π −DY ∥Hd

1
⊗Hd

1

→ 0 as ∥π∥ → 0. Coupled with the results in the

previous section, this will mean that Y π converges to Y in D
1,2 (Hd1), and δX(Y ) is then the L2(Ω)

limit of δX (Y π).
Proposition 4.4. Let g ∶ [0, T ]2 → R

e ⊗ R
d be of the form g(s, t) = 1[0,t)(s)g̃1(t)g̃2(s), where

g̃1 ∈ Cp−varpw ([0, T ];Re ⊗R
e) and g̃2 ∈ Cp−varpw ([0, T ];Re ⊗R

d). Let R be continuous and of finite 2D

ρ-variation, ρ ∈ [1, 3
2
), and we assume that 1

p
+ 1
ρ
> 1. For any partition π = {ri} of [0, T ], let

gπ ∶ [0, T ]2 → R
e ⊗R

d denote

gπ(s, t) ∶=∑
i

g (s, ri)1[ri,ri+1)(t). (72)

Then

∫[0,T ]2 (∫[0,T ]2 ⟨(gπ − g) (u, s), (gπ − g) (v, t)⟩Re⊗Rd dR(u, v)) dR(s, t)→ 0. (73)

Remark 4.5. Here and henceforth, we canonically identify 2-tensors with matrices, and g̃1(t)g̃2(s)
denotes matrix multiplication of g̃1(t) with g̃2(s).
Proof. Under the conditions imposed on g, we will show that the 4D-integral in (73) can be written
as an iterated 2D-integral and

∫[0,T ]2 (∫[0,T ]2 ⟨(g − gπ)(u, s), (g − gπ)(v, t)⟩Re⊗Rd dR(u, v)) dR(s, t)
=∑
i,j
∫[ri,ri+1]×[rj ,rj+1] I

i,j(s, t)dR(s, t) ∥π∥→0
ÐÐÐ→ 0,

where

Ii,j(s, t) ∶= ∫[0,T ]2 ⟨g(u, s) − g(u, ri), g(v, t) − g(v, rj)⟩Re⊗Rd dR(u, v).
First observe that for any r ≤ s,

g(u, s) − g(u, r) = 1[0,s)(u)g̃1(s)g̃2(u) − 1[0,r)(u)g̃1(r)g̃2(u)
= 1[0,r)(u)(g̃1(s) − g̃1(r))g̃2(u) + 1[r,s)(u)g̃1(s)g̃2(u).

Thus for (s, t) ∈ [ri, ri+1] × [rj , rj+1],
Ii,j(s, t) = Ii,j1 (s, t) + Ii,j2 (s, t) + Ii,j3 (s, t) + Ii,j4 (s, t),
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where

I
i,j
1 (s, t) ∶= ∑

l,m,n,k

(g̃1(s) − g̃1(ri))lm(g̃1(t) − g̃1(rj))ln∫[0,ri]×[0,rj] (g̃2(u))mk(g̃2(v))nk dR (u, v) ,
I
i,j
2 (s, t) ∶= ∑

l,m,n,k

(g̃1(s))lm(g̃1(t) − g̃1(rj))ln ∫[ri,s]×[0,rj] (g̃2(u))mk(g̃2(v))nk dR (u, v) ,
I
i,j
3 (s, t) ∶= ∑

l,m,n,k

(g̃1(s) − g̃1(ri))lm(g̃1(t))ln∫[0,ri]×[rj ,t] (g̃2(u))mk(g̃2(v))nk dR (u, v) ,
I
i,j
4 (s, t) ∶= ∑

l,m,n,k

(g̃1(s))lm(g̃1(t))ln∫[ri,s]×[rj ,t] (g̃2(u))mk(g̃2(v))nk dR (u, v) ,
and (g)lm denotes the (l,m)th entry of the matrix g.

For k = 1,2,3, since the summands in Ii,j
k
(s, t) are products of 1D functions, we have the following

bounds on the 2D pth-variation of Ii,j
k
(s, t) in [ri, ri+1] × [rj , rj+1]:

∥Ii,j1 ∥p−var;[ri,ri+1]×[rj ,rj+1] ≤ Cp,ρ ∥g̃2∥2Vp;[0,T ] ∥R∥ρ−var;[0,T ]2 ∥g̃1∥p−var;[ri,ri+1] ∥g̃1∥p−var;[rj ,rj+1] ,
∥Ii,j2 ∥p−var;[ri,ri+1]×[rj ,rj+1] ≤ ∥g̃1∥p−var;[rj ,rj+1] (∥g̃1∥p−var;[ri,ri+1] ∥h1∥∞ + ∥g̃1∥∞ ∥h1∥p−var;[ri,ri+1]) ,
∥Ii,j3 ∥p−var;[ri,ri+1]×[rj ,rj+1] ≤ ∥g̃1∥p−var;[ri,ri+1] (∥g̃1∥p−var;[rj ,rj+1] ∥h2∥∞ + ∥g̃1∥∞ ∥h2∥p−var;[rj ,rj+1]) .

(74)

Here, h1 and h2 denote the functions (suppressing the dependence on m,n and k in the notation
since the bounds are independent of them)

h1(s) ∶= ∫[ri,s]×[0,rj] (g̃2(u))mk(g̃2(v))nk dR (u, v) ,
h2(t) ∶= ∫[0,ri]×[rj ,t] (g̃2(u))mk(g̃2(v))nk dR (u, v) .

Choosing ε sufficiently small such that ρ + ε < p and 1
p
+ 1
ρ+ε
> 1, we have

∥h1∥p−var;[ri,ri+1] ≤ ∥h1∥ρ+ε−var;[ri,ri+1] ≤ Cp,ρ ∥g̃2∥2Vp;[0,T ] ωR,ρ+ε([ri, ri+1] × [0, T ]) 1

ρ+ε

∥h2∥p−var;[rj ,rj+1] ≤ ∥h2∥ρ+ε−var;[rj ,rj+1] ≤ Cp,ρ ∥g̃2∥2Vp;[0,T ] ωR,ρ+ε([0, T ] × [rj , rj+1]) 1

ρ+ε ,

∥h1∥∞ , ∥h2∥∞ ≤ Cp,ρ ∥g̃2∥2Vp;[0,T ] ∥R∥ρ−var;[0,T ]2 .
(75)

From (74) and (75), we see that the 2D pth-variations of Ii,j1 , Ii,j2 and I
i,j
3 over [s, t] × [u, v] are

controlled respectively by

ωI1 ([s, t] × [u, v]) ∶= C1 ∥g̃2∥2pVp;[0,T ] ∥g̃1∥pp−var;[s,t] ∥g̃1∥pp−var;[u,v] ∥R∥pρ−var;[0,T ]2 ,
ωI2 ([s, t] × [u, v])
∶= C2 ∥g̃2∥2pVp;[0,T ] ∥g̃1∥pp−var;[u,v] (∥g̃1∥pp−var;[s,t] ∥R∥pρ−var;[0,T ]2 + ∥g̃1∥p∞ ωR,ρ+ε([s, t] × [0, T ]) p

ρ+ε ) ,
ωI3 ([s, t] × [u, v])
∶= C3 ∥g̃2∥2pVp;[0,T ] ∥g̃1∥pp−var;[s,t] (∥g̃1∥pp−var;[u,v] ∥R∥pρ−var;[0,T ]2 + ∥g̃1∥p∞ ωR,ρ+ε([0, T ] × [u, v]) p

ρ+ε ) .
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For Ii,j4 (s, t), if we let

h3(s, t) ∶= ∫[ri,s]×[rj ,t] (g̃2(u))mk(g̃2(v))nk dR (u, v) ,
we have

∥h3∥p−var;[ri,ri+1]×[rj ,rj+1] ≤ ∥h3∥ρ+ε−var;[ri,ri+1]×[rj ,rj+1]
≤ Cp,ρ ∥g̃2∥2Vp;[0,T ] ωR,ρ+ε ([ri, ri+1] × [rj , rj+1]) 1

ρ+ε .

From Lemma 4.6, we then conclude that the 2D pth-variation of Ii,j4 over [s, t]× [u, v] is controlled
by

ωI4 ([s, t] × [u, v])
∶= C ∥g̃2∥2pVp;[0,T ] ωR,ρ+ε ([s, t] × [u, v]) p

ρ+ε (∥g̃1∥p∞ + ∥g̃1∥pp−var;[s,t]) (∥g̃1∥p∞ + ∥g̃1∥pp−var;[u,v]) .
Now define ω as

ω([s, t] × [u, v]) = ω 1

θp

I
([s, t] × [u, v])ω 1

θ(ρ+ε)

R,ρ+ε
([s, t] × [u, v]),

where ωI denotes the control ωI1 + ωI2 + ωI3 + ωI4 and θ = 1
p
+ 1
ρ+ε

. Then observing that Ii,j(ri, ⋅) =
Ii,j(⋅, rj) = 0 for all i, j, we use Young’s inequality (22) to obtain

∑
i,j
∫[ri,ri+1]×[rj ,rj+1] I

i,j(s, t)dR(s, t) ≤∑
i,j

ωθ([ri, ri+1] × [rj , rj+1])→ 0. (76)

∎

The following lemma was used in Proposition 4.4.

