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Abstract

Particle filters are numerical methods for approximating the solution of the filtering problem which use systems

of weighted particles that (typically) evolve according to the law of the signal process. These methods involve

a corrective/resampling procedure which eliminates the particles that become redundant and multiplies the ones

that contribute most to the resulting approximation. The correction is applied at instances in time called resam-

pling/correction times. Practitioners normally use certain overall characteristics of the approximating system of

particles (such as the effective sample size of the system) to determine when to correct the system. As a result, the

resampling times are random. However, in the continuous time framework, all existing convergence results apply

only to particle filters with deterministic correction times. In this paper, we analyse (continuous time) particle filters

where resampling takes place at times that form a sequence of (predictable) stopping times. We prove that, under

very general conditions imposed on the sequence of resampling times, the corresponding particle filters converge.

The conditions are verified when the resampling times are chosen in accordance to effective sample size of the

system of particles, the coefficient of variation of the particles’ weights and, respectively, the (soft) maximum of

the particles’ weights. We also deduce central-limit theorem type results for the approximating particle system with

random resampling times.
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1 Introduction

The filtering problem involves the estimation of the current state of an evolving dynamical system based on partial

observation. The evolution of the dynamical system is customarily modelled by a stochastic process X = {Xt, t ≥

0} called the signal process, where the temporal parameter t runs over the positive half line [0,∞). The signal

process X can not be measured directly. However, a partial measurement of the signal can be obtained. This

measurement is modelled by another continuous time process Y = {Yt, t ≥ 0} which is called the observation

process. The observation process is a function ofX and a measurement noise. The measurement noise is modelled

by a stochastic process W = {Wt, t ≥ 0}. Hence,

Yt = ft(Xt,Wt) t ∈ [0,∞).

Let Y = {Yt, t ≥ 0} be the filtration generated by the observation process Y ; namely, Yt = σ (Ys, s ∈ [0, t]) , for

t ≥ 0. Then the filtering problem consists in computing πt, the conditional distribution of Xt given Yt. The process

π = {πt, t ≥ 0} is a Yt-adapted probability measure valued process, so that

E [ϕ(Xt) | Yt] =

∫
ϕ(x)πt(dx),

for all statistics ϕ for which both terms of the above identity make sense. Generally speaking the filtering problem can

not be solved analytically: An explicit formula cannot be obtained for the conditional distribution πt. Only in specific

cases such as the Kalman-Bucy filter and the Benes filter (see, eg Chapter 6 in [1]) is this not true. Numerical

methods, of which particle filters are an example, are thus employed to obtain approximations to the solution of the

filtering problem.

Particle filters1 are numerical methods that produce an approximation of πt using empirical distributions of systems of

evolving weighted particles. They are currently one of the most successful methods used to approximate the solution

of the filtering problem (see [6] or Chapter VIII in [4] for an overview). The particles evolve according to the law of

the signal process X and carry a weight proportional with the likelihood of their recent position/trajectory given the

observation data. As time progresses, some of the weights diminish and so the corresponding particles essentially

contribute less to the approximation process. In order to counter this phenomenon known as sample degeneracy,

a correction procedure is introduced at particular times to cull the redundant particles and multiply the particles that

contribute more significantly to the approximation process. This correction procedure is known as resampling and

it was first introduced in the papers by Gordon, Salmon and Ewing [9], Gordon, Salmond and Smith [10], Kitagawa

[13]. These resampling/correction times are chosen in an adaptive manner and are usually determined by certain

overall characteristics of the approximating particle system. One such characteristic (for which the results from below

apply) is the effective sample size of the approximating particle system.

In the last fifteen years we have witnessed a rapid development of the theory of particle filters. The discrete time

framework has been extensively studied and a multitude of convergence and stability results have been proved. A

1These methods are also known under the name of Sequential Monte Carlo Methods in the Statistics and the Engineering literature
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comprehensive description of these developments in the wider context of approximations of Feynman–Kac formulae

can be found in Del Moral [18]. Results concerning particle filters for the continuous time filtering problem are far

fewer that their discrete counterparts. For an up-to-date overview of these results see Chapter VIII in [4].

