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Abstract

This paper introduces a new class of stochastic volatilibglets which allows for stochastic
volatility of volatility (SVV): Volatility modulatedhon—Gaussia®rnstein—Uhlenbeck/MOU)
processes. Various probabilistic properties of (integtpt/MOU processes are presented. Fur-
ther we study the effect of the SVV on the leverage effect anthe presence of long memory.

One of the key results in the paper is that we can quantify iifqgact of the SVV on the
(stochastic) dynamics of the variance risk premium (VRPrébver, provided the physical and
the risk—neutral probability measures are related thraugtiucture—preserving change of mea-
sure, we obtain an explicit formula for the VRP.

Keywords: Stochastic volatility of volatility, Leévy process, Oreat—Uhlenbeck process, variance
risk premium, supOU process;

JEL classification: C10, C13, C14, G10.

1 Introduction

Stochastic volatility (SV) is one of the key concepts in ficiaheconometrics and has been studied
extensively in recent years. Numerous empirical studige hevealed the fact that asset price volatil-
ity is time—varying and exhibits clusters, and a good viitatmodel is therefore essential in various

applications such as portfolio selection, option pricimgl aisk management.

This paper contributes to the growing literature ammtinuous—timestochastic volatility models
by introducing a new class of stochastic volatility modelsich allows forstochastic volatility of
volatility. Here we view stochastic volatility of volatility as exps#sy the possibility or fact that
there is greater variability i.e. more volatility in the dagtructure under study than might initially
be surmised. In modelling terms this means that we consideinitial thinking as embodied in a
(classical) SV model and want to describe the extra vaiigliy a further source of randomness.

Clearly, there are many classical SV models which can sextkeabase SV process in introduc-
ing stochastic volatility of volatility. Here we have deeitlin favour of the non—-Gaussian Ornstein—
Uhlenbeck (OU) process, which is driven by a Lévy subordinand was introduced by Barndorff-
Nielsen & Shephard (2001, 2002), for modelling squaredtilitya The reason for this choice is that
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1 INTRODUCTION

such models are appealing due to both their analyticalabéiy and their good empirical perfor-
mance. The former is due to the fact that OU processes areeddjina linear stochastic differential
equation, which can be solved explicitly. Also, the integdaOU process — which in the volatility
context represents the accumulated stochastic variabilier a certain time period — has an explicit
representation in terms of the OU process itself and thendyilzévy process. The latter property
has been revealed in various empirical studies: For instaBarndorff-Nielsen & Shephard (2002)
showed the good empirical performance of superposition®Wfmodels for modelling stochastic
volatility in exchange rate data; Nicolato & Venardos (2DfiRused on derivative pricing based on
OU volatility models, and recently Benth (2011) showedthgiplicability in commodity markets.

Another interesting feature of Lévy—driven OU processethat their extreme behaviour can be
rather diverse, since it is determined by the tail behaviafuthe increments of the driving Lévy
process, see e.g. Fasen et al. (2006), Kluppelberg & Lin(@810). Note also that recent empirical
research by Christensen et al. (2011) based on ultra highdre asset price data suggests that rapid
price movements might be often caused by rapid movementseirvalatility rather than by price
jumps. This finding calls for new classes of stochastic Wdlatmodels which can account for such
rapid moves.

In this paper, we use OU processes driven by a Lévy subdatina the base model for stochastic
volatility. In a second step, we introduce stochastic vidhatof volatility by volatility modulation
of the driving Lévy subordinator. This can be done in threg/sv Integrating an additional volatility
process with respect to the Lévy subordinator, or applgiagpchastic time change to the subordinator,
or combining these two forms of volatility modulation. Theme obtains &olatility modulated Evy
process. Such a volatility modulated Lévy subordinatdhén used as the driving process of an OU
process, which results invelatility modulated OUVMOU) process. The VMOU is then used as a
new stochastic volatility process in an asset price model.

The focus in this paper on the new class of models based on Vg@iOtesses reflects our view-
point that a concrete full specification of what is meant blatitity of volatility has to be relative to
a given or chosen basic volatility model so that volatilifwolatility means variation beyond what is
contained in the base model. Thus, for instance, the quadmiation of the volatility in the base
model is not volatility of volatility in the sense of that &n

1.1 Related literature

Before we study our new stochastic volatility model in moet¢adl, we briefly set it into perspective
to other stochastic volatility models in the recent litarat

The first generation of SV models was established with thedam accounting for the well—
know stylised facts of asset returns such as time varyingtiit}, volatility clusters, the existence of
a leverage effect, see Nelson (1991), i.e. the (typicalbatiee) correlation between asset returns and
their volatility, see e.g. Barndorff-Nielsen & Shephar@@Z, 2012), Ghysels et al. (1996), Shephard
& Andersen (2009), Shephard (2005) for a review. In a nexi,dtee classical stochastic volatility
models were extended to allow for jumps, long memory, lomgaemponents and non—linear mean—
reversion etc., see e.g. Comte & Renault (1998).

Also, the existence of implied volatility smiles and skevesided from option prices clearly indi-
cated that SV is an essential component in an asset pricidglysee also Cox (1996), Dupire (1994),
Hagan et al. (2002), Heston (1993), Stein & Stein (1991). drtigular, the class afultifactor SV
models is important to mention in this context. They form e/vetural generalisation of the classical
one factor SV models and are very successful in the contesptain pricing, see e.g. Christoffersen
et al. (2009, 2008).
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Clearly, various additional random factors can be intreduin a stochastic volatility model in
different ways. The classical multifactor SV models usualbrk with a linear combination of SV
models. However, an extra source of randomness could aladdsx to reflect atochastic leverage
component, see Veraart & Veraart (2012).

Alternatively, we can work with a richer random structuretlie volatility itself, the approach
we pursue in this paper. This route has also been takenrdayligleddahi & Renault (2004). They
introduced a semiparametric class of volatility modelsalihis characterized by an autoregressive
dynamic of the stochastic variance, which is calteglare—root stochastic autoregressive volatility
(SR-SARV) and which is shown to be closed under temporaleagion.

It is clear that there are various ways to construct mulitia&SV models (both in discrete and
in continuous time) and the question of which approach isepable will crucially depend on the
specific application.

Our new class of VMOU processes can be viewed as a specifiéfamtot SV model, where
the additional source of randomness enters as the vglatilithe driving process of the SV. The
interesting feature of our particular choice of a multitac®V model is that it can be linked explicitly
to the so—calle@ariance risk premiunfVRP), which has recently attracted a lot of research attent
Recall that an investor faces at least two sources of unieBftavhen investing in a security: the
uncertainty about the return (which is described by thernetariance) and the uncertainty about the
return variance itself, see Carr & Wu (2009). It turns out the risk associated with the uncertainty
in the variance is measured by the VRP and recent empirice{ imdicates that the VRP exhibits
stochastic dynamics itself, see for instance Carr & Wu (20B6llerslev et al. (2009), Todorov (2010)
and Drechsler & Yaron (2011). This finding raises the questibhow such stochastic dynamics of
the VRP can be modelled. We will later give one possible ansavthis important question.

1.2 Key results and outline

Next we list the main contributions of the paper, before wecdbe them in more detail in the follow-
ing sections.

First, we find that our new volatility model is highly anabgily tractable: We derive its cumulant
function and second order structure explicitly, and we gegpaesentation result for the integrated
squared volatility process. The latter result reveals tiiiong term behaviour of integrated volatil-
ity in our new modelling framework exhibits volatility cltess itself. Further, it transpires that the
additional volatility of volatility component has an impant impact on both thememory i.e. on the
autocorrelation structure, of the volatility process andhe possibility of incorporating the leverage
effect into the asset price model, see Section 2 for morelsleta

Next, we discuss changes of measure to a risk—neutral plitpabeasure (in an incomplete
market) and focus in particular on so—called structuresgareng measure changes. We then explain,
how option prices can be computed in our new modelling fraartkvbased on Fourier inversion
techniques, see Section 3.

Section 4 contains the important result which links thelsastic volatility of volatility component
to the dynamics of theariance risk premium More precisely, in the special case where the risk—
neutral and the physical probability measures are linkea styucture—preserving change of measure,
we can show that the stochastic volatility of volatility slgl determines the stochastic dynamics of
the variance risk premium. The fact that the stochastictiVidfeof volatility drives the variance risk
premium has been demonstrated in the context of an equitibnodel based on economic theory by
Bollerslev et al. (2009) and Drechsler & Yaron (2011). HoesmVt is interesting to see that we can
confirm this result (under suitable assumptions) based amedypprobabilistic model.
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In this paper, we moreover show that the additional votgtof volatility can actually be used to
add additional memory to a SV model. An alternative methaodfiowing for both long memory and
additional stochastic volatility of volatility simultanasly is presented in Section 5, where we discuss
an extension of our new modelling framework to the claseatdtility modulated supOU processes

Section 6 concludes and gives an outlook on future resediod.proofs of our main results are
relegated to the Appendix.

2 The new modelling framework

Throughout the paper, we assume that the logarithmic aswetYy = (Y:):>¢ is given by an Itd
semimartingale

dY;f = atdt + Ut—th + th, (1)

which is defined on a probability spa¢@, F, (F;):>0,P), wherea = (a;):>¢ iS a predictable drift
processo = (o¢)i>0 IS a cadlag stochastic volatility process ahd= (.J;);>¢ is the pure jump
component of the 1td semimartingale. Note that an Itd seaniingale is defined as a semimartingale
whose characteristics are absolutely continuous witheasp the Lebesgue measure (see e.g. Jacod
(2008)).