Lemma 4.6. Let g1 ∈ Cp−var ([s1, s2];R) and g2 ∈ Cp−var ([t1, t2];R). Given a 2D control ω, let
f ∈ Cp−var ([s1, s2] × [t1, t2];R) have finite 2D p-variation controlled by ω. In addition, assume that
f(s1, t) = f(s, t1) = 0 for all s, t in [s1, s2]× [t1, t2]. Then the 2D pth-variation of f(u, v)g1(u)g2(v)
over [s1, s2] × [t1, t2] is controlled by

4p−1ω ([s1, s2] × [t1, t2]) (∥g1∥p∞ + ∥g1∥pp−var;[s1,s2]) (∥g2∥p∞ + ∥g2∥pp−var;[t1,t2]) .
Proof. Let {(ui, vj)} be any partition of [s1, s2] × [t1, t2]. We have

∑
i,j

∣fg1 (ui ui+1
vj vj+1

)∣p
=∑
i,j

∣f(ui, vj)g1(ui) + f(ui+1, vj+1)g1(ui+1) − f(ui, vj+1)g1(ui) − f(ui+1, vj)g1(ui+1)∣p
=∑
i,j

∣(f(ui, vj) − f(ui, vj+1))g1(ui) + (f(ui+1, vj+1) − f(ui+1, vj))g1(ui+1)∣p

≤ 2p−1
⎡⎢⎢⎢⎢⎣∑i,j ∣f (

ui ui+1
vj vj+1

) g1(ui)∣p +∑
i

∣g1(ui+1) − g1(ui)∣p∑
j

∣f (s1 ui+1
vj vj+1

)∣p⎤⎥⎥⎥⎥⎦
≤ 2p−1 [∥g1∥p∞ ∥f∥pp−var;[s1,s2]×[t1,t2] + ∥f∥pp−var;[s1,s2]×[t1,t2]∑

i

∣g1(ui+1) − g1(ui)∣p] ,
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which tells us that the 2D pth-variation of fg1 is controlled by

2p−1ω ([s1, s2] × [t1, t2]) (∥g1∥p∞ + ∥g1∥pp−var;[s1,s2]) . (77)

Repeating the same procedure with fg1 (controlled by (77)) in place of f and g2 in place of g1
completes the proof. ∎
Proposition 4.7. Let g(s, t) = 1[0,t)(s)g̃1(t)g̃2(s), where g̃1, g̃2 ∈ Cp−varpw ([0, T ];Rd ⊗R

d), and let

gπ be defined as in (72). Let R be of finite 2D ρ-variation, ρ ∈ [1, 3
2
), and we assume that 1

p
+ 1
ρ
> 1.

Then g ∈ Hd1 ⊗Hd1, with norm given by

∥g∥Hd
1
⊗Hd

1

=
√
∫[0,T ]2 (∫[0,T ]2 ⟨g(u, s), g(v, t)⟩Rd⊗Rd dR(u, v)) dR(s, t), (78)

and

∥gπ − g∥Hd
1
⊗Hd

1

→ 0 (79)

as ∥π∥→ 0.

Proof. Given a d-by-d matrix function A(s), let a(i)j (s) denote the (i, j)th entry of A(s). Using
the canonical identification

A(s)1[a,b)(t) ≃ d

∑
j=1

d

∑
k=1

a
(k)
j (s)ek ⊗ 1

(j)
[a,b)(t), a, b ∈ [0, T ], (80)

we see that gπ is a member of Wd
ρ ⊗Hd1, and thus lies in Hd1 ⊗Hd1 by Proposition 4.2. Furthermore,

we can compute the square of its norm

∥gπ∥2Hd
1
⊗Hd

1

=∑
k,l
∫[0,T ]2

d

∑
j=1

⟨gj(u, rk), gj(v, rl)⟩Rd dR(u, v)R(rk rk+1
rl rl+1

)
= ∫[0,T ]2 (∫[0,T ]2 ⟨gπ(u, s), gπ(v, t)⟩Rd⊗Rd dR(u, v)) dR(s, t).

Taking any sequence of partitions π(n) with vanishing mesh, we know that gπ(n) is Cauchy as
n → ∞ by Proposition 4.4, and we identify g with its limit in Hd1 ⊗Hd1. Invoking Proposition 4.4
again gives us (78) and (79). ∎

4.3 The Itô-Skorohod isometry revisited

Theorem 4.8. Let X be a continuous, centered Gaussian process in R
d with i.i.d. components,

and assume that its continuous covariance function satisfies ∥R∥ρ−var;[0,T ]2 <∞ for some ρ ∈ [1, 3
2
).

Given p satisfying 1
p
+ 1
ρ
> 1, let Y be a random variable which satisfies, almost surely,

(i) Y ∈ Cp−varpw ([0, T ];Rd),
(ii) DY ∶ [0, T ]2 → R

d ⊗R
d is of the form 1[0,t)(s)g̃1(t)g̃2(s), where g̃1, g̃2 are both in

Cp−varpw ([0, T ];Rd ⊗R
d).

30



Then lim∥π∥→0 Y
π = Y in D

1,2(Hd1) if and only if

lim
∥π∥→0

E [∫[0,T ]2 ⟨Y π
s − Ys, Y π

t − Yt⟩Rd dR(s, t)] = 0
and

lim
∥π∥→0

E [∫[0,T ]2 (∫[0,T ]2 ⟨Dr (Y π
t − Yt) , Dq (Y π

s − Ys)⟩Rd⊗Rd dR(r, q)) dR(s, t)] = 0,
in which case lim∥π∥→0E [δX (Y π − Y )2] = 0 and

E [δX (Y )2] = E [∫[0,T ]2 ⟨Ys, Yt⟩Rd dR(s, t)] + E [∫[0,T ]4 tr (DrYtDqYs) dR(s, r)dR(t, q)] .
Proof. For a Malliavin-smooth real-valued random variable F , we will write

DF = (D(1)F, . . . ,D(d)F) ∈ Hd1,
which means that D(j)s Y

(i)
t will denote the (i, j)th-entry of the matrix DsYt.

From Propositions 4.1 and 4.4,

E [∥Y π − Y ∥2Hd
1

] = E [∫[0,T ]2 ⟨Y π
s − Ys, Y π

t − Yt⟩Rd dR(s, t)] ,
and E [∥DY π −DY ∥2Hd

1
⊗Hd

1

] is equal to
E [∫[0,T ]2 (∫[0,T ]2 ⟨Dr (Y π

t − Yt) , Dq (Y π
s − Ys)⟩Rd⊗Rd dR(r, q)) dR(s, t)] .

Furthermore, Itô-Skorohod isometry (see [Nua06]) gives us

E [δX (Y )2] = E [∥Y ∥2Hd
1

] +E [trace (DY ○DY )]
= lim
∥π∥→0

E [∥Y π∥2Hd
1

] + lim
∥π∥→0

E [trace (DY π ○DY π)] ,
since

E [δX (Y π − Y )2] ≤ E [∥Y π − Y ∥2Hd
1

] + E [∥DY π −DY ∥2Hd
1
⊗Hd

1

] .
Recall that the trace term is given by

trace (DY ○DY ) = ∞

∑
m=1

⟨DY (hm), (DY )∗ (hm)⟩Hd
1

,

where {hm} denotes any orthonormal basis for Hd1 and

DY (hm)(r) = d

∑
k=1

[⟨D⋅Y (k)r , hm(⋅)⟩Hd
1

] ek,
(DY )∗ (hm)(r) = d

∑
k=1

[⟨D(k)r Y⋅, hm(⋅)⟩Hd
1

] ek, r ∈ [0, T ], m = 1, . . . .
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For the first term, we have