1.1 Contribution of the paper

This paper studies particle filters that use a standard resampling procedure in a continuous time setting. It inves-

tigates the convergence of these approximations to the solution of the filtering problem. In contrast with existing

results in the published literature which cover only particle filters with deterministic correction times2, we assume

that the approximating particle system has random resampling times. This is the current practice in the area: For

example, the resampling times can be chosen to be the times at which the effective sample size of the systems falls

below a desired threshold. The paper produces the theoretical justification for such practice, hence it addresses this

gap in the literature.

We prove in this paper that the empirical distribution of the system converges to πt (see Theorem 1) if resampling

times occur at times that form a sequence of (predictable) stopping times and satisfy a mild integrability assumption.

The proof of the result is a lot harder than the proof of the convergence of particle filters with deterministic stopping

time. The difficulty stems from the fact that the randomness of the resampling times prevents us from using the

standard approach based on the dual of the conditional distribution process. We circumvented this by developing

first an abstract convergence criterion for measure-valued processes, see Theorem 8. This result may be of interest

independently of the current application. The conditions under which Theorem 1 holds are verified for the case when

the resampling times are chosen in accordance to the effective sample size of the system of particles, or equivalently

the coefficient of variation of the particles’ weights and, respectively, in accordance to the (soft) maximum of the

particles’ weights. We emphasize that we do not require that the resampling times converge. This is particularly

important as, usually, the times depend on the approximation itself and so we cannot assume a priori that they

converge.

We also analyze the fluctuations of adaptive particle filters. Under an additional integrability condition and after

assuming that resampling times converge (as a result of the convergence of the approximations), we show a central-

limit theorem type result is obtained for the approximating system, see Theorem 2. The conditions are again checked

for the effective sample size and, respectively, the maximum of the particles’ weights criteria. The central-limit

theorem will enable us to perfom a comparative analysis of adaptive particle filters. This and other issues related to

the implementation of particle filters with random resampling times (time discretization of the particles’ motion and

particles’ weights, computational effort, etc) will be discussed in sequel to this paper.3

2A similar result has been proved in the discrete time setting. See [5] for more details and the next Section for a comparison with the results

presented here.
3D. Crisan, O. Obanubi, Threshold Inferences and Numerical Results Concerning Random Time Resampling for the Effective Sample Size.
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The following is a summary of the contents of the paper:

In the next section, the filtering framework and the filtering problem are formally introduced and defined. Some

background and preliminary results of stochastic filtering theory will also be covered. Key among these results is

the Zakai equation, a linear equation which describes the evolution of an unnormalized version of the conditional

distribution of the signal. The Zakai equation, as will be seen throughout this paper, plays a fundamental role in

allowing approximations of the solution of the filtering problem to be obtained. This is because it provides us with

an indirect and relatively easier method, due to its linear form, of obtaining convergence results for the normalized

conditional distribution of X. We also state the main results of the paper and the conditions under which they hold.

In Section 3, the class of particle approximation is introduced and discussed. Details of the approximating particle

system and how resampling times are determined are given. We discuss the suitability of choosing the resampling

times to be determined by various measures of sample degeneracy: the essential sample size, the coefficient of

variation, entropy and the maximum weight.

The next two sections contain the proofs for the main results of the paper. In section 4, the evolution equations of

the approximating measures are derived and used to show the almost sure convergence of the approximations to

the true solutions under certain conditions. In section 5 we get central limit theorem type results. The error between

the approximations and the true solutions are recalibrated and shown to form a tight sequence and their limit in

distribution found.

The paper is concluded with an Appendix that collates a number of useful lemmatas and results used throught the

paper.

1.2 Notation

In the following we will use the following notation:

• Rd - the d-dimensional Euclidean space

• Rd - the one-point compactification of Rd formed by adding a single point at infinity to Rd

• B(Rd) - the space of bounded Borel measurable functions from Rd to R

• Cb(Rd) - the space of bounded continuous functions on Rd

• Cmb (Rd) - the space of bounded continuous functions on Rd with bounded derivatives up to order m ∈ N.

