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Tree algebras over topological vector spaces

in rough path theory

Thomas Cass∗ Martin P. Weidner†

Imperial College London

Abstract

We work with non-planar rooted trees which have a label set given by an arbitrary
vector space V . By equipping V with a complete locally convex topology, we show how
a natural topology is induced on the tree algebra over V . In this context, we introduce
the Grossman-Larson and Connes-Kreimer topological Hopf algebras over V , and prove
that they form a dual pair in a certain sense. As an application we define the class of
branched rough paths over a general Banach space, and propose a new definition of a
solution to a rough differential equation (RDE) driven by one of these branched rough
paths. We show equivalence of our definition with a Davie-Friz-Victoir-type definition,
a version of which is widely used for RDEs with geometric drivers, and we comment
on applications to RDEs with manifold-valued solutions.

Keywords: Labelled trees, Hopf algebras, Rough differential equations

Introduction

A cornerstone of classical rough path theory is to understand differential equations of the
form

dyt = V (yt) dxt for t ∈ [0, T ] , started at y0 ∈ F , (1)

in which x is a geometric p-rough path on a Banach space E, and V is a continuous linear
map from E into the space of vector fields on another Banach space F . A number of
different approaches to this definition exist. The first chronologically is due to Lyons [19]
for whom a solution is defined as a fixed point, in geometric rough path space, of the rough
integral equation corresponding to (1). More recently, Gubinelli introduced an essentially
equivalent definition which characterises solutions in terms of controlled rough paths, cf.
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[14, 15] and [16]. In the finite-dimensional case E = Rd and F = Rn, Davie [9] (for
2 ≤ p < 3) and then Friz and Victoir [11] (for general p ≥ 2) proposed a notion of solution
motivated by the Euler approximation for ordinary differential equations. This definition
requires that y and x be related1 by

yt − ys ≃

⌊p⌋∑

k=1

d∑

i1,...,ik=1

Vi1
· · ·Vik

id (ys) x
k;i1,...,ik
s,t for s, t ∈ [0, T ] , (2)

where x
k;i1,...,ik
s,t := 〈ei1

⊗ · · · ⊗ eik
,xs,t〉, and Vi (y) := V (y) (ei) when {ei}

d
i=1 denotes the

standard basis of Rd. Somewhat differently, and inspired by the work of Strichartz [24],
Bailleul in [2] interprets a solution as the unique rough flow (a diffeomorphism on F )
associated to a class of approximate flows. This rough flow can be used to construct a path
y which satisfies

f (yt) − f (ys) ≃

⌊p⌋∑

k=1

d∑

i1,...,ik=1

Vi1
...Vik

f (ys) x
k;i1,...,ik
s,t for s, t ∈ [0, T ] , (3)

for all smooth enough functions f : F → G and for any Banach space G. See Proposition 3.5
of [2].

In many situations (3) is a more natural test than (2) to determine if a given path y solves
(1). For example, on any smooth manifold (3) still has meaning even if the increment on
the left side of (2) does not. This observation has been used in [5] in order to study rough
differential equations on submanifolds of Rd. One application of this paper will be to show
the equivalence of (2) and (3); this is currently unknown even for the special case sketched
above where E and F are finite-dimensional and for geometric x. The basic challenge
is algebraic: a general smooth function f can have non-zero derivatives of any order,
while the derivatives of the identity function of degree two and higher vanish identically.
The summands in (3) therefore typically involve many more terms than those in (2), and
to handle these we need to systematically keep track of terms involving derivatives of
f of a fixed degree. The algebraic structure needed is exactly the Grossman-Larson Hopf
algebra on labelled rooted non-planar trees. These ideas, which orginally go back to Cayley
[6], appear in Butcher’s seminal study of numerical methods for differential equations
[4]. Connes and Kreimer [8] and Grossman and Larson [12] subsequently introduced two
different Hopf algebra structures based on rooted trees; these are dual to each another, cf.
[21] and [17], allowing one to view the Butcher group either as the character group of the
Connes-Kreimer algebra, or as the group-like elements of the Grossman-Larson algebra.
Recently the connection between tree algebras, renormalisation theory and rough paths
has led to new results such as the work by Bruned, Chevyrev, Friz and Preiß [3].

1The meaning of ≃ in (2) is made precise later, but it relates two terms whose difference is negligible in
a certain sense.
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Our analysis admits two important generalisations on the motivating discussion above,
namely:

1. It allows for branched rough path drivers. These have been introduced by Gubinelli
and developed further by Hairer and Kelly. They generalise the notion of a geomet-
ric rough path by removing the algebraic constraints which come from the classical
integration-by-parts relations. As such, a wider class of driving signals can be ac-
commodated, e.g. stochastic rough paths constructed via iterated Itô integration.

2. It permits E and F to be general Banach spaces. An key advantage of classical rough
path theory is its ability to treat models in which the signal and response evolve in
infinite dimensional state-spaces. This poses an extra challenge to the algebraic
methods, most of which work for trees with a finite – or at most countable – label
set. In this article, by constrast, we will work with general locally convex topological
vector spaces as label sets.

The eventual outcome of this paper will thus be to close two gaps in the literature: we
present the first rigorous treatment of infinite-dimensional branched rough paths and then,
in this general setting, we prove that (3) is equivalent to the classical Davie-Friz-Victoir
notion of solution to a rough differential equation.

The structure of this work is as follows. In Section 1 we define trees as partially ordered
sets and introduce the properties and operations that are relevant in later sections. Sec-
tion 2 contains the construction of algebras of labelled trees, where the label set is given
by an arbitrary vector space V . If V carries a topology, then this topology induces a
topology on the tree algebras associated to V . This topology is introduced in Section 3.
Once the algebraic and topological algebras of Grossman-Larson and Connes-Kreimer are
introduced, we show in Section 4 that they form a dual pair of Hopf algebras. Finally we
apply this duality in the context of rough paths in Section 5.

1 The set of non-planar rooted trees

There exist various equivalent definitions for the set of non-planar rooted trees and here
we choose to follow [17] and work with equivalence classes of partially ordered sets. Two
partially ordered sets are defined to be equivalent if there exists an order preserving bijection
between them.

Definition 1.1 A Non-planar rooted tree t is an equivalence class of finite partially ordered
sets S such that S has a unique minimal element and for every v ∈ S the set {w ∈ S : w ≺
v} is totally ordered. The set of all (non-planar rooted) trees is denoted by Tr.

From now on, by a tree t ∈ Tr we mean a generic representative of the equivalence class
and we will address the problem of well-definedness where we deem it necessary.
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The elements of a tree t ∈ Tr are called vertices and its unique minimal element is called
its root and it is denoted by r(t). By v(t) := t\r(t) we denote the set of all vertices of t

without the root. Finally we define |t| to be the number of elements of v(t) and we call
this number the degree of t. There exists a unique t ∈ Tr with |t| = 0 and we denote this
tree by 1.

The symmetry group SG(t) of t ∈ Tr is the group of all order-preserving bijections from
v(t) to v(t).

For t ∈ Tr and v ∈ t, denote by c(v) the set of children of v, i.e. all vertices w ∈ t such
that w ≻ v and such that there exists no x ∈ t with w ≻ x ≻ v.

Trees can be canonically interpreted as graphs where the vertices of the graph correspond
to the vertices of the tree and the edges of the graph correspond to the statement ‘is a
child of’.