The variation of financial markets, which is often referreés squaredolatility, is usually mea-
sured by means of the quadratic variation of the logarithmnice process. In our modelling frame-
work, the quadratic variation (QV) (denoted g}y is given by

V=07t + > (AT, )

0<s<t

whereg?™ = fot o2ds is the integrated squared stochastic volatility processvamereA J, = J, —
Js— denotes the jump of at times. Taking the square root of the quadratic variatighiy']; leads to

a measure of theolatility of the asset price. In the following, we will work with a spgchew model
for the squared volatility process which is given by a vditgtimodulated non—Gaussian Ornstein—
Uhlenbeck process.

2.1 The volatility modulated non—Gaussian Ornstein—Uhlebeck process

Barndorff-Nielsen & Shephard (2001, 2002) proposed to rhtfdesquared volatilityy? by a non—
Gaussian Ornstein—Uhlenbeck (OU) process. In the follgwime will refer to such a model as
BNS model Here, we generalise such OU processes to allow for an additstochastic volatility
of volatility component The new class of processes is callamatility modulatednon—-Gaussian
Ornstein—UhlenbeckYMOU) processes. They are defined as follows.

Fort >0, leto? := V,"" := V;, where

AV, = —AVdt + LY, 3

where\ > 0 is a constant, thenemory parameterand L*"" is the background driving volatility
modulated Lévy process given by

t
dLy7 =wvx—dL,,,, where T = / &s_ds, 4)
0
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and wherg(L;):>¢ is a Lévy subordinator with characteristic triplet 0, v), i.e.
E(exp(i6L;)) = exp(tyr(9)), where Yr(0) =0y +/ (ewz — 1) v(dz),
0

wherey > 0 andv is a Lévy measure off0, o) satisfying [;°(z A 1)v(dz) < oo and also
Jo " (og(z) v 1)v(dz) < oco.

Further(v;),~, and(&;),~, denote stationary positive, cadlag stochastic (vatigtiprocesses. In
addition, we assume th&t v andr are mutually independent.

Note that we restrict ourselves to time change processeich are absolutely continuous. An-
other popular class of time change processes is the classvgfdubordinators. However, it is well—
known that a Lévy subordinator time—changed by an indepenidévy subordinator is itself a Lévy
subordinator, see e.g. Sato (1999, Theorem 30.4). Therdfiis case is already included in our
modelling framework.

The processes? and+ can be interpreted as tiséochastic variability of varianceln the follow-
ing, we will often also refer ta, 7, £ asstochastic volatility of volatilityto simplify the exposition.
Clearly, wherv;, = 1 andr; = t, we obtain the well-known BNS model. Bothandr can be driven
by a Brownian motion or (and) a jump process. E.g. we can thinkbeing a Gamma-OU or IG-0OU
process, see Barndorff-Nielsen & Shephard (2001) or a seqoat diffusion, see Cox et al. (1985).

Note that the volatility modulated Lévy proceEs” is in fact volatility modulated in two ways:
We have a stochastic integrandvhich scales the jump size of the subordinator by a stoachfstior,
and we have a time change proceswhich determines the speed at which the jumps occur. While
stochastic proportional and temporal scaling are, undéatsa regularity assumptions, equivalent in
a Brownian framework and for stable Lévy processes, seaave& Winkel (2010), this is however
not the case for general Lévy processes and, in partiautarfor a general Lévy subordinator — the
case we study here. In a concrete empirical applicationjghtrwell be sufficient to focus on one
source of stochastic volatility of volatility only, but iruotheoretical investigations, we wish to focus
on the more general case.

Remark It is important to note that there are at least four differematys to include an additional
stochastic component in a non—Gaussian OU process, twoiohvwiave been presented above. Al-
ternatively, one could make the memory parametstochastic and could study models of the form
dV; = =\ Vidt+dLs, where), is a positive stationary process. Closely related to therla the con-
cept of supOU processes and the need to model (quasi) logg dapendence, see Barndorff-Nielsen
& Shephard (2002), and these two ideas could be combinedingke sonstruction. We come back
to this case in Section 5.

Still another possibility would be to letV;, = V,_dU;+dL,, where(U, L) is a bivariate Lévy pro-
cess, see e.g. Behme et al. (2011). However, this case andgbef a stochastic memory parameter
A+ appear less appealing in the present modelling context suecdo not get an explicit formulae for
the integrated procedg§™ = fot Vsds, which is regarded as a key quantity in financial econongetric
Such a representation is possible for our model defined iar{@)(4) and will be described in more
detail below.

It turns out that asset price models where the logarithmietgsrice is given by an Itd semimartin-
gale and the squared stochastic volatility process is diyemVMOU process generally do not belong
to the class of affine models as introduced by Duffie et al. $208ee also Kallsen (2006) for a survey.
However, ifv is constant and the density of the time chaggeaffine, then we obtain an affine model.
Let us study a concrete example of such an affine represamtadixt.

5
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Example A stochastic volatility model which accounts for stochastlatility of volatility and the
leverage effect, i.e. the (possibly negative) correlakietween the asset price and the volatility, could
be defined by

dY; = aydt + \/Vi—dW; + pdLs,,,
dV; = —AVidt + vye_dL,,,,

v =1,

dry = & dt,

&y = (B — &)dt +v\/&dBy,

wherep < 0, B denotes a Brownian motion (independentlof, «, 5,y > 0 denote positive constants
and the other quantities are defined as before. Note thatrtbgel belongs to the class affine
models since the the BNS model itself is affine and the newitjaddl) time change is given by the
time integral of an affine process, see Keller-Ressel (2008)

In the following, we will study the key properties of our nevodelling framework.

2.2 Properties of the volatility modulated Lévy process

Let us briefly discuss the main properties of the volatilitpdualated Lévy procest”:", which is the
driving process of our new class of VMOU processes.
In the following, we will denote by.eb the Lebesgue measure.

2.2.1 Stochastic proportional

First, we focus on the process

t
Lt = / ve_dLsg,
0

whereld(-) denotes the identity function andand L are independent. Then the characteristic func-
tion for a constant € R is given by

E [exp (10231%)] =& [& [exp (i02%) o] ] = & [enp ([ vrtovias) .

Also, the characteristic triplet of the semimartingale’? is given by(A(L"/?),0, Leb @ v(L¥19)),
where

ALV, = ’y/t vsds,
0
v(LV1),(G) = /]Ig(vt_ac)u(dac),

foranyG € B with 0 ¢ G, see Kallsen & Shiraev (2002, Lemma 3).
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2.2.2 Stochastic time change
Next, we study the process
1,7
Lt = L’Tt = Lf(;t587ds7

wherer and L are independent.

Recall that we call a stochastic processadapted w.r.t- (or (7;):>o—adapted) ifX is constant
on any intervalr;_, ;] for any¢ > 0. Note that the time change satisfigs= 0 andr is continuous.
In that case[ is T—adapted, see e.g. Jacod (1979). As soon as we have adastedne the time
change, then important properties of the base process oaeryto the time—changed process. In
particular, we get

E [exp <i9Lt1’T)] =E [E [exp <i9Li’T) TH = E[exp (¢¥r(0)7)],

for a constant € R, and L, has characteristic triplétyr, 0, 7 ® v). Also, thedifferential character-
istic triplet (w.r.t. the Lebesgue measure) is given(hy.,0,{. ® v)), see Kallsen & Shiraev (2002,
Lemma 5) and Barndorff-Nielsen & Shiryaev (2010, Theore#).8.

2.2.3 Combined volatility modulation

For the doubly volatility modulated Lévy process, we genirthe above results (using the indepen-
dence ofL, v andr) that

E[exp (i0L7)] = E [E [exp (ieL}”) ‘ v, TH _E {exp < /0 t sz(evs_)du)]

—E [exp < /0 t m(evs_)ss_dsﬂ |

Further,L'™ has characteristic triplgtA(L""7),0,7 @ v(L"7)), where
Tt
ALY, = ALV, = 7/ vgds,
0

v(LYT)(G) = v(L1), (G) = / le(vr,_z)v(dr),
foranyG € Bwith 0 £ G.

2.3 Properties of the VMOU process

We have defined the VMOU process as the solution to the stocltierential equation given by
(3). From standard arguments, we can deduce the followingsentation:

t
Vi = Voe M+ /0 e M=) qryT,

Then, the stationary version &f can be written as

t
whereL"" is suitably extended to the negative half line (see Bariiddidlsen & Shephard (2001)).

Note that a VMOU processes can be regarded as a special caseély semistationary4SsS)
process, which has recently been introduced by Barndagfshin et al. (2010).

7
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Remark The model specification of the stationary VMOU processesheproperty that the marginal
distribution of V' is independent of the parameter Otherwise put, indicating the dependence)on
by writing V' (), i.e

t t At
Vi(A) =V, = / e_)‘(t_s)dLK;T = e_)‘t/ eAdeK;T = e_)‘t/ edLyT = Vy(1).
So we have seen that the law1gf(\) (which by the stationarity does not dependtpequals the law
of Vj; (1). Due to the stationarity, the law &fy; (1) equals the law ot} (1), which implies that it
does not depend ok Since the parameterhas no impact on the marginal distributioniof but only
determines the autocorrelation structure, see Proposttioelow, we can interpret as thememory
parameter

Clearly, the Lévy subordinatof is a Markov process. However, the Markov property is not
preserved under stochastic integration or general stoctielse change. In particulak/ is no longer
a Markov process. However, the bivariate prooggs) satisfies the Markov property if is itself a
Markov process and, = ct for a constant > 0.

Due to the high analytical tractability of our new model tiheu@acteristic function of” conditional
onwv andr can be directly computed (hence we omit the proof).

