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Abstract

This paper introduces a new class of stochastic volatility models which allows for stochastic
volatility of volatility (SVV): Volatility modulatednon–GaussianOrnstein–Uhlenbeck(VMOU)
processes. Various probabilistic properties of (integrated) VMOU processes are presented. Fur-
ther we study the effect of the SVV on the leverage effect and on the presence of long memory.

One of the key results in the paper is that we can quantify the impact of the SVV on the
(stochastic) dynamics of the variance risk premium (VRP). Moreover, provided the physical and
the risk–neutral probability measures are related througha structure–preserving change of mea-
sure, we obtain an explicit formula for the VRP.
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1 Introduction

Stochastic volatility (SV) is one of the key concepts in financial econometrics and has been studied
extensively in recent years. Numerous empirical studies have revealed the fact that asset price volatil-
ity is time–varying and exhibits clusters, and a good volatility model is therefore essential in various
applications such as portfolio selection, option pricing and risk management.

This paper contributes to the growing literature oncontinuous–timestochastic volatility models
by introducing a new class of stochastic volatility models which allows forstochastic volatility of
volatility. Here we view stochastic volatility of volatility as expressing the possibility or fact that
there is greater variability i.e. more volatility in the data structure under study than might initially
be surmised. In modelling terms this means that we consider the initial thinking as embodied in a
(classical) SV model and want to describe the extra variability by a further source of randomness.

Clearly, there are many classical SV models which can serve as the base SV process in introduc-
ing stochastic volatility of volatility. Here we have decided in favour of the non–Gaussian Ornstein–
Uhlenbeck (OU) process, which is driven by a Lévy subordinator and was introduced by Barndorff-
Nielsen & Shephard (2001, 2002), for modelling squared volatility. The reason for this choice is that
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such models are appealing due to both their analytical tractability and their good empirical perfor-
mance. The former is due to the fact that OU processes are defined by a linear stochastic differential
equation, which can be solved explicitly. Also, the integrated OU process – which in the volatility
context represents the accumulated stochastic variability over a certain time period – has an explicit
representation in terms of the OU process itself and the driving Lévy process. The latter property
has been revealed in various empirical studies: For instance, Barndorff-Nielsen & Shephard (2002)
showed the good empirical performance of superpositions ofOU models for modelling stochastic
volatility in exchange rate data; Nicolato & Venardos (2003) focused on derivative pricing based on
OU volatility models, and recently Benth (2011) showed their applicability in commodity markets.

Another interesting feature of Lévy–driven OU processes is that their extreme behaviour can be
rather diverse, since it is determined by the tail behaviourof the increments of the driving Lévy
process, see e.g. Fasen et al. (2006), Klüppelberg & Lindner (2010). Note also that recent empirical
research by Christensen et al. (2011) based on ultra high frequent asset price data suggests that rapid
price movements might be often caused by rapid movements in the volatility rather than by price
jumps. This finding calls for new classes of stochastic volatility models which can account for such
rapid moves.

In this paper, we use OU processes driven by a Lévy subordinator as the base model for stochastic
volatility. In a second step, we introduce stochastic volatility of volatility by volatility modulation
of the driving Lévy subordinator. This can be done in three ways: Integrating an additional volatility
process with respect to the Lévy subordinator, or applyinga stochastic time change to the subordinator,
or combining these two forms of volatility modulation. Thenone obtains avolatility modulated Ĺevy
process. Such a volatility modulated Lévy subordinator isthen used as the driving process of an OU
process, which results in avolatility modulated OU(VMOU) process. The VMOU is then used as a
new stochastic volatility process in an asset price model.

The focus in this paper on the new class of models based on VMOUprocesses reflects our view-
point that a concrete full specification of what is meant by volatility of volatility has to be relative to
a given or chosen basic volatility model so that volatility of volatility means variation beyond what is
contained in the base model. Thus, for instance, the quadratic variation of the volatility in the base
model is not volatility of volatility in the sense of that tenet.

1.1 Related literature

Before we study our new stochastic volatility model in more detail, we briefly set it into perspective
to other stochastic volatility models in the recent literature.

The first generation of SV models was established with the focus on accounting for the well–
know stylised facts of asset returns such as time varying volatility, volatility clusters, the existence of
a leverage effect, see Nelson (1991), i.e. the (typically negative) correlation between asset returns and
their volatility, see e.g. Barndorff-Nielsen & Shephard (2007, 2012), Ghysels et al. (1996), Shephard
& Andersen (2009), Shephard (2005) for a review. In a next step, the classical stochastic volatility
models were extended to allow for jumps, long memory, long run components and non–linear mean–
reversion etc., see e.g. Comte & Renault (1998).

Also, the existence of implied volatility smiles and skews derived from option prices clearly indi-
cated that SV is an essential component in an asset pricing model, see also Cox (1996), Dupire (1994),
Hagan et al. (2002), Heston (1993), Stein & Stein (1991). In particular, the class ofmultifactor SV
models is important to mention in this context. They form a very natural generalisation of the classical
one factor SV models and are very successful in the context ofoption pricing, see e.g. Christoffersen
et al. (2009, 2008).
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Clearly, various additional random factors can be introduced in a stochastic volatility model in
different ways. The classical multifactor SV models usually work with a linear combination of SV
models. However, an extra source of randomness could also beadded to reflect astochastic leverage
component, see Veraart & Veraart (2012).

Alternatively, we can work with a richer random structure inthe volatility itself, the approach
we pursue in this paper. This route has also been taken earlier by Meddahi & Renault (2004). They
introduced a semiparametric class of volatility models which is characterized by an autoregressive
dynamic of the stochastic variance, which is calledsquare–root stochastic autoregressive volatility
(SR-SARV) and which is shown to be closed under temporal aggregation.

It is clear that there are various ways to construct multifactor SV models (both in discrete and
in continuous time) and the question of which approach is preferable will crucially depend on the
specific application.

Our new class of VMOU processes can be viewed as a specific multifactor SV model, where
the additional source of randomness enters as the volatility of the driving process of the SV. The
interesting feature of our particular choice of a multifactor SV model is that it can be linked explicitly
to the so–calledvariance risk premium(VRP), which has recently attracted a lot of research attention.
Recall that an investor faces at least two sources of uncertainty, when investing in a security: the
uncertainty about the return (which is described by the return variance) and the uncertainty about the
return variance itself, see Carr & Wu (2009). It turns out that the risk associated with the uncertainty
in the variance is measured by the VRP and recent empirical work indicates that the VRP exhibits
stochastic dynamics itself, see for instance Carr & Wu (2009), Bollerslev et al. (2009), Todorov (2010)
and Drechsler & Yaron (2011). This finding raises the question of how such stochastic dynamics of
the VRP can be modelled. We will later give one possible answer to this important question.

1.2 Key results and outline

Next we list the main contributions of the paper, before we describe them in more detail in the follow-
ing sections.

First, we find that our new volatility model is highly analytically tractable: We derive its cumulant
function and second order structure explicitly, and we get arepresentation result for the integrated
squared volatility process. The latter result reveals thatthe long term behaviour of integrated volatil-
ity in our new modelling framework exhibits volatility clusters itself. Further, it transpires that the
additional volatility of volatility component has an important impact on both thememory, i.e. on the
autocorrelation structure, of the volatility process and on the possibility of incorporating the leverage
effect into the asset price model, see Section 2 for more details.

Next, we discuss changes of measure to a risk–neutral probability measure (in an incomplete
market) and focus in particular on so–called structure–preserving measure changes. We then explain,
how option prices can be computed in our new modelling framework based on Fourier inversion
techniques, see Section 3.

Section 4 contains the important result which links the stochastic volatility of volatility component
to the dynamics of thevariance risk premium. More precisely, in the special case where the risk–
neutral and the physical probability measures are linked bya structure–preserving change of measure,
we can show that the stochastic volatility of volatility solely determines the stochastic dynamics of
the variance risk premium. The fact that the stochastic volatility of volatility drives the variance risk
premium has been demonstrated in the context of an equilibrium model based on economic theory by
Bollerslev et al. (2009) and Drechsler & Yaron (2011). However, it is interesting to see that we can
confirm this result (under suitable assumptions) based on a purely probabilistic model.

3



2 THE NEW MODELLING FRAMEWORK

In this paper, we moreover show that the additional volatility of volatility can actually be used to
add additional memory to a SV model. An alternative method for allowing for both long memory and
additional stochastic volatility of volatility simultaneously is presented in Section 5, where we discuss
an extension of our new modelling framework to the class ofvolatility modulated supOU processes.

Section 6 concludes and gives an outlook on future research.The proofs of our main results are
relegated to the Appendix.

2 The new modelling framework

Throughout the paper, we assume that the logarithmic asset price Y = (Yt)t≥0 is given by an Itô
semimartingale

dYt = atdt+ σt−dWt + dJt, (1)

which is defined on a probability space(Ω,F , (Ft)t≥0,P), wherea = (at)t≥0 is a predictable drift
process,σ = (σt)t≥0 is a càdlàg stochastic volatility process andJ = (Jt)t≥0 is the pure jump
component of the Itô semimartingale. Note that an Itô semimartingale is defined as a semimartingale
whose characteristics are absolutely continuous with respect to the Lebesgue measure (see e.g. Jacod
(2008)).

The variation of financial markets, which is often referred to as squaredvolatility, is usually mea-
sured by means of the quadratic variation of the logarithmicprice process. In our modelling frame-
work, the quadratic variation (QV) (denoted by[·]) is given by

[Y ]t = σ2+t +
∑

0≤s≤t

(∆Js)
2 , (2)

whereσ2+t =
∫ t
0 σ

2
sds is the integrated squared stochastic volatility process and where∆Js = Js −

Js− denotes the jump ofJ at times. Taking the square root of the quadratic variation
√

[Y ]t leads to
a measure of thevolatility of the asset price. In the following, we will work with a specific new model
for the squared volatility process which is given by a volatility modulated non–Gaussian Ornstein–
Uhlenbeck process.

2.1 The volatility modulated non–Gaussian Ornstein–Uhlenbeck process

Barndorff-Nielsen & Shephard (2001, 2002) proposed to model the squared volatilityσ2 by a non–
Gaussian Ornstein–Uhlenbeck (OU) process. In the following, we will refer to such a model as
BNS model. Here, we generalise such OU processes to allow for an additional stochastic volatility
of volatility component. The new class of processes is calledvolatility modulatednon–Gaussian
Ornstein–Uhlenbeck(VMOU) processes. They are defined as follows.

For t ≥ 0, letσ2t := V υ,τ
t := Vt, where

dVt = −λVtdt+ dLυ,τ
λt , (3)

whereλ > 0 is a constant, thememory parameter, andLυ,τ is the background driving volatility
modulated Lévy process given by

dLυ,τ
λt = υλt−dLτλt , where τt =

∫ t

0
ξs−ds, (4)
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and where(Lt)t≥0 is a Lévy subordinator with characteristic triplet(γ, 0, ν), i.e.