An important operation is that of grafting two trees together. Let t, s ∈ Tr be two trees.
A grafting map from t to s is a map d : c(r(t)) → s, i.e. it assigns a vertex of s to every
child of the root of t. Denote by Gr(t, s) the set of all such maps. Given d ∈ Gr(t, s) we

define t
d
⇀ s := v(t) ⊔ s with the additional relation v ≻ d(v) for every v ∈ c(r(t)) (plus

all necessary additional relations so that transitivity holds). Here ⊔ denotes the disjoint
union.

In the special case where d(v) = r(s) for all v ∈ c(r(t)) we write t ◦ s instead of t
d
⇀ s.

Observe that we have t ◦ s = s ◦ t, since the operation ◦ simply identifies the roots of t and
s.

Example 1.2 These are all possible ways of grafting t = to s = :

, , .

Note however that |Gr(t, s)| = 4 since there are two possibilities to obtain the middle one
of the above three trees. Furthermore the first tree corresponds to t ◦ s.

Let t ∈ Tr be a tree. We call a subset C ⊂ v(t) of its vertices an admissible cut if none
of its elements are comparable, i.e. if for all v,w ∈ C we have neither v ≺ w nor w ≺ v.
The set of all admissible cuts of t is denoted by Cut(t). For a given cut C ∈ Cut(t) we
define the trees

RC(t) := t\{v ∈ v(t) : there exists w ∈ C such that w � v}

and
PC(t) := {r} ⊔ {v ∈ v(t) : there exists w ∈ C such that w � v}

with the additional relations r ≺ w for all w ∈ C (plus all necessary additional relations
so that transitivity holds). Intuitively, RC(t) contains the tree that remains after cutting
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away the elements of C and PC(t) is obtained by grafting all the subtrees that have been
removed to a new root.

Example 1.3 The result of the cutting operation when C is given by the highlighted
vertices.

t = −→ PC(t) = , RC(t) =

In order to keep track of the vertices of a tree t ∈ Tr, we would like to consider bijections
ρ : v(t) → {1, . . . , |t|}. However, since we are working with equivalence classes of trees,
we have to consider equivalence classes of such bijections. Thus we assume that every
representative T of t comes with a bijective map ρT : v(T ) → {1, . . . , |t|} which we call
the enumeration of T . Furthermore we assume that for any two representatives T and
T̃ of t the enumerations ρT and ρT̃ are equivalent in the sense that there exists an order
preserving bijection ϕ : T → T̃ with ρT = ρT̃ ◦ ϕ.

For a tree t ∈ Tr we obtain a canonical embedding of SG(t) into the symmetric group
S|t| by its enumeration ρt, i.e. we define the group

{ρtπρ
−1
t : π ∈ SG(t)} ⊆ S|t|.

We will abuse notation and denote this embedding by SG(t) as well.
For k ∈ N we denote by Trk ⊂ Tr the set of all trees whose root has exactly k children and

by Tr
k ⊂ Tr the set of all trees with degree k. We will also use the notation Tr

k
n := Tr

k∩Trn.
The set Tr1 is especially important as the following trivial yet important lemma shows.

Lemma 1.4 Let t ∈ Trk. Then there exist unique trees t1, . . . , tk ∈ Tr1 such that we have
the decomposition t = t1 ◦ · · · ◦ tk.

2 Algebras of labelled trees over a vector space

Let M be a set. The most straightforward way to define a labelling of the vertices of a tree
t ∈ Tr with labels from M is to consider a map l : v(t) → M . More precisely, we have to
consider equivalence classes of such maps where two maps l and l̃ are equivalent if there
exists π ∈ SG(t) such that l = l̃π. We can then consider the (free) vector space spanned
by all of those equivalence classes of labellings for a fixed tree t ∈ Tr. Let us denote this
vector space by Lt(M).

This definition is perfectly fine and especially if M is finite there is not much difference
between labelled and unlabelled trees since in that case the space Lt(M) is finite dimen-
sional for every t ∈ Tr. However, if M is infinite, then the vector space Lt(M) is infinite
dimensional for every t ∈ Tr\{1}. It is therefore desirable to equip Lt(M) with a topology
since topological vector spaces are usually nicer to work with than infinite dimensional
vector spaces without a topology, for example when it comes to dual spaces.

5



Hence we would like to establish a different point of view which takes the (free) vector
space V spanned by M as the label set rather than the set M itself. In fact, it is usually
V that is given in the first place rather than M . Thus our aim is to describe the spaces
Lt(M) in terms of V rather than M so that we can then use a given topology on V to
construct a topology on Lt(M).

In terms of the application to rough paths that we will present in Section 5 the vector
space V will take the role of the noise space. The topological tree algebra generated by it
– in the way given below – will then be the space in which the rough path lift of the noise
takes its values.

2.1 Spaces of labelled trees as tensor products

Let now V be a given vector space. We will perform a purely algebraic construction in this
section and then consider a topological vector space in the following one. A permutation
σ ∈ Sk with k ∈ N can be canonically interpreted as a linear map on V ⊗k which is given
by σ(v1 ⊗ · · · ⊗ vk) = vσ(1) ⊗ · · · ⊗ vσ(k) for elementary tensors. Given a subgroup G ⊂ Sk

we define the projection

symG : V ⊗k → V ⊗k : a 7→
1

|G|

∑

σ∈G

σ(a).

Definition 2.1 Let V be a vector space, let t ∈ Tr be a tree and let SG(t) be its symmetry
group. Then the t-tensor power of V is defined as the quotient space

V ⊗t := V ⊗|t|
/

ker
(
symSG(t)

)

The space V ⊗t is isomorphic to the image of symSG(t), which provides a more direct
description of V ⊗t. We say that an element t ∈ V ⊗t is an elementary labelled tree if its
equivalence class contains an elementary tensor. The set of all elementary labelled trees in
V ⊗t spans V ⊗t.

To illustrate an elementary labelled tree we choose one of its elementary representatives
as in the following example. E.g., for t = we can visualise t = [2v1 ⊗ v2 + v2 ⊗ v1] ∈ V ⊗t

as

t = 3
v1 v2

.

Let us now define the following spaces.

Tr
k(V ) :=

⊕

t∈Tr
k

V ⊗t for k ∈ N

Trk(V ) :=
⊕

t∈Trk

V ⊗t for k ∈ N

6



Tr
k
n(V ) :=

⊕

t∈Tr
k
n

V ⊗t = Tr
k(V ) ∩ Trn(V ) for k, n ∈ N

Tr(V ) :=
⊕

t∈Tr

V ⊗t =
∞⊕

k=0

Tr
k(V ) =

∞⊕

k=0

Trk(V ) =
∞⊕

k=0

∞⊕

n=0

Tr
k
n(V )

The definition of Tr(V ) provides canonical projections onto Tr
k(V ), Trk(V ) and Tr

k
n(V )

for k, n ∈ N and we will denote those projections by πk, πk and πk
n respectively.

We will also need truncations of the space Tr(V ). Thus for k ∈ N define the subspace

I(k) :=
⊕

t∈Tr:|t|>k

V ⊗̂t

and the quotient space

Tr
(k)(V ) := Tr(V )

/
I(k) .

The canonical projection Tr(V ) → Tr
(k)(V ) will be denoted by π(k). We will furthermore

need the projection π
(k)
n := π(k) ◦ πn = πn ◦ π(k).