Proposition 1 The conditional characteristic function of the VMOU is givay

U,T>
= exp (/ (e Ay )dT)\s> = exp </ A G IV SV /\d8>

Also the second order structure Bf can be easily derived. Throughout the paper, we will use the
following notation. Fori € N, we denote theéth cumulant of the Lévy subordinatdr; by x;(L;)
(provided it exists). Clearly, we have(L;) = tx;(L1) and, in particular, we write; := %ni(LA) =
ki(L1). Also, we will writey(h) = Cov(vi—&—, V(pyn)—&(t+n)—) fOr b > 0.

t

607 (0) = E(exp(i0Vi)| v,7) = E (exp (w /

—00

e_A(t_S)UASdLTM)

Proposition 2 The mean, variance and autocovariance of the stationarggesl” are given by
E (Vi) = k1E(vo)E(&o),

1 0 0
Var (V) = graE () B(&o) +f [ [ e*ern(fo — ylidudy,
1 0 Ah
Cov (Vi, Vign) = e_khiﬁzE (v5) E(&) + e_kh'i%/ / ee’y(|lz — yl|)dxdy.

Proof The proof is given in Section A.1 in the Appendix. O

Recall that simple OU processes as well as the often used R ss (Cox et al. (1985), Heston
(1993)) have an exponentially declining autocorrelationction and, hence, do not allow for longer
memory in the volatility process. However, many empiri¢atges reveal that medium or long mem-
ory is an important property of stochastic volatility anasld be accounted for by a realistic model.
From the autocorrelation structure we have derived in Fsitipo 2 we see clearly that the stochastic

8
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volatility of volatility components indeed generate a msl@vly decaying autocorrelation function
compared to a simple OU process.

As already indicated, an alternative method to introduog(er) memory in an OU process is the
concept of superposition studied by Barndorff-Nielsen &fard (2002). In fact, this concept can
also be extended to the framework of a VMOU processes andilliscussed in detail in Section 5.

Finally, we state a representation result for the incresmehts VMOU process.

Proposition 3 For anyh > 0, we have
t+h
Vien — Vi = (e—”l — 1) V, + / e M=) g (5)
t

Proof The proof is straightforward and hence omitted. O

2.3.1 Visualisation of some key model properties

In this section we aim to visualise the main features of theQ\Vprocess by a brief simulation study.
Let us focus on the case where the time change is chosen te ligetftity function, i.e.7y; =

Id(At) = At. Hence the volatility modulation only appears through lséstic proportionab, which

is chosen to be a non—Gaussian OU process itself. More phgcige simulate the following three

processes:

dVHT = —AVdt + dLy,,
v}, = A2, dt +dL)
dV,7 = —\Vidt + vp—dLy,.

We simulate5000 observations with a step size dfusing the Euler scheme. Note that the driving
Lévy subordinatord. and LV are chosen to be two independent Gamma processes. Retdli¢ha
I'(a, s)—density function is given by (z) = Sarl(a) z%1e=/5 which implies that the corresponding
random variable has a meanwfand a variance afs?. Here we specifiA = 0.01 andL; ~ I'(a, s)

for « = 10 ands = 0.1. Further, we choosa®) = 1 and L&“) ~ T'(ag, s3) with a; = 0.1 and
sy = 1/ay. Note that this parameter choice ensures that? andV*/¢ have the same mean.

The simulated paths of the three processes and their condisyy returns are depicted in Figure
1. We can clearly spot the various theoretical propertiehawe just discussed: First, the volatility
of volatility introduces additional volatility in the semshat we obtain a process, the VMQU¢,
which has volatility clusters itself. This fact becomesheatapparent when comparing the plots of
the returns of the two process&s-/¢ and v with the returns of the VMOU procesg¥-/¢. Note
also, that bursts in volatility can build up more graduatiythe new modelling framework, whereas
in a standard BNS model we obtain a sudden upwards jump d@chiatocal maximum immediately,
followed by an exponential decay.

In Figure 2 we can see how the presence of a stochastic itglatiimponent in an OU process
can increase the memory in the sense that the autocorrefatiction decreases more slowly than for
a simple OU process.

The case of/'", where the additional volatility enters through a stodiasine change does
not require further visualisation, since it easy to imadiog volatility clusters can be obtained by
changing the “speed” of the OU process stochastically.

9
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1,Id

(a) Simulated process, (b) Increments of/,"'*

(c) Simulated process,: (d) Increments ob:

(e) Simulated procesg”’* (f) Increments ofi/;""¢

Figure 1: Simulation study: (a) & (b) Simulation of the OU pessV /¢ and its increments; (c) &
(d) Simulation of the volatility of volatility process,; and its increments; (e) & (f) Simulation of the
VMOU processV/ v/¢ and its increments.

2.4 Properties of the integrated VMOU process

Next we study thentegratedstochastic volatility (IV). IV is regarded as a key objectinterest in
financial econometrics since it reflects the accumulatedtiftoous) quadratic variation over a certain
period of time (usually a day). So, this section analysespaoperties of this key quantity in our new
modelling framework. In the following, we will use the natat V+ = (V,");>, for the integrated
process

t
Vit = / Vids.
0

Also, we define

ex(t) == % (1 — e‘”) .

First of all, we derive a representation result for the irabgd process.

10
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Figure 2: Autocorrelation functions 8t"’%, vy, andV;”'".

Proposition 4 The integrated process can be written as

1

t
Vm=ex(t)Vo +/ ex(t — s)dLyT =
0
The proof of the above Proposition is straightforward ahdrefore, not given here.

These different representations Bf" are interesting, since they shed some light on the joint
behaviour of” andV ™. In particular, we can deduce some results on co—jumps dntegaation (as
introduced by Granger (1981)). Clearly,andL};" have identical jumps (breaks), they co—break, i.e.
AV, = ALY, butV andL}}" are not cointegrated. Howevér," and L}, are in fact cointegrated
since

AV =Ly =Vo - Vi

l.e. we have found a linear combination of the non—statipmaocessed’+ and L}"" which is sta-
tionary. So, roughly, for large, A\V,™ will have the same distribution ds,,’, where the error in this
approximation is a stationary process, which is givenlpy- V;. Now we can clearly see which
influence the stochastic volatility of volatility has in thew modelling set up: While the long—run
behaviour of integrated volatility in the classical BNS rebid described by the background driving
Lévy process, our new model allows for a greater flexibilityhe sense that it can allow for processes
which have stationary, but not necessarily independemeiments in the long run behaviour of the
integrated variance. In particular, the long—run behavasuntegrated volatility can exhibit volatility
clusters itself due to the new component of volatility ofatdity. This is clearly an important aspect
of the additional volatility of volatility component.

Also, sinceL’" is a nonnegative process, the integrated prot&sss bounded below by the
quantityey (t)Vo.

Note that we can use formula (5) to derive a representatisultréor the increments of the inte-

11
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grated process: Far> 0 we get

t+h
Vt:h_vj :Q(h)VtJr/t ex(t+h —s)dLy]. (6)
The various cumulants of the integrated process can nowdilg darived using the representation
result from Proposition 4.

2.5 Some comments on model identification

When introducing an additional volatility component in atJ @nodel, we have to ask ourselves
whether such models are in fact identifiable. This questimm loe addressed via the characteris-
tic functional of the VMOU processes. Note in particulartthmaorder to ensure that our model is
uniguely identifiable, we have to impose parameter regiriston, v, andr. It might be difficult
to distinguish between the two sources of stochastic Vityatf volatility. In order to shorten the
exposition we present the results for the case when botltsswf additional volatility are present.
In a concrete application, however, it might be sufficienddbeither or the density processto one
and work with one source of stochastic volatility of voligilonly.

Further, can we test from real data that an additional Jijadomponent is present in the data?
In Section 3 we will answer this question by linking the viigt of volatility component to the
variance risk premium. However, without using any risk-tredunformation available to us through
option prices, how can we distinguish between a non—Gaug¥ihprocess and a volatility modulated
non—Gaussian OU process statistically?

One way to answer this question is to focus on the quadratiatian of the VMOU process,
which is given by

V], = /0 02, _d[T],,..

We know that for a Lévy subordinatdr, [L] is again a Lévy subordinator.

In the case that, = t, we see thafl/| has independent incrementsiis deterministic. As soon
aswv is a stochastic process, the independent increment pyogenerally does not hold any longer.
Also, if v was a deterministic function which is not just a constarentli’] does not have stationary
increments any longer. A practical implication of thesaitisss that, in principle, we can estimate the
quadratic variation of the spot volatility proceBs(based on a spot volatility estimator, see e.g. Ait-
Sahalia & Jacod (2009), Bandi & Reno (2008), Kristenserl(20Lee & Mykland (2008), Veraart
(2010)) and test statistically whether the estimdiéphas independent and stationary increments.

In case ofv = 1, we havgV], = [L].,,, which is generally not a Lévy subordinator anymore since
the independent increment property is violated. As beftinig, property may be tested statistically
based on an empirical estimate[f], which is constructed based on a spot volatility estimator.

2.6 Leverage through stochastic volatility of volatility

Next, we show that the additional stochastic volatility ofatility component can be used for intro-

ducing the leverage effect into stochastic volatility miede a novel way. The (usually negative) cor-
relation between asset returns and volatility has beendf@aumany empirical studies, see e.g. Black
(1976), Christie (1982) and Nelson (1991) among others mnade recently, by Harvey & Shephard

(1996), Bouchaud et al. (2001), Tauchen (2004, 2005), Y0%pand Bollerslev et al. (2006).
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3 CHANGE OF MEASURE AND OPTION PRICING

So far, leverage type effects have usually been introdugetirbctly correlating the driving pro-
cess of the volatility with the driving process of the assatgs (as e.g. in the Heston (1993) model).
Introducing leverage in the BNS model is slightly more coigaiked since the volatility is driven by
a subordinator and the price is driven by a Brownian motioiciviare inherently independent from
each other (by the Lévy — Khintchine formula). Hence BarffeNielsen & Shephard (2001) sug-
gested to add a jump component to the asset price, whiches @iy the subordinator which drives
the volatility multiplied by a (negative) constant. Suchiraisture assumes linear dependence between
asset price and volatility.