lim
∥π∥→0

E [∥Y π∥2Hd
1

] = lim
∥π∥→0

E

⎡⎢⎢⎢⎢⎣∑j,k ⟨Ytj , Ytk⟩Rd R(tj tj+1
tk tk+1

)⎤⎥⎥⎥⎥⎦
= E [∫[0,T ]2 ⟨Ys, Yt⟩Rd dR(s, t)] ,

and for the second term, we need to compute

E [trace (DY π ○DY π)] = E [ ∞∑
m=1

⟨DY π(hm), (DY π)∗ (hm)⟩Hd
1

] .
We have

DY π(hm)(r) = d

∑
k=1

[∑
i

⟨D⋅Y (k)ti
, hm(⋅)⟩Hd

1

1∆i
(r)]ek, and

(DY π)∗ (hm)(r) = d

∑
k=1

⎡⎢⎢⎢⎢⎣∑j ⟨D
(k)
r Ytj1∆j

(⋅), hm(⋅)⟩Hd
1

⎤⎥⎥⎥⎥⎦ ek, , r ∈ [0, T ], m = 1, . . . ,
which yields

E [ ∞∑
m=1

⟨DY πhm, (DY π)∗ hm⟩Hd
1

]
= E
⎡⎢⎢⎢⎢⎣∑i,j

d

∑
k=1

∞

∑
m=1

⟨⟨D(k)r Ytj1∆j
(⋅), hm(⋅)⟩Hd

1

, ⟨D⋅Y (k)ti
, hm(⋅)⟩Hd

1

1∆i
(r)⟩

H1

⎤⎥⎥⎥⎥⎦
= E
⎡⎢⎢⎢⎢⎣∑i,j

d

∑
k=1

⟨ ∞∑
m=1

⟨D(k)r Ytj1∆j
(⋅), hm(⋅)⟩Hd

1

⟨D⋅Y (k)ti
, hm(⋅)⟩Hd

1

,1∆i
(r)⟩

H1

⎤⎥⎥⎥⎥⎦
= E
⎡⎢⎢⎢⎢⎣∑i,j

d

∑
k=1

⟨⟨D(k)r Ytj1∆j
(⋅),D⋅Y (k)ti

⟩
Hd

1

,1∆i
(r)⟩

H1

⎤⎥⎥⎥⎥⎦ ,
where r is the variable for the outer H1-inner product.

Since

⟨D(k)r Ytj1∆j
(⋅),D⋅Y (k)ti

⟩
Hd

1

=
d

∑
l=1

⟨D(k)r Y
(l)
tj

1∆j
(⋅),D(l)

⋅
Y
(k)
ti
⟩
H1

=
d

∑
l=1

D(k)r Y
(l)
tj
⟨1∆j

(⋅),D(l)
⋅
Y
(k)
ti
⟩
H1

,

with R(∆i,dr) denoting R(ti+1,dr) −R(ti,dr), cf. (19), we obtain

E [trace (DY π ○DY π)] = E⎡⎢⎢⎢⎢⎣∑i,j
d

∑
k,l=1

⟨D(k)
⋅
Y
(l)
tj
,1∆i

(⋅)⟩
H1

⟨D(l)
⋅
Y
(k)
ti

,1∆j
(⋅)⟩

H1

⎤⎥⎥⎥⎥⎦
= E
⎡⎢⎢⎢⎢⎣∑i,j

d

∑
k,l=1
∫

T

0
D(k)r Y

(l)
tj
R(∆i,dr)∫ T

0
D(l)q Y

(k)
ti

R(∆j ,dq)⎤⎥⎥⎥⎥⎦
→ E [∫[0,T ]4 tr (DrYtDqYs) dR(s, r)dR(t, q)] as ∥π∥→ 0.

(81)

∎
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Remark 4.9. In the case of standard Brownian motion, if we use the fact that dR(s, t) = δ{s=t} dsdt
in Theorem 4.8, we recover the usual Itô-Skorohod isometry

E [δX(Y )2] = E [∫ T

0
∣Yt∣2 dt] + E [∫[0,T ]2 tr (DtYsDsYt) dsdt] .

4.4 Riemann sum approximation to the Skorohod integral

Proposition 4.10. Let X be a continuous, centered Gaussian process in R
d with i.i.d. components,

and assume that its continuous covariance function satisfies ∥R∥ρ−var;[0,T ]2 <∞ for some ρ ∈ [1, 3
2
).

For p ∈ [1,3), let X ∈ C0,p−var ([0, T ];G⌊p⌋ (Rd)) denote the geometric rough path constructed from
the limit of the piecewise-linear approximations of X.

Furthermore, let Y ∈ Cp−var ([0, T ];Rd) denote the path-level solution to

dYt = V (Yt) ○ dXt, Y0 = y0,

where V ∈ C⌊p⌋+1
b

(Rd;Rd ⊗R
d). Then Y ∈ D1,2(Hd1) and

∫
T

0
Yr dXr = lim

∥π={ri}∥→0
∑
i

[Yri (Xri,ri+1) − ∫ ri

0
tr [JX

ri←s
V (Ys)] R(∆i, ds)] , (82)

where the limit is taken in L2 (Ω).
Proof. From Propositions 4.2 and 4.7, we have Y ∈ Hd1 and
DY = 1[0,t)(s)JX

t←sV (Ys) ∈ Hd1⊗Hd1 almost surely. So in light of Theorem 4.8, we need to show that

lim
∥π∥→0

E [∫[0,T ]2 ⟨Y π
s − Ys, Y π

t − Yt⟩Rd dR(s, t)] = 0, (83)

and

lim
∥π∥→0

E [∫[0,T ]2 (∫[0,T ]2 ⟨Du (Y π
s − Ys) , Dv (Y π

t − Yt)⟩Rd⊗Rd dR(u, v)) dR(s, t)] = 0. (84)

For (83), we have

E [∫[0,T ]2 ⟨Y π
s − Ys, Y π

t − Yt⟩Rd dR(s, t)] = E⎡⎢⎢⎢⎢⎣∑i,j ∫
ri+1

ri
∫

rj+1

rj
⟨Ys − Yri , Yt − Yrj⟩Rd dR(s, t)⎤⎥⎥⎥⎥⎦ , (85)

and from Lemma 4.1 with ω and θ defined as in (67),

∑
i,j

∣∫ ri+1

ri
∫

rj+1

rj
⟨Ys − Yri , Yt − Yrj⟩Rd dR(s, t)∣ ≤ Cp,ρ∑

i,j

ωθ([ri, ri+1] × [rj , rj+1]),
which tends to zero almost surely as the mesh of the partition goes to zero and is also bounded
above uniformly for all partitions by the random variable (up to multiplication by a non-random
constant)

∥Y ∥2p−var;[0,T ] ∥R∥ρ−var;[0,T ]2 .
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This is in L1(Ω) by Theorem 2.23, and thus the limit of (85) vanishes by dominated convergence
theorem.

We will use Proposition 4.4 to show (84). We have

∫[0,T ]2 (∫[0,T ]2 ⟨Du (Y π
s − Ys) , Dv (Y π

t − Yt)⟩Rd⊗Rd dR(u, v)) dR(s, t)
=∑
i,j
∫[ri,ri+1]×[rj ,rj+1]∫[0,T ]2 ⟨DuYs −DuYri ,DvYt −DvYrj⟩Rd⊗Rd dR (u, v) dR (s, t) . (86)

With g(s, t) ∶= DsYt = 1[0,t)(s)g̃1(t)g̃2(s), where
g̃1(t) ∶= JX

t , g̃2(s) ∶= (JX

s )−1 V (Ys) ,
we see that g satisfies the conditions of Proposition 4.4 almost surely. Hence, from (76), the
expression in (86) vanishes almost surely as the mesh of the partition goes to zero.

Furthermore, it is bounded above uniformly for all partitions by the random variable (up to mul-
tiplication by a non-random constant)

∥g̃1∥2Vp;[0,T ] ∥g̃2∥2Vp;[0,T ] ∥R∥2ρ−var;[0,T ]2 . (87)

As with the case of ∥Y ∥p−var, ∥JX∥
p−var

and ∥(JX)−1∥
p−var

have finite moments of all orders by

Theorem 2.25. This in conjunction with the fact that V (Y ) is bounded almost surely ensures that
(87) is integrable, and thus we can apply dominated convergence theorem again.

Finally, the fact that the limit is of the form (82) follows from integration-by-parts, where we have

δX(Y π) =∑
i

[⟨Yri , Xri,ri+1⟩Rd −
d

∑
k=1

⟨D⋅Y (k)ri
,1
(k)
[ri,ri+1)(⋅)⟩Hd

1

]
=∑

i

[⟨Yri , Xri,ri+1⟩Rd − ∫
ri

0
tr [JX

ri←s
V (Ys)] R(∆i, ds)] .

∎

5 Appending the Riemann sum approximation to the Skorohod

Integral

The main purpose of this section is to show that the usual Riemann-sum approximation to the
Skorohod integral can be augmented with suitably corrected second-level rough path terms which
vanish in L2(Ω) as the mesh of the partition goes to zero.

We will use π(n) ∶= {tni } to denote the nth dyadic partition of [0, T ], i.e. tni = iT
2n

for i = 0, . . . ,2n,
and ∆n

i to denote the interval [tni , tni+1].
In addition, ρ′ will denote the Hölder conjugate of ρ, i.e. 1

ρ
+ 1
ρ′
= 1.