Before we can define the additional algebraic structure on Tr(V ) to turn it into a Hopf
algebra we have to extend two auxiliary constructions from the previous section, namely
grafting and cutting, to tensors. We start with grafting.

Definition 2.2 Let t, s ∈ Tr and let t ∈ V ⊗|t| and s ∈ V ⊗|s| be two elementary tensors.
Let furthermore d ∈ Gr(t, s) be a grafting map. Then we define

t
d
⇀ s :=

(
ρt,s ◦ ρ−1

t
d

⇀s

)
(t ⊗ s) ∈ V ⊗(|t|+|s|), (4)

where

ρt,s : v(t) ⊔ v(s) → {1, . . . , |t| + |s|} : v 7→

{
ρt(v) v ∈ v(t),

ρs(v) + |t| v ∈ v(s).
(5)

Remark 2.3 This definition has to be handled with care since the value of t
d
⇀ s may

depend on the choice of representatives of t and s. However, this is unproblematic because
it is only an auxiliary construction for Definition 2.7, where the resulting object will be
independent of the choice of representatives, which will be shown in Lemma 2.9.

By analogy with to the previous section, if d ∈ Gr(t, s) maps all elements of c(r(t)) to

r(s) we write t ◦ s instead of t
d
⇀ s.

Lemma 2.4 Let t, s ∈ Tr and let t ∈ V ⊗t and s ∈ V ⊗s be two labelled trees. Let furthermore
t ∈ V ⊗|t| and s ∈ V ⊗|s| be representatives of t and s respectively. Then the equivalence class
[t◦s] ∈ V ⊗(t ◦ s) depends neither on the choice of t and s nor on the choice of representatives
of t and s.

7



Proof. Choosing a different representative of t and/or a different choice of t amount to
replacing t by t̃ with the property that

symSG(t)(t − t̃) = 0.

From (4) we get t ◦ s− t̃ ◦ s = (t− t̃) ◦ s. Thus if SG(t) embeds as a subgroup into SG(t ◦ s)
we are done because then we have

[t ◦ s] − [t̃ ◦ s] = [(t − t̃) ◦ s] = 0.

But this is clearly the case because the operation ◦ identifies the roots of t and s and hence
both t is a subtree of t ◦ s.

The same argument shows that choosing a different representative of s and/or a different
choice of s does not change [t ◦ s]. �

The lemma allows us to define t ◦ s := [t ◦ s] for representatives t and s of t and s

respectively. If t ∈ V ⊗t is an elementary labelled tree as defined above, then the unique
decomposition t = t1 ◦ · · · ◦ tk from Lemma 1.4 induces a decomposition

t = t1 ◦ · · · ◦ tk with t1 ∈ V ⊗t1 , . . . , tk ∈ V ⊗tk . (6)

Let us now turn to cutting. Let t ∈ Tr and C ∈ Cut(t). Then the vertices of RC(t) and
PC(t) are defined as subsets of the vertices of t and hence there are canonical injections

φC,R : v
(
RC(t)

)
→ v(t) and φC,P : v

(
PC(t)

)
→ v(t).

Definition 2.5 Let t ∈ Tr be a tree and let C ∈ Cut(t) be an admissible cut. Then we
define

RC : V ⊗|t| → V ⊗|RC(t)| : v1 ⊗ · · · ⊗ v|t| 7→ vϕC,R(1) ⊗ · · · ⊗ vϕC,R(|RC(t)|)

and
PC : V ⊗|t| → V ⊗|P C(t)| : v1 ⊗ · · · ⊗ v|t| 7→ vϕC,P (1) ⊗ · · · ⊗ vϕC,P (|P C(t)|),

where ϕC,R := ρt ◦ φC,R ◦ ρ−1
RC(t)

and ϕC,P := ρt ◦ φC,P ◦ ρ−1
P C(t)

.

Remark 2.6 As in Remark 2.3 we should emphasize that RC and PC depend on the choice
of the representative of t. Nevertheless, the following definition makes sense as Lemma 2.9
shows.

Definition 2.7 Let V be a vector space, let t, s ∈ Tr and let t ∈ V ⊗t and s ∈ V ⊗s be
elementary labelled trees.

(i) For elementary representatives t and s of t and s we define

t ⋆ s :=
∑

d∈Gr(t,s)

[
t

d
⇀ s

]
∈ Tr(V ).

8



(ii) If t can be decomposed into t = t1 ◦ · · · ◦ tk as in (6) we define

∆GL(t) :=
∑

I⊂{1,...,k}

©
i∈I

ti ⊗ ©
i∈Ic

ti ∈ Tr(V ) ⊗ Tr(V ),

where the sum ranges over all subsets of {1, . . . , k} and we set ©i∈∅ ti = 1.

(iii) For an elementary representative t of t we define

∆CK(t) :=
∑

C∈Cut(t)

[
PC(t)

]
⊗

[
RC(t)

]
∈ Tr(V ) ⊗ Tr(V ).

(iv) For λ ∈ R we define
η(λ) := λ1 ∈ Tr(V )

(v) Finally we define

ε(t) :=

{
t, t = 1,

0, otherwise
∈ R.

All of the above maps are then extended linearly to all t, s ∈ Tr(V ) and λ ∈ R.

Example 2.8

v1 v2

⋆
v3

=
v1 v3v2

+ v1 v3

v2

+ v2 v3

v1

+ v3

v1v2

v1 v2

◦
v3

=
v1 v3v2

∆GL


v1 v3

v2


 = v1 v3

v2

⊗ +
v1

⊗ v3

v2

+ v3

v2

⊗
v1

+ ⊗ v1 v3

v2

∆CK


v1 v3

v2


 = v1 v3

v2

⊗ +
v1

⊗ v3

v2

+ v3

v2

⊗
v1

+ ⊗ v1 v3

v2

+
v1 v2

⊗
v3

+
v2

⊗
v3v1

Lemma 2.9 With the notation as in the previous definition, neither t ⋆ s nor ∆CK(t)
depends on the choice of t and s or on the choice of representatives of t and s.
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Proof. Let t̃ and s̃ be different elementary representatives of t and s respectively. The
simple yet crucial observation is that there exist σ1 ∈ SG (t) and σ2 ∈ SG (s) such that we
have

[
t̃

d
⇀ s̃

]
=

[
σ1(t)

d
⇀ σ2(s)

]
=

[
t

σ2 ◦ d ◦ σ1⇀ s

]
,

where the second equality is a straightforward consequence of Definition 2.2 and the fact
that the enumerations of different representatives of the same tree are compatible. Here
σ1 and σ2 may also depend on the choice of representatives of t and s. On the other hand,
for fixed σ1 ∈ SG(t) and σ2 ∈ SG(s) we have

Gr(t, s) = {σ2 ◦ d ◦ σ1 : d ∈ Gr(t, s)}.

Hence t ⋆ s is well-defined as long as the same representatives are chosen for each term in
the defining sum.

A similar argument shows that ∆CK(t) is well-defined since we sum over all admissible
cuts. �

Proposition 2.10 Each of the tuples

HGL(V ) := (Tr(V ), ⋆, η,∆GL, ε) and

HCK(V ) := (Tr(V ), ◦, η,∆CK , ε)

defines a graded bialgebra and therefore each of them can be equipped with an antipode
which turns them into Hopf algebras. We call HGL(V ) the Grossman-Larson Hopf algebra
over V and HCK(V ) the Connes-Kreimer Hopf algebra over V .