E(exp(iθLt)) = exp(tψL(θ)), where ψL(θ) = iθγ +

∫ ∞

0

(
eiθx − 1

)
ν(dx),

where γ ≥ 0 and ν is a Lévy measure on(0,∞) satisfying
∫∞

0 (x ∧ 1)ν(dx) < ∞ and also∫∞

0 (log(x) ∨ 1)ν(dx) <∞.
Further(υt)t≥0 and(ξt)t≥0 denote stationary positive, càdlàg stochastic (volatility) processes. In

addition, we assume thatL, υ andτ are mutually independent.
Note that we restrict ourselves to time change processesτ , which are absolutely continuous. An-

other popular class of time change processes is the class of Lévy subordinators. However, it is well–
known that a Lévy subordinator time–changed by an independent Lévy subordinator is itself a Lévy
subordinator, see e.g. Sato (1999, Theorem 30.4). Therefore this case is already included in our
modelling framework.

The processesυ2 andτ can be interpreted as thestochastic variability of variance. In the follow-
ing, we will often also refer toυ, τ, ξ asstochastic volatility of volatilityto simplify the exposition.
Clearly, whenυt ≡ 1 andτt = t, we obtain the well–known BNS model. Bothυ andτ can be driven
by a Brownian motion or (and) a jump process. E.g. we can thinkof υ being a Gamma–OU or IG–OU
process, see Barndorff-Nielsen & Shephard (2001) or a square root diffusion, see Cox et al. (1985).

Note that the volatility modulated Lévy processLυ,τ is in fact volatility modulated in two ways:
We have a stochastic integrandυ which scales the jump size of the subordinator by a stochastic factor,
and we have a time change processτ which determines the speed at which the jumps occur. While
stochastic proportional and temporal scaling are, under suitable regularity assumptions, equivalent in
a Brownian framework and for stable Lévy processes, see Veraart & Winkel (2010), this is however
not the case for general Lévy processes and, in particular,not for a general Lévy subordinator – the
case we study here. In a concrete empirical application, it might well be sufficient to focus on one
source of stochastic volatility of volatility only, but in our theoretical investigations, we wish to focus
on the more general case.

Remark It is important to note that there are at least four differentways to include an additional
stochastic component in a non–Gaussian OU process, two of which have been presented above. Al-
ternatively, one could make the memory parameterλ stochastic and could study models of the form
dVt = −λtVtdt+dLt, whereλt is a positive stationary process. Closely related to the latter is the con-
cept of supOU processes and the need to model (quasi) long range dependence, see Barndorff-Nielsen
& Shephard (2002), and these two ideas could be combined in a single construction. We come back
to this case in Section 5.

Still another possibility would be to letdVt = Vt−dUt+dLt, where(U,L) is a bivariate Lévy pro-
cess, see e.g. Behme et al. (2011). However, this case and thecase of a stochastic memory parameter
λt appear less appealing in the present modelling context since we do not get an explicit formulae for
the integrated processV +

t =
∫ t
0 Vsds, which is regarded as a key quantity in financial econometrics.

Such a representation is possible for our model defined in (3)and (4) and will be described in more
detail below.

It turns out that asset price models where the logarithmic asset price is given by an Itô semimartin-
gale and the squared stochastic volatility process is givenby a VMOU process generally do not belong
to the class of affine models as introduced by Duffie et al. (2003), see also Kallsen (2006) for a survey.
However, ifυ is constant and the density of the time changeξ is affine, then we obtain an affine model.
Let us study a concrete example of such an affine representation next.
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Example A stochastic volatility model which accounts for stochastic volatility of volatility and the
leverage effect, i.e. the (possibly negative) correlationbetween the asset price and the volatility, could
be defined by

dYt = atdt+
√
Vt−dWt + ρdLτλt ,

dVt = −λVtdt+ υλt−dLτλt ,

υt ≡ 1,

dτt = ξt−dt,

dξt = α(β − ξt)dt+ γ
√
ξtdBt,

whereρ ≤ 0,B denotes a Brownian motion (independent ofW ),α, β, γ > 0 denote positive constants
and the other quantities are defined as before. Note that thismodel belongs to the class ofaffine
models since the the BNS model itself is affine and the new (additional) time change is given by the
time integral of an affine process, see Keller-Ressel (2008).

In the following, we will study the key properties of our new modelling framework.

2.2 Properties of the volatility modulated Lévy process

Let us briefly discuss the main properties of the volatility modulated Lévy processLυ,τ , which is the
driving process of our new class of VMOU processes.

In the following, we will denote byLeb the Lebesgue measure.

2.2.1 Stochastic proportional

First, we focus on the process

Lυ,Id
t =

∫ t

0
υs−dLs,

whereId(·) denotes the identity function andυ andL are independent. Then the characteristic func-
tion for a constantθ ∈ R is given by

E

[
exp

(
iθLυ,Id

t

)]
= E

[
E

[
exp

(
iθLυ,Id

t

)∣∣∣υ
]]

= E

[
exp

(∫ t

0
ψL(θυs−)ds

)]
.

Also, the characteristic triplet of the semimartingaleLυ,Id is given by
(
A(Lυ,Id), 0, Leb ⊗ ν(Lυ,Id)

)
,

where

A(Lυ,Id)t = γ

∫ t

0
υsds,

ν(Lυ,Id)t(G) =

∫
IG(υt−x)ν(dx),

for anyG ∈ B with 0 6∈ G, see Kallsen & Shiraev (2002, Lemma 3).
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2.2.2 Stochastic time change

Next, we study the process

L1,τ
t = Lτt = L∫ t

0
ξs−ds,

whereτ andL are independent.
Recall that we call a stochastic processX adapted w.r.t.τ (or (τt)t≥0–adapted) ifX is constant

on any interval[τt−, τt] for anyt ≥ 0. Note that the time change satisfiesτ0 = 0 andτ is continuous.
In that case,L is τ–adapted, see e.g. Jacod (1979). As soon as we have adaptedness w.r.t. the time
change, then important properties of the base process carryover to the time–changed process. In
particular, we get

E

[
exp

(
iθL1,τ

t

)]
= E

[
E

[
exp

(
iθL1,τ

t

)∣∣∣ τ
]]

= E [exp (ψL(θ)τt)] ,

for a constantθ ∈ R, andLτ has characteristic triplet(γτ, 0, τ ⊗ ν). Also, thedifferentialcharacter-
istic triplet (w.r.t. the Lebesgue measure) is given by(γξ·, 0, ξ· ⊗ ν)), see Kallsen & Shiraev (2002,
Lemma 5) and Barndorff-Nielsen & Shiryaev (2010, Theorem 8.4).

2.2.3 Combined volatility modulation

For the doubly volatility modulated Lévy process, we get from the above results (using the indepen-
dence ofL, υ andτ ) that

E [exp (iθLυ,τ
t )] = E

[
E

[
exp

(
iθL1,τ

t

)∣∣∣ υ, τ
]]

= E

[
exp

(∫ t

0
ψL(θυs−)dτs

)]

= E

[
exp

(∫ t

0
ψL(θυs−)ξs−ds

)]
.

Further,Lυ,τ has characteristic triplet(A(Lυ,τ ), 0, τ ⊗ ν(Lυ,τ )), where

A(Lυ,τ )t = A(Lυ,Id)τt = γ

∫ τt

0
υsds,

ν(Lυ,τ )t(G) = ν(Lυ,Id)τt(G) =

∫
IG(υτt−x)ν(dx),

for anyG ∈ B with 0 6∈ G.

2.3 Properties of the VMOU process

We have defined the VMOU process as the solution to the stochastic differential equation given by
(3). From standard arguments, we can deduce the following representation:

Vt = V0e
−λt +

∫ t

0
e−λ(t−s)dLυ,τ

λs .

Then, the stationary version ofV can be written as

Vt =

∫ t

−∞

e−λ(t−s)dLυ,τ
λs ,

whereLυ,τ is suitably extended to the negative half line (see Barndorff-Nielsen & Shephard (2001)).
Note that a VMOU processes can be regarded as a special case ofa Lévy semistationary (LSS)
process, which has recently been introduced by Barndorff-Nielsen et al. (2010).
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Remark The model specification of the stationary VMOU processes hasthe property that the marginal
distribution ofV is independent of the parameterλ. Otherwise put, indicating the dependence onλ
by writing V (λ), i.e.

Vt(λ) := Vt =

∫ t

−∞

e−λ(t−s)dLυ,τ
λs = e−λt

∫ t

−∞

eλsdLυ,τ
λs = e−λt

∫ λt

−∞

eudLυ,τ
u = Vλt(1).

So we have seen that the law ofVt (λ) (which by the stationarity does not depend ont) equals the law
of Vλt (1). Due to the stationarity, the law ofVλt (1) equals the law ofV0 (1), which implies that it
does not depend onλ. Since the parameterλ has no impact on the marginal distribution ofV , but only
determines the autocorrelation structure, see Proposition 2 below, we can interpretλ as thememory
parameter.

Clearly, the Lévy subordinatorL is a Markov process. However, the Markov property is not
preserved under stochastic integration or general stochastic time change. In particular,V is no longer
a Markov process. However, the bivariate process(V, υ) satisfies the Markov property ifυ is itself a
Markov process andτt = ct for a constantc > 0.

Due to the high analytical tractability of our new model the characteristic function ofV conditional
onυ andτ can be directly computed (hence we omit the proof).

Proposition 1 The conditional characteristic function of the VMOU is given by

ψυ,τ
Vt

(θ) = E(exp(iθVt)| υ, τ) = E

(
exp

(
iθ

∫ t

−∞

e−λ(t−s)υλsdLτλs

)∣∣∣∣ υ, τ
)

= exp

(∫ t

−∞

ψL(θe
−λ(t−s)υλs−)dτλs

)
= exp

(∫ t

−∞

ψL(θe
−λ(t−s)υλs−)ξλs−λds

)
.

Also the second order structure ofV can be easily derived. Throughout the paper, we will use the
following notation. Fori ∈ N, we denote theith cumulant of the Lévy subordinatorLt by κi(Lt)
(provided it exists). Clearly, we haveκi(Lt) = tκi(L1) and, in particular, we writeκi := 1

λκi(Lλ) =
κi(L1). Also, we will writeγ(h) = Cov(υt−ξt−, υ(t+h)−ξ(t+h)−) for h > 0.

Proposition 2 The mean, variance and autocovariance of the stationary processV are given by

E (Vt) = κ1E(υ0)E(ξ0),

V ar (Vt) =
1

2
κ2E

(
υ20

)
E(ξ0) + κ21

∫ 0

−∞

∫ 0

−∞

exeyγ(|x− y|)dxdy,

Cov (Vt, Vt+h) = e−λh 1

2
κ2E

(
υ20

)
E(ξ0) + e−λhκ21

∫ 0

−∞

∫ λh

−∞

exeyγ(|x− y|)dxdy.

Proof The proof is given in Section A.1 in the Appendix. �

Recall that simple OU processes as well as the often used CIR process (Cox et al. (1985), Heston
(1993)) have an exponentially declining autocorrelation function and, hence, do not allow for longer
memory in the volatility process. However, many empirical studies reveal that medium or long mem-
ory is an important property of stochastic volatility and should be accounted for by a realistic model.
From the autocorrelation structure we have derived in Proposition 2 we see clearly that the stochastic
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volatility of volatility components indeed generate a moreslowly decaying autocorrelation function
compared to a simple OU process.