Proposition 5.1. Let X be a continuous, centered Gaussian process in R
d with i.i.d. components,

and for p ∈ [2,4), let X ∈ C0,p−var ([0, T ];G⌊p⌋ (Rd)) denote the geometric rough path constructed
from the limit of the piecewise-linear approximations of X.

Let ρ and q be such that ρ ∈ [1,2) and 1
p
+ 1
q
> 1. We assume that the covariance function of X

satisfies
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(a) ∥R∥ρ−var;[0,T ]2 <∞,

(b) ∥R(t, ⋅) −R(s, ⋅)∥q−var;[0,T ] ≤ C ∣t − s∣ 1ρ , for all s, t ∈ [0, T ].
Now let ψ ∶ Ω × [0, T ] → R

d ⊗ R
d be a stochastic process satisfying ψt =

d

∑
a,b=1

ψ
(a,b)
t dea ⊗ deb ∈

D
4,2(Rd⊗Rd) for all t ∈ [0, T ]. Furthermore, assume there exists C <∞ such that for all s, t ∈ [0, T ]

and a, b = 1, . . . , d, we have

∣E [ψ(a,b)s ψ
(a,b)
t ]∣ ≤ C, (88)

and k = 2,4, we have

∣E [Dkh1,...,hk (ψ(a,b)s ψ
(a,b)
t )]∣ ≤ C k

∏
i=1

∥Φ(hi)∥q−var;[0,T ] , (89)

for all h1, . . . , hk ∈ Hd1.
Then

lim
n→∞

∥2n−1∑
i=0

ψtn
i
(X2

tn
i
,tn
i+1
− 1

2
σ2 (tni , tni+1)Id)∥

L2(Ω)
= 0. (90)

Proof. First note that

∥2n−1∑
i=0

ψtn
i
(X2

tn
i
,tn
i+1
− 1

2
σ2 (tni , tni+1)Id)∥

L2(Ω)

≤ ∥2n−1∑
i=0

ψtn
i
((X2

tn
i
,tn
i+1
)S − 1

2
σ2 (tni , tni+1)Id)∥

L2(Ω)
+ ∥2n−1∑

i=0

ψtn
i
((X2

tn
i
,tn
i+1
)A)∥

L2(Ω)
,

(91)

where (X2)S denotes the symmetric part of X2 and (X2)A denotes the anti-symmetric part. The
two parts will be tackled separately, and since

∥2n−1∑
i=0

ψtn
i
((X2

tn
i
,tn
i+1
)A)∥

L2(Ω)
≤

d

∑
a,b=1

∥2n−1∑
i=0

ψ
(a,b)
tn
i
((X2

tn
i
,tn
i+1
)A)(a,b)∥

L2(Ω)
,

and similarly for the symmetric part, we can study the convergence of each fixed (a, b)th tensor
component individually. For simplicity, we will henceforth suppress the notation for the component
in the superscript of ψ.

Let h1, h2, g1, g2 ∈ Hd1 be such that ⟨hi, gj⟩Hd
1

= 0 for all i, j = 1,2. Then from the product formula

(27), we have the following identities

I1(h1)I1(h2) = I2(h1⊗̃h2) + ⟨h1, h2⟩Hd
1

, (92a)

I2(h1⊗̃h2)I2(g1⊗̃g2) = I4(h1⊗̃h2⊗̃g1⊗̃g2), (92b)

and

I2(h1 ⊗ h1)I2(h2 ⊗ h2) = I4(h1 ⊗ h1⊗̃h2 ⊗ h2) + 4I2(h1⊗̃h2) ⟨h1, h2⟩Hd
1

+ 2 ⟨h1, h2⟩2Hd
1

. (92c)
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Following [NNT10], the idea of the proof is to rewrite (91) in such a way that the summands take
the form

E [ψtn
i
ψtn

j
X(a)u1,u2

X(b)u3,u4X
(a)
v1,v2

X(b)v3,v4] ,
where [u1, u2], [u3, u4] ⊂ [tni , tni+1] and [v1, v2], [v3, v4] ⊂ [tnj , tnj+1], or

E [ψtn
i
ψtn

j
((X(a)tn

i
,tn
i+1
)2 − σ2 (tni , tni+1))((X(a)tn

j
,tn
j+1
)2 − σ2 (tnj , tnj+1))]

as appearing in the symmetric part. After applying the identities in (92) and using the duality
formula (26), (89) will be used to bound the summands.

(a) For the symmetric part of the second level rough path, we have

((X2
tn
i
,tn
i+1
)S − 1

2
σ2 (tni , tni+1)Id)(a,b) = 1

2
(X(a)tn

i
,tn
i+1
X
(b)
tn
i
,tn
i+1
− δab σ2 (tni , tni+1)) .

In the case where a = b, we need to estimate

E

⎡⎢⎢⎢⎢⎣(
2n−1

∑
i=0

ψtn
i
((X(a)ti,ti+1

)2 − σ2 (tni , tni+1)))
2⎤⎥⎥⎥⎥⎦

=
2n−1

∑
i,j=0

E [ψtn
i
ψtn

j
((X(a)tn

i
,tn
i+1
)2 − σ2 (tni , tni+1))((X(a)tn

j
,tn
j+1
)2 − σ2 (tnj , tnj+1))]

=
2n−1

∑
i,j=0

E [ψtn
i
ψtn

j
I2 (1(a)∆n

i
⊗ 1

(a)
∆n

i
) I2 (1(a)∆n

j
⊗ 1

(a)
∆n

j
)] ,

(93)

where the last line follows from (92a). Using (92c) with h1 = 1(a)∆n
i
(⋅) and h2 = 1(a)∆n

j
(⋅) and applying

the duality formula (26), the expression above is equal to

2n−1

∑
i,j=0

E [D4
h1,h1,h2,h2

ψtn
i
ψtn

j
] + 4E [D2

h1,h2
ψtn

i
ψtn

j
]R(tni tni+1

tnj tnj+1
) + 2E [ψtn

i
ψtn

j
]R(tni tni+1

tnj tnj+1
)2 .

For the first term, we have

2n−1

∑
i,j=0

E [D4
h1,h1,h2,h2

ψtn
i
ψtn

j
] ≤ C 2n−1

∑
i,j=0

∥R (∆n
i , ⋅)∥2q−var;[0,T ] ∥R (∆n

j , ⋅)∥2q−var;[0,T ]
≤ C

2
2n( 2

ρ
−1)
→ 0

(94)

since ρ < 2.
For the second term, we have

2n−1

∑
i,j=0

E [D2
h1,h2

ψtn
i
ψtn

j
]R(tni tni+1

tnj tnj+1
) ≤ ⎛⎝

2n−1

∑
i,j=0

E [D2
h1,h2

ψtn
i
ψtn

j
]ρ′⎞⎠

1

ρ′ ⎛⎝
2n−1

∑
i,j=0

∣R(tni tni+1
tnj tnj+1

)∣ρ⎞⎠
1

ρ

≤ C 2
−2n( 1

ρ
−

1

ρ′
) ∥R∥ρ−var;[0,T ]2 = C 2

−2n( 2
ρ
−1) ∥R∥ρ−var;[0,T ]2 ,

(95)
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which also vanishes as n tends to infinity.

For the third term, we have

2n−1

∑
i,j=0

E [ψtn
i
ψtn

j
]R(tni tni+1

tnj tnj+1
)2 ≤ C 2n−1

∑
i,j=0

∣R(tni tni+1
tnj tnj+1

)∣2−ρ ∣R(tni tni+1
tnj tnj+1

)∣ρ

≤ C

2
n(2−ρ)

ρ

∥R∥ρ
ρ−var;[0,T ]2 ,

(96)

which vanishes as n→∞ since ρ < 2.
In the case where a ≠ b, we let

h1 ∶= 1(a)∆n
i
(⋅), h2 ∶= 1(a)∆n

j
(⋅), g1 ∶= 1(b)∆n

i
(⋅), and g2 ∶= 1(b)∆n

j
(⋅).