• Cm0
(
Rd
)

- the space of continuous functions on Rd, vanishing at infinity with continuous partial derivatives up to

order m ∈ N

• C∞0
(
Rd
)
-the space of smooth functions on Rd vanishing at infinity

• ‖ · ‖∞ - the supremum norm; for ϕ : Rd → R, ‖ϕ‖∞ = supx∈Rd |ϕ(x)|
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• ‖ · ‖m,∞ - the norm such that for m ∈ N and a function ϕ on Rd

‖ϕ‖m,∞ =
∑

|α|≤m

sup
x∈Rd

|Dαϕ(x)|,

where α = (α1, . . . , αd) is a multi-index and Dαϕ = (∂1)α
1

· · · (∂d)α
d

ϕ

• MF (Rd) - the set of finite measures on Rd

• MF (Rd) - the set of finite measures on Rd

• DMF (Rd)[0, T ] - the space of càdlàg functions f : [0, T ] 7→ MF (Rd)

• DMF (Rd)[0,∞) - the space of càdlàg functions f : [0,∞) 7→ MF (Rd)

2 Filtering problem and Related Results

2.1 The Filtering Framework

Let (Ω,F , (Ft)t≥0,P) be a complete filtered probability space which satisfies the usual conditions. Within (Ω,F ,

(Ft)t≥0,P) we consider an Ft-adapted d-dimensional signal process X = {Xt : t ≥ 0} which solves the stochastic

differential equation:

Xi
t = Xi

0 +

∫ t

0

f i(Xs) ds+

p∑

j=1

∫ t

0

σij(Xs) dV js i = 1, . . . , d, (2.1)

where V = (V j)pj=1 is a p-dimensional Brownian motion. We assume that f = (f i)di=1 : Rd → Rd and σ =

(σij)i=1,...,d,j=1,...,p : Rd → Rd×p are globally Lipschitz. Let A be the infinitesimal generator associated with X, that

is

A =

d∑

i=1

f i
∂

∂xi
+

d∑

i,j=1

aij
∂2

∂xi∂xj
, (2.2)

and aij = 1
2

∑p
k=1 σ

ikσjk = 1
2 (σσ>)ij for all i, j = 1, . . . , d. We denote by D(A) the domain of A. Next, let W be

a standard Ft-adapted m-dimensional Brownian motion defined on (Ω,F , (Ft)t≥0,P) independent of X, and let Y

be the process satisfying the following evolution equation

Yt =

∫ t

0

h(Xs) ds+Wt, (2.3)

where h = (hi)
m
i=1 : Rd → Rm is globally Lipschitz. Let {Yt : t ≥ 0} be the usual augmentation with null sets of

the filtration associated with the process Y . The filtering problem consists of determining the conditional distribution

process πt of the signal Xt given the filtration Yt, that is

πt(ϕ) = E [ϕ(Xt)|Yt], ϕ ∈ B(Rd). (2.4)
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Then we have

πt(ϕ) =
ρt(ϕ)

ρt(1)
, ϕ ∈ B(Rd), (2.5)

where ρt(ϕ) is an Yt-adapted measure-valued process which satisfies the Zakai equation:

ρt(ϕ) = π0(ϕ) +

∫ t

0

ρs(Aϕ) ds+

m∑

i=1

∫ t

0

ρs(ϕh
i) dY is , ϕ ∈ D(A). (2.6)

Formula (2.5) is called the Kallianpur-Striebel’s formula and the process ρ = {ρt, t ≥ 0} is called the unnormalized

conditional distribution of the signal. The Zakai equation can also be written in mild form (see, for example, [25]):

ρt(ϕ) = ρ0(Ptϕ) +

∫ t

0

ρr(Pt−rϕh
>) dYr, P̃− a.s. ∀t ≥ 0. (2.7)

(Pr)r≥0 is the Markov C0-semigroups of contractions whose infinitesimal generator is the operator A as defined in

(2.2). The mild form of the Zakai equation holds true for any ϕ ∈ Cb(Rd). We will assume throughout the paper that

the coefficients σ and f in (2.1) are bounded and continuously differentiable with bounded partial derivatives and h

in (2.3) is bounded and Lipschitz.

In the following we will analyse a particle filter with multinomial resampling times (Tnk )k≥0 that form a strictly increas-

ing sequence of predictable stopping times.4 We give details of the particle filter in the following section. We denote

by πn = {πnt , t ≥ 0} the process consisting of the empirical distribution of the particle system and by Nn
t , the

number of resampling instances that occur before time t. The convergence of πn is stated in the following

Theorem 1. If there exists p > 1 such that for all t > 0, we have

sup
n>0

E[(Nn
t )p] <∞ (2.8)

then, for any r < p, there exists a constant α = α(T, r), independent of n, such that for any ϕ ∈ C1
b (Rd), we have

sup
t∈[0,T ]

E [(πnt (ϕ)− πt(ϕ))r] ≤
α

np
‖ϕ‖r1,∞. (2.9)

A few remarks regarding Theorem 1 are in order. Once again, we emphasize that we do not assume that the

resampling times converge as typically they will depend on πn and therefore their convergence cannot be a priori

assumed.