However, having an additional random factor in the stoébastatility model, i.e. the stochastic
volatility of volatility, makes it possible to introducederage type effects indirectly and independently
of the fact whether we want to have a jump component in the hfodghe logarithmic asset price. In
order to illustrate this, let us look at a small example.

For simplicity, we discard jumps in the price process in tbkotving and show that a leverage
effect can be solely introduced by a diffusion component.

Example We consider the following model

db, = /ViedWy,
dVy = =AVidt + vy _dL
Tt = t,

dv = a(f — v)dt + v+/ve By,

TAt?

for parameters\, o, 5,7 > 0 and a Brownian motiorB = (By);>o with d[B, W], = pdt, for

p € [—1,1] \ {0} and all the other quantities are defined as above. For thiginibe correlation of
the price and the volatility and the third moment of the pdea be expressed in terms of the model
parameters and, in particular, we get

Cov(P;, V;) = E(PV;) # 0 and Cov(P,, P?) =E (P}) #0.
Note that the proof of the result is given in Section A.2 of &mpendix.

So, we see that we can have a hon—zero correlation betweasgbeprice and the squared volatil-
ity, even if the volatility is jump driven and there are no josnn the logarithmic asset price.

Similarly, when we study the time change case, we can int®dueverage effect in the diffusion
part by correlating the Brownian motion driving the assétgmwith a Brownian motion driving the
time change.

3 Change of measure and option pricing

So far, we have studied various model properties under tlgsigdi probability measure. Next, we
discuss how a change of measure tsk—neutralprobability measure can be carried out, and we will
furthermore describe how option prices can be computedrimew modelling framework.

3.1 Risk—neutral probability measures in incomplete markées

Recall that we denote iy the physical probability measure on the filtered probabdpace given by
(Q, F,{F:},P). Let Z denote a positive martingale with mean 1. Then we define a equialent)

13



3 CHANGE OF MEASURE AND OPTION PRICING

probability measure fot, A > 0 by
Qt(A) = E(HAZt)) = / ZdIP, forall A € F;.
A

Clearly,Q; is a probability measure af; with

dQy
—= =2 )
Furthermore, sinc€ is a martingale, we hav@;.,(A) = Q;(A) for all A € F;.

Recall that we call a probability measugewhich is equivalent td the risk—neutral probability
measurdf all discounted price processes dpemartingales. In complete markets, such an equivalent
martingale measure is unique. However, in this paper wesfocuanincomplete markeand, hence
in order to do arbitrage—free option pricing, we need to fimsk—neutral probability measure, which
is generally not unique. Thus the arbitrage—free optioogsrdepend on the choice of the probability
measure. This implies that different choices of the riskiirag probability measure typically result in
different option prices. Or more generally, we get a rangepiifon prices depending on the choice
of the risk—neutral probability measure. In the followirvge will denote byQ the set of all risk—
neutral probability measurefor our modelling framework. So which risk—neutral meassineuld
one choose? In the literature, some common classes of galdimeasures are often used, such
as martingale measures obtained from the Esscher transfioenminimal martingale measures, the
minimum entropy martingale measures and the class of ateigbreserving martingale measures.
Such measure changes have been studied in much detail byedu#b&garra (2009) in the context
of the BNS model.

3.1.1 Structure—preserving change of measure

Let us focus on the class of structure—preserving changeseatsure in more detail. Suppose the
stochastic processes describing the asset price, theastackholatility and the stochastic volatility of
volatility components follow a set of stochastic diffei@hequations (SDE). We call a change of mea-
surestructure—preservingf also under the new probability measure we have the sametste of the
SDEs. That means that if a SDE was driven by a Brownian moti@l@vy processes, this property
is preserved under the change of measure, but the corréagamddel parameters typically change,
and also the distribution of the Lévy process might changarthermore independence properties
between stochastic processes carry over in the case ofcéusedpreserving change of measure.

Nicolato & Venardos (2003) derived a complete charactgoisaf the class of structure—preserving
changes of measures for the BNS model. Also Veraart & Ve(@aft?) studied structure—preserving
changes of measure for the (generalised) Heston modele 8incmodelling framework is a direct
generalisation of the BNS set up, and the volatility of itgtcomponents enter as independent fac-
tors, we can obtain structure—preserving changes of medsuour modelling framework as soon
as the stochastic volatility of volatility component$ and¢ follow either a non—-Gaussian OU pro-
cess or a square—root diffusion process, by combining thdtsein Nicolato & Venardos (2003) and
Veraart & Veraart (2012). More precisely, one concretecstme—preserving change of measure can
be obtained by constructing the product measure of a stesgveserving change of measure for the
BNS model with a structure—preserving change of measurthéostochastic volatility of volatility
components.

14



3 CHANGE OF MEASURE AND OPTION PRICING

3.2 Option pricing

A popular method for computing option prices is based on @q@dce or Fourier transform of the asset
price. Such methods have been introduced by Heston (1993)are subsequently been studied by
Carr & Madan (1999), Lee (2004), Lewis (2001), Raible (208@ongst others.

Let us briefly describe the main idea of this approach as ewiewed by Nicolato & Venardos
(2003). Suppose we would like to compute the price of a Ewaomgtion with payoff functior(Yr)
at time of maturityl’ = ¢ + h for b > 0. Recall that the stock price is given BBy = Spexp(Y;).
l.e. for a European call, we hav€Yr) = (Spexp(Yr) — K)* = (Sp — K)™*, whereK denotes the
strike price. Then the option price at time< 7' = ¢ + h is given by

Cr = B2 [T 0e(¥p)| | = B [ Me(Yin) 7]

wherer > 0 denotes the risk—free interest rate. Nowgldenotes the Laplace transform of the payoff
function ¢ of an option, i.e.

see Raible (2000) for explicit forms. If the Laplace tramsfef the logarithmic asset price, which we
denote by, is known, then the option pria€, can be computed using Fourier inversion, specifically

e—rh (p+1i0o R
C; 5l L_ioo d(2)c(z)dz,
wheregp is a constant belonging to the set where botnd ¢ are defined (provided such a constant
exists).

Here, we will show that a transform—based method can be wsedmputing option prices when
the logarithmic asset price is given by the generalised BN8ahwhere the squared volatility pro-
cess is a volatility modulated non—-Gaussian OU processrderdo do that, we derive the Laplace
transform of the integrated volatility process and of thggarice process, which are both obtained in
semi—analytic form.

Recall that we need to choose a risk—neutral probability smes). Here we work with a
structure—preservingchange of measure. To simplify the exposition, we hencenassihat the
model is directly specified under the risk—neutral probgbineasure. Further, throughout this sec-
tion, we will work with the following more specific model fohé asset price which is given by
Sy = Spexp (Yy) for

dYy = (u+ BVy)dt + \/ Vi dWi, (8)

whereu, 8 € R andV are defined as before (but now we assume that the definitidrve shodel holds
under the risk—neutral measug.

Before we derive the Laplace transformation of the pricegss, we formulate a condition which
ensures that the discounted asset peicES; (for r > 0) is a (local) martingale, where we follow
closely Nicolato & Venardos (2003). Applying I1td’s fornaylwe obtain the following dynamics for
the asset pricé:

1
dSy = Si— <btdt + \/Vt_th) , where by = 1+ <ﬁ T 5) V.
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4 VARIANCE RISK PREMIA

Hence, the discounted asset price is a (local) martingaledfonly if
by —r =0. 9)

Assuming the martingale condition holds, the Laplace fansation of the price process (pro-
vided it exists) can be determined in the form given in théfeing Proposition, the proof of which
is given in the Appendix.

Proposition 5 Let$(0) = EX(exp(0Y;,4)), for h > 0. Then
92
d(0) = exp <9Yt + Oph + ( + =

) ) 58 oo ([ xatrts. 00509
= oxp (oot (90 ) ervi) 52 forw (3 [ wastesnas) .
)

wheref (s, 0) := (80 + 0%/2)ex(t + h —
transform ofL.

vas— and wherey, denotes the log—transformed Laplace

Note that in the case whamnandr are deterministic, then we have an analytic formula for the
Laplace transform of the conditional distribution Bt In the stochastic case, the integral has to be
evaluated using Monte Carlo methods. Finally, we can usé-theier inversion formula presented
above for computing the option price based on our new sttichasdatility model.

4 Variance risk premia

So far, we have seen that the additional stochastic vtyadifivolatility component can be motivated
both from an empirical point of view when studying assetgdata under the physical measure, since
the additional component introduces more flexibility in behaviour of the integrated variance, and
also when studying option prices since the integrated neei@lso enters directly in the option pricing
formula.

In this section we will show that the additional stochastitatility of volatility component also
plays a key role in determining the dynamics of tlaiance risk premiunfVRP). We will demon-
strate that, under a structure—preserving change of nmmater stochastic dynamics of the VRP are
determined solely by the volatility of volatility comporten

4.1 General result

In order to understand the influence of the volatility of ity term even better, we study the
variance risk premiunfVRP), which has been studied extensively in the very retitarature, see
e.g. Carr & Wu (2009), Bollerslev et al. (2009), Todorov (@Q1Drechsler & Yaron (2011), Wu
(2011).

Recall that the variance risk—premium is defined as the wbdtyeeen the conditional expectation
of the quadratic variation over a future period in time untter physical and under the risk—neutral
probability measure, see e.g. Todorov (2010) for more @etdiherefore the standardised variance
risk premium over the intervat, ¢t + h| is given by

VRPS,, = 7 [Et([Y] tern)) — EL([Y] [t,t+h})] ,
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4 VARIANCE RISK PREMIA

whereE,(-) := E(:|F;) andQ € Q is a risk—neutral probability measure. Note that the VRRedep
on the particular risk—neutral probability meas@e

Since, we have an explicit formula for the integrated sqiiadatility process, we can specify a
fairly explicit general formula for the variance risk premm in the following Proposition, which is
proved in the Appendix.