We obtain

E [ψtn
i
ψtn

j
X
(a)
∆n

i
X
(b)
∆n

i
X
(a)
∆n

j
X
(b)
∆n

j
]

= E [ψtn
i
ψtn

j
(I2(h1⊗̃h2) + ⟨h1, h2⟩Hd

1

)(I2(g1⊗̃g2) + ⟨g1, g2⟩Hd
1

)]
= E [ψtn

i
ψtn

j
I4(h1⊗̃h2⊗̃g1⊗̃g2)] +E [ψtn

i
ψtn

j
I2(h1⊗̃h2)] ⟨g1, g2⟩Hd

1

+ E [ψtn
i
ψtn

j
I2(g1⊗̃g2)] ⟨h1, h2⟩Hd

1

+E [ψtn
i
ψtn

j
] ⟨h1, h2⟩Hd

1

⟨g1, g2⟩Hd
1

= E [D4
h1,h2,g1,g2

ψtn
i
ψtn

j
] +E [ψtn

i
ψtn

j
]R(tni tni+1

tnj tnj+1
)2

+ (E [D2
h1,h2

ψtn
i
ψtn

j
] +E [D2

g1,g2
ψtn

i
ψtn

j
])R(tni tni+1

tnj tnj+1
) .

Similar to the case where a = b, the sum over all i, j of the first, second and third terms in the
above expression can be bounded by (94), (96) and (95) respectively, and hence vanish as n→∞.

(b) We will now handle the anti-symmetric part. We will use (X2
s,t)A (π(k)) to denote the Lévy

area of Xπ(k), the piece-wise linear approximation of X over π(k), i.e.
(X2

s,t)A (π(k)) = π2 (log (S2 (Xπ(k))
s,t
)) ,

where π2 denotes projection onto the second level. Next, we define

(X2
s,t)A (∆l+1) ∶= (X2

s,t)A (π(l + 1)) − (X2
s,t)A (π(l)) ,

and noticing that (X2
tn
i
,tn
i+1
)A (π(n)) = 0, we can use Theorem 2.11 to see that

(X2
tn
i
,tn
i+1
)A = lim

m→∞

m

∑
k=1

(X2
tn
i
,tn
i+1
)A (∆n+k) for every n ∈ N and i = 0,1, . . . ,2n − 1,

where the limit is taken in L2(Ω).
We want to show that

∥2n−1∑
i=0

ψtn
i
((X2

tn
i
,tn
i+1
)A (π(n +m)))(a,b)∥

L2(Ω)
→ 0
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uniformly for all m as n→∞. To begin, let

sk,iu ∶= tni + u

2n+k
= tn+ku+i2k , (97)

and we will denote the intervals

∆i
uL ∶= [sk,i2u , s

k,i
2u+1] , ∆i

uR ∶= [sk,i2u+1, s
k,i
2u+2] ,

∆i
u ∶=∆i

uL ∪∆i
uR ⊆ [tni , tni+1] , ∀u = 0, . . . ,2k−1 − 1.

(98)

Note that we suppress the dependence on k and n in the notation for the variables on the left.
Continuing, we have

2k−1−1

⊗
u=0

exp(X∆i

uL
)⊗ exp(X∆i

uR
) − 2k−1−1

⊗
u=0

exp (X∆i
u
)

=
2k−1−1

⊗
u=0

⎛⎝1,X∆i
u
,
(X∆i

u
)⊗2

2

⎞⎠ + (0,0, 12 [X∆i

uL
,X∆i

uR
]) − 2k−1−1

⊗
u=0

⎛⎝1,X∆i
u
,
(X∆i

u
)⊗2

2

⎞⎠
=

2k−1−1

∑
u=0

(0,0, 1
2
[X∆i

uL
,X∆i

uR
]) ,

which means that

(X2
tn
i
,tn
i+1
)A (∆n+k) = 2k−1−1

∑
u=0

1

2
[X∆i

uL
,X∆i

uR
]

since only anti-symmetric terms are left in the difference.

Thus, we obtain

E

⎡⎢⎢⎢⎢⎣(
2n−1

∑
i=0

ψtn
i
((X2

tn
i
,tn
i+1
)A (π(n +m)))(a,b))2⎤⎥⎥⎥⎥⎦

= E
⎡⎢⎢⎢⎢⎣(

2n−1

∑
i=0

ψtn
i

m

∑
k=1

((X2
tn
i
,tn
i+1
)A (∆n+k))(a,b))

2⎤⎥⎥⎥⎥⎦
=

2n−1

∑
i,j=0

E [ψtn
i
ψtn

j

m

∑
k=1

((X2
tn
i
,tn
i+1
)A (∆n+k))(a,b) m∑

l=1

((X2
tn
j
,tn
j+1
)A (∆n+l))(a,b)]

= 1

4

2n−1

∑
i,j=0

m

∑
k,l=1

∑
u,v

E [ψtn
i
ψtn

j
[X∆i

uL
,X∆i

uR
](a,b)[X

∆
j

vL

,X
∆

j

vR

](a,b)] .

(99)

Since the (a, b)th entry of [X∆i

uL
,X∆i

uR
] ∈ so(d), where a ≠ b, is given by

X
(a)
∆i

uL

X
(b)
∆i

uR

−X(b)
∆i

uL

X
(a)
∆i

uR

,

each summand in the last line of (99) is of the form

E [ψtn
i
ψtn

j
X
(a)
∆i

uL

X
(b)
∆i

uR

X
(a)
∆

j

vL

X
(b)
∆

j

vR

] − E [ψtn
i
ψtn

j
X
(a)
∆i

uL

X
(b)
∆i

uR

X
(b)
∆

j

vL

X
(a)
∆

j

vR

]
−E [ψtn

i
ψtn

j
X
(b)
∆i

uL

X
(a)
∆i

uR

X
(a)
∆

j

vL

X
(b)
∆

j

vR

] +E [ψtn
i
ψtn

j
X
(b)
∆i

uL

X
(a)
∆i

uR

X
(b)
∆

j

vL

X
(a)
∆

j

vR

] . (100)
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Proceeding, we will use the first term in the above expression for the proof and omit the other
terms as the result remains the same with trivial modifications to the notation. We first denote

R
∆i

u×∆
j
v
∶= ∣R(sk,i2u s

k,i
2u+1

s
l,j
2v s

l,j
2v+1

)∣ + ∣R(sk,i2u+1 s
k,i
2u+2

s
l,j
2v s

l,j
2v+1

)∣ + ∣R( sk,i2u s
k,i
2u+1

s
l,j
2v+1 s

l,j
2v+2

)∣ + ∣R(sk,i2u+1 s
k,i
2u+2

s
l,j
2v+1 s

l,j
2v+2

)∣ , (101)

and note that

2n−1

∑
i,j=0

∑
u,v

R
ρ

∆i
u×∆

j
v

≤ 4ρ ∥R∥ρ
ρ−var;[0,T ]2 .

Next we let

h1 ∶= 1(a)∆i

uL

(⋅), h2 ∶= 1(a)
∆

j

vL

(⋅), g1 ∶= 1(b)∆i

uR

(⋅), and g2 ∶= 1(b)
∆

j

vR

(⋅),
and applying (92b), we get

E [ψtn
i
ψtn

j
X
(a)
∆i

uL

X
(b)
∆i

uR

X
(a)
∆

j

vL

X
(b)
∆

j

vR

]
= E [ψtn

i
ψtn

j
(I2(h1⊗̃h2) + ⟨h1, h2⟩Hd

1

)(I2(g1⊗̃g2) + ⟨g1, g2⟩Hd
1

)]
= E [ψtn

i
ψtn

j
I4(h1⊗̃h2⊗̃g1⊗̃g2)] +E [ψtn

i
ψtn

j
I2(h1⊗̃h2)] ⟨g1, g2⟩Hd

1

+ E [ψtn
i
ψtn

j
I2(g1⊗̃g2)] ⟨h1, h2⟩Hd

1

+E [ψtn
i
ψtn

j
] ⟨h1, h2⟩Hd

1

⟨g1, g2⟩Hd
1

=∶ A1 +A2 +A3 +A4.

(i) Terms of type A1:

∣E [D4
h1,h2,g1,g2

(ψtn
i
ψtn

j
)]∣

≤ C ∥Φ(h1)∥q−var;[0,T ] ∥Φ(h2)∥q−var;[0,T ] ∥Φ(g1)∥q−var;[0,T ] ∥Φ(g2)∥q−var;[0,T ]
≤ C ∥R (sk,i2u+1, ⋅) −R (sk,i2u , ⋅)∥q−var;[0,T ] ∥R (sl,j2v+1, ⋅) −R (sl,j2v , ⋅)∥q−var;[0,T ]
× ∥R (sk,i2u+2, ⋅) −R (sk,i2u+1, ⋅)∥q−var;[0,T ] ∥R (sl,j2v+2, ⋅) −R (sl,j2v+1, ⋅)∥q−var;[0,T ]

≤ C 2
−2(n+k)

ρ 2
−2(n+l)

ρ ,

and thus we have

2n−1

∑
i,j=0

m

∑
k,l=1

∑
u,v

∣E [D4
h1,h2,g1,g2

(ψtn
i
ψtn

j
)]∣ ≤ C 2

−2n( 2
ρ
−1) ∞∑

k,l=1

2
−k( 2

ρ
−1)

2
−l( 2

ρ
−1)

≤ C 2
−2n( 2

ρ
−1)
→ 0 as n→∞.