Condition (2.8) implies that limk→∞ Tnk = ∞. In particular, that there are only a finite number of resampling times

in any finite interval. It is trivially satisfied for any sequence of deterministic times that converge to ∞. Therefore,

Theorem 1 generalizes existing convergence results for (non-adaptive) particle filters. In addition, condition (2.8) is

4That is for each Tnk , there exists an announcing sequence of stopping times (Tn,mk )m≥1 such that Tn,mk is increasing, Tn,mk < Tnk on

{Tnk > 0}, for all m, and limm→∞ T
n,m
k = Tnk . See, for example, Chapter III Section 2 in [20] for more on predictable stopping times.
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satisfied for the case when the resampling times are chosen in accordance to the effective sample size of the system

of particles, or, equivalently, the coefficient of variation of the particles’ weights. This is the most popular resampling

criteria among the practitioners. It is also satisfied for the case when the resampling times are chosen in accordance

to the (soft) maximum of the particles’ weights.

In [5], a similar convergence result has been proved for the particle filters in a discrete-time framework. The result

in [5] relies on a ingenious coupling argument. The particle filter with random resampling times (Tnk )k≥0 is coupled

with one with resampling times (T̄k)k≥0 where (T̄k)k≥0 can be any deterministic times or times that could depend

on the observation process only (and not on the current state of the particle filter). The authors show that, as n

increases, Tnk are exponentially close to T̄k. Since time runs discreetly, they must be equal with high probability

and the convergence result follows by analyzing the particle filter with observation dependent resampling times. Of

course this argument cannot be applied in a continuous-time framework. In continuous time, the corresponding

equivalent of Tnk and T̄k can be different no matter how close they are. It would be interesting to see if the argument

presented here can be adapted to cover the discrete framework. Condition (2.8) is trivially satisfied when time runs

discretely: obviously Nn
t ≤ t, with the maximum achieved when one resamples at any time instance. An adaptation

of the proof presented here would, perhaps, solve the additional constraint imposed in [5] on the Tnk ’s that involve

the use of certain randomized criteria thresholds (see section 5.2 in [5] ).

Condition (2.8) offers a control on the number of resampling times in any finite interval. Heuristically speaking, there

must not be "too many of them". In the case when condition (2.8) is not satisfied, the convergence might be slower

or, even worse, the particle filter might diverge as the number of particles increases. Theorem 1 is also valid under

following alternative to condition (2.8), see [19] for details: There exists p > 1 such that for all t > 0, we have

sup
n>0

∞∑

k=1

P(Tnk ≤ t)
1/p <∞.

In addition, to the convergence of πn we also study its fluctuations around the limiting measure π. In particular, if

Ūn = {Ūnt , t ≥ 0} is the measure-valued process defined as Ūn =
√
n(πn − π), then we deduce the following

central limit type theorem.

Theorem 2. Assume that for any k ≥ 0, limn→∞ Tnk = Tk, where (Tk)k≥0 is a strictly increasing sequence of

Yt-adapted predictable stopping times. If (2.8) is satisfied and also there exists p > 1 such that for all t > 0, we have

lim
δ→0

sup
n>0

E[ sup
s∈[0,t]

E[(Nn
s+δ −N

n
s )p|Fs]] = 0, (2.10)

then there exists a measure valued process Ū = {Ūt, t ≥ 0} such that Ūn converges in distribution to Ū .

Observe that Theorem 2 requires the convergence of the resampling times in order to hold true. If the criteria for

choosing the resampling times are functions of πn then their convergence can be deduced from Theorem 1. Condi-

tion (2.10) (the tightness condition) plays the central role in controlling the oscillation of the paths of the converging
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processes. Heuristically, it says that the resampling times cannot accumulate locally. Condition (2.10) is, again,

satisfied for the case when the resampling times are chosen in accordance to the effective sample size of the system

of particles, or, equivalently, the coefficient of variation of the particles’ weights and for the case when the resampling

times are chosen in accordance to the (soft) maximum of the particles’ weights.