As already indicated, an alternative method to introduce long(er) memory in an OU process is the
concept of superposition studied by Barndorff-Nielsen & Shephard (2002). In fact, this concept can
also be extended to the framework of a VMOU processes and willbe discussed in detail in Section 5.

Finally, we state a representation result for the increments of a VMOU process.

Proposition 3 For anyh ≥ 0, we have

Vt+h − Vt =
(
e−λh − 1

)
Vt +

∫ t+h

t
e−λ(t+h−s)dLυ,τ

λs . (5)

Proof The proof is straightforward and hence omitted. �

2.3.1 Visualisation of some key model properties

In this section we aim to visualise the main features of the VMOU process by a brief simulation study.
Let us focus on the case where the time change is chosen to be the identity function, i.e.τλt =

Id(λt) = λt. Hence the volatility modulation only appears through stochastic proportionalυ, which
is chosen to be a non–Gaussian OU process itself. More precisely, we simulate the following three
processes:

dV 1,Id
t = −λVtdt+ dLλt,

dυ2λt = −λ(υ)λυ2λtdt+ dL
(υ)

λ(υ)λt
,

dV υ,Id
t = −λVtdt+ υλt−dLλt.

We simulate5000 observations with a step size of1 using the Euler scheme. Note that the driving
Lévy subordinatorsL andLυ are chosen to be two independent Gamma processes. Recall that the
Γ(a, s)–density function is given byf(x) = 1

saΓ(a)x
a−1e−x/s, which implies that the corresponding

random variable has a mean ofas and a variance ofas2. Here we specifyλ = 0.01 andL1 ∼ Γ(a, s)

for a = 10 ands = 0.1. Further, we chooseλ(υ) = 1 andL(υ)
1 ∼ Γ(a2, s2) with a2 = 0.1 and

s2 = 1/a2. Note that this parameter choice ensures thatV 1,Id andV υ,Id have the same mean.
The simulated paths of the three processes and their corresponding returns are depicted in Figure

1. We can clearly spot the various theoretical properties wehave just discussed: First, the volatility
of volatility introduces additional volatility in the sense that we obtain a process, the VMOUV υ,Id,
which has volatility clusters itself. This fact becomes rather apparent when comparing the plots of
the returns of the two processesV 1,Id andυ with the returns of the VMOU processV υ,Id. Note
also, that bursts in volatility can build up more gradually in the new modelling framework, whereas
in a standard BNS model we obtain a sudden upwards jump achieving a local maximum immediately,
followed by an exponential decay.

In Figure 2 we can see how the presence of a stochastic volatility component in an OU process
can increase the memory in the sense that the autocorrelation function decreases more slowly than for
a simple OU process.

The case ofV 1,τ , where the additional volatility enters through a stochastic time change does
not require further visualisation, since it easy to imaginehow volatility clusters can be obtained by
changing the “speed” of the OU process stochastically.
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Figure 1: Simulation study: (a) & (b) Simulation of the OU processV 1,Id and its increments; (c) &
(d) Simulation of the volatility of volatility processυλt and its increments; (e) & (f) Simulation of the
VMOU processV υ,Id and its increments.

2.4 Properties of the integrated VMOU process

Next we study theintegratedstochastic volatility (IV). IV is regarded as a key object ofinterest in
financial econometrics since it reflects the accumulated (continuous) quadratic variation over a certain
period of time (usually a day). So, this section analyses main properties of this key quantity in our new
modelling framework. In the following, we will use the notation V + = (V +

t )t≥0 for the integrated
process

V +
t =

∫ t

0
Vsds.

Also, we define

ǫλ(t) :=
1

λ

(
1− e−λt

)
.

First of all, we derive a representation result for the integrated process.

10
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Figure 2: Autocorrelation functions ofV 1,Id
t , υλt andV υ,Id

t .

Proposition 4 The integrated process can be written as

V +
t = ǫλ(t)V0 +

∫ t

0
ǫλ(t− s)dLυ,τ

λs =
1

λ

(
Lυ,τ
λt + V0 − Vt

)
.

The proof of the above Proposition is straightforward and, therefore, not given here.
These different representations ofV + are interesting, since they shed some light on the joint

behaviour ofV andV +. In particular, we can deduce some results on co–jumps and cointegration (as
introduced by Granger (1981)). Clearly,Vt andLυ,τ

λt have identical jumps (breaks), they co–break, i.e.
∆Vt = ∆Lυ,τ

λt , butV andLυ,τ
λt are not cointegrated. However,V + andLυ,τ

λt are in fact cointegrated
since

λV +
t − Lυ,τ

λt = V0 − Vt.

I.e. we have found a linear combination of the non–stationary processesV + andLυ,τ
λ which is sta-

tionary. So, roughly, for larget, λV +
t will have the same distribution asLυ,τ

λt , where the error in this
approximation is a stationary process, which is given byV0 − Vt. Now we can clearly see which
influence the stochastic volatility of volatility has in thenew modelling set up: While the long–run
behaviour of integrated volatility in the classical BNS model is described by the background driving
Lévy process, our new model allows for a greater flexibilityin the sense that it can allow for processes
which have stationary, but not necessarily independent increments in the long run behaviour of the
integrated variance. In particular, the long–run behaviour of integrated volatility can exhibit volatility
clusters itself due to the new component of volatility of volatility. This is clearly an important aspect
of the additional volatility of volatility component.

Also, sinceLυ,τ
λ is a nonnegative process, the integrated processV + is bounded below by the

quantityǫλ(t)V0.
Note that we can use formula (5) to derive a representation result for the increments of the inte-

11
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grated process: Forh ≥ 0 we get

V +
t+h − V +

t = ǫλ(h)Vt +

∫ t+h

t
ǫλ(t+ h− s)dLυ,τ

λs . (6)

The various cumulants of the integrated process can now be easily derived using the representation
result from Proposition 4.

2.5 Some comments on model identification

When introducing an additional volatility component in an OU model, we have to ask ourselves
whether such models are in fact identifiable. This question can be addressed via the characteris-
tic functional of the VMOU processes. Note in particular that in order to ensure that our model is
uniquely identifiable, we have to impose parameter restrictions onL, υ, andτ . It might be difficult
to distinguish between the two sources of stochastic volatility of volatility. In order to shorten the
exposition we present the results for the case when both sources of additional volatility are present.
In a concrete application, however, it might be sufficient toset eitherυ or the density processξ to one
and work with one source of stochastic volatility of volatility only.

Further, can we test from real data that an additional volatility component is present in the data?
In Section 3 we will answer this question by linking the volatility of volatility component to the
variance risk premium. However, without using any risk–neutral information available to us through
option prices, how can we distinguish between a non–Gaussian OU process and a volatility modulated
non–Gaussian OU process statistically?

One way to answer this question is to focus on the quadratic variation of the VMOU process,
which is given by

[V ]t =

∫ t

0
υ2λs−d[L]τλs .

We know that for a Lévy subordinatorL, [L] is again a Lévy subordinator.
In the case thatτt = t, we see that[V ] has independent increments ifυ is deterministic. As soon

asυ is a stochastic process, the independent increment property generally does not hold any longer.
Also, if υ was a deterministic function which is not just a constant, then [V ] does not have stationary
increments any longer. A practical implication of these results is that, in principle, we can estimate the
quadratic variation of the spot volatility processV (based on a spot volatility estimator, see e.g. Aı̈t-
Sahalia & Jacod (2009), Bandi & Renò (2008), Kristensen (2010), Lee & Mykland (2008), Veraart
(2010)) and test statistically whether the estimated[V ] has independent and stationary increments.

In case ofυ ≡ 1, we have[V ]t = [L]τλt , which is generally not a Lévy subordinator anymore since
the independent increment property is violated. As before,this property may be tested statistically
based on an empirical estimate of[V ], which is constructed based on a spot volatility estimator.

2.6 Leverage through stochastic volatility of volatility

Next, we show that the additional stochastic volatility of volatility component can be used for intro-
ducing the leverage effect into stochastic volatility models in a novel way. The (usually negative) cor-
relation between asset returns and volatility has been found in many empirical studies, see e.g. Black
(1976), Christie (1982) and Nelson (1991) among others and,more recently, by Harvey & Shephard
(1996), Bouchaud et al. (2001), Tauchen (2004, 2005), Yu (2005) and Bollerslev et al. (2006).

12
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So far, leverage type effects have usually been introduced by directly correlating the driving pro-
cess of the volatility with the driving process of the asset prices (as e.g. in the Heston (1993) model).
Introducing leverage in the BNS model is slightly more complicated since the volatility is driven by
a subordinator and the price is driven by a Brownian motion which are inherently independent from
each other (by the Lévy – Khintchine formula). Hence Barndorff-Nielsen & Shephard (2001) sug-
gested to add a jump component to the asset price, which is given by the subordinator which drives
the volatility multiplied by a (negative) constant. Such a structure assumes linear dependence between
asset price and volatility.

However, having an additional random factor in the stochastic volatility model, i.e. the stochastic
volatility of volatility, makes it possible to introduce leverage type effects indirectly and independently
of the fact whether we want to have a jump component in the model for the logarithmic asset price. In
order to illustrate this, let us look at a small example.

For simplicity, we discard jumps in the price process in the following and show that a leverage
effect can be solely introduced by a diffusion component.

Example We consider the following model

dPt =
√
Vt−dWt,

dVt = −λVtdt+ υλt−dLτλt ,

τt = t,

dυt = α(β − υt)dt+ γ
√
υtBt,

for parametersλ, α, β, γ > 0 and a Brownian motionB = (Bt)t≥0 with d[B,W ]t = ρ̃dt, for
ρ̃ ∈ [−1, 1] \ {0} and all the other quantities are defined as above. For this model, the correlation of
the price and the volatility and the third moment of the pricecan be expressed in terms of the model
parameters and, in particular, we get

Cov(Pt, Vt) = E(PtVt) 6≡ 0 and Cov(Pt, P
2
t ) = E

(
P 3
t

)
6≡ 0.

Note that the proof of the result is given in Section A.2 of theAppendix.

So, we see that we can have a non–zero correlation between theasset price and the squared volatil-
ity, even if the volatility is jump driven and there are no jumps in the logarithmic asset price.

Similarly, when we study the time change case, we can introduce a leverage effect in the diffusion
part by correlating the Brownian motion driving the asset price with a Brownian motion driving the
time change.

3 Change of measure and option pricing

So far, we have studied various model properties under the physical probability measure. Next, we
discuss how a change of measure to arisk–neutralprobability measure can be carried out, and we will
furthermore describe how option prices can be computed in our new modelling framework.

3.1 Risk–neutral probability measures in incomplete markets

Recall that we denote byP the physical probability measure on the filtered probability space given by
(Ω,F , {Ft},P). LetZ denote a positive martingale with mean 1. Then we define a new (equivalent)

13
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probability measure fort, h ≥ 0 by

Qt(A) := E(IAZt)) =

∫

A
ZtdP, for all A ∈ Ft.