(ii) Terms of type A2 and A3: We only detail the argument for the A2 terms; the A3 terms can
be dealt with in the same way. Using Hölder’s inequality and by exploiting the upper bound

∣E [D2
h1,h2

(ψtn
i
ψtn

j
)]∣ ≤ C ∣sk,i2u+1 − sk,i2u ∣ 1ρ ∣sl,j2v+1 − sl,j2v ∣ 1ρ ≤ C 2

−
(n+k)

ρ 2
−
(n+l)

ρ ,
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we obtain

2n−1

∑
i,j=0

m

∑
k,l=1

∑
u,v

E [D2
h1,h2

(ψtn
i
ψtn

j
)]E [X(b)

∆i

uR

X
(b)
∆

j

vR

]
≤ C

m

∑
k,l=1

⎛⎝
2n−1

∑
i,j=0

∑
u,v

∣E [D2
h1,h2

(ψtn
i
ψtn

j
)]∣ρ′⎞⎠

1

ρ′ ⎛⎝
2n−1

∑
i,j=0

∑
u,v

R
ρ

∆i
u×∆

j
v

⎞⎠
1

ρ

≤ C
∞

∑
k,l=1

2
−2n( 1

ρ
−

1

ρ′
)
2
−k( 1

ρ
−

1

ρ′
)
2
−l( 1

ρ
−

1

ρ′
) ∥R∥

ρ-var;[0,T ]2 .

Since 1
ρ
− 1
ρ′
= 2
ρ
− 1 > 0, we may sum over k and l to get

2n−1

∑
i,j=0

m

∑
k,l=1

∑
u,v

E [D2
h1,h2

(ψtn
i
ψtn

j
)]E [X(b)

∆i

uR

X
(b)
∆

j

vR

] ≤ C 2
−2n( 2

ρ
−1) ∥R∥

ρ-var;[0,T ]2 ,

which tends to zero as n→∞.
(iii) Terms of type A4: We have

E [ψtn
i
ψtn

j
] ⟨h1, h2⟩Hd

1

⟨g1, g2⟩Hd
1

= E [ψtn
i
ψtn

j
]R(sk,i2u s

k,i
2u+1

s
l,j
2v s

l,j
2v+1

)R(sk,i2u+1 s
k,i
2u+2

s
l,j
2v+1 s

l,j
2v+2

)
≤ CR2

∆i
u×∆

j
v
.

Using the fact that

R
∆i

u×∆
j
v
≤ 2(∥R (sk,i2u+1, ⋅) −R (sk,i2u , ⋅)∥q−var;[0,T ] + ∥R (sk,i2u+2, ⋅) −R (sk,i2u+1, ⋅)∥q−var;[0,T ])

and

R
∆i

u×∆
j
v
≤ 2(∥R (sl,j2v+1, ⋅) −R (sl,j2v , ⋅)∥q−var;[0,T ] + ∥R (sl,j2v+2, ⋅) −R (sl,j2v+1, ⋅)∥q−var;[0,T ]) ,

we have

m

∑
k,l=1

2n−1

∑
i,j=0

∑
u,v

R2

∆i
u×∆

j
v
≤ C

m

∑
k,l=1

2
−(n+k) 2−ρ

2ρ 2
−(n+l) 2−ρ

2ρ

2n−1

∑
i.j=0

∑
u,v

R
ρ

∆i
u×∆

j
v

≤ C 2
−2n( 1

ρ
−

1

2
) ∞∑
k,l=1

2
−k( 1

ρ
−

1

2
)
2
−l( 1

ρ
−

1

2
) ∥R∥ρ

ρ−var;[0,T ]2 ,

which converges to 0 since 1
ρ
− 1

2
> 0.

∎

Given the preceding proposition, the following corollary is straightforward.

Corollary 5.2. For 2 ≤ p < 4, let Y ∈ Cp−var ([0, T ];Rd) denote the path-level solution to

dYt = V (Yt) ○ dXt, Y0 = y0,
where X ∈ C0,p−var ([0, T ];G⌊p⌋ (Rd)) satisfies the same conditions as in Proposition 5.1. Then if

V ∈ C⌊p⌋+4
b

(Rd;Rd ⊗R
d), we have

lim
∥π(n)∥→0

∥∑
i

V (Ytn
i
)(X2

tn
i
,tn
i+1
− 1

2
σ2 (tni , tni+1)Id)∥

L2(Ω)
= 0. (102)
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Proof. Since V ∈ C1b , ∣E [V (a,b)s V
(a,b)
t ]∣ is bounded for all s, t, a and b. Now we have to show that

bound (89) in Proposition 5.1 is satisfied with

ψt = V (Yt) ∈ Rd ⊗R
d,

to show (102). To do so, recall Proposition 3.6, which states that almost surely we have

∥Dnh1,...,hnY⋅∥∞ ≤ Pd(n) (∥X∥p−var;[0,T ] , exp (CNX

1;[0,T ])) n

∏
i=1

∥Φ(hi)∥q−var;[0,T ] . (103)

As both ∥X∥p−var;[0,T ] and exp (CNX

1;[0,T ]) belong to ⋂r>0Lr (Ω), we have

∥Dnh1,...,hnYt∥Lr(Ω) ≤ Cn,q
n

∏
i=1

∥Φ(hi)∥q−var;[0,T ] (104)

for any r > 0. Now we simply use the product and chain rule of Malliavin differentiation in
conjunction with the fact that V has bounded derivatives up to the appropriate order. ∎

6 Conversion formula

We are now ready to prove the main result of the paper. As before, π(n) ∶= {tni } , tni ∶= iT
2n
, denotes

the sequence of dyadic partitions on [0, T ].
Theorem 6.1. For 1 ≤ p < 3, let Y ∈ Cp−var ([0, T ];Rd) denote the path-level solution to

dYt = V (Yt) ○ dXt, Y0 = y0,

where X ∈ C0,p−var ([0, T ];G⌊p⌋ (Rd)) denotes the geometric rough path constructed from the limit of

the piecewise-linear approximations of X, a continuous, centered Gaussian process in R
d with i.i.d.

components and continuous covariance function satisfying ∥R∥ρ−var;[0,T ]2 < ∞ for some ρ ∈ [1, 3
2
).

In addition, we have the following assumptions:

(i) If 1 ≤ p < 2, assume V ∈ C2b (Rd;Rd ⊗R
d), σ2(s, t) ≤ C ∣t − s∣θ for some θ > 1 and ∥R(⋅)∥q−var;[0,T ] <

∞, where 1
p
+ 1
q
> 1.

(ii) If 2 ≤ p < 3, assume that V ∈ C6b (Rd;Rd ⊗R
d), and the covariance function satisfies

∥R(t, ⋅) −R(s, ⋅)∥ρ−var;[0,T ] ≤ C ∣t − s∣ 1ρ , (105)

for all s, t ∈ [0, T ].
In either case, almost surely we have

∫
T

0
Yt ○ dXt = ∫

T

0
Yt dXt + 1

2
∫

T

0
tr [V (Ys)] dR(s)

+ ∫[0,T ]2 1[0,t)(s)tr [JX

t←sV (Ys) − V (Yt)] dR(s, t).
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Proof. Using regular Riemann-Stieltjes integration when 1 ≤ p < 2 and Theorem 2.18 when 2 ≤ p <
3, ∫ T0 Yt ○ dXt is equal almost surely to

lim
n→∞
∑
i

⎧⎪⎪⎨⎪⎪⎩
Ytn

i
(Xtn

i
,tn
i+1
) , 1 ≤ p < 2,

Ytn
i
(Xtn

i
,tn
i+1
) + V (Ytn

i
)(X2

tn
i
,tn
i+1
) , 2 ≤ p < 3.

We now apply Proposition 4.10 in conjunction with Corollary 5.2. Upon extracting a subsequence
(and reusing the index for notational simplicity), the Skorohod integral is given almost surely by

∫
T

0
Yt dXt = lim

n→∞
∑
i

[Ytn
i
(Xtn

i
,tn
i+1
) − ∫ tni

0
tr [JX

tn
i
←sV (Ys)]R (∆n

i ,ds) +A(i)] ,
where

A(i) ∶=
⎧⎪⎪⎨⎪⎪⎩
V (Ytn

i
) (−1

2
σ2 (tni , tni+1)Id) , 1 ≤ p < 2,

V (Ytn
i
)((X2

tn
i
,tn
i+1
) − 1

2
σ2 (tni , tni+1)Id) , 2 ≤ p < 3.