3 The Approximating Particle System

The particle system consists initially of n particles each with weight 1/n and position vnj (0), j = 1, . . . , n. The

positions of the particles are chosen to be independent, identically distributed (i.i.d.) random variables with common

distribution π0 which is the law of X0 the signal at time 0. Hence, the approximating measure at time 0 is

πn0 =
1

n

n∑

j=1

δvnj (0).

Let {Tnk }k∈N be a strictly increasing sequence of predictable stopping times. For ease of notation, we write Tk

instead of Tnk unless when necessary to emphasise the dependency of the predictable stopping times on the sample

size, n.

During the random time intervals [Tk, Tk+1), the particles move with the same law as the signal X; that is for any

stopping time T ∈ [Tk, Tk+1)

vnj (T ) = vnj (Tk) +

∫ T

Tk

f(vnj (s)) ds+

∫ T

Tk

σ(vnj (s)) dV (j)
s , j = 1, . . . , n, (3.1)

where (V (j))nj=1 are mutually independent Ft-adapted p-dimensional Brownian motions which are independent of Y

and independent of all other random variables in the system. Each particle is assigned a normalized weights ānj (T ),

j = 1, . . . , n, for arbitrary stopping time T ∈ [Tk, Tk+1) given by

ānj (T ) :=
anj (T )

∑n
k=1 a

n
k (T )

where

anj (T ) = exp

(∫ T

Tk

h(vnj (s))> dYs −
1

2

∫ T

Tk

‖h(vnj (s))‖2 ds

)

. (3.2)

For T ∈ [Tk, Tk+1), define

πnT =

n∑

j=1

ānj (T )δvnj (T ).

At the end of the (random) interval [Tk, Tk+1), the correction procedure is implemented, the particles are re-indexed

and their weight reinitialized to 1.
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We will now address the questions concerning when and how to resample. A measure or indicator of the extent of

sample degeneracy is required to inform us of when to resample. The effective sample size (see [7], [11], [14]) of the

system is the most popular measure for the sample degeneracy of our approximating particle system. The effective

sample size (or ESS or neff ) cannot be calculated analytically and instead an estimate, given by

n̂eff =
1

∑n
j=1(ānj (T ))2

, (3.3)

is used. The interpretation of the effective sample size is that any inference based on a weighted sample of size n

will be approximately as accurate as one based on an independent sample whose size is the effective sample size.

An application of the Cauchy-Schwarz inequality leads us to the (intuitive) conclusion that n̂eff ≤ n. That is, the

effective sample size cannot be larger than the actual sample size. Since the worst case scenario one can have is

all the weight concentrated on one particle, it follows that the lower bound for neff is 1.

Resampling occurs when the ESS falls below a selected threshold nthres and clearly from above, we must have

nthres ≤ n. We will, however, only consider the cases where nthres ∈ (0, n), excluding the trivial cases where

nthres = 0 (i.e. resampling never occurs: this is the Monte Carlo method) and nthres = n (i.e. resampling occurs

continuously). The threshold is set to be of the form λthresn where λthres ∈ (0, 1).

For 1 ≤ k ∈ N define

Tk := inf{t ≥ Tk−1 : neff ≤ λthresn}. (3.4)

Consequently, Tk is the first time after the previous resampling time, Tk−1, that the ESS falls below the chosen

threshold. Put differently, Tk is the kth-resampling time and [Tk−1, Tk) is the time interval between the the (k − 1)th

and kth resampling times where the system particles evolve according to the prescribed signal law.

Before discussing how resampling is actually carried out, we give a heuristic argument to highlight the motivation

behind choosing the random resampling times to be predictable stopping times. In between resampling the newly

acquired information is stored in the particle weights. As long as the information remains limited or inaccurate,

the weights will remain roughly equal (in particular the ESS will be close to n). In this case resampling doesn’t

make sense as it introduces additional randomness in the system and wouldn’t compensate for this by significantly

improving the system. However as soon as the information becomes ‘reasonable’ (thus allowing us to be able

to better distinguish between particles in the ‘right’ and ‘wrong’ regions) and the weights subsequently become

sufficiently uneven, resampling is then desirable to keep the particles in the ‘right’ region. By resampling at random

times rather than, say, at regular (deterministic) time intervals, we resample only when the information is ‘reasonable’

enough (as determined by the ESS) and don’t unnecessarily introduce redundant randomness into the system. Put

differently, the resampling procedure is adjusted to the information being received and is not a priori fixed.