Clearly,Qt is a probability measure onFt with

dQt

dP
= Zt. (7)

Furthermore, sinceZ is a martingale, we haveQt+h(A) = Qt(A) for all A ∈ Ft.
Recall that we call a probability measureQ which is equivalent toP the risk–neutral probability

measureif all discounted price processes areQ–martingales. In complete markets, such an equivalent
martingale measure is unique. However, in this paper we focus on anincomplete marketand, hence
in order to do arbitrage–free option pricing, we need to finda risk–neutral probability measure, which
is generally not unique. Thus the arbitrage–free option prices depend on the choice of the probability
measure. This implies that different choices of the risk–neutral probability measure typically result in
different option prices. Or more generally, we get a range ofoption prices depending on the choice
of the risk–neutral probability measure. In the following,we will denote byQ the set of all risk–
neutral probability measuresfor our modelling framework. So which risk–neutral measureshould
one choose? In the literature, some common classes of martingale measures are often used, such
as martingale measures obtained from the Esscher transform, the minimal martingale measures, the
minimum entropy martingale measures and the class of structure–preserving martingale measures.
Such measure changes have been studied in much detail by Hubalek & Sgarra (2009) in the context
of the BNS model.

3.1.1 Structure–preserving change of measure

Let us focus on the class of structure–preserving changes ofmeasure in more detail. Suppose the
stochastic processes describing the asset price, the stochastic volatility and the stochastic volatility of
volatility components follow a set of stochastic differential equations (SDE). We call a change of mea-
surestructure–preserving, if also under the new probability measure we have the same structure of the
SDEs. That means that if a SDE was driven by a Brownian motion or a Lévy processes, this property
is preserved under the change of measure, but the corresponding model parameters typically change,
and also the distribution of the Lévy process might change.Furthermore independence properties
between stochastic processes carry over in the case of a structure–preserving change of measure.

Nicolato & Venardos (2003) derived a complete characterisation of the class of structure–preserving
changes of measures for the BNS model. Also Veraart & Veraart(2012) studied structure–preserving
changes of measure for the (generalised) Heston model. Since our modelling framework is a direct
generalisation of the BNS set up, and the volatility of volatility components enter as independent fac-
tors, we can obtain structure–preserving changes of measure for our modelling framework as soon
as the stochastic volatility of volatility componentsυ2 andξ follow either a non–Gaussian OU pro-
cess or a square–root diffusion process, by combining the results in Nicolato & Venardos (2003) and
Veraart & Veraart (2012). More precisely, one concrete structure–preserving change of measure can
be obtained by constructing the product measure of a structure–preserving change of measure for the
BNS model with a structure–preserving change of measure forthe stochastic volatility of volatility
components.
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3.2 Option pricing

A popular method for computing option prices is based on the Laplace or Fourier transform of the asset
price. Such methods have been introduced by Heston (1993) and have subsequently been studied by
Carr & Madan (1999), Lee (2004), Lewis (2001), Raible (2000)amongst others.

Let us briefly describe the main idea of this approach as e.g. reviewed by Nicolato & Venardos
(2003). Suppose we would like to compute the price of a European option with payoff functionc(YT )
at time of maturityT = t + h for h > 0. Recall that the stock price is given bySt = S0 exp(Yt).
I.e. for a European call, we havec(YT ) = (S0 exp(YT ) −K)+ = (ST −K)+, whereK denotes the
strike price. Then the option price at timet ≤ T = t+ h is given by

Ct = EQ
[
e−r(T−t)c(YT )|Ft

]
= EQ

[
e−rhc(Yt+h)|Ft

]
,

wherer ≥ 0 denotes the risk–free interest rate. Now, letĉ denotes the Laplace transform of the payoff
functionc of an option, i.e.

ĉ(z) =

∫ ∞

−∞

e−zxc(x)dx,

see Raible (2000) for explicit forms. If the Laplace transform of the logarithmic asset price, which we
denote byφ, is known, then the option priceCt can be computed using Fourier inversion, specifically

Ct =
e−rh

2πi

∫ ϕ+i∞

ϕ−i∞
φ(z)ĉ(z)dz,

whereϕ is a constant belonging to the set where bothĉ andφ are defined (provided such a constant
exists).

Here, we will show that a transform–based method can be used for computing option prices when
the logarithmic asset price is given by the generalised BNS model where the squared volatility pro-
cess is a volatility modulated non–Gaussian OU process. In order to do that, we derive the Laplace
transform of the integrated volatility process and of the log–price process, which are both obtained in
semi–analytic form.

Recall that we need to choose a risk–neutral probability measureQ. Here we work with a
structure–preservingchange of measure. To simplify the exposition, we hence assume that the
model is directly specified under the risk–neutral probability measure. Further, throughout this sec-
tion, we will work with the following more specific model for the asset price which is given by
St = S0 exp (Yt) for

dYt = (µ+ βVt)dt+
√
Vt−dWt, (8)

whereµ, β ∈ R andV are defined as before (but now we assume that the definition of the model holds
under the risk–neutral measureQ).

Before we derive the Laplace transformation of the price process, we formulate a condition which
ensures that the discounted asset pricee−rtSt (for r > 0) is a (local) martingale, where we follow
closely Nicolato & Venardos (2003). Applying Itô’s formula, we obtain the following dynamics for
the asset priceS:

dSt = St−

(
btdt+

√
Vt−dWt

)
, where bt = µ+

(
β +

1

2

)
Vt.
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Hence, the discounted asset price is a (local) martingale ifand only if

bt − r = 0. (9)

Assuming the martingale condition holds, the Laplace transformation of the price process (pro-
vided it exists) can be determined in the form given in the following Proposition, the proof of which
is given in the Appendix.

Proposition 5 Letφ(θ) = E
Q
t (exp(θYt+h)), for h ≥ 0. Then

φ(θ) = exp

(
θYt + θµh+

(
βθ +

θ2

2

)
ǫλ(h)Vt

)
E
Q
t

[
exp

(∫ t+h

t
χL(f(s, θ))dτ(λs)

)]

= exp

(
θYt + θµh+

(
βθ +

θ2

2

)
ǫλ(h)Vt

)
E
Q
t

[
exp

(
λ

∫ t+h

t
χL(f(s, θ))ξλs−ds

)]
,

wheref(s, θ) := (βθ+ θ2/2)ǫλ(t+ h− s)υλs− and whereχL denotes the log–transformed Laplace
transform ofL.

Note that in the case whenυ andτ are deterministic, then we have an analytic formula for the
Laplace transform of the conditional distribution ofY . In the stochastic case, the integral has to be
evaluated using Monte Carlo methods. Finally, we can use theFourier inversion formula presented
above for computing the option price based on our new stochastic volatility model.

4 Variance risk premia

So far, we have seen that the additional stochastic volatility of volatility component can be motivated
both from an empirical point of view when studying asset price data under the physical measure, since
the additional component introduces more flexibility in thebehaviour of the integrated variance, and
also when studying option prices since the integrated variance also enters directly in the option pricing
formula.

In this section we will show that the additional stochastic volatility of volatility component also
plays a key role in determining the dynamics of thevariance risk premium(VRP). We will demon-
strate that, under a structure–preserving change of measure, the stochastic dynamics of the VRP are
determined solely by the volatility of volatility component.

4.1 General result

In order to understand the influence of the volatility of volatility term even better, we study the
variance risk premium(VRP), which has been studied extensively in the very recentliterature, see
e.g. Carr & Wu (2009), Bollerslev et al. (2009), Todorov (2010), Drechsler & Yaron (2011), Wu
(2011).

Recall that the variance risk–premium is defined as the wedgebetween the conditional expectation
of the quadratic variation over a future period in time underthe physical and under the risk–neutral
probability measure, see e.g. Todorov (2010) for more details. Therefore the standardised variance
risk premium over the interval[t, t+ h] is given by

V RPQ
t,t+h :=

1

h

[
Et([Y ][t,t+h])− E

Q
t ([Y ][t,t+h])

]
,
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whereEt(·) := E(·|Ft) andQ ∈ Q is a risk–neutral probability measure. Note that the VRP depends
on the particular risk–neutral probability measureQ.

Since, we have an explicit formula for the integrated squared volatility process, we can specify a
fairly explicit general formula for the variance risk premium in the following Proposition, which is
proved in the Appendix.

Proposition 6 (i) LetQ ∈ Q. The variance risk premium is given by

V RPQ
t,t+h =

1

h

[
Et (ζ(t, t+ h))− E

Q
t (ζ(t, t+ h))

]

=
1

h
Et

(
ζ(t, t+ h)

(
1− Zt+h

Zt

))
,

(10)

where

ζ(t, t+ h) :=

∫ t+h

t
ǫλ(t+ h− s)dLυ,τ

s +
∑

t≤s≤t+h

(∆Js)
2,

andZ is the martingale associated withQ through (7).

(ii) The range of the variance risk premium is given by

{V RPQ
t,t+h,Q ∈ Q}.

Formula (10) contains a fairly explicit formula for the variance risk premium associated with the
stochastic volatility model given by a volatility modulated non–Gaussian OU process. In particular,
we see that the volatility of volatility component influences the dynamics of the variance risk premium
in quite a direct fashion through the processLυ,τ .

Also, note that there are two parts of the variance risk premium: One is due to the continuous
martingale part of the log–price and one is due to the jump part. In the following, we will denote by
V RPQ,c

t,t+h the part of the VRP due to the continuous component in the price and byV RPQ,d
t,t+h the part

due to the jumpsJ , i.e.

V RPQ,c
t,t+h =

1

h

[
Et (ζ

c(t, t+ h))− E
Q
t (ζc(t, t+ h))

]
,

V RPQ,d
t,t+h =

1

h

[
Et

(
ζd(t, t+ h)

)
− E

Q
t

(
ζd(t, t+ h)

)]
,

where

ζc(t, t+ h) :=

∫ t+h

t
ǫλ(t+ h− s)dLυ,τ

s , ζd(t, t+ h) :=
∑

t≤s≤t+h

(∆Js)
2.

Corollary 7 The continuous and the jump part of the variance risk premiumare given by

V RPQ,c
t,t+h =

1

h
Et

[(∫ t+h

t
ǫλ(t+ h− s)dLυ,τ

s

)(
1− Zt+h

Zt

)]
,

V RPQ,d
t,t+h =

1

h
Et






∑

t≤s≤t+h

(∆Js)
2




(
1− Zt+h

Zt

)
 .

From this general result, we see that there are five stochastic processes which impact the variance
risk premium: The Lévy subordinatorL, the two SVV componentsυ andτ , the jump process in the
logarithmic asset priceJ and the martingaleZ. In the next section, we will formulate conditions
which will allow us to quantify their influence even more explicitly.
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4.2 Variance risk premia under structure–preserving changes of measures

It turns out that we can obtain an even more explicit result for the VRP if we add the following two
assumptions.

(A1) The jump process in the asset price, denoted byJ , is a pure jump Lévy process.