Note that when 1 ≤ p < 2, we can append ∑i V (Ytni ) (−1
2
σ2 (tni , tni+1)Id) to the Riemann sum

approximants of the Skorohod integral because

∑
i

tr [V (Ytn
i
)]σ2 (tni , tni+1) ≤ C∑

i

∣tni+1 − tni ∣θ, (106)

which vanishes as n→∞.

In both cases, subtracting the two integrals gives us

∫
T

0
Yt ○ dXt−∫

T

0
Yt dXt

= lim
n→∞

∑
i
∫

tni

0
tr [JX

tn
i
←sV (Ys)]R(∆n

i , ds) + 1

2
σ2 (tni , tni+1) tr [V (Ytni )] .

(107)

Subtracting tr [V (Ytn
i
)]R(∆n

i , t
n
i ) from the first term on the right of (107) and adding it to the

second term gives us

∫
tni

0
tr [JX

tn
i
←sV (Ys)]R(∆n

i , ds) + 1

2
σ2 (tni , tni+1) tr [V (Ytni )] = F (i) +G(i),

where

F (i) ∶= ∫
tni

0
tr [JX

tn
i
←sV (Ys)]R(∆n

i ,ds) − tr [V (Ytni )]R(∆n
i , t

n
i ),

G(i) ∶= 1

2
σ2 (tni , tni+1) tr [V (Ytni )] + tr [V (Ytni )]R(∆n

i , t
n
i ).

We have

F (i) = ∫
tni

0
tr [JX

tn
i
←sV (Ys) − V (Ytni )] R (∆n

i ,ds)
= ∫

T

0
h(s, tni )R (∆n

i ,ds) ,
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where we denote

h(s, t) ∶= 1[0,t)(s) tr [JX

t←sV (Ys) − V (Yt)] .
Since h(s, t) vanishes on the diagonal, it is continuous almost surely on [0, T ]2. Furthermore, we
have complementary regularity since 1

p
+ 1
ρ
> 1, in which case Theorem 2.10 tells us that

∫[0,T ]2 h(s, t)dR(s, t),
exists. Thus, we have some partition π′ = {sk} × {tni } such that

RRRRRRRRRRR∫[0,T ]2 h(s, t)dR(s, t) −∑i,k h(sk, t
n
i )R(sk sk+1

tni tni+1
)RRRRRRRRRRR <

ε

2
.

Refining {sk} if necessary, we also have for each i

∣∫ T

0
h(s, tni )R (∆n

i ,ds) −∑
k

h(sk, tni )R(sk sk+1
tni tni+1

)∣ < ε
2
( 1

2n
) ,

and note that these estimates hold for all π = π1 × π2 where ∥π∥ ≤ ∥π′∥ and ∥π2∥ ≤ ∥π(n)∥. Thus
∑
i

F (i) → ∫[0,T ]2 h(s, t)dR(s, t).
For the G terms we have

∑
i

G(i) =∑
i

tr [V (Ytn
i
)] (R(tni+1, tni ) −R(tni , tni ) + 1

2
σ2 (tni , tni+1))

= 1

2
∑
i

tr [V (Ytn
i
)] (R (tni+1, tni+1) −R (tni , tni ) ),

which converges to 1
2 ∫ T0 tr [V (Yt)] dR(t) as Y and R(⋅) have complementary regularity. ∎

The limit in (107) necessarily exists almost surely because it is the difference of almost sure con-
vergent sequences. However, we add and subtract tr [V (Ytn

i
)]R(∆n

i , t
n
i ) because in general, if

considered separately, neither term can be expected to be a convergent sequence.

Consider the case when R(s, t) is the covariance function of fractional Brownian motion where
1
3
< H < 1

2
. For the first term of (107), formally one would expect convergence to the Young

integral

∫[0,T ]2 1[0,t)(s) tr [JX

t←sV (Ys)] dR(s, t)
since we have complementary regularity. However the discontinuity of the integrand at the diagonal
poses a problem, as can be illustrated by the following simple example; if we take the sequence of
square partitions {(tni , tnj )}, the Riemann-Stieltjes sums of ∫[0,T ]2 1[0,t)(s)dR(s, t) are given by

∑
j

∑
i<j

R(∆i,∆j) =∑
j

R (tnj , tnj+1) −R (tnj , tnj )→ −∞
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and thus ∫[0,T ]2 1[0,t)(s)dR(s, t) does not exist as a Young-Stieltjes integral. For the second term

of (107), if V is bounded from below, we have

∑
i

1

2
σ2 (tni , tni+1) tr [V (Ytni )] ≥ C∑

i

∣tni+1 − tni ∣2H ,
which also diverges.

Now consider the following theorem from [Dec00].

Theorem 6.2. Let X be fractional Brownian motion with Hurst parameter H < 1
2
.

If u ∈ D1,2 (I 3

2
−H

0+ (L2)), then δX(K∗u) and trace(Du) are well defined, and the sequence

∑
i

1

ti+1 − ti ∫
ti+1

ti
ut dt (Xti+1 −Xti)

converges in L2(Ω) to δX(K∗u) + trace(Du).
Formally, K∗ is the operator K∗ ○D1

T− , where D
1
T− is the adjoint of the derivative operator; see

[Dec05]. It is well-known that the Besov-Liouville space I
3

2
−H

0+
(L2) can be embedded continuously

in C0,1−H (see [Nua06], [SKM93], [Dec05]), the space of (1 −H) Hölder continuous paths starting
at zero. This imposes a strong condition on the integrand as one essentially requires Young-
complementary regularity of u and X.

Thus, when the integrand solves an RDE, Theorem 6.1 extends this theorem to cases where the
integrand and integrator do not have complementary regularity. Furthermore, when 1 ≤ p < 2,

although ∫ t
n
i

0 tr [JX

tn
i
←sV (Ys)]R (∆n

i ,ds) in general converges, by augmenting the Skorohod integral

with Ai and re-balancing the terms, we can identify the trace term in Theorem 6.2 more precisely.

6.1 Application of the correction formula to fractional Brownian motion

We now apply the correction formula to fractional Brownian motion with H > 1
3
.

Theorem 6.3. For 1 ≤ p < 3, let Y ∈ Cp−var ([0, T ];Rd) denote the path-level solution to

dYt = V (Yt) ○ dXt, Y0 = y0.
We assume that V ∈ Ckb (Rd;Rd ⊗R

d), with
k =
⎧⎪⎪⎨⎪⎪⎩
2, 1 ≤ p < 2,
6, 2 ≤ p < 3, (108)

and X ∈ C0,p−var ([0, T ];G⌊p⌋ (Rd)) is the geometric rough path constructed from the limit of the

piecewise-linear approximations of fractional Brownian motion with Hurst parameter H > 1
3
, and

covariance function

R(s, t) = 1

2
(s2H + t2H − ∣t − s∣2H) .
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Then almost surely, we have

∫
T

0
Yt ○ dXt = ∫

T

0
Yt dXt +H ∫

T

0
tr [V (Ys)] s2H−1 ds

+ ∫[0,T ]2 1[0,t)(s)tr [JX

t←sV (Ys) − V (Yt)] dR(s, t).
Proof. We will show that fractional Brownian motion fulfills all the requirements needed to apply
Theorem 6.1 when H > 1

3
. Let ρ ∶= 1

2H
and q ∶= 1

ρ
∨ 1. The proof that ∥R∥ρ−var;[0,T ]2 < ∞ can be

found in [FV10a]; see also [FV11]. Note also that R(t) = t2H is of bounded variation, and thus has
finite q-variation.

In the case 1 ≤ p < 2, or H > 1
2
, the geometric rough path is simply (1,BH

t ), and for H ≤ 1
2
, one can

invoke Theorem 2.11 to construct the geometric rough path.