The predictability of the resampling times based on the ESS is immediate. Recall that, by definition, a stopping time

T is predictable if there exists an announcing sequence of stopping times (Tm)m≥1 such that Tm is increasing,

Tm < T on the set {T > 0}, and limm→∞ Tm = T . So, if for example , nthres is set to n/3, an announcing

9



sequence can be (Tmk )m≥1 where

Tmk := inf {t > Tk−1 : n̂eff < n/(3− 1/m)} .

The predictability property of the resampling time is used to give a useful characterization of the σ-algebra of events

that occur up to but not including the stoping time itself. In particular, for any predictable stopping time T and any

announcing sequence, (Tr), of T we have (see Chapter III Theorem 6 of [20])

FT− =:
∨

r≥1

FTr = σ






⋃

r≥1

FTr





.

Heuristically, this means that we can express the information immediately prior to any predictable stopping time in

terms of the information generated by events leading up to it.

We will now discuss on how the resampling is performed. Recall that at the end of the interval [Tk−1, Tk) the

resampling (or correction) procedure is implemented, the particles are re-indexed and their weights reinitialized to

1. During the implementation, each particle is replaced by a random number of particles (possibly zero) with each

offspring inheriting the spatial position of their parents. The question which then arises is how to replace the parent

particles with offspring particles. Posed differently, what should the offspring distribution of the parent particles be?

A possible answer to this question is the following:

Let O(j)
T , j = 1, . . . , n be the random variables representing the number of offspring produced by the jth parent

particle during resampling. Let on,Tj ∈ {1, . . . , n}, j = 1, . . . , n be the particular values of these random variables.

Then one possible offspring distribution is the multinomial distribution with (respective) probabilities taken to be the

normalized weight of the jth parent particle, that is, ānj (T ), so that we have

P
(
O

(1)
T = on,T1 , . . . , O

(n)
T = on,Tn

)
=

n!
∏n
j=1 o

n,T
j !

n∏

j=1

(
ānj (T )

)on,Tj . (3.5)

The multinomial sampling algorithm essentially states that, at correction or resampling times, we should sample

n-times (with replacement) from the population of particles with positions vnj (T ), j = 1, . . . , n according to the

probability distribution given by the corresponding normalized weights ānj (T ), j = 1, . . . , n. onj ≡ on,Tj therefore is

the number of times the particle with position vnj (T ) is chosen.

After carrying out the correction procedure, the unnormalized weights of the particles are re-initialized to 1. A particle

filter with this choice of offspring distribution is called a Bootstrap Filter or the Sampling Importance Resampling

algorithm (SIR algorithm). It can be traced back to the papers by Gordon, Salmon and Ewing [9], Gordon, Salmond

and Smith [10], Kitagawa [13]. The bootstrap filter is popular among practitioners because it is quick and easy to

implement and amenable to parallelisation.

10



3.1 Predictable Stopping Times for Other Measures of Sample Degeneracy

Before proceeding further, we will give examples of predictable stopping times with other measures of sample de-

generacy. Firstly, the coefficient of variation or CV (see [14]) where

CV :=



 1

n

n∑

j=1

(
nānj (t)2 − 1

)2




1
2

(3.6)

is closely rated to the effective sample size. Indeed,

CV =

(
n

neff
− 1

) 1
2

.

We observe that CV is
√
n− 1, its maximum value, when all the normalized weights of the particles save one are

zero - the worst case of sample degeneracy. It is 0, its minimum value, when all the normalized are equal (that is

ānj (t) = 1
n
, j = 1 . . . , n). The greater the value of CV, the greater the extent of sample degeneracy. Consequently

the resampling times, in the case of CV, are determined when CV > α, where α ∈
(
0,
√
n− 1

)
.

This is equivalent to resampling when neff < ᾱ where ᾱ := n
(α2+1) ∈ (1, n). Consequently predictable stopping

times for the coefficient of variation are defined similarly to how they are defined for effective sampling size and all

results deduced for predictable stopping times for effective sampling size also apply to predictable stopping times

that use the CV as measure of nondegeneracy.