(A2) The risk–neutral probability measureQ ∈ Q is obtained by a structure–preserving change of
measure.

Proposition 8 LetQ ∈ Q. SupposeJ is a pure jump Ĺevy process under bothP andQ. Then the
part of the VRP due to jumps is given by a constant, in particular,

V RPQ,d
t,t+h =

∫

R

x2νJ(dx) −
∫

R

x2νQJ (dx),

whereνJ(dx)dt and νQJ (dx)dt are the predictable compensators of the Poisson random measure
associated withJ underP and underQ, respectively.

Note that Proposition 8 clearly holds under the stronger assumptions (A1) and (A2).
Next, let us study the the VRP due to the continuous part of theprice process.

Proposition 9 Assume that assumption (A2) holds. Letηυ,τt := υλt−ξλt−. Then we have

V RPQ,c
t,t+h =

1

h

[
ηυ,τt

(
E(L1)− EQ(L1)

)
(h− ǫλ(h)) (11)

+ λ

∫ t+h

t
ǫλ(t+ h− s)

(
E(L1)Et (η

υ,τ
s − ηυ,τt )− EQ(L1)E

Q
t (ηυ,τs − ηυ,τt )

)
ds

]
.

Note thatL is a subordinator and, hence,E(L1) > 0. Also, under the structure–preserving change of
measure, the predictable compensator ofL changes and, hence,E(L1)− EQ(L1) 6= 0.

Remark We see that the stochastic proportionalυ and the density of the time changeξ play the same
role in determining the dynamics of the variance risk premium.

The above propositions show that, given a structure–preserving change of measure, the stochastic
dynamics of the variance risk premium are solely determinedby the stochastic volatility of volatility
componentυ andτ , respectively. If these terms were not stochastic, then thevariance risk premium
would be deterministic, which would contradict recent empirical findings e.g. by Drechsler & Yaron
(2011), Bollerslev et al. (2009).

The formula (11) in Proposition 9 can be computed explicitlyunder an additional modelling as-
sumption:

Corollary 10 Assume that assumption (A2) holds. Consider the following two cases: Assume that
ηυ,τt = η

(i)
t , whereη(1)t := υλt− (i.e. ξ ≡ 1) andη(2)t := ξλt− (i.e.υ ≡ 1). Also, fori = 1, 2, let

dη
(i)
t = a

(
b− η

(i)
t

)
dt+ g

√
η
(i)
t dBη

t ,

wherea, b, g are positive constants satisfying the Feller condition2ab > g2 (andv(i)0 > 0) andBη is
a standard Brownian motion.
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Then we get fori = 1, 2 that

V RP
Q,(i)c
t,t+h = η

(i)
t F (1)(h) + F (2)(h),

whereF (1)(h) andF (2)(h) are explicitly known deterministic functions, given in theAppendix.

Also in the case of a non–Gaussian OU process, we get explicitresults, see the following Corollary.

Corollary 11 Assume that assumption (A2) holds. Consider the following two cases again: Assume
that ηυ,τt = η

(i)
t , whereη(1)t := υλt− (i.e. ξ ≡ 1) andη(2)t := ξλt− (i.e.υ ≡ 1). Also, fori = 1, 2, let

dη
(i)
t = −aη(i)t dt+ dLη

at,

wherea > 0 andLη is a Lévy subordinator. Then we get fori = 1, 2 that

V RP
Q,(i)c
t,t+h = η

(i)
t G(1)(h) +G(2)(h),

whereG(1)(h) andG(2)(h) are explicitly known deterministic functions, given in theAppendix.

So, we have obtained an explicit formula for the VRP which depends on the physical and risk–
neutral parameters of the underlying model. Further, we seethat the stochastic dynamics ofV RPt,t+h

(as a stochastic process int with fixedh > 0) are determined by the volatility of volatility component
ηυ,τ .

Note that the classical BNS model (assuming a structure–preserving change of measure) implies
that the variance risk premium is deterministic. This fact can be easily seen from our results above.
However, by including a stochastic volatility of volatility term, we allow forstochastic dynamics of
the variance risk premium.

4.2.1 Comments on the results

Note that both Bollerslev et al. (2009) and Drechsler & Yaron(2011) also established a link between a
volatility of volatility component and the VRP. However, they studied a self–contained general equi-
librium model and show that the variance risk premium is solely driven by the volatility of (consump-
tion growth) volatility, where this explicit formula has been derived using a log–linear approximation.

Here, we do not work with an equilibrium model, but extend oneof the popular (probabilistic)
asset price models, the BNS model, to allow for an additionalvolatility of volatility component.
In order to derive our explicit formula for VRP and to establish the link to the volatility of volatility
component, we did not need any approximation, due to the highanalytic tractability of our new model.
However, the main assumption we made in this Subsection was that the physical and the risk–neutral
probability measures are related through a structure–preserving change of measure, which seems to be
a strong, but nevertheless rather natural assumption from amodelling point of view. Let us elaborate
on the latter aspect in more detail.

As we have already mentioned earlier, incomplete markets have the property that the risk–neutral
probability measure is not uniquely determined, leading toa range of risk–neutral probability mea-
sures. Consequently, the variance risk premium is not uniquely determined, since it depends on the
choice of the risk–neutral probability measure.

Recent empirical studies indicate that the dynamics of the variance risk premium are stochastic.
How can we explain such stochastic dynamics?
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One possible answer is given in this paper: If we work with theVMOU stochastic volatility model
and a structure–preserving change of measure, we find that the SVV drives the VRP and, in particular,
that we obtain stochastic dynamics of the VRP.

Another possibility would be to work with a classical SV model which does not allow for SVV
and at the same time apply a more sophisticated change of measure, which potentially could also
induce stochastic dynamics of the VRP.

5 Introducing long memory: Volatility modulated supOU processes

Finally, we will give an outlook on further extensions of ournew modelling framework. Here we
show how long(er) memory can be incorporated into the class of VMOU processes. This is done by
extensions of the idea of supOU processes, as introduced by Barndorff-Nielsen (2001) and further
discussed in Barndorff-Nielsen & Shephard (2003), Barndorff-Nielsen & Leonenko (2005), Fasen &
Klüppelberg (2007), Barndorff-Nielsen & Stelzer (2011),Barndorff-Nielsen & Stelzer (2012).

The long(er) memory can be introduced by randomising the memory parameterλ using the con-
cept ofLévy bases. A Lévy basis is an independently scattered random measurewhose values are
infinitely divisible. The foundation of the theory of such measures were laid by Rajput & Rosin-
ski (1989), see also Pedersen (2003). For a recent account ofthe definition and basic properties of
Lévy bases see Section 1.3 of Barndorff-Nielsen et al. (2011a) and also Barndorff-Nielsen (2011),
Barndorff-Nielsen & Shephard (2012) for further reviews.

5.1 Background on Ĺevy bases

Throughout the paper, we denote byB the family of Borel sets inRk for k ∈ N and byBb the
subfamily of bounded elements ofB.

Definition 12 LetM = {M(B) : B ∈ Bb} be a collection of random variables on some proba-
bility space(Ω,A, P ). We callM an independently scattered random measure(ISRM) if, for every
sequence{Bn} of mutually disjoint sets inBb where∪∞

n=1Bn ∈ Bb, the random variablesM(Bn)
are independent forn = 1, 2, . . . , and alsoM(∪∞

n=1Bn) =
∑∞

n=1M(Bn) almost surely.

We are particularly interested in ISRM which are infinitely divisible.

Definition 13 LetL be an ISRM onRk. We callL a Lévy basisif for all B ∈ Bb the random variable
L(B) is infinitely divisible.

Rajput & Rosinski (1989) have shown that every Lévy basis has a Lévy–Khintchine representation of
the form

C{θ ‡ L(B)} = log (E(exp(iθL(B)))

= iθa(B)− 1

2
θ2b(B) +

∫

R

(
eiθx − 1− iθxI[−1,1](x)

)
n(dx,B),

(12)

wherea is a signed measure onR, b is a measure onR, n(·, ·) is the generalised Lévy measure such
thatn(dx,B) is a Lévy measure onR for fixedB and a measure onRk for fixed dx. Further, along
the lines of Rajput & Rosinski (1989) we define the so–calledcontrol measure.
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Definition 14 LetL be a Ĺevy basis with Ĺevy–Khintchine representation (12). Thecontrol measure
c is then defined by

c(B) = |a|(B) + b(B) +

∫

R

min(1, x2)n(dx,B), (13)

where| · | denotes the total variation.

Next we define the Radon–Nikodym derivatives of the three components ofc, when we differentiate
with respect toc. We have

α(s) =
da

dc
(s), β(s) =

db

dc
(s), ν(dx, s) =

n(dx, ·)
dc

(s). (14)

In particular, we obtainn(dx, ds) = ν(dx, s)c(ds). In the following, we assume without loss of
generality thatν(dx, s) is a Lévy measure for each fixeds.

Definition 15 We call(α, β, ν(dx, ·), c) = (α(s), β(s), ν(dx, s), c(ds))s∈Rk a characteristic quadru-
plet (CQ) associated with a Ĺevy basisL onRk provided the following conditions hold:

(i) Bothα andβ are measurable functions onRk, whereβ is restricted to be nonnegative.

(ii) For fixed s, ν(dx, s) is a Lévy measure onR, and for fixeddx it is a measurable function on
Rk.

(iii) The elementc is a measure on(Rk,Bb) such that
∫
B α(s)c(ds) is a (possibly signed) measure

on (Rk,Bb) and
∫
B ν(dx, s)c(ds) is a Lévy measure onR for fixedB ∈ B.

Altogether, one can show that every Lévy basis onRk determines a CQ of the form(α, β, ν(dx, ·), c) =
(α(s), β(s), ν(dx, s), c(ds))s∈Rk . And, conversely, every CQ satisfying the conditions in Definition
15 determines, in law, a Lévy basis onRk.

Now we get the following result for the cumulant function of the Lévy basis (presented in in-
finitesimal form).

C{θ ‡ L(ds)} = log (E(exp(iθL(ds)))

= iθa(ds)− 1

2
θ2b(ds) +

∫

R

(
eiθx − 1− iθxI[−1,1](x)

)
n(dx, ds)

=

(
iθα(s)− 1

2
θ2β(s) +

∫

R

(
eiθx − 1− iθxI[−1,1](x)

)
ν(dx, s)

)
c(ds)

= C{θ ‡ L′(s)}c(ds),

(15)

whereL′(s) denotes theLevy seedof L at s. The Lévy seed is in fact an infinitely divisible random
variable with Lévy–Khintchine representation

C{θ ‡ L′(s)} = iθα(s)− 1

2
θ2β(s) +

∫

R

(
eiθx − 1− iθxI[−1,1](x)

)
ν(dx, s).

Note that one can associate a Lévy process with any Lévy seed.
In applications, we often work with special subclasses of L´evy bases, as defined in the following.

Definition 16 LetL denote a Ĺevy basis onRk with CQ given by(α, β, ν(dx, ·), c).
(i) If ν(dr, s) does not depend ons, we callL factorisable.