Proposition 6 (i) LetQ € Q. The variance risk premium is given by

VRPS ., = % [Et (Ct,t+h) —EZ(C(t,t+ h))}
(10)
_ 1 Zith
= EEt (C(t,t—kh) (1 - >> ,
where
t+h
C(t b+ h) = / at+h—s)diT+ 3 (AL,

t

t<s<t+h

and Z is the martingale associated wifp through (7).
(i) The range of the variance risk premium is given by
{(VRPS,,,Q€ Q}.

Formula (10) contains a fairly explicit formula for the \amce risk premium associated with the
stochastic volatility model given by a volatility moduldteon—Gaussian OU process. In particular,
we see that the volatility of volatility component influesdbe dynamics of the variance risk premium
in quite a direct fashion through the procdss’.

Also, note that there are two parts of the variance risk puemiOne is due to the continuous
martingale part of the log—price and one is due to the jump pauthe following, we will denote by
VRP, the part of the VRP due to the continuous component in the aricl by’ R, the part
due to the jumpd/, i.e.

VRPZS, = & [B (1 + 1)~ B (et 4+ 1))
VRPSY, = 1 [B (Ut + ) ~ B2 (¢t +m)]
where
t+h
CE(t,t + h) = / ex(t+h — s)dLY7, Citt+h) = Y (A
t

t<s<t+h

Corollary 7 The continuous and the jump part of the variance risk prematgrgiven by

e 1 th o Zish
VRP 0, =+ t ex(t+h—s)dLY™ ) (1— 7|

1 Z
Qd _ t+h
VRP 0, = 7B > (AJS)2) (1— Z )

t<s<t+h

From this general result, we see that there are five stochasitesses which impact the variance
risk premium: The Lévy subordinatdr, the two SVV components andr, the jump process in the
logarithmic asset pricd and the martingaléZ. In the next section, we will formulate conditions
which will allow us to quantify their influence even more exiily.
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4 VARIANCE RISK PREMIA

4.2 Variance risk premia under structure—preserving changs of measures

It turns out that we can obtain an even more explicit resulthe VRP if we add the following two
assumptions.

(A1) The jump process in the asset price, denoted fig a pure jump Lévy process.

(A2) The risk—neutral probability measuf@ € Q is obtained by a structure—preserving change of
measure.

Proposition 8 LetQ € Q. Suppose/ is a pure jump Evy process under both and Q. Then the
part of the VRP due to jumps is given by a constant, in parigul

VRPt%ﬁh:/RxQVJ(dm)—/Rx%j?(dx),

wherev;(dx)dt and y?(dm)dt are the predictable compensators of the Poisson random uneas
associated withy underP and underQ, respectively.

Note that Proposition 8 clearly holds under the strongaurapsions (Al) and (A2).
Next, let us study the the VRP due to the continuous part oftioe process.

Proposition 9 Assume that assumption (A2) holds. Lgf := vy, &y . Then we have

VRPS, = 1 [ (B()) ~ EY(L)) (h — ex(h) an

t+h
A [ et b= ) (BEOE (2 — )~ EULOB (2 — i) ds} .
t

Note thatL is a subordinator and, hendé(L;) > 0. Also, under the structure—preserving change of
measure, the predictable compensatof ahanges and, henc&(L,) — EQ(L;) # 0.

Remark We see that the stochastic proportionalnd the density of the time changglay the same
role in determining the dynamics of the variance risk pramiu

The above propositions show that, given a structure—priegechange of measure, the stochastic
dynamics of the variance risk premium are solely determimethe stochastic volatility of volatility
component andr, respectively. If these terms were not stochastic, thevahi@ance risk premium
would be deterministic, which would contradict recent emapl findings e.g. by Drechsler & Yaron
(2011), Bollerslev et al. (2009).

The formula (11) in Proposition 9 can be computed expliaithder an additional modelling as-
sumption:

Corollary 10 Assume that assumption (A2) holds. Consider the followhmdases: Assume that
(1)

a0 =, wheren!” = vy_ (i.e. € =1)andn? = &y (i.e.v = 1). Also, fori = 1,2, let
dn = a (b - mi)) dt + g\/n}"dB],

wherea, b, g are positive constants satisfying the Feller conditiad > ¢ (and v(()i) > 0)andB" is
a standard Brownian motion.
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4 VARIANCE RISK PREMIA

Then we get fof = 1, 2 that

VRP2OC =y FO) (h) 4+ FO(n),

whereF()(h) and F(?)(h) are explicitly known deterministic functions, given in fgpendix.
Also in the case of a non—Gaussian OU process, we get exggtitts, see the following Corollary.

Corollary 11 Assume that assumption (A2) holds. Consider the followimgcases again: Assume
thatn,”” = nﬁ’), Wherent(l) =y (i.e. £=1) andnt(Q) =&y (i.e.v =1). Also, fori = 1, 2, let

dnt? = —andt + dL"

at»

wherea > 0 and L" is a Lévy subordinator. Then we get foe 1, 2 that

VR = 0G0 0 + P (h),

whereG) (1) andG(?) (h) are explicitly known deterministic functions, given in fygpendix.

So, we have obtained an explicit formula for the VRP whiched&s on the physical and risk—
neutral parameters of the underlying model. Further, wetsste¢he stochastic dynamics BiR P, ;.

(as a stochastic processtiwith fixed h > 0) are determined by the volatility of volatility component
nU,T.

Note that the classical BNS model (assuming a structureeprig change of measure) implies
that the variance risk premium is deterministic. This feant be easily seen from our results above.
However, by including a stochastic volatility of volatyliterm, we allow forstochastic dynamics of
the variance risk premium

4.2.1 Comments on the results

Note that both Bollerslev et al. (2009) and Drechsler & Ya@®il1) also established a link between a
volatility of volatility component and the VRP. Howevergihstudied a self—contained general equi-
librium model and show that the variance risk premium islgaléven by the volatility of (consump-
tion growth) volatility, where this explicit formula hasd&e derived using a log—linear approximation.

Here, we do not work with an equilibrium model, but extend oh¢he popular (probabilistic)
asset price models, the BNS model, to allow for an additiomddtility of volatility component.

In order to derive our explicit formula for VRP and to establithe link to the volatility of volatility
component, we did not need any approximation, due to thedmglytic tractability of our new model.
However, the main assumption we made in this Subsectionhehshe physical and the risk—neutral
probability measures are related through a structureeprieg) change of measure, which seems to be
a strong, but nevertheless rather natural assumption froracelling point of view. Let us elaborate
on the latter aspect in more detail.

As we have already mentioned earlier, incomplete markets tiee property that the risk—neutral
probability measure is not uniquely determined, leading tange of risk—neutral probability mea-
sures. Consequently, the variance risk premium is not ehygdetermined, since it depends on the
choice of the risk—neutral probability measure.

Recent empirical studies indicate that the dynamics of gr@mce risk premium are stochastic.
How can we explain such stochastic dynamics?
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One possible answer is given in this paper: If we work withWiOU stochastic volatility model
and a structure—preserving change of measure, we find &M drives the VRP and, in particular,
that we obtain stochastic dynamics of the VRP.

Another possibility would be to work with a classical SV mbddich does not allow for SVV
and at the same time apply a more sophisticated change ofureeashich potentially could also
induce stochastic dynamics of the VRP.

5 Introducing long memory: Volatility modulated supOU processes

Finally, we will give an outlook on further extensions of auew modelling framework. Here we
show how long(er) memory can be incorporated into the clas8vlODU processes. This is done by
extensions of the idea of supOU processes, as introducedabndBrff-Nielsen (2001) and further
discussed in Barndorff-Nielsen & Shephard (2003), Barfiddielsen & Leonenko (2005), Fasen &
Kluppelberg (2007), Barndorff-Nielsen & Stelzer (201Barndorff-Nielsen & Stelzer (2012).

The long(er) memory can be introduced by randomising the ongiparameten using the con-
cept ofLévy bases A Lévy basis is an independently scattered random measghose values are
infinitely divisible. The foundation of the theory of such aseires were laid by Rajput & Rosin-
ski (1989), see also Pedersen (2003). For a recent accotime ofefinition and basic properties of
Lévy bases see Section 1.3 of Barndorff-Nielsen et al. 1@80and also Barndorff-Nielsen (2011),
Barndorff-Nielsen & Shephard (2012) for further reviews.

5.1 Background on Lévy bases

Throughout the paper, we denote Bythe family of Borel sets irfR* for & € N and by, the
subfamily of bounded elements Bf

Definition 12 Let M = {M(B) : B € By} be a collection of random variables on some proba-
bility space(f2,.4, P). We callM anindependently scattered random meagiB&M) if, for every
sequencg B,,} of mutually disjoint sets i, whereU:® | B,, € By, the random variables\/ (B,,)
are independent for = 1,2,..., and alsoM (U2, B,,) = >_ 2 | M(B,,) aimost surely.

We are particularly interested in ISRM which are infinitelyiglible.

Definition 13 Let L be an ISRM oiR*. We callL a Lévy basisif for all B € Bj, the random variable
L(B) is infinitely divisible.