Proof. Let us show that the product ⋆ is associative. We will essentially follow [12]. Let
thus t1, t2, t3 ∈ Tr and t1 ∈ V ⊗t1 , t2 ∈ V ⊗t2 and t3 ∈ V ⊗t3 and fix representatives t1, t2
and t2 of t1, t2 and t3 respectively. Then we need to show

∑

d1∈Gr(t1,t2)

∑

d2∈Gr(t1
d1
⇀t2,t3)

[(
t1

d1⇀ t2

)
d2⇀ t3

]
=

∑

e2∈Gr(t2,t3)

∑

e1∈Gr(t1,t2
e2
⇀t3)

[
t1

e1⇀
(
t2

e2⇀ t3
)]
.

(7)

Thus assume d1 ∈ Gr(t1, t2) and d2 ∈ Gr(t1
d1⇀ t2, t3). Define e2 ∈ Gr(t2, t3) to be the

restriction of d2 to the children of the root of t2 and define e1 ∈ Gr(t1, t2
e2⇀ t3) via

e1(v) :=

{
d1(v) d1(v) 6= r(t2)

d2(v) d1(v) = r(t2)
.

It follows from [12, Lem. 2.6/2.7] that this gives a one-to-one correspondence between the
terms on both sides of (7) such that

(
t1

d1⇀ t2

)
d2⇀ t3 = t1

e1⇀
(
t2

e2⇀ t3

)

10



holds. In light of (5) we define

ρt1,t2,t3 : v(t1) ⊔ v(t2) ⊔ v(t3) → {1, . . . , |t1| + |t2| + |t3|}

v 7→





ρt1(v) v ∈ v(t1)

ρt2(v) + |t1| v ∈ v(t2)

ρt3(v) + |t1| + |t2| v ∈ v(t3)

and it is then easy to verify that

(
t1

d1⇀ t2

)
d2⇀ t3 = t1

e1⇀
(
t2

e2⇀ t3
)

=


ρt1,t2,t2 ◦ ρ−1(

t1
d1
⇀t2

)
d2
⇀t3


 (t1 ⊗ t2 ⊗ t3)

where d1, d2 and e1, e2 are related as above. Hence associativity of ⋆ follows.
In a similar way one can verify that the remaining (co)associativity and compatibility

conditions hold. �

Observe that I(k) as defined above is an ideal for both ⋆ and ◦. Hence Tr
(k) can be

interpreted as a quotient algebra of both (Tr(V ), ⋆) and (Tr(V ), ◦). On the other hand
I(k) is a coideal for neither ∆GK nor ∆CL and hence the quotient is not a quotient Hopf
algebra. Furthermore Tr

(k)(V ) is isomorphic to the closed subspace
⊕

t∈Tr:|t|≤k

V ⊗t

of Tr(V ), which justifies the name truncated tree algebra. We will use this isomorphism
implicitly without mentioning it. Note however that this vector space isomorphism is not
an algebra morphism.

3 Algebras of labelled trees over a topological vector space

Let V be a complete locally convex vector space. Our aim is to understand how the topology
of V can induce a topology on Tr(V ). This question can be split into two problems. First
we have to introduce a topology on each of the spaces V ⊗t for t ∈ Tr and second we have
to choose an appropriate topology on their direct sum.

Let t ∈ Tr be a tree. The space V ⊗t is (isomorphic to) a quotient of a tensor power
of V and therefore we can use the well-developed theory of topological tensor products.
We recommend [13] for the necessary background. Most importantly, there is no canonical
topology on V ⊗k for k ∈ N. However, if (ξi)i∈I is a family of seminorms that generates
the topology of V , then for every k ∈ N and indices i1, . . . , ik ∈ I there exists a seminorm
ξi1

⊗ · · · ⊗ ξik
on V ⊗k such that the system of seminorms thus obtained satisfies

ξi1
⊗ · · · ⊗ ξim+n

(a⊗ b) = ξi1
⊗ · · · ⊗ ξim(a)ξim+1

⊗ · · · ⊗ ξim+n
(b)
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for all m,n ∈ N, a ∈ V ⊗m, b ∈ V ⊗n and i1, . . . , im+n ∈ I. A system of seminorms with
this property is called a system of cross (semi)norms. This system is in general not unique
and the most important choices are the projective seminorms, given by

ξi1
⊗ · · · ⊗ ξik

(a) := inf





N∑

j=1

ξi1
(vj

1) · · · ξik
(vj

k) : a =
N∑

j=1

vj
1 ⊗ · · · ⊗ vj

k





and the injective seminorms, given by

ξi1
⊗ · · · ⊗ ξik

(a) := sup
{
|(v′

1 ⊗ · · · ⊗ v′
k)(a)| : v′

1, . . . , v
′
k ∈ V ′, ξi1

(v′
1) = · · · = ξik

(v′
k) = 1

}

for all a ∈ V ⊗k. Both the projective and the injective seminorms are symmetric in the
sense of the following definition.

Definition 3.1 Let V be a locally convex vector space and let (ξi)i∈I be a family of
seminorms that generates the topology of V . A system of cross seminorms on the tensor
powers of V is called symmetric if for all k ∈ N, all i1, . . . , ik ∈ I, all a ∈ V ⊗k and all
σ ∈ Sk we have

ξ1 ⊗ · · · ⊗ ξk(a) = ξσ(1) ⊗ · · · ⊗ ξσ(k)(σ(a)).

From now on we will always assume that the tensor powers of V are equipped with
a symmetric system of cross seminorms and for all k ∈ N we will denote by V ⊗̂k the
completion of V ⊗k with respect to the respective family of seminorms. These assumptions
imply that for all trees t ∈ Tr the projection symSG(t) defined above is continuous. Therefore

it can be uniquely extended to a continuous map on V ⊗̂|t| and we define

V ⊗̂t := V ⊗̂|t|
/

ker
(
symSG(t))

)
.

Equivalently, V ⊗̂t is the completion of V ⊗t under the quotient topology.

T̂r(V ) := cl


⊕

t∈Tr

V ⊗̂t


 ,

where the closure is taken with respect to the product topology. Furthermore we observe
that for t, s ∈ Tr we have an isomorphism

V ⊗t ⊗ V ⊗s ≃
(
V ⊗|t| ⊗ V ⊗|s|

) /(
V ⊗|t| ⊗ ker

(
symSG(s)

)
+ ker

(
symSG(t)

)
⊗ V ⊗|s|

)

and therefore the system of cross-seminorms that we have chosen for the V ⊗k gives a locally
convex topology on V ⊗t ⊗V ⊗s. Thus, using distributivity of the tensor product and direct
sums, we can define the completion of T̂r(V ) ⊗ T̂r(V ) via

T̂r(V )⊗̂T̂r(V ) = cl


 ⊕

t,s∈Tr

(
V ⊗̂t⊗̂V ⊗̂s

)

 .

We can now state a topological version of Proposition 2.10.
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Proposition 3.2 Each of the tuples

ĤGL(V ) :=
(
T̂r(V ), ⋆, η,∆GL, ε

)
and

ĤCK(V ) :=
(
T̂r(V ), ◦, η,∆CK , ε

)

defines a topological graded bialgebra and therefore each of them can be equipped with an
antipode which turns them into topological Hopf algebras. We call HGL(V ) the topological
Grossman-Larson Hopf algebra over V and HCK(V ) the topological Connes-Kreimer Hopf
algebra over V .