(ii) If L is factorisable and ifc is proportional to the Lebesgue measure andα(s) andβ(s) do not
depend ons, thenL is calledhomogeneous.

Note that for a homogeneous Lévy basis, the associated Lévy seedL′(s) does not depend ons.
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5.2 Integrals with respect to Ĺevy bases

Integration with respect to Lévy bases can be done according to Rajput & Rosinski (1989), where
integrals of deterministic kernel functionsf with respect to a Lévy basisLwere defined. In particular,
we get from Rajput & Rosinski (1989, Proposition 2.6) that

C{θ ‡ f • L} = log

(
E

(
exp

(
iθ

∫
fdL

)))
=

∫
C{θf(s) ‡ L′(s)}c(ds), (16)

for a deterministic functionf which is integrable with respect to the Lévy basis.
In order to allow for stochastic integrands (independent ofthe driving Lévy basis), we can think of

a suitable extension (using conditioning) of the integration concept developed by Rajput & Rosinski
(1989). Alternatively, one could employ the concept used byWalsh (1986), which is also described in
detail in Barndorff-Nielsen et al. (2011a,b).

5.3 Introducing long memory through integrals w.r.t. Lévy bases

Now we show how long memory can be introduced in an Ornstein–Uhlenbeck process by randomising
the memory parameter through the concept of a Lévy basis. First we review the basic supOU process
and then we extend this process to allow for additional stochastic volatility of volatility.

5.3.1 SupOU model

Recall that the supOU process, as introduced by Barndorff-Nielsen (2001), is defined by

Ṽt =

∫ ∞

0

∫ t

−∞

e−λ(t−s)L̃(ds, dλ), (17)

for a Lévy basis̃L onR× R+ which has characteristic quadruplet

(0, 0, ν(dx), dtλπ(dλ)). (18)

Hereν is the Lévy measure of the Lévy subordinator,π denotes a probability measure on(0,∞) and
dtλπ(dλ) (with (t, λ) ∈ R×R+) is the control measure of̃L, see Barndorff-Nielsen (2010) for more
details. The supOU process defined in (17) can be regarded as an extension of an OU process driven
by a Lévy subordinator. Here we associate a distribution with the memory parameterλ through the
Lévy basisL̃. See Barndorff-Nielsen & Stelzer (2012) for conditions on the existence of the above
integral.

We can easily compute the autocorrelation function (assuming square integrability of the Lévy
basisL̃). Letκ2 =

∫∞

0 x2ν(dx). Then

E

(
(Ṽ0 − E(Ṽ0))(Ṽt − E(Ṽt))

)
= κ2

∫ ∞

0

∫ 0

−∞

e−λt+2λsdsλπ(dλ)

= κ2

∫ ∞

0
e−λtπ(dλ)

∫ 0

−∞

e2λsλds =

∫ ∞

0
e−λtπ(dλ)κ2

∫ 0

−∞

e2udu

︸ ︷︷ ︸
:=X(1)

= X(1)

∫ ∞

0
e−λtπ(dλ) = X(1)π̂(λ),
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whereX(1) does not depend onλ and wherêπ(λ) denotes the Laplace transform ofπ.
Let us study an example, which shows how long memory can be obtained in the context of supOU

processes, see Barndorff-Nielsen (2001), Barndorff-Nielsen & Shephard (2001) and Barndorff-Nielsen
& Shephard (2012).

Example Let us assume thatπ is the Gamma lawΓ(2H, 1) for H > 0. The corresponding density
function is given by

fΓ(2H,1)(x) =
1

Γ(2H)
x2H−1e−x, for x > 0.

Then ∫ ∞

0
e−λtπ(dλ) =

1

Γ(2H)

∫ ∞

0
e−xte−xx2H−1dx = (t+ 1)−2H .

Note in particular that̃V exhibits second order long range dependence ifH ∈ (12 , 1) for H := 1−H.

5.3.2 Volatility modulated supOU processes

In a next step, we extend the class of supOU processes and introduce a new concept which allow us
to introduce long memory and stochastic volatility simultaneously. As before, we present the general
case where we have both a stochastic proportional and a stochastic time change.

Note here that the stochastic proportional can be easily included in the supOU framework, whereas
the time change requires some additional work. More precisely, the time change approach leads to
integration with respect to a random measure more general than a Lévy basis.

Recall that the stochastic volatility process is defined as

Vt =

∫ t

−∞

e−λ(t−s)υλs−dLτλs .

Let T be the random measure associated with the stochastic process τ , so that for intervals(a, b]
we haveT ((a, b]) = τ (b)− τ (a). (If τ was a Lévy subordinator, thenT would be the corresponding
Lévy basis.) We introduce a random measureM on R×R+ characterised by requiring thatM
conditionally onT is the Lévy basis onR× R+ having characteristic quadruplet

(0, 0, ν(dx), T (λdt)π(dλ)). (19)

Hereν andπ are as above and the control measure isT (λdt)π(dλ). (This construction is analo-
gous that of extended subordination by meta–time changes ofLévy bases as introduced in Barndorff-
Nielsen (2010) and Barndorff-Nielsen & Pedersen (2011).)

Then, define the process̃V by

Ṽt =

∫ ∞

0

∫ t

−∞

e−λ(t−s)υλs−M(ds, dλ).

That this determines a well–defined strictly stationary process can be verified by calculating the char-
acteristic functional of̃V .

Under square integrability, the conditional autocovariance function givenυ andτ takes the form

E

(
(Ṽ0 − E(Ṽ0|υ, τ))(Ṽt − E(Ṽt|υ, τ))

∣∣∣ υ, τ
)
= κ2

∫ ∞

0

∫ 0

−∞

e−λt+2λsυ2λs−T (λds)π(dλ)
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= κ2

∫ ∞

0
e−λtπ(dλ)

∫ 0

−∞

e2λsυ2λs−T (λds) =

∫ ∞

0
e−λtπ(dλ)κ2

∫ 0

−∞

e2uυ2u−T (du)

︸ ︷︷ ︸
:=X(2)

= X(2)

∫ ∞

0
e−λtπ(dλ) = X(2)π̂(λ),

where the random variableX(2) and its law do not depend onλ. As before,̂π(λ) denotes the Laplace
transform ofπ.

As in the example above, long memory ofṼ can be obtained by choosingπ to be the probability
measure of the Gamma law.

Hence we have seen that the volatility modulated supOU processṼ can account for long memory
and stochastic volatility simultaneously.

Note here that the novel contribution is the way how long memory and the time change are com-
bined: We have seen that additional volatility and long memory can be introduced in a non–Gaussian
OU process by an extended subordination approach, where theadditional volatility enters through a
time changeτ , with associated random measureT, and the long memory can be obtained by a suit-
able choice of the probability measureπ. These two measures have to be combined, as described
in the characteristic quadruplet defined in (19), in order toobtain both long memory and additional
stochastic volatility.

6 Concluding remarks

This paper has introduced a new class of stochastic volatility models which is given by volatility
modulated non–Gaussian Ornstein–Uhlenbeck (VMOU) processes. We have shown that the new
model class is highly analytically tractable and, in particular, we have derived an explicit formula for
the integrated squared volatility process, which plays a key role in determining an explicit formula for
the variance risk premium.

Next, we have shown that the additional volatility of volatility component can be used to introduce
the leverage effect in a new way. Also, we have developed a newmethodology for allowing for long
memoryand volatility of volatility simultaneously: This can be done by combining the concepts of
extended subordination of Lévy bases (or of more general random measures) and of randomisation of
the memory parameter of the OU process through a suitable choice of the characteristic quadruplet.

Another key result we have established in this paper is the fact that the stochastic volatility of
volatility component solely determines the stochastic dynamics of the variance risk premium if the
change of measure is structure–preserving. Given the empirical evidence that the variance risk pre-
mium has stochastic dynamics, including a stochastic volatility of volatility component into a stochas-
tic volatility model is hence a modelling choice which leadsto rather explicit dynamics of the variance
risk premium. Clearly, there are various natural extensions of our new model. For instance, we will
address multivariate extensions of VMOU processes and, also, superpositions of such multivariate
processes in future research. Multivariate OU processes and their superpositions have recently been
introduced by Barndorff-Nielsen & Stelzer (2011) and have been applied as multivariate stochas-
tic volatility models by Barndorff-Nielsen & Stelzer (2012), Muhle-Karbe et al. (2012), Pigorsch &
Stelzer (2009). Furthermore, we plan to address multivariate extensions of the VMOU. In particular,
for the time change case, future research will be based on thenew concept of multivariate subordina-
tion introduced by Barndorff-Nielsen (2010) and Barndorff-Nielsen & Pedersen (2011).
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A Proofs

A.1 Second order structure

Here we study various conditional and unconditional moments ofV and we derive its autocorrelation
function. In the following, we will often present the results only and omit the rather lengthy proofs
since they consist of straightforward computations.

In order to simplify the exposition, we fix the following notation. Fori ∈ N, we denote theith
cumulant of the Lévy subordinatorLt by κi(Lt) (provided it exists). Clearly, we haveκi(Lt) =
tκi(L1) and, in particular, we writeκi := 1

λκi(Lλ) = κi(L1).
We will carry out all computations for a general stationary volatility processυ and an absolutely

continuous time changeτ with stationary density processξ. In the following, we will writeγ(h) =
Cov(υt−ξt−, υ(t+h)−ξ(t+h)−) for h > 0. Recall also that we assume mutual independence ofL, υ
andτ .

First, we compute the moments ofV , when we condition onυ andτ . Clearly, if υ andτ were
deterministic, these results would also hold unconditionally.

Throughout this section, we will use the following notationfor the conditional expectation:Eυ,τ (·) :=
E(·|υ, τ), V arυ,τ (·) := V ar(·|υ, τ), Covυ,τ (·, ·) := Cov(·, ·|υ, τ) andCorυ,τ (·, ·) := Cor(·, ·|υ, τ).

Proposition 17 The conditional mean, variance and covariance are given by

Eυ,τ (Vt) = e−λtEυ,τ (V0) + λκ1(L1)

∫ t

0
e−λ(t−s)υλsξλsds,

V arυ,τ (Vt) = e−2λtV arυ,τ (V0) + λκ2(L1)

∫ t

0
e−2λ(t−s)υ2λsξλsds,

Covυ,τ (Vt, Vt+h) = e−λhV arυ,τ (Vt) .

Proof of Proposition 17 For the mean, we have

Eυ,τ (Vt) = e−λtEυ,τ (V0) + λκ1(L1)

∫ t

0
e−λ(t−s)υλsξλsds.

For the second moment, we get from Itô’s formula

V 2
t − V 2

0 = −2λ

∫ t

0
V 2
s ds+ 2

∫ t

0
Vsυλs−dLτλs +

∫ t

0
υ2λs−d[L]τλs .