Rajput & Rosinski (1989) have shown that every Lévy bassabévy—Khintchine representation of
the form

C{01 L(B)} = log (E(exp (i L(B)))

_ ifa(B) — %9%(3) 4 /R

<ez’9:p —1—ifal_y ) (g:)) n(dx, B), (12)

wherea is a signed measure dh, b is a measure oR, n(-, -) is the generalised Lévy measure such
thatn(dz, B) is a Levy measure oR for fixed B and a measure di" for fixed dz. Further, along
the lines of Rajput & Rosinski (1989) we define the so—catledtrol measure
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Definition 14 Let L be a Lévy basis with Bvy—Khintchine representation (12). Téentrol measure
cis then defined by

¢(B) = |a|(B) + b(B) + /Rmin(l,xz)n(dm,B), (13)

where| - | denotes the total variation.

Next we define the Radon—Nikodym derivatives of the threepmrents of:, when we differentiate
with respect ta:. We have

o(s) = 2(s), 5(5) = T(s). sdr,s) = ") s

In particular, we obtaim(dz,ds) = v(dz,s)c(ds). In the following, we assume without loss of
generality thav/(dz, s) is a Lévy measure for each fixed

Definition 15 We call(c, 8, v(dz, -), c) = (a(s), B(s), v(dz, s), c(ds)) ,crr @characteristic quadru-
plet (CQ) associated with aévy basisl, on R* provided the following conditions hold:

(i) Botha andj are measurable functions @&, wheres is restricted to be nonnegative.
(i) For fixed s, v(dz, s) is a Levy measure oiR, and for fixeddx it is a measurable function on
RF,
(iii) The element: is a measure ofiR”, 3,) such that[, a(s)c(ds) is a (possibly signed) measure
on (R*, By) and [, v(dz, s)c(ds) is a Levy measure oR for fixed B € B.

Altogether, one can show that every Lévy basi®érdetermines a CQ of the forta, 3, v(dz, -), ¢) =
(a(s), B(s),v(dx, s), c(ds))err- And, conversely, every CQ satisfying the conditions in Bi&fin
15 determines, in law, a Lévy basis BA.

Now we get the following result for the cumulant function betLévy basis (presented in in-
finitesimal form).

C{0 1 L(ds)} = log (E(exp(i0L(ds)))

— ifa(ds) — %921)(653) 4 /]R

= <i€a(s) — %925(3) Jr/]R
= C{01 L'(s)}c(ds),

whereL'(s) denotes thé.evy seedf L ats. The Lévy seed is in fact an infinitely divisible random
variable with Lévy—Khintchine representation

C{01L(s)} =ifa(s) — %92/3(3) +/

R
Note that one can associate a Lévy process with any Léw) see
In applications, we often work with special subclassesefybases, as defined in the following.

Definition 16 Let L denote a Evy basis oiR* with CQ given by(«, 3, v(dz, ), ¢).
() If v(dr, s) does not depend of) we call L factorisable

(emx — 1 — izl g (m)) n(dx,ds)
(15)
(em — 1 —ifxl_y (m)) v(dz, s)) c(ds)

(ewx — 1 —ifzl_y (x)) v(dz, s).

(i) If L is factorisable and it is proportional to the Lebesgue measure ar{d) and 3(s) do not
depend o, thenL is calledhomogeneous

Note that for a homogeneous Lévy basis, the associateyl déndl’(s) does not depend on
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5.2 Integrals with respect to Lévy bases

Integration with respect to Lévy bases can be done acaprdirRajput & Rosinski (1989), where
integrals of deterministic kernel functiorfswith respect to a Lévy basis were defined. In particular,
we get from Rajput & Rosinski (1989, Proposition 2.6) that

CLO fol} =log (IE <exp (w / de))) _ / CLOf(s)1 L/ (s)}e(ds),  (16)

for a deterministic functiorf which is integrable with respect to the Lévy basis.

In order to allow for stochastic integrands (independenhefriving Lévy basis), we can think of
a suitable extension (using conditioning) of the integrattoncept developed by Rajput & Rosinski
(1989). Alternatively, one could employ the concept usetMaysh (1986), which is also described in
detail in Barndorff-Nielsen et al. (20aDb).

5.3 Introducing long memory through integrals w.r.t. Lévy bases

Now we show how long memory can be introduced in an Ornstditefbeck process by randomising
the memory parameter through the concept of a Lévy bagist e review the basic supOU process
and then we extend this process to allow for additional ststit volatility of volatility.

5.3.1 SupOU model
Recall that the supOU process, as introduced by BarndaefsBh (2001), is defined by

V, = / / e M=) L(ds, dN), (17)
0 —00

for a Levy basisL onR x R, which has characteristic quadruplet
(0,0,v(dz), dtAmw(dN)). (18)

Herev is the Lévy measure of the Lévy subordinatoidenotes a probability measure @noo) and
dtxm(d)) (with (£, \) € R x R.) is the control measure df, see Barndorff-Nielsen (2010) for more
details. The supOU process defined in (17) can be regardetdadension of an OU process driven
by a Lévy subordinator. Here we associate a distributic tie memory parameter through the
Lévy basisL. See Barndorff-Nielsen & Stelzer (2012) for conditions ba existence of the above
integral.

We can easily compute the autocorrelation function (assgrequare integrability of the Lévy
basisL). Letry = [~ #?v(dx). Then

E ((ffo —E(Vo)(V; — E(V}))) = kg /OOO /_OOO e M G AT (dN)

00 0 oo 0
:I{g/ e_)‘tw(d)\)/ 62)‘Sx\ds:/ e Ma(d\) /-42/ e*du,
0 —00 0 —00

=X (1)

— xm / e Ma(dn) = XVF(N),
0
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5 INTRODUCING LONG MEMORY: VOLATILITY MODULATED SUPOU PROESSES

where X () does not depend onand wheret(\) denotes the Laplace transformaf

Let us study an example, which shows how long memory can lzendut in the context of supOU
processes, see Barndorff-Nielsen (2001), Barndorffdéiel& Shephard (2001) and Barndorff-Nielsen
& Shephard (2012).

Example Let us assume that is the Gamma law'(2H, 1) for H > 0. The corresponding density
function is given by

fr(2ﬁ71)(5”) = S e, forz > 0.

Then

o 1 o0
Xt —xt —z, 2H—1 —oH
d\) = —= dr = (t+1 .
/0 e Mr(dN) @ )/0 e e x = ( )

Note in particular that” exhibits second order long range dependend# i (%, 1)for H :=1-H.

5.3.2 Volatility modulated supOU processes

In a next step, we extend the class of supOU processes andun# a new concept which allow us
to introduce long memory and stochastic volatility simnétausly. As before, we present the general
case where we have both a stochastic proportional and aastioctime change.

Note here that the stochastic proportional can be easilyded in the supOU framework, whereas
the time change requires some additional work. More prigiige time change approach leads to
integration with respect to a random measure more genemlah.évy basis.

Recall that the stochastic volatility process is defined as

t
V, = / e A=)y dL,, .

Let T be the random measure associated with the stochastic proces that for intervalga, b]
we haveT ((a,b]) = 7 (b) — 7 (a). (If 7 was a Lévy subordinator, théhwould be the corresponding
Lévy basis.) We introduce a random measiweon R x R characterised by requiring that/
conditionally onT' is the Lévy basis ofR x R having characteristic quadruplet

(0,0, v(dz), T(Adt)m(dN)). (19)

Hererv andr are as above and the control measur& {3dt)r(d)). (This construction is analo-
gous that of extended subordination by meta—time changegwfbases as introduced in Barndorff-
Nielsen (2010) and Barndorff-Nielsen & Pedersen (2011).)

Then, define the proce$s by

[e%e) t
Vi = / / e M=)y M(ds, d)).
0 —00

That this determines a well-defined strictly stationarycpss can be verified by calculating the char-
acteristic functional o¥/.
Under square integrability, the conditional autocovas@function giverv andr takes the form

E ((f/o — E(Volv, 7))(V; — E(mU,T))( U,T) — kg /O - /_ OOO e M2 T(\ds)m(d))
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00 0 0 0
:HQ/ 6_)\tﬂ'(d)\)/ e?5v? T(\ds) :/ e Mr(d\) ng/ e*v? T (du)
0 —00 0 —00

.=X(2)

— x® / eMa(d\) = XDF(N),
0

where the random variabl&(?) and its law do not depend on As before7(\) denotes the Laplace
transform ofr.

As in the example above, long memoryiéfcan be obtained by choosingto be the probability
measure of the Gamma law.

Hence we have seen that the volatility modulated supOU psfée:an account for long memory
and stochastic volatility simultaneously.

Note here that the novel contribution is the way how long mgnamd the time change are com-
bined: We have seen that additional volatility and long mnean be introduced in a non—Gaussian
OU process by an extended subordination approach, whewetigonal volatility enters through a
time changer, with associated random measUreand the long memory can be obtained by a suit-
able choice of the probability measute These two measures have to be combined, as described
in the characteristic quadruplet defined in (19), in ordeolitain both long memory and additional
stochastic volatility.

6 Concluding remarks

This paper has introduced a new class of stochastic vojatiiodels which is given by volatility
modulated non—Gaussian Ornstein—Uhlenbeck (VMOU) pesaEes We have shown that the new
model class is highly analytically tractable and, in partac, we have derived an explicit formula for
the integrated squared volatility process, which playsyar&ke in determining an explicit formula for
the variance risk premium.

Next, we have shown that the additional volatility of vditicomponent can be used to introduce
the leverage effect in a new way. Also, we have developed ametliodology for allowing for long
memoryand volatility of volatility simultaneously: This can be dong lbombining the concepts of
extended subordination of Lévy bases (or of more genenaglaim measures) and of randomisation of
the memory parameter of the OU process through a suitableechbthe characteristic quadruplet.