Proof. It is immediately clear that all operations of ĤGL(V ) and ĤCK(V ) are continuous
since they only consist of tensor multiplications and permutations. Hence the claim follows
directly from Proposition 2.10. �

Remark 3.3 Technically, a topological Hopf algebra H is not a Hopf algebra since its
coproduct may take values in H⊗̂H rather than H ⊗ H. Nevertheless, when we write Hopf
algebra in the sequel, we always mean Hopf algebra or topological Hopf algebra.

Remark 3.4 There are many sensible choices for a topology on
⊕

t∈Tr V
⊗̂t. For instance,

one could consider a topology akin to the one that is introduced in [7] for the tensor
algebra. If V is Banach, considering the lp direct sum for p ∈ [1,∞] might be a useful
choice. We have chosen the product topology because it is the coarsest sensible choice (in
the sense that it renders the canonical projections continuous) and hence it leads to the

largest possible closure (which turns out to be the direct product
∏

t∈Tr V
⊗̂t). Therefore the

separation results in the next section hold automatically for any other reasonable choice of
topology.

4 The Grossman-Larson and Connes-Kreimer algebras form a

dual pair

In the unlabelled case (which corresponds to V = R in our notation) it has been shown
in [17] that HCK(R) and HGL(R) are graded duals of each other. The graded dual V gr

of a graded vector space V is defined as the direct sum of the duals of its homogeneous
subspaces. This is no longer true if R is replaced by an infinite dimensional vector space
V , because in this case the spaces (Tr(V ) ⊗ Tr(V ))gr and Tr(V )gr ⊗ Tr(V )gr are no longer
canonically isomorphic. Nevertheless, the Grosmman-Larson and Connes-Kreimer algebras
still form a dual pair in a sense which will be made precise in this section.

Definition 4.1 Let V and W be vector spaces and let 〈·, ·〉 : V × W → R be a bilinear
map. The triple (V,W, 〈·, ·〉) is called a dual pair of vector spaces if

(i) The set of linear maps {〈·, w〉 : w ∈ W} separates V and
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(ii) the set of linear maps {〈v, ·〉 : v ∈ V } separates W .

If V and W are locally convex vector spaces, we say that (V,W, 〈·, ·〉) is a dual pair of
locally convex vector spaces if in addition 〈·, w〉 and 〈v, ·〉 are continuous for all v ∈ V and
w ∈ W .

Remark 4.2 Any bilinear map 〈·, ·〉 : V ×W → R induces a bilinear map on V ⊗k ×W⊗k

for k ∈ N which is given by

(v1 ⊗ · · · ⊗ vk, w1 ⊗ · · · ⊗ wk) 7→ 〈v1, w1〉 · · · 〈vk, wk〉.

We will use this fact below and denote the resulting map also by 〈·, ·〉 without further
comment.

Lemma 4.3 Let t ∈ Tr and let (V,W, 〈·, ·〉) be a dual pair of vector spaces. Define

〈·, ·〉t : V ⊗t ×W⊗t → R : (t1, t2) 7→
∑

σ∈SG(t)

〈σ(t1), t2〉 =
∑

σ∈SG(t)

〈t1, σ(t2)〉 (8)

where t1 ∈ V ⊗|t| and t2 ∈ W⊗|t| are representatives of t1 and t2 respectively. (Recall that
we denote by SG(t) both the symmetry group of t and its embedding into S|t| which is
induced by the enumeration ρt.) Then the following hold.

(i)
(
V ⊗t,W⊗t, 〈·, ·〉t

)
is a dual pair of vector spaces.

(ii) If (V,W, 〈·, ·〉) is a dual pair of locally convex vector spaces, then 〈·, t2〉t can be extended

continuously to V ⊗̂t for all t2 ∈ W⊗t and
(
V ⊗̂t,W⊗t, 〈·, ·〉t

)
is a dual pair of vector

spaces.

Proof. Let us first show that (8) does not depend on the choice of t1 or t2. Thus, let t̃1 be
different representatives of t1. Then we have

∑

σ∈SG(t)

〈σ(t1), t2〉 −
∑

σ∈SG(t)

〈σ(t̃1), t2〉 =

〈 ∑

σ∈SG(t)

σ(t1 − t̃1), t2

〉
= 0

and similarly for t2.
Let us now prove (i). Fix t2 ∈ W⊗t and assume that we have 〈t1, t2〉t = 0 for all

t1 ∈ V ⊗t. Thus if we fix a representative t2 of t2 we have

0 = 〈t1, t2〉t =
∑

σ∈SG(t)

〈t1, σ(t2)〉 =

〈
t1,

∑

σ∈SG(t)

σ(t2)

〉

for all t1 ∈ V ⊗|t| which implies
∑

σ∈SG(t) σ(t2) = 0, i.e. t2 = 0. This last implication holds

because it is shown in [23, Lem. VII/1] that
(
V ⊗|t|,W⊗|t|, 〈·, ·〉

)
is a dual pair. Therefore
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the maps 〈t1, ·〉t with t1 ∈ V ⊗t separate W⊗t. The converse statement is shown in exactly
the same way and hence the proof of (i) is finished.

In order to prove (ii), we equip V ⊗t with the weak topology induced by 〈·, ·〉t, i.e. with the
weakest topology which makes the maps 〈·, t2〉t continuous for all t2 ∈ W⊗t. Denote this
topology by τ1. Thus W⊗t is the topological dual of V ⊗t with respect to τ1 and therefore
it is also the topological dual of the completion of V ⊗t under τ1. As a consequence W⊗t

separates this completion. Since we assume that the pairing between V andW is continuous
with respect to their locally convex topologies, τ1 is weaker than any topology on V ⊗t that
is induced by cross-norms as introduced in Section 3. Therefore the space V ⊗̂t is contained
in the τ1-completion of V ⊗t and hence W⊗t also separates V ⊗̂t. Thus we have shown that(
V ⊗̂t,W⊗t, 〈·, ·〉t

)
is a dual pair. �

Example 4.4

〈
v1

v3v2

, w1

w3w2 〉
= 〈v1, w1〉〈v2, w2〉〈v3, w3〉 + 〈v1, w1〉〈v3, w2〉〈v2, w3〉

Definition 4.5 Let A and B be two Hopf algebras. We say that they form a dual pair of
Hopf algebras with the pairing 〈·, ·〉 : A × B → R if (A,B, 〈·, ·〉) is a dual pair of vector
spaces which satisfies the conditions

〈∆(a), b1 ⊗ b2〉 = 〈a, b1b2〉 and 〈a1 ⊗ a2,∆(b)〉 = 〈a1a2, b〉 (9)

for all a, a1, a2 ∈ A and b, b1, b2 ∈ B.

Remark 4.6 An alternative way to formulate (9) is the following. Consider the linear
maps

ϕ : A → B∗ : a 7→ 〈a, ·〉 and ψ : B → A∗ : b 7→ 〈·, b〉,

where A∗ and B∗ denote the (algebraic) duals of A and B respectively. Then (9) holds if
and only if both ϕ and ψ are algebra morphisms.