Finally, it is proved in Example 1 of [FV11] that

∥R(t, ⋅) −R(s, ⋅)∥ρ−var;[0,T ] ≤ C ∣t − s∣ 1ρ , ∀s, t ∈ [0, T ].
∎

Appendix A

Theorem 2.18. Let x = (1, x,x2) ∈ Cp−var ([0, T ];G2(Rd)), where 2 ≤ p < 3.
Let φ ∈ Cp−var ([0, T ];L(Rd;Re)) and φ′ ∈ Cp−var ([0, T ];L(Rd;L(Rd;Re))). If (φ,φ′) is controlled
by x, we can define the rough integral

∫
t

0
φr ○ dxr ∶= lim

∥π∥→0,π={0=r0<...<rn=t}

n−1

∑
i=0

(φrixri,ri+1 + φ′rix2
ri,ri+1

) , (30)

where we have made use of the canonical identification L(Rd;L(Rd;Re)) ≃ L(Rd ⊗ R
d;Re). Fur-

thermore, denoting

zt ∶= ∫
t

0
φr ○ dxr, z′t ∶= φt,

(z, z′) is again controlled by x, and we have the bound

∥z∥p−cvar ≤ Cp ∥φ∥p−cvar (1 + ∥x∥p−var;[0,T ] + ∥x2∥p
2
−var;[0,T ]) . (31)

Proof. Let 0 ≤ u < s < v ≤ t and define

Ξu,v ∶= φuxu,v + φ′ux2
u,v,

which yields the defect of additivity,

∣Ξu,s + Ξs,v − Ξu,v∣ ≤ ∣Rφu,sxs,v∣ + ∣φ′u,sx2
s,v ∣ .
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Now let θ ∶= 3
p
. Then the following function

ω(u, v) ∶= ∥Rφ∥ 1θp
2
−var;[u,v] ∥x∥ 1θp−var;[u,v] + ∥φ′∥ 1θp−var;[u,v] ∥x2∥ 1θp

2
−var;[u,v]

is a control by Lemma 2.6 as 3
p
≥ 1. Moreover, following the proof for Young integration (see

[FH14]), for any partition π = {ri} of [u, v] with k sub-intervals, there necessarily exists some rj ∈ π
such that

∣Ξrj−1,rj + Ξrj,rj+1 − Ξrj−1,rj+1 ∣ ≤ ∣Rφrj−1,rjxrj ,rj+1 ∣ + ∣φ′rj−1,rjx2
rj ,rj+1

∣
≤ 2ω(rj−1, rj+1)θ ≤ 2( 2

k − 1)
θ

ω(u, v)θ .
Extracting rj leaves one with k −1 sub-intervals, and we can repeat this procedure until only [u, v]
remains. Since θ > 1, we obtain the sub-maximal inequality (cf. [Lyo98], [FH14])

∣∫
π
φr ○ dxr − (φuxu,v + φ′ux2

u,v)∣ ≤ C ζ(θ)ω(u, v)θ , (109)

where ζ is the Riemann zeta function and

∫
π
φr ○ dxr ∶=∑

i

φrixri,ri+1 + φ′rix2
ri,ri+1

.

Proving (30) is equivalent to showing that

sup
∥π∥∨∥π′∥<ε

∣∫
π
φr ○ dxr − ∫

π′
φr ○ dxr∣ → 0 as ε→ 0,

where the supremum is taken over all partitions of [0, t]. Without loss of generality, we can assume
π′ refines π, in which case ∥π∥ ∨ ∥π′∥ = ∥π∥ and

∣∫
π
φr ○ dxr − ∫

π′
φr ○ dxr∣ = RRRRRRRRRRRR ∑[u,v]∈π (φuxu,v + φ

′

ux
2
u,v − ∫

π′∩[u,v]
φr ○ dxr)RRRRRRRRRRRR

≤ Cp ∑
[u,v]∈π

ω(u, v)θ,
which vanishes as ∥π∥→ 0.

Continuing, we define

Rzs,t ∶= ∫
t

s
φr ○ dxr − φsxs,t, (110)

and using (109), we obtain

∣zs,t∣p , ∣z′s,t∣p ≤ Cp (∥φ∥Vp;[0,T ] + ∥φ′∥Vp;[0,T ] + ∥Rφ∥ p
2
−var;[0,T ])p (∥x∥pp−var;[s,t] + ∥x2∥pp

2
−var;[s,t]) ,

∣Rzs,t∣ p2 ≤ Cp (∥φ′∥p2Vp;[0,T ] ∥x2∥p2p
2
−var;[s,t] + ∥x∥p2p−var;[0,T ] ∥Rφ∥ p2p

2
−var;[s,t]) .

From the super-additivity of the quantities on the right side in the above expression, the fact that(z, z′) is controlled with norm (31) follows immediately. ∎
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Proposition 2.19. For p ≥ 2, let

y ∈ Cp−var ([0, T ];U) ,
y′ ∈ Cp−var ([0, T ];L (Rd;U)) ,

and let φ be a C2b map from U to V.
Then φ(y) ∈ Cp−var ([0, T ];V) and ∇φ(y)y′ ∈ Cp−var ([0, T ];L(Rd;V)). Furthermore, if (y, y′) is

controlled by x ∈ Cp−var ([0, T ];G2 (Rd)), then (φ(y),∇φ(y)y′) is also controlled by x and we have

∥φ(y)∥p−var;[0,T ] , ∥∇φ(y)y′∥p−var;[0,T ] ≤ ∥φ∥C2b ∥y∥Vp;[0,T ] (1 + ∥y′∥Vp;[0,T ]) , (32)

and

∥Rφ(y)∥
p

2
−var;[0,T ]

≤ ∥φ∥C2
b
(∥y∥2p−var;[0,T ] + ∥Ry∥p

2
−var;[0,T ]) . (33)

Proof. See Lemma 7.3 in [FH14] for the proof in Hölder topology; the p-variation estimates will
be derived similarly. Using the mean-value theorem, (32) can be obtained easily. To show (33) and
that (φ(y),∇(y)y′) is controlled by x, we first use Taylor’s theorem to obtain

(φ(y))s,t = ∇φ (ys) ys,t +RTaylors,t (111)

for all s < t in [0, T ], where ∣RTaylors,t ∣ ≤ ∥φ∥C2
b
∣ys,t∣2. From this it follows that

∥RTaylor∥p
2
−var;[0,T ] ≤ ∥φ∥C2b ∥y∥2p−var;[s,t] . (112)

We next use the fact that (y, y′) is controlled by x in equation (111), which yields

(φ(y))s,t = ∇φ (ys)y′s´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶ (φ(y))′s

xs,t +∇φ (ys)Rys,t +RTaylors,t´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
=∶ Rφ(y)s,t

,

and also gives

∥Rφ(y)∥
p

2
−var;[0,T ]

≤ ∥∇φ(y)∥
∞
∥Ry∥ p

2
−var;[0,T ] + ∥RTaylor∥p

2
−var;[0,T ] .

∎
Proposition 2.20. (Leibniz rule) For p ≥ 2, let

φ ∈ Cp−var ([0, T ];L(U ;V)) ,
φ′ ∈ Cp−var ([0, T ];L(Rd;L(U ;V))) ,

and we assume that (φ,φ′) is controlled by x ∈ Cp−var ([0, T ];G2 (Rd)).
(i) Let ψ ∈ Cp−var ([0, T ];U), ψ′ ∈ Cp−var ([0, T ];L(Rd;U)), and suppose that (ψ,ψ′) is controlled

by x. Then the path φψ ∈ Cp−var([0, T ];V) given by the composition of φ and ψ is also
controlled by x, with derivative process (φψ)′ = φ′ψ + φψ′. In addition, we have the bound

∥φψ∥p−cvar ≤ 2 ∥φ∥p−cvar ∥ψ∥p−cvar (34)

47



(ii) Suppose that ψ ∈ C p

2
−var([0, T ];U). Then φψ ∈ Cp−var([0, T ];V) is also controlled by x, with

derivative process (φψ)′ = φ′ψ. Moreover, we have the bound

∥φψ∥p−cvar ≤ ∥φ∥p−cvar ∥ψ∥V p
2 ;[0,T ] . (35)

Proof. The statement can be seen as a corollary to the previous proposition if we consider the
smooth map Φ(φ,ψ) = φψ. However, we will prove it directly to get the precise bounds (34) and
(35).

For the first part, it is trivial to see that ∥φψ∥ and ∥φ′ψ + φψ′∥p−var;[0,T ] are bounded by the right
side of (34). For the remainder term, we note that

(φψ)s,t − (φ′sψs + φsψ′s)xs,t = φtψt − φsψs − φs,tψs − φsψs,t +Rφs,tψs + φsRψs,t
= φtψt − φtψs − φsψt + φsψs +Rφs,tψs + φsRψs,t
= φs,tψs,t +Rφs,tψs + φsRψs,t,

and thus

∥Rφψ∥p
2
−var;[0,T ] ≤ ∥φ∥p−var;[0,T ] ∥ψ∥p−var;[0,T ] + ∥ψ∥∞ ∥Rφ∥p

2
−var;[0,T ] + ∥φ∥∞ ∥Rψ∥ p

2
−var;[0,T ] .

For the second part, note that ∥φψ∥ and ∥φ′ψ∥p−var;[0,T ] are bounded by the right side of (35).
Moreover, we have

(φψ)s,t − (φ′sψs)xs,t = φtψt − φsψs − φs,tψs +Rφs,tψs
= φtψs,t +Rφs,tψs =∶ Rφψs,t ,

which gives

∥Rφψ∥ p
2
−var;[0,T ] ≤ ∥φ∥∞ ∥ψ∥ p2−var;[0,T ] + ∥ψ∥∞ ∥Rφ∥ p2−var;[0,T ] .

∎
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