Another key result we have established in this paper is tbetfeat the stochastic volatility of
volatility component solely determines the stochasticadyits of the variance risk premium if the
change of measure is structure—preserving. Given the emlpévidence that the variance risk pre-
mium has stochastic dynamics, including a stochastic ibjadf volatility component into a stochas-
tic volatility model is hence a modelling choice which leadlsather explicit dynamics of the variance
risk premium. Clearly, there are various natural extersionour new model. For instance, we will
address multivariate extensions of VMOU processes and, ailgperpositions of such multivariate
processes in future research. Multivariate OU processashesir superpositions have recently been
introduced by Barndorff-Nielsen & Stelzer (2011) and haeerb applied as multivariate stochas-
tic volatility models by Barndorff-Nielsen & Stelzer (201 2Muhle-Karbe et al. (2012), Pigorsch &
Stelzer (2009). Furthermore, we plan to address multiigeatensions of the VMOU. In patrticular,
for the time change case, future research will be based ametlveconcept of multivariate subordina-
tion introduced by Barndorff-Nielsen (2010) and Barnddife€lsen & Pedersen (2011).
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A Proofs

A.1 Second order structure

Here we study various conditional and unconditional moment” and we derive its autocorrelation
function. In the following, we will often present the resutinly and omit the rather lengthy proofs
since they consist of straightforward computations.

In order to simplify the exposition, we fix the following néitan. Fori € N, we denote théth
cumulant of the Lévy subordinatat, by x;(L;) (provided it exists). Clearly, we have (L;) =
tk;(L1) and, in particular, we write;; := +r;(Ly) = r;(L1).

We will carry out all computations for a general stationaojatility processv and an absolutely
continuous time change with stationary density process In the following, we will writey(h) =
Cov(vi—&—, Vigqn)—E+n)—) for b > 0. Recall also that we assume mutual independend, of
andr.

First, we compute the moments &f when we condition on» andr. Clearly, if v andr were
deterministic, these results would also hold unconditigna

Throughout this section, we will use the following notatfonthe conditional expectatiof”" () :=
E(:|lv,7), Var”7(-) :== Var(:-|v,7), CovV" (-,-) := Cov(-,-|v,7) andCor"" (-, -) := Cor(-,-|v, 7).

Proposition 17 The conditional mean, variance and covariance are given by

t
EVT (V) = e MEYT (Vo) + )\ﬁl(Ll)/ e My s,
0

Var’™ (V;) = e War’™ (Vo) + Ako(Ly) /Ot e =802 €3 ds,
CovV™ (Vy, Vien) = e MVart™ (V).
Proof of Proposition 17 For the mean, we have
E*T(V,) = e MET (Vo) + Awi(L1) /O Ny 6 s
For the second moment, we get from Itd’s formula
t t t
V2 V@ = -2\ /0 VZids +2 /0 Viurs—dL,, . + /O v3s_d[L]r,..
Taking the conditional expectation, we get
E*7(V2) — B (V)

t t t
_ o / BV (V2)ds + 221 (L1) / BT (Vyose€as)ds + Aka(L1) / BT (02,654)ds
0 0 0
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t t t
= —2)\ / EVT(V2)ds + 2Xk1(Ly) / EVT (Vi )uas€nsds + Ara(L1) / V3 Exsds.
0 0 0

Hence,
dEVT (V) = —2XEY T (VA)dt + (2Mk1 (L1)EY7 (Vi) upeéas + Az (L1)vias) di.

We solve the linear stochastic differential equation aniob

t
EU,T(Vt2) :e—2AtEu,T(VO2)_’_/ 6—2)\(z€—s)ESdS7
0

where
= 1= 2)\K1 (Ll)EU’T(V;)UAsf)\s + )\H2(L1),U§\S§)‘S
= 2)\K1 (Ll)e_ASEU’T(Vb)U)\Sg)\S + 2)\2:‘43%(-[/1)7))\35)\3 / e_A(S_u)U)\ug)\udu + )\HZ(LI)Ug\sSAS'
0

Consequently, we have
t
EU,T(Vf) :e—2AtEu,T(VvO2)+/ e—2A(t—s)Esds
0

t
= e PMEYT(VE) + 2Xk1 (L1)EV7 (Vp) / ¢ AT e ) Ends
N—_————
0

—e—Ate—A(t—s)

t S
+2)\2/<;%(L1)/ e_zA(t_s)vAS@\S/ e_A(S_“)U,\uf,\ududs
0 0

=2t fg W fos ey, Exyduds
t
+ Ak (L) / R WIWIE
0
Hence,
t
Var®™ (V) = e Var’™(Vp) + Aﬁz(Ll)/ e T Eds.
0

Similar computations lead to the result for the covariante particular, using the representation
results for the increments &f, we get

t+h
EV(ViVign) = e MEYT(V2) + )\Hl(Ll)EU’T(Vt)/ e My Enods
t
t+h
. <IE“’T(V22) + k1 (L1)ET (V) / E_A(t_S)UAsgksd'S)
t
t+h
= (B e (e BT [ e s
t

t t+h
+)‘2/€%(L1) / e_)\(t_s)’u)\sg)\sds / e_A(t_S)U)\sg)\sd's) .
0 t
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Next, we compute the unconditional mean, variance and @nee of the VMOU procesE'.
Proposition 18 LetV; = Voe ™ + [ e~ t=*)u\_dL,, . Then, forh > 0,
E (Vi) = e ME(V) + k1 (L1)E(vo)E(&) (1 — e,

t
Var(Vy) = e ?MVar(Vy) 4+ 2 k1 (L1)Cov (E“’T(VO),/\/ e_A(t_S)UAS§A5d8>
0
+m1/ / A=) e AW NZ (I N5 — Au|)dsdu
+ w2 (L1)E(vg))E (50) (1—e 2,

t+h
Cov(Vi, Vign) = e M {Var(Vt) + /il(Ll)e_)‘tC’ov [EU’T(VO),/ Ae_)‘(t_s)w\s@\sds}
t

t pt+h
m%(Ll)/ / Ae A=) \e AU (| A s — )\u|)duds} .
0 Jt

Proof The results follow essentially from Proposition 17. We ofdgus on the computations of the
variance here. Recall that

Var(Vy) = E(Var”™ (V) + Var(EY"(W)).
The first term is straightforward to compute. For the secemnh twe get
Var(EYT (V) = E((E"7(V))?) — (E(E™7(V)))*.
Then

t
E((EU,T(W))2) - |:e—2)\t (E’U,T(‘/O))2 + 2€_>\t)\I{1(L1)EU’T(‘/0) / e_)\(t_s)v)\sé)\sds
0

t 2
+/\2/{%(L1) </ e_)‘(t_s)v)\sﬁ)\sds>
0

t
= e MK [ (E" (Vo)) 2] + 2 Mk (L1)E {EU’T(VO)/ e_A(t_S)U,\sf,\st]
0

t 2
(/ e UA5£A5d8>
0

+ A%K32

Then, we get that
t
Var(Vy) = e 2Var(Vy) + 2e k1 (Ly)Cov <E”’T(VO), )\/ e_)‘(t_s)v)\sﬁ,\sds>
0

t
+ /<;1Var </ Ae‘A(t_S)UASQSdS> + ko(L1)E(v ) (50)/ —2(t= )ds,
0
%,—/

:%(1_6—2»5)

t
Var </ /\e_A(t_s)w\S&,\sd8> = _2>‘t/ / A2ers et Y(|As — Au|)dsdu
0
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At At
= / / e’e“y(|v — w|)dvdw.
0o Jo

Cov(Vi, Vign) = E(E* (ViVign)) — E(EST (V) E(E™ (Vi)

t+h
Y {E[Evf(vm T (Ly)eME [EU’T(VO) / e-w-m@sds]
t
t t+h
+)‘2’%%(L1)E |:/ e_A(t_s)'U)\sé-)\st/ 6_)\(t_s)v)\s§)\sd3:| }
0 t

t+h
—e-”l{@:(v» + EMm(L)S()E(E) [ i e—w—sus}

For the covariance, we get

t+h
Y {Varw;) T (E(V)? + Ma(Ly)eNE [vao) / e—w—%s@sds}
t
t t+h
+)\2/£%(L1)E [/ e_)‘(t_s)ms@\sds/ 6_)‘(t_8)v)\sf)\sd$:|>
0 t
t+h
~(BR)? — B0 (LB E(E) [ A—W—S)ds}
t+h
= M {Var(Vt) + K1 (Ll)e_)‘tC'ov [EU’T(VO),/ Ae_)‘(t_s)w\s@\sds}
t

t t+h
—I—m%(Ll)C’ov {/ /\e_/\(t_s)v)\sﬁ)\sds,/ /\e_>‘(t_8)v>\8£)\sds] } ,
0 t

where

t t+h
Cov |:/ )\6_)\@_8 'U)\sf)\sds / Ae_A(t_S)U)\s{)\st:|
t

_2)‘t/ / Ner My (|As — Aul)dsdu

X pA(t+h)
/ / e’ey(Jv — w|)dvdw.
At

Corollary 19 The mean, variance and autocovariance of the stationarggssl” are given by
E (Vi) = r1(L1)E(vo)E(&o),

0 [0
Var (V) = %I{Q(Ll)E (vg) E(&) + /{%(Ll) /_ /_ e“eVy(|lx — y|)dzdy,

1 0 A\h
Cov (Vi, Vir) = e (5@@1)1@ () () + L) [ [ erene - y|>dxdy> |

Proof The results follow directly from the previous results, winere used that the initial value for
the stationary process is given by = f eMuys_dL O

Ths*
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A.2 The leverage effect

Proof of the results in Section 2.6Note that?) = 0 andE(F;) = 0. From Itd’s product rule, we get
that

t t
PV = / v, dp, + / P,_dV, + [P.V]:
0 0

t t t
:/ Vs_dPs—/\/ PSI/;ds+/ P,_vre_dLys + [P, V];.
0 0 0

Taking expectations, we get
t t
Cov(P, Vi) = E(PV;) = —A/ E(PsVy)ds + AE(Ll)/ E (Psvys) ds.
0 0