Taking the conditional expectation, we get

Eυ,τ (V 2
t )− Eυ,τ (V 2

0 )

= −2λ

∫ t

0
Eυ,τ (V 2

s )ds+ 2λκ1(L1)

∫ t

0
Eυ,τ (Vsυλsξλs)ds + λκ2(L1)

∫ t

0
Eυ,τ (υ2λsξλs)ds
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= −2λ

∫ t

0
Eυ,τ (V 2

s )ds+ 2λκ1(L1)

∫ t

0
Eυ,τ (Vs)υλsξλsds + λκ2(L1)

∫ t

0
υ2λsξλsds.

Hence,

dEυ,τ (V 2
t ) = −2λEυ,τ (V 2

t )dt+
(
2λκ1(L1)E

υ,τ (Vt)υλtξλs + λκ2(L1)υ
2
λtξλs

)
dt.

We solve the linear stochastic differential equation and obtain

Eυ,τ (V 2
t ) = e−2λtEυ,τ (V 2

0 ) +

∫ t

0
e−2λ(t−s)Ξsds,

where

Ξs := 2λκ1(L1)E
υ,τ (Vs)υλsξλs + λκ2(L1)υ

2
λsξλs

= 2λκ1(L1)e
−λsEυ,τ (V0)υλsξλs + 2λ2κ21(L1)υλsξλs

∫ s

0
e−λ(s−u)υλuξλudu+ λκ2(L1)υ

2
λsξλs.

Consequently, we have

Eυ,τ (V 2
t ) = e−2λtEυ,τ (V 2

0 ) +

∫ t

0
e−2λ(t−s)Ξsds

= e−2λtEυ,τ (V 2
0 ) + 2λκ1(L1)E

υ,τ (V0)

∫ t

0
e−2λ(t−s)e−λs
︸ ︷︷ ︸
=e−λte−λ(t−s)

υλsξλsds

+ 2λ2κ21(L1)

∫ t

0
e−2λ(t−s)υλsξλs

∫ s

0
e−λ(s−u)υλuξλududs

︸ ︷︷ ︸
=e−2λt

∫ t

0
eλsυλsξλs

∫ s

0
eλuυλuξλududs

+ λκ2(L1)

∫ t

0
e−2λ(t−s)υ2λsξλsds.

Hence,

V arυ,τ (Vt) = e−2λtV arυ,τ (V0) + λκ2(L1)

∫ t

0
e−2λ(t−s)υ2λsξλsds.

Similar computations lead to the result for the covariance.In particular, using the representation
results for the increments ofV , we get

Eυ,τ (VtVt+h) = e−λhEυ,τ (V 2
t ) + λκ1(L1)E

υ,τ (Vt)

∫ t+h

t
e−λ(t+h−s)υλsξλsds

= e−λh

(
Eυ,τ (V 2

t ) + λκ1(L1)E
υ,τ (Vt)

∫ t+h

t
e−λ(t−s)υλsξλsds

)

= e−λh

(
Eυ,τ (V 2

t ) + λκ1(L1)e
−λtEυ,τ (V0)

∫ t+h

t
e−λ(t−s)υλsξλsds

+λ2κ21(L1)

∫ t

0
e−λ(t−s)υλsξλsds

∫ t+h

t
e−λ(t−s)υλsξλsds

)
.

�
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Next, we compute the unconditional mean, variance and covariance of the VMOU processV .

Proposition 18 LetVt = V0e
−λt +

∫ t
0 e

−λ(t−s)υλs−dLτλs . Then, forh > 0,

E (Vt) = e−λtE(V0) + κ1(L1)E(υ0)E(ξ0)(1− e−λt),

V ar(Vt) = e−2λtV ar(V0) + 2e−λtκ1(L1)Cov

(
Eυ,τ (V0), λ

∫ t

0
e−λ(t−s)υλsξλsds

)

+ κ21

∫ t

0

∫ t

0
e−λ(t−s)e−λ(t−u)λ2γ(|λs− λu|)dsdu

+ κ2(L1)E(υ
2
0)E(ξ0)

1

2
(1− e−2λt),

Cov(Vt, Vt+h) = e−λh

{
V ar(Vt) + κ1(L1)e

−λtCov

[
Eυ,τ (V0),

∫ t+h

t
λe−λ(t−s)υλsξλsds

]

+κ21(L1)

∫ t

0

∫ t+h

t
λe−λ(t−s)λe−λ(t−u)γ(|λs− λu|)duds

}
.

Proof The results follow essentially from Proposition 17. We onlyfocus on the computations of the
variance here. Recall that

V ar(Vt) = E(V arυ,τ (Vt)) + V ar(Eυ,τ (Vt)).

The first term is straightforward to compute. For the second term we get

V ar(Eυ,τ (Vt)) = E((Eυ,τ (Vt))
2)− (E(Eυ,τ (Vt)))

2.

Then

E((Eυ,τ (Vt))
2) = E

[
e−2λt (Eυ,τ (V0))

2 + 2e−λtλκ1(L1)E
υ,τ (V0)

∫ t

0
e−λ(t−s)υλsξλsds

+λ2κ21(L1)

(∫ t

0
e−λ(t−s)υλsξλsds

)2
]

= e−2λtE
[
(Eυ,τ (V0))

2
]
+ 2e−λtλκ1(L1)E

[
Eυ,τ (V0)

∫ t

0
e−λ(t−s)υλsξλsds

]

+ λ2κ21(L1)E

[(∫ t

0
e−λ(t−s)υλsξλsds

)2
]
.

Then, we get that

V ar(Vt) = e−2λtV ar(V0) + 2e−λtκ1(L1)Cov

(
Eυ,τ (V0), λ

∫ t

0
e−λ(t−s)υλsξλsds

)

+ κ21V ar

(∫ t

0
λe−λ(t−s)υλsξλsds

)
+ κ2(L1)E(υ

2
0)E(ξ0)

∫ t

0
λe−2λ(t−s)ds

︸ ︷︷ ︸
= 1

2
(1−e−2λt)

,

where

V ar

(∫ t

0
λe−λ(t−s)υλsξλsds

)
= e−2λt

∫ t

0

∫ t

0
λ2eλseλuγ(|λs − λu|)dsdu
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=

∫ λt

0

∫ λt

0
evewγ(|v − w|)dvdw.

For the covariance, we get

Cov(Vt, Vt+h) = E(Eυ,τ (VtVt+h))− E(Eυ,τ (Vt))E(E
υ,τ (Vt+h))

= e−λh

{
E[Eυ,τ (V 2

t )] + λκ1(L1)e
−λtE

[
Eυ,τ (V0)

∫ t+h

t
e−λ(t−s)υλsξλsds

]

+λ2κ21(L1)E

[∫ t

0
e−λ(t−s)υλsξλsds

∫ t+h

t
e−λ(t−s)υλsξλsds

]}

− e−λh

{
(E(Vt))

2 + E(Vt)κ1(L1)E(υ0)E(ξ0)

∫ t+h

t
e−λ(t−s)ds

}

= e−λh

{
V ar(Vt) + (E(Vt))

2 + λκ1(L1)e
−λtE

[
Eυ,τ (V0)

∫ t+h

t
e−λ(t−s)υλsξλsds

]

+λ2κ21(L1)E

[∫ t

0
e−λ(t−s)υλsξλsds

∫ t+h

t
e−λ(t−s)υλsξλsds

])

−(E(Vt))
2 − E(Vt)κ1(L1)E(υ0)E(ξ0)

∫ t+h

t
λ−λ(t−s)ds

}

= e−λh

{
V ar(Vt) + κ1(L1)e

−λtCov

[
Eυ,τ (V0),

∫ t+h

t
λe−λ(t−s)υλsξλsds

]

+κ21(L1)Cov

[∫ t

0
λe−λ(t−s)υλsξλsds,

∫ t+h

t
λe−λ(t−s)υλsξλsds

]}
,

where

Cov

[∫ t

0
λe−λ(t−s)υλsξλsds,

∫ t+h

t
λe−λ(t−s)υλsξλsds

]

= e−2λt

∫ t

0

∫ t+h

t
λ2eλseλuγ(|λs− λu|)dsdu

=

∫ λt

0

∫ λ(t+h)

λt
evewγ(|v − w|)dvdw.

�

Corollary 19 The mean, variance and autocovariance of the stationary processV are given by

E (Vt) = κ1(L1)E(υ0)E(ξ0),

V ar (Vt) =
1

2
κ2(L1)E

(
υ20

)
E(ξ0) + κ21(L1)

∫ 0

−∞

∫ 0

−∞

exeyγ(|x− y|)dxdy,

Cov (Vt, Vt+h) = e−λh

(
1

2
κ2(L1)E

(
υ20

)
E(ξ0) + κ21(L1)

∫ 0

−∞

∫ λh

−∞

exeyγ(|x− y|)dxdy
)
.

Proof The results follow directly from the previous results, where we used that the initial value for
the stationary process is given byV0 =

∫ 0
−∞

eλsυλs−dLτλs . �
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A.2 The leverage effect

Proof of the results in Section 2.6Note thatP0 = 0 andE(Pt) = 0. From Itô’s product rule, we get
that

PtVt =

∫ t

0
Vs−dPs +

∫ t

0
Ps−dVs + [P, V ]t

=

∫ t

0
Vs−dPs − λ

∫ t

0
PsVsds +

∫ t

0
Ps−υλs−dLλs + [P, V ]t.

Taking expectations, we get

Cov(Pt, Vt) = E(PtVt) = −λ
∫ t

0
E(PsVs)ds+ λE(L1)

∫ t

0
E (Psυλs) ds.

The above equation is an integral equation, which can be solved as soon as we have computed the
second term on the right hand side. We do that by applying Itô’s product rule again and obtain

E (Puυλu) = E

(∫ u

0
Psdυλs

)
+ E

(∫ u

0

√
Vs−d[W,υλ]s

)

= −αλ
∫ u

0
E(Psυλs)ds+ ρ̃

√
λγ

∫ u

0
E

(√
Vs
√
υλs

)
ds,

which is yet another integral equation. SinceV and υλ are strictly positive (provided the Feller

condition 2αβ > γ2 andυ0 > 0 holds) , we have thatg(s) := E

(√
V

(1)
s

√
υλs

)
, for a strictly

positive functiong. Solving the differential equation

d

du
E (Puυλu) = −αλE(Puυλu) + ρ̃

√
λγg(u),

we get

E (Puυλu) = exp(−αλu)
(∫ u

0
ρ̃
√
λγg(s) exp(αλs)ds

)
=: ρ̃g̃(u) 6≡ 0,

for a strictly positive functioñg. Next, we defineG(u) := λE(L1)E (Puυλu). Solving

d

dt
E(PtVt) = −λE(PtVt) +G(t),

we obtain

E(PtVt) = exp(−λt)
∫ t

0
G(x)eλxdx 6≡ 0.

Further, Itô’s formula leads to the following result for higher moments of ordern ∈ R, n ≥ 2
(provided they exist):

E (Pn
t ) =

n(n− 1)

2

∫ t

0
E
(
Pn−2
s Vs

)
ds.

In particular, we have

Cov(Pt, P
2
t ) = E

(
P 3
t

)
= 3

∫ t

0
E(PsVs)ds = 3λE(L1)

∫ t

0
e−λs

∫ s

0
eλuE (Puυλu) duds 6≡ 0.