Lemma 4.7 Let (A,B, 〈·, ·〉) be a dual pair of Hopf algebras. Let g ∈ A be group-like, i.e.
such that ∆(g) = g ⊗ g. Then for all elements b1, . . . , bk ∈ B we have

〈g, b1 · · · bk〉 = 〈g, b1〉 · · · 〈g, bk〉

Proof. Let k = 2. Then we have

〈g, b1b2〉 = 〈∆(g), b1 ⊗ b2〉 = 〈g ⊗ g, b1 ⊗ b2〉 = 〈g, b1〉〈g, b2〉.

The claim for k > 2 follows by induction. �
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Theorem 4.8 Let (V,W, 〈·, ·〉) be a dual pair of vector spaces. Define

〈·, ·〉Tr : Tr(V ) × Tr(W ) → R : (t1, t2) 7→ δt1,t2〈t1, t2〉t1

for t1 ∈ V ⊗t1 and t2 ∈ W⊗t2. Then the following hold.

(i) (HGL(V ),HCK(W ), 〈·, ·〉Tr) is a dual pair of Hopf algebras.

(ii) If (V,W, 〈·, ·〉) is a dual pair of locally convex vector spaces, then 〈·, t2〉Tr can be con-

tinuously extended to T̂r(V ) for all t2 ∈ Tr(W ) and both
(
ĤGL(V ),HCK(W ), 〈·, ·〉Tr

)

and
(
ĤCK(V ),HGL(W ), 〈·, ·〉Tr

)
are dual pairs of Hopf algebras.

Proof. We start with the proof of (i), which means we need to show two things. Firstly we
have to make sure that Tr(V ) and Tr(W ) separate each other. This follows immediately
from Lemma 4.3. Secondly we have to show that the pairing satisfies (9). This has been
shown in [17, Proposition 4.4] for the special case V = R, i.e. for unlabelled trees.

We will extend their arguments to the labelled case.
Let t1, t2, s ∈ Tr be trees and let t1 ∈ V ⊗t, t2 ∈ V ⊗t2 and s ∈ W⊗s be elementary trees

with elementary representatives t1, t2 and s respectively.
It is an easy exercise to show that both HGL(V ) and HCK(V ) are generated as an algebra

by the elements of Tr1(V ). In light of Remark 4.6 it is therefore sufficient to show

〈t1 ⋆ t2, s〉Tr = 〈t1 ⊗ t2,∆CK(s)〉Tr and 〈t1 ◦ t2, s〉Tr = 〈t1 ⊗ t2,∆GL(s)〉Tr

for t1 ∈ Tr1. By definition the first equality is equivalent to
∑

d∈Gr(t1,t2;s)

∑

σ∈SG(s)

〈t1
d
⇀ t2, σ(s)〉

=
∑

C∈Cut(s;t1,t2)

∑

σ1∈SG(t1)

∑

σ2∈SG(t2)

〈σ1(t1) ⊗ σ2(t2),PC(s) ⊗ RC(s)〉,
(10)

where we denote by Gr(t1, t2; s) the set of all grafting maps d such that t1
d
⇀ t2 = s and

by Cut(s; t1, t2) the set of all cuts C such that PC(s) = t1 and RC(s) = t2.
Denote by c the unique child of the root of t1 ∈ Tr1. Any d ∈ Gr(t1, t2) is uniquely

determined by the vertex of t2 to which c is attached. Let us now rewrite the left-hand side
of (10). Instead of summing over all d ∈ Gr(t1, t2; s) we can alternatively fix an arbitrary
d̄ ∈ Gr(t1, t2; s), denote the associated vertex of t2 by v and rewrite the expression as

1

|Fix(v, t2)|

∑

π∈SG(t2)

∑

σ∈SG(s)

〈t1
d̄
⇀ π(t2), σ(s)〉, (11)

where Fix(v, t2) := {σ ∈ SG(t2) : σ(v) = v}. In order to verify that (11) is indeed equal to
the left hand side of (10) we observe that

∑

σ∈SG(s)

〈t1
d̄
⇀ π(t2), σ(s)〉 =

∑

σ∈SG(s)

〈t1
d̄
⇀ π̃(t2), σ(s)〉
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holds for π, π̃ ∈ SG(t2) whenever π−1(v) = π̃−1(v). For fixed π ∈ SG(t2) there are
|Fix(v, t2)| ways to choose π̃ in such a way.

On the other hand, any cut C ∈ Cut(s; t1, t2) contains exactly one vertex and hence we
can choose C ∈ Cut(s; t1, t2) such that for the canonical injection φ

C,P
: v(t1) → v(s) we

have that w := φC,R(c) is the unique vertex which defines C. Thus we can rewrite the
right-hand side of (10) as

1

|Fix(w, s)|

∑

τ∈SG(s)

∑

σ1∈SG(t1)

∑

σ2∈SG(t2)

〈
σ1(t1) ⊗ σ2(t2),PC (τ(s)) ⊗ RC(τ(s))

〉
, (12)

where Fix(w, s) := {σ ∈ SG(s) : σ(w) = w}. This can verified as in the previous paragraph.
Since φC,P induces a canonical embedding of SG(t1) into SG(s) as a subgroup we can rewrite
(12) as

|SG(t1)|

|Fix(w, s)|

∑

τ∈SG(s)

∑

σ2∈SG(t2)

〈
t1 ⊗ σ2(t2),PC(τ(s)) ⊗ RC(τ(s))

〉

=
|SG(t1)|

|Fix(w, s)|

∑

τ∈SG(s)

∑

σ2∈SG(t2)

〈
t1

d
⇀ σ2(t2), τ(s)

〉

One easily verifies that |Fix(w, s)| = |Fix(v, t2)||SG(t1)| holds, which shows (10).
The second condition in (9), i.e. the relationship between ◦ and ∆GL, is shown analog-

ously.
Finally, (ii) is an easy consequence of (i). �

Corollary 4.9 Let V be a locally convex vector space and let t ∈ ĤGL(V ) be group-like
i.e. such that it satisfies ∆GL(t) = t ⊗ t. Then we have

t = exp◦(π1(t)) :=
∞∑

k=0

(π1(t))◦k

k!
.

Proof. Let V ′ be the continuous dual of V , let s ∈ Tr and let s ∈ (V ′)⊗s be an elementary
labelled tree with decomposition s = s1 ◦ · · · ◦ sk as in (6). Then we have

〈t, s〉Tr = 〈t, s1 ◦ · · · ◦ sk〉Tr

= 〈t, s1〉Tr · · · 〈t, sk〉Tr

= 〈π1(t), s1〉Tr · · · 〈π1(t), sk〉Tr,

where we have used first Lemma 4.7 in combination with Theorem 4.8 and then the fact
that si ∈ Tr1(V ) for all i ∈ {1, . . . , k}. On the other hand we have

〈
(π1(t))◦k, s

〉
Tr

=
〈
(π1(t))◦k, s1 ◦ · · · ◦ sk

〉
Tr
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=k!〈π1(t), s1〉Tr · · · 〈π1(t), sk〉Tr,

which follows from (8) and the multinomial formula.
Since we have chosen an arbitrary s and since Tr(V ′) separates the points of T̂r(V ) this

shows that we have πk(t) = 1
k! (π1(t))◦k for all k ∈ N0. Hence the claim follows. �

Corollary 4.10 Let V be a locally convex vector space and let t ∈ ĤGL(V ) be group-like
i.e. such that it satisfies ∆GL(t) = t ⊗ t. Then we have

π
(n)
k (t) =

(
π

(n)
1 (t)

)◦k

k!
+ r,

where r is such that π(n)(r) = 0.