The above equation is an integral equation, which can beedakg soon as we have computed the
second term on the right hand side. We do that by applyirg j@duct rule again and obtain

E (P,ua) =E (/Ou Pst)\s> +E </O“ VVerd[W, UA]S>
= —a)\ /Ou E(P,vys)ds + pV Ay /OUE (\/Vx/W) ds,

which is yet another integral equation. Singeand v, are strictly positive (provided the Feller

condition2a3 > ~2 andvy > 0 holds) , we have thag(s) := E <\/1/s<1>,/—%>, for a strictly
positive functiong. Solving the differential equation

d ~
@E (PUU)\U) = —QAE(PuU)\u) + p\/XVQ(u%

we get

E (Pyona) = exp(—au) ( [ gt exp(axs>ds) — pi(u) £0,

0
for a strictly positive functiory. Next, we defing7(u) := AE(L1)E (P,v),). Solving

d
EE(PtV}) = - AE(RV;) + G(t),
we obtain
¢
E(PV;) = exp(—/\t)/ G(x)eMdx 2 0.
0

Further, 1t6’s formula leads to the following result forghier moments of ordet € R,n > 2
(provided they exist):

B t
E(P1) = w/ E (PI2V,) ds.
0
In particular, we have
t t s
Cov(P,, P}) =E (P}?) =3 / E(P,V,)ds = 3\E(L1) / e / eME (Pyvyy) duds 2 0.
0 0 0

O
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A.3 The Laplace transform of integrated squared volatility

Proof of Proposition 5 Since the integrated variance appears in the asset pricelf@rwe compute
the Laplace transform of the integrated variance first. Ini@dar, we focus on theonditional
integrated variance over the intervalt + h| given F; for ¢, > 0. We use the notatioE?(J =
EQ(-|F;). Further, using (6), we get

E2 [exp (9 /tHh Vsds>] =E2 [exp (9 <€)\(h)‘/;t + /tHh ex(t+h — s)dLK;,T))]
= exp (ex(h)V;) EZ {exp <9 ( /t o ex(t+h— s)dy;g»} .

We define the followingr—algebrasg") := o(uvys : s < t +h) UF andG® = o(rys : s <
t + h) U F;. Then the Laplace transformation is given by

£ [exp <9 (/tt+h ex(t+h— s)dLK’ST>>] = E2 [exp <9 (/tm ex(t+h— S)UAS_dLTAS>>]
= E2 {E? [exp (9 </:+h ex(t+h— s)ms_dL%)) ‘ G, g<2>] }

_ g [exp ( /t et +h— S)UAS_)T(Ads)ﬂ
_EQ [exp ( /t Bt 4B S)U,\s—)f,\s)\ds)>} |

wherey;, denotes the log-transformed Laplace transform.of
LetG® := o(L}]|s <t + h) U F;. For the conditional distribution df, we get

6(6) = E2(exp(0Y14n)) = exp(0Y)EL(exp(0(Yi 4, — Vi)

t+h t+h
— exp(0Y;)EZ {exp <9 (uh + 8 / Vids + \/m_dm))}
' t+h ' t+h
= exp(0Y;)EZ [E;Q [exp (9 <uh oy / Vids + / \/Vs_dWS>> ‘ g g®, g(?’)”
t t

t+h
= exp(@Y}t)I[*ftQ {exp <9 <,uh + 5/ V;ds))
t

t+h

£ {exp <9 J@m) ‘ g“),g@),g(ﬂ

—exp ( g ftt+h Vs ds)

92 t+h
= exp(@Y}t)I[*ftQ {exp <9uh + <9ﬁ + E) / %ds)}
t

02 t+h
= exp <9Yt + Oph + <59 + 5) e,\(h)Vt> E? [exp < f(s, H)dLTAS>]
t

t

= exp <0Yt + Ouh + <59 + %2> EA(h)V;t> E? {exp <A /tHh xo(f(s, 9))d7—)\s>:|
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02 t+h
— exp (Wt + O+ </39 + 5) eA<h>Vt> EY [exp <A /t Xt (f (s, 0))@@@)] ,

wheref(s,0) := (B0 + 62/2)ex(t + h — 8)vrs_. O

A.4 Change of measure and variance risk premium

Proof of Proposition 6 We apply the following Bayes rule, see Karatzas & Shreve 11p993). For
any F; measurable random variahkjevith EQt+h\C\ < occandfor0 < s <t<t+ h, we have

1
ES () = 5 EalCZe),
and, hence

E,(¢) — B3+ (¢) = E, (c (1 - ?)) |

As a particular case, we get for the approximated variargle piemium, sinceY'J;, ;45 is Fiin
measurable,

Z
VRPt(%Jrh =E ([Y][t,t—i-h] <1 - Zh>> :
Recall that
thh ) .
[Y][t,t—i-h] = / ogds + Z (AJs)" = [Y]([:t,t-',-h} + [Y] [t,t+h]>
t t<s<t+h
where [Y]ft’Hh] denotes the continuous part of the quadratic variation[Hﬁ@7t+h} the jump part.

Next we plug in the explicit formula foV’ *, see (6), and we obtain

t+h
YT iw = Vith — Vit = ex(B)Vi + / ex(t +h— $)dLl’.
t

Hence

o (M (1= 51)) =i (- 552))

=0

t+h . Zt+h
+ E; ex(t+h—s)dLY" (1 — ——
t Zt
t+h VA
=E, (/ ex(t+h—s)dLy™ <1 - t+h>> .
t Zt

For the jump part of the quadratic variation, we get

(ke (1 %2)) - 2 0 (-552)).

t<s<t+h
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Proof of Proposition 8 Since the jumps come from a Lévy process, the conditionpéebationE,
equals the unconditional one and we get

[Et( > (AJ8)2> E?( > (AJS)Q)
t<s<t+h t<s<t+h

= le/ xX) — (L’ZI/Q T

= [ #tvitae) = [ a5(a),

wherev;(-) and uf?(.) are the Lévy measures of the Lévy procgsanderP and underQ, respec-
tively. O

Q,d
VRPt,t+h =

S| =

Proof of Proposition 9 Due to the independence ofandr, we get

t+h t+h
E, </ ex(t+h— s)dLK;T> = /\E(Ll)/ ex(t+h —s)E; (ns—) Et (§xs—) ds.
t t
Under a structure—preserving measure change, we have
t+h t+h
E2 </ ex(t +h — s)dLKg> = AEQ(L,) / ex(t +h— $)E2 (une_ ) E2 (Es—) ds.
t t
Hence
t+h t+h
E, (/ eA(t—i—h—s)dejvT> —E2 </ eA(t—l—h—s)de;’T>
t t
t+h
3 [ et b= 5) (BB (0re) Br (6r10) — EULOES (03,) B (61-)) ds
t
t+h
= A/ ex(t +h —s) (E(Ll)Et (Vas—Exs—) — EX(L))EY (UAs—Qs—)) ds.
t

Hence, we see clearly that the stochastic proportioraatd the density of the time changlay the
same role in determining the dynamics of the variance risknum. Now, we define; = vy &y

Then
t+h t+h

E¢ </ ex(t+h— s)dL;”T) ~E? </ ex(t+h — s)dL;”T>

t t
=" (B(L1) — EULY) ) (h = ex(h)

t+h
i [ e+ b ) (BB (7 — 07) - EY(LOER (37 — ) ds.
t

Note thatL is a subordinator and, hendé(L,) > 0. Also, under the structure—preserving change of
measure, the predictable compensatak changes and, hendg(L;) —E®(L;) # 0. This concludes
the proof. O
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Proof of Corollary 10 Throughout the proof we assume that ¢. Further, we skip the superscript

and writen; := m(z) for ease of exposition. Then we have

Ei(ns — ) = Ey </t8 dnu> =ab(s—t) — a/ts E¢(ny)du.
Next, we define the random variabtg, := E;(n,,). Then, we have
dZs = a(b— Zy)ds, Zy = .
Hence, we get
Zs =Ey(ns) = Zye =t 4 b(1 — e_“(s_t)) = nte_“(s_t) +b(1 — e_a(s_t)),
and
E¢(ns) —me = nt(e_“(s_t) —1)4+b(1— e_a(s_t)) = —aeq(s — t)n + abey(s — t).

Consequently, we obtain

t+h
)\/t ex(t+h —s)(E(L)E; (ns — ne)) ds = E(L1)G(h)(b — ),
where

t+h
G(h) = G(h,a, ) = /\a/ ex(t+h— 8)ea(s — 1)ds
+ A t A (20)
a a

_ h— —\h —ah

a\ - )\()\—a)e +a()\—a)e

The results under the risk—neutral measure are essertiallyame using the risk—neutral parameters
a®,bC. Also, we denote by7?(h) := G(h,a?, \) the functionG defined in (20) evaluated at the
risk—neutral parameter. Altogether, we have

VRPZ — O (1) 4 PO (n),

where fork; = E(L;) andx® = E(L,)

h h

1
FO (M) = PO (20,020,021, 18) = 3 [mGi)b — k2620

F(l)(h) = F(l)(h,)\,a, a®, Ky, /{9) = (/{1 - /{9) (1 - Q‘(—h)> . </~£1G(h) - ﬁ?GQ(h)> ,

0

Proof of Corollary 11 Throughout the proof we assume that ¢t. Again, we skip the superscript
and writen; := nt’) for ease of exposition. Then we have

£~ ) =B ([ an) = —a [ Bilmdu+ als - 0B(LD.

So, when we defing := E(L7), we get exactly the same results as in the previous Cordadiadywe
can define

G (h) .= FO(h), and G (h) := FA(p).
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