�
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A.3 The Laplace transform of integrated squared volatility

Proof of Proposition 5 Since the integrated variance appears in the asset price formula, we compute
the Laplace transform of the integrated variance first. In particular, we focus on theconditional
integrated variance over the interval[t, t + h] givenFt for t, h ≥ 0. We use the notationEQ

t (·) :=
EQ(·|Ft). Further, using (6), we get

E
Q
t

[
exp

(
θ

∫ t+h

t
Vsds

)]
= E

Q
t

[
exp

(
θ

(
ǫλ(h)Vt +

∫ t+h

t
ǫλ(t+ h− s)dLυ,τ

λs

))]

= exp (θǫλ(h)Vt)E
Q
t

[
exp

(
θ

(∫ t+h

t
ǫλ(t+ h− s)dLυ,τ

λs

))]
.

We define the followingσ–algebrasG(1) := σ(υλs : s ≤ t + h) ∪ Ft andG(2) := σ(τλs : s ≤
t+ h) ∪ Ft. Then the Laplace transformation is given by

E
Q
t

[
exp

(
θ

(∫ t+h

t
ǫλ(t+ h− s)dLυ,τ

λs

))]
= E

Q
t

[
exp

(
θ

(∫ t+h

t
ǫλ(t+ h− s)υλs−dLτλs

))]

= E
Q
t

{
E
Q
t

[
exp

(
θ

(∫ t+h

t
ǫλ(t+ h− s)υλs−dLτλs

))∣∣∣∣G
(1),G(2)

]}

= E
Q
t

[
exp

(∫ t+h

t
χL(θǫλ(t+ h− s)υλs−)τ(λds)

)]

= E
Q
t

[
exp

(∫ t+h

t
χL(θǫλ(t+ h− s)υλs−)ξλsλds)

)]
,

whereχL denotes the log–transformed Laplace transform ofL.
Let G(3) := σ(Lυ,τ

λs |s ≤ t+ h) ∪ Ft. For the conditional distribution ofY , we get

φ(θ) := E
Q
t (exp(θYt+h)) = exp(θYt)E

Q
t (exp(θ(Yt+h − Yt)))

= exp(θYt)E
Q
t

[
exp

(
θ

(
µh+ β

∫ t+h

t
Vsds+

∫ t+h

t

√
Vs−dWs

))]

= exp(θYt)E
Q
t

[
E
Q
t

[
exp

(
θ

(
µh+ β

∫ t+h

t
Vsds+

∫ t+h

t

√
Vs−dWs

))∣∣∣∣G
(1),G(2),G(3)

]]

= exp(θYt)E
Q
t

[
exp

(
θ

(
µh+ β

∫ t+h

t
Vsds

))

E
Q
t

[
exp

(
θ

∫ t+h

t

√
VsdWs

)∣∣∣∣G
(1),G(2),G(3)

]

︸ ︷︷ ︸
=exp

(

θ2

2

∫ t+h

t
Vsds

)




= exp(θYt)E
Q
t

[
exp

(
θµh+

(
θβ +

θ2

2

)∫ t+h

t
Vsds

)]

= exp

(
θYt + θµh+

(
βθ +

θ2

2

)
ǫλ(h)Vt

)
E
Q
t

[
exp

(∫ t+h

t
f(s, θ)dLτλs

)]

= exp

(
θYt + θµh+

(
βθ +

θ2

2

)
ǫλ(h)Vt

)
E
Q
t

[
exp

(
λ

∫ t+h

t
χL(f(s, θ))dτλs

)]
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= exp

(
θYt + θµh+

(
βθ +

θ2

2

)
ǫλ(h)Vt

)
E
Q
t

[
exp

(
λ

∫ t+h

t
χL(f(s, θ))ξλsλds

)]
,

wheref(s, θ) := (βθ + θ2/2)ǫλ(t+ h− s)υλs−. �

A.4 Change of measure and variance risk premium

Proof of Proposition 6 We apply the following Bayes rule, see Karatzas & Shreve (1991, p.193). For
anyFt measurable random variableζ with EQt+h|ζ| <∞ and for0 ≤ s ≤ t ≤ t+ h, we have

E
Qt+h
s (ζ) =

1

Zs
Es(ζZt),

and, hence

Es(ζ)− E
Qt+h
s (ζ) = Es

(
ζ

(
1− Zt

Zs

))
.

As a particular case, we get for the approximated variance risk premium, since[Y ][t,t+h] is Ft+h

measurable,

V RPQ
t,t+h = Et

(
[Y ][t,t+h]

(
1− Zt+h

Zt

))
.

Recall that

[Y ][t,t+h] =

∫ t+h

t
σ2sds+

∑

t≤s≤t+h

(∆Js)
2 = [Y ]c[t,t+h] + [Y ]d[t,t+h],

where[Y ]c[t,t+h] denotes the continuous part of the quadratic variation and[Y ]d[t,t+h] the jump part.

Next we plug in the explicit formula forV +, see (6), and we obtain

[Y ]c[t,t+h] = V +
t+h − V +

t = ǫλ(h)Vt +

∫ t+h

t
ǫλ(t+ h− s)dLυ,τ

λs .

Hence

Et

(
[Y ]c[t,t+h]

(
1− Zt+h

Zt

))
= ǫλ(h)Vt Et

((
1− Zt+h

Zt

))

︸ ︷︷ ︸
=0

+ Et

(∫ t+h

t
ǫλ(t+ h− s)dLυ,τ

s

(
1− Zt+h

Zt

))

= Et

(∫ t+h

t
ǫλ(t+ h− s)dLυ,τ

s

(
1− Zt+h

Zt

))
.

For the jump part of the quadratic variation, we get

Et

(
[Y ]d[t,t+h]

(
1− Zt+h

Zt

))
= Et




∑

t≤s≤t+h

(∆Js)
2

(
1− Zt+h

Zt

)
 .

�
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Proof of Proposition 8 Since the jumps come from a Lévy process, the conditional expectationEt

equals the unconditional one and we get

V RPQ,d
t,t+h =

1

h


Et


 ∑

t≤s≤t+h

(∆Js)
2


− E

Q
t


 ∑

t≤s≤t+h

(∆Js)
2






=

∫

R

x2νJ(dx) −
∫

R

x2νQJ (dx),

whereνJ(·) andνQJ (·) are the Lévy measures of the Lévy processJ underP and underQ, respec-
tively. �

Proof of Proposition 9 Due to the independence ofυ andτ , we get

Et

(∫ t+h

t
ǫλ(t+ h− s)dLυ,τ

λs

)
= λE(L1)

∫ t+h

t
ǫλ(t+ h− s)Et (υλs−)Et (ξλs−) ds.

Under a structure–preserving measure change, we have

E
Q
t

(∫ t+h

t
ǫλ(t+ h− s)dLυ,τ

λs

)
= λEQ(L1)

∫ t+h

t
ǫλ(t+ h− s)EQ

t (υλs−)E
Q
t (ξλs−) ds.

Hence

Et

(∫ t+h

t
ǫλ(t+ h− s)dLυ,τ

s

)
− E

Q
t

(∫ t+h

t
ǫλ(t+ h− s)dLυ,τ

s

)

= λ

∫ t+h

t
ǫλ(t+ h− s)

(
E(L1)Et (υλs−)Et (ξλs−)− EQ(L1)E

Q
t (υλs−)E

Q
t (ξλs−)

)
ds

= λ

∫ t+h

t
ǫλ(t+ h− s)

(
E(L1)Et (υλs−ξλs−)− EQ(L1)E

Q
t (υλs−ξλs−)

)
ds.

Hence, we see clearly that the stochastic proportionalυ and the density of the time changeξ play the
same role in determining the dynamics of the variance risk premium. Now, we defineηt = υλt−ξλt−.
Then

Et

(∫ t+h

t
ǫλ(t+ h− s)dLυ,τ

s

)
− E

Q
t

(∫ t+h

t
ǫλ(t+ h− s)dLυ,τ

s

)

= ηυ,τt

(
E(L1)− EQ(L1)

)
(h− ǫλ(h))

+ λ

∫ t+h

t
ǫλ(t+ h− s)

(
E(L1)Et (η

υ,τ
s − ηυ,τt )− EQ(L1)E

Q
t (ηυ,τs − ηυ,τt )

)
ds.

Note thatL is a subordinator and, hence,E(L1) > 0. Also, under the structure–preserving change of
measure, the predictable compensator ofL changes and, hence,E(L1)−EQ(L1) 6= 0. This concludes
the proof. �
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Proof of Corollary 10 Throughout the proof we assume thats ≥ t. Further, we skip the superscript
and writeηt := η

(i)
t for ease of exposition. Then we have

Et(ηs − ηt) = Et

(∫ s

t
dηu

)
= ab(s− t)− a

∫ s

t
Et(ηu)du.

Next, we define the random variableZu := Et(ηu). Then, we have

dZs = a(b− Zs)ds, Zt = ηt.

Hence, we get

Zs = Et(ηs) = Zte
−a(s−t) + b(1− e−a(s−t)) = ηte

−a(s−t) + b(1− e−a(s−t)),

and

Et(ηs)− ηt = ηt(e
−a(s−t) − 1) + b(1− e−a(s−t)) = −aǫa(s− t)ηt + abǫa(s− t).

Consequently, we obtain

λ

∫ t+h

t
ǫλ(t+ h− s) (E(L1)Et (ηs − ηt)) ds = E(L1)G(h)(b − ηt),

where

G(h) = G(h, a, λ) = λa

∫ t+h

t
ǫλ(t+ h− s)ǫa(s − t)ds

= −a+ λ

aλ
+ h− a

λ(λ− a)
e−λh +

λ

a(λ− a)
e−ah.

(20)

The results under the risk–neutral measure are essentiallythe same using the risk–neutral parameters
aQ, bQ. Also, we denote byGQ(h) := G(h, aQ, λ) the functionG defined in (20) evaluated at the
risk–neutral parameter. Altogether, we have

V RP
Q,(i)c
t,t+h = η

(i)
t F (1)(h) + F (2)(h),

where forκ1 = E(L1) andκQ1 = E(L1)

F (1)(h) := F (1)(h, λ, a, aQ, κ1, κ
Q
1 ) =

(
κ1 − κQ1

)(
1− ǫλ(h)

h

)
− 1

h

(
κ1G(h) − κQ1G

Q(h)
)
,

F (2)(h) := F (2)(h, λ, a, aQ, b, bQ, κ1, κ
Q
1 ) =

1

h

[
κ1G(h)b − κQ1G

Q(h)bQ
]
.

�

Proof of Corollary 11 Throughout the proof we assume thats ≥ t. Again, we skip the superscript
and writeηt := η

(i)
t for ease of exposition. Then we have

Et(ηs − ηt) = Et

(∫ s

t
dηu

)
= −a

∫ s

t
Et(ηu)du+ a(s− t)E(Lη

1).

So, when we defineb := E(Lη
1), we get exactly the same results as in the previous Corollaryand we

can define

G(1)(h) := F (1)(h), and G(2)(h) := F (2)(h).

�
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