Proof. This follows immediately from the previous corollary. �

5 Change of variables for differential equations driven by

branched rough paths in arbitrary dimension

For a general introduction to the theory of rough paths we refer to [10, 11, 20]. In this

section we assume that E is a Banach space, which implies that T̂r
(k)

(E) is also Banach
for all k ∈ N. For T > 0 define ∆T := {(s, t) ∈ [0, T ] : s < t}. By a control function or
simply control we mean a continuous function ω : ∆T → R which satisfies ω(s, s) = 0 and
ω(s, t) + ω(t, u) ≤ ω(s, u) for all 0 ≤ s ≤ t ≤ u ≤ T .

Definition 5.1 Let T > 0, let p ≥ 1 and let ω be a control function. A continuous map

x : ∆T → T̂r
([p])

(E) is called a branched p-rough path controlled by ω if it satisfies

(i) xs,u = xs,t ⋆ xt,u

(ii) xs,t = π([p])(g) for some g ∈ T̂r(E) with ∆GL(g) = g ⊗ g

(iii)
∥∥∥πk(xs,t)

∥∥∥ ≤ ω(s, t)
k
p

for all 0 ≤ s ≤ t ≤ u ≤ T and k ∈ {1, . . . , [p]}.

Let F be another Banach space and let V : E × F → F be a continuous map which
is linear in the first argument and smooth (in the Fréchet sense) in the second argument.
There are two ways to view such a map. The one that is chosen in [20] is to interpret V as
a map from F to the space of linear maps from E to F . However, we prefer to view V as
a continuous linear map from E into the space of smooth vector fields on F . To emphasise
this point of view we write Ve instead of V (e, ·) for e ∈ E. Note that the the vector fields
Ve for e ∈ E are kinetic vector fields in the language of [18].
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Let furthermore f : F → G be a smooth map into some Banach space G. Then for
y ∈ F the linear map

ΨV,f,y : T̂r(E) → G

is constructed in the following way. It maps a labelled tree t to a product of derivatives of
f and V , evaluated at y. The root of t corresponds to f and a vertex labelled by e ∈ E
corresponds to the vector field Ve. The number of children of a vertex indicates how often
the corresponding term has to be differentiated. The terms corresponding to the children
are then plugged into the derivative.

Example 5.2

ΨV,f,y


 e1 e2

e3 e4 e5


 = f ′′(y)[V ′′′

e1
(y)[Ve3

(y), Ve4
(y), Ve5

(y)], Ve2
(y)]

There is a particular choice of f which will become important. For any positive integer
k we define the map

idk : F → F⊗k : x 7→ x⊗k.

The maps ΨV,idk,y have two important properties. First they satisfy

ΨV,f,y(t) =
1

k!
f (k)(y)[ΨV,idk,y(t)] (13)

for all t ∈ T̂r(E). Second they are compatible with the ◦-product of labelled trees in the
sense that for two trees t1 ∈ T̂rk(E) and t2 ∈ T̂rl(E) we have

ΨV,idk+l,y(t1 ◦ t2) =
(k + l)!

k!l!
symSk+l

(
ΨV,idk,y(t1) ⊗ ΨV,idl,y(t2)

)
. (14)

Theorem 5.3 Let V : E × F → F be as above. Let furthermore x be a branched p-rough
path controlled by ω and let y : [0, T ] → F be a continuous path. Then the following are
equivalent.

(i) There exists a function θ : R → R with θ(h)/h → 0 for h → 0 such that

‖yt − ΨV,id,ys(xs,t)‖ ≤ θ(ω(s, t)) (15)

holds for all (s, t) ∈ ∆T .

(ii) For every Banach space G and every smooth f : F → G there exists a function
θf : R → R with θf (h)/h → 0 for h → 0 such that

‖f(yt) − ΨV,f,ys
(xs,t)‖ ≤ θf (ω(s, t)) (16)

holds for all (s, t) ∈ ∆T .
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Proof. The implication (ii) ⇒ (i) is trivial. For the other direction, the idea is to split the
term ΨV,f,ys

(xs,t) into terms that we can control. We have (see explanations below)

‖f(yt) − ΨV,f,ys
(xs,t)‖

≤

∥∥∥∥∥∥

⌊p⌋∑

k=1

f (k)(ys)

k!

[
y⊗k

s,t − ΨV,idk ,ys
(πk(xs,t))

]
∥∥∥∥∥∥

+ C1‖ys,t‖
⌊p⌋+1 (17a)

≤

∥∥∥∥∥∥

⌊p⌋∑

k=1

f (k)(ys)

k!

[
y⊗k

s,t −
1

k!
ΨV,idk ,ys

(
(π1(xs,t))

◦k
)]∥∥∥∥∥∥

+C1‖ys,t‖
⌊p⌋+1 + C2ω(s, t)

⌊p⌋+1

p (17b)

=

∥∥∥∥∥∥

⌊p⌋∑

k=1

f (k)(ys)

k!

[
y⊗k

s,t − (ΨV,id,ys (π1(xs,t)))
⊗k

]
∥∥∥∥∥∥

+ C1‖ys,t‖
⌊p⌋+1 + C2ω(s, t)

⌊p⌋+1

p (17c)

=

∥∥∥∥∥∥

⌊p⌋∑

k=1

f (k)(ys)

k!

[
(ys,t − ΨV,id,ys (π1(xs,t))) ⊗

k−1∑

i=0

y
⊗(k−1−i)
s,t ΨV,id,ys (π1(xs,t))

⊗i

]∥∥∥∥∥∥

+C1‖ys,t‖
⌊p⌋+1 + C2ω(s, t)

⌊p⌋+1

p (17d)

=

∥∥∥∥∥∥

⌊p⌋∑

k=1

f (k)(ys)

k!

[
(yt − ΨV,id,ys (xs,t)) ⊗

k−1∑

i=0

y
⊗(k−1−i)
s,t ΨV,id,ys (π1(xs,t))

⊗i

]∥∥∥∥∥∥

+C1‖ys,t‖
⌊p⌋+1 + C2ω(s, t)

⌊p⌋+1

p . (17e)

In this computation we have used the following arguments.

(17a) Replace f by its Taylor approximation up to degree ⌊p⌋ and make use of (13).

(17b) Apply Corollary 4.10, where the remainder r leads to the term that involves ω.

(17c) Use (14), where we can ignore the symmetrisation because f (k)(ys) is a symmetric
multilinear form anyway.

(17d) Use the elemetary identity ak − bk = (a − b)(ak−1 + ak−2b + · · · + abk−2 + bk−1),
which holds in principle only for commuting variables a and b. It can be applied
nevertheless, again because f (k)(ys) is symmetric.

(17e) Observe that ΨV,id,ys maps any tree which is neither in T̂r1(E) nor in E⊗1 to zero.

Now define the constant C3 by

C3 := sup
0≤s<t≤T

sup
a∈F :‖a‖=1

∥∥∥∥∥∥

⌊p⌋∑

k=1

f (k)(ys)

k!

[
a⊗

k−1∑

i=0

y
⊗(k−1−i)
s,t ΨV,id,ys (π1(xs,t))

⊗i

]∥∥∥∥∥∥
.
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We have C3 < ∞ because f (k)(y) is a continuous multilinear map for all k ∈ N and all
y ∈ F . Thus (17e) can be estimated by

C3‖yt − ΨV,id,ys (xs,t)‖ +C1‖ys,t‖
⌊p⌋+1 + C2ω(s, t)

⌊p⌋+1

p

≤C3θ(ω(s, t)) + C4ω(s, t)
⌊p⌋+1

p ,

for some C4 > 0 where we have also used that y has finite p-variation controlled by (a
scalar multiple of) ω. Defining

θf (h) := C3θ(h) + C4h
⌊p⌋+1

p

finishes the proof. �

Definition 5.4 With the notation as in Theorem 5.3 we say that y solves the rough
differential equation

dyt = V (yt)dxt (18)

with initial value y0 if (i) (and thus also (ii)) of Theorem 5.3 holds.

The idea to define solutions of rough differential equations via Euler expansions is ori-
ginally due to Davie [9] and was later developed further in [11]. Note that, in contrast
to Lyons’ original work [19, 20] and Gubinelli’s theory of controlled rough paths [14], this
approach defines a solution as an ordinary F -valued path without any higher order terms.

5.1 Geometric rough paths and differential geometry

Even though we have formulated Theorem 5.3 only for branched rough paths it is also valid
for (weakly) geometric rough path since the latter can be interpreted as branched rough
paths in a canonical way. The relationship between branched and geometric rough paths
has been discussed in detail in [16], at least for the finite-dimensional case. The crucial
difference between branched and geometric rough paths is that geometric rough paths take
their values in the tensor algebra over E rather than the Grossman-Larson algebra.

Let us define the tensor algebra over E and see how it embeds into the Grossman-Larson
algebra. For the algebraic details we refer to [20,22]. Recall that we have fixed a symmetric
system of cross-norms on the tensor powers of E in order to define T̂r(E). Thus we can
equip

T (E) :=
∞⊕

k=0

V ⊗̂k

with the product topology and denote by T̂ (E) its completion. The space T̂ (E) carries a
natural product, namely the tensor product, which turns it into an algebra. Note that the
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sub-algebra generated by E is dense in T̂ (E). Thus we can define the coproduct ∆
�

on E
by

∆
�

(e) := 1 ⊗ e+ e⊗ 1

and then extend it to all of T̂ (E) as a continuous algebra morphism.
Now define t = and note that E⊗t ≃ E. Hence we can define the continuous algebra

morphism
Φ : T̂ (E) → ĤGL(E)

which is given by Φ(e) = e ∈ E⊗t for e ∈ E. One easily checks that this is in fact a Hopf
algebra morphism. Thus Φ lets us embed the space of geometric rough paths into the space
of branched rough paths.

In [16] it has in fact been shown that conversely, one can interpret every branched rough
path as a geometric one, albeit this geometric rough path will then take values in the tensor
algebra over an augmented version of the original vector space.

Now assume that V is a linear map from E into the space of vector fields on some
smooth manifold M. Let furthermore y ∈ M and let f : M → G a smooth map into
some Banach space G. In this case the ‘non-geometricity’ of general branched rough paths
becomes apparent in the definition of the map ΨV,f,y that we have defined above. Let
e1, . . . , ek ∈ E. Then we have

ΨV,f,y (Φ(e1 ⊗ · · · ⊗ ek)) = ΨV,f,y

(
e1 ⋆ · · · ⋆ ek

)
= Ve1

· · ·Vek
f(y),

because the ⋆-product simply encodes the product rule. Thus when we say that a rough
path x is geometric, this is because ΨV,f,y(Φ(xs,t)) is a canonically defined object for
all V, f, y, s, t, even in a non-linear setting. In contrast, if x is a branched rough path,
then ΨV,f,y(xs,t) is in general only well-defined once we choose an affine connection on
M because it involves covariant derivatives of vector fields and higher order derivatives of
f . Hence it is the independence of the choice of a connection which makes the geometric
rough paths special among all branched rough paths. Differential equations driven by
geometric rough paths can be interpreted as generalised Stratonovich equations whereas
differential equations driven by branched rough paths should be seen as a generalisation of
Ito-corrected Stratonovich equations.

In light of the previous paragraph we will write ΨV,f,y,∇ in order to make clear that
the values of the function on arbitrary labelled trees are to be computed with respect to
the connection ∇. To align this with the notation used above, we agree that ∇ is the
canonical connection of a vector space if it is not mentioned explicitly. Thus we generalise
Definition 5.4 in the following way.

Definition 5.5 With the notation as in Theorem 5.3 we say that y solves the rough
differential equation

dyt = V (yt)dxt (19)
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with respect to the connection ∇ on F and with initial value y0 if there exists a function
θ : R → R with θ(h)/h → 0 for h → 0 such that

‖yt − ΨV,id,ys,∇(xs,t)‖ ≤ θ(ω(s, t)) (20)

holds for all (s, t) ∈ ∆T .

To conclude, let us mention two consequences of Theorem 5.3 which underline its sig-
nificance in the context of differential geometry. First, we have the invariance of rough
differential equations under changes of coordinates as stated in the following corollary.

Corollary 5.6 Let the notation be as in Theorem 5.3 and assume that yt ∈ U for some
open set U ⊂ F and all t ∈ [0, T ]. Let W ⊂ F be another open set and let ϕ : U → W be
a diffeomorphism. For each e ∈ E define the vector field Ṽe on W by

Ṽe(p) = ϕ′(ϕ−1(p))[Ve(ϕ−1(p))].

Then y solves (19) (with respect to the canonical connection on F ) if and only if ỹ given
by ỹt := ϕ(yt) solves

dỹt = Ṽ (ỹt)dxt,

with respect to the pushforward connection ∇̃ given by

∇̃Ỹ X̃(p̃) := X̃ ′(p̃)[Ỹ (p̃)] − ϕ′′(ϕ−1(p̃))[(ϕ′(ϕ−1(p̃)))−1[X̃(p̃)], (ϕ′(ϕ−1(p̃)))−1[Ỹ (p̃)]]

for vector fields X̃, Ỹ on F and p̃ ∈ W .

Proof. Writing ϕ itself in the new coordinates on W gives ϕ̃(p̃) = ϕ(ϕ−1(p̃)) = p̃, i.e.
ϕ̃ = id. Thus we have

ỹt − ΨṼ ,id,ỹs,∇̃(xs,t) = ϕ(yt) − ΨṼ ,ϕ̃,ỹs,∇̃(xs,t) = ϕ(yt) − ΨV,ϕ,ys(xs,t),

where the last equality is obtained by writing everything in the original coordinates. The
claim follows now immediately from Theorem 5.3. �

A careful reading of [5] shows that the authors have used arguments similar to those
that went into the proof of Theorem 5.3 in order to obtain well-definedness of RDEs on
submanifolds of Rd, albeit in the less general case p < 3.

Second, Theorem 5.3 yields a way to define what we mean by the solution of an RDE on
a manifold by testing (16) for a suitable set of real-valued test functions. If the manifold is
finite-dimensional, then smooth compactly supported test functions are an obvious choice.
Even though this definition has been suggested before – see e.g. [1] and the references
therein – we believe that Theorem 5.3 is so far the most general way to establish that such
a definition is compatible with Definitions 5.4 and 5.5.
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