The entropy of the approximating particle system at time t is defined as:

Et = −
n∑

j=i

ānj (t) log ānj (t) (3.7)

where the convention limx→0+ x log x = 0 is used. Observe that

0 ≤ Et ≤ log n (3.8)

and that the value of the system’s entropy decreases as sample degeneracy worsens so that we resample when the

entropy of the system is less than or equal to a constant, β say, with β ∈ [0, log n]. Hence the predictable stopping

times for entropy measure is defined for 1 ≤ k ∈ N by

Tk := inf{t ≥ Tk−1 : Et ≤ β}. (3.9)

Another measure of sample degeneracy is the maximum of the unnormalized weights5. Recall from (3.2) the unnor-

malized weights take the form exp(wj), where

wj :=

∫ T

Tk

h(vnj (s))> dYs −
1

2

∫ T

Tk

‖h(vnj (s))‖2 ds, j = 1, . . . , n.

5The same analysis and results also apply to the minimum of the unnormalized weights.
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An obvious choice of a measure of sample degeneracy is the function

f (w1, . . . , wn) = max
1≤j≤n

wj (3.10)

that is, the maximum of the log of the un-normalized weights. This function however isn’t easy to deal with and

therefore a proxy called the soft maximum is employed. The soft maximum is defined as

f (w1, . . . , wn, r) =
log
∑n
j=1 exp(r wj)

r
, (3.11)

where r ∈ N. In particular

lim
r→∞

log
∑n
j=1 exp(r wj)

r
= max

1≤j≤n
wj . (3.12)

For the purpose of our analysis, the parameter r plays no rôle, so we will focus, for convenience, on the case where

r = 1 in (3.11) that is, f (W1, . . . ,Wn, 1) where

f (W1, . . . ,Wn, 1) = log

n∑

j=1

exp(Wj) = log

n∑

j=1

anj (t). (3.13)

When using the soft maximum we resample when f (W1, . . . ,Wn, 1) ≥ α, α ∈ [0,∞). We thus define the kth

predictable stopping time as

Tk := inf





t ≥ Tk−1 :

1

n

n∑

j=1

anj (t) ≥
exp(α)

n






= inf

{

t ≥ 0 : ξn,∞t ≥

(
exp(α)

n

)k}

,

where ξn,∞ = {ξn,∞t : t ≥ 0} is the process defined as

ξn,∞t :=

∞∏

i=1

1

n

n∑

j=1

an,ij (t) (3.14)

with

an,ij (t) := exp

(∫ Ti∧t

Ti−1∧t
h(vnj (s))> dYs −

1

2

∫ Ti∧t

Ti−1∧t
‖h(vnj (s))‖2 ds

)

. (3.15)

4 Convergence Results

The convergence of the approximating process πn = {πnt : t ≥ 0} relies on the convergence of an unnormalized

version of πn to the solution of the Zakai equation. To this end we introduce the measure-valued process ρn = {ρnt :

t ≥ 0} to be defined by

ρnt := ξn,∞t πnt , t ≥ 0,
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where ξn,∞ = {ξn,∞t : t ≥ 0} is the process defined in (3.14). In the following, for ease of notation we write ξnt to

denote ξn,∞t . In particular if T ∈ [ Tk−1, Tk ),

ρnT =
ξnTk−1

n

n∑

j=1

anj (T )δvnj (T ).

In the following, we will use the bounds

max
j=1,...,n

sup
n≥0

E[ sup
s∈[0,t]

(anj (s))p] ≤ ct,p0 , (4.1)

sup
n≥0

E [ sup
s∈[0,t]

(ξns )p] ≤ ct,p1 , (4.2)

max
j=1,...,n

sup
n≥0

E[ sup
s∈[0,t]

(ξns ā
n
j (s))p] ≤ ct,p2 , (4.3)

where ct,p0 , ct,p1 and ct,p2 are constants which depend on max
i=1,...,m

‖hi‖0,∞. In (4.3), the weights ānj (s) are the nor-

malized versions of anj (s) as defined in (3.15). The proof of these estimates is standard, see Lemma 31 in the

Appendix.

Lemma 3. We have the following control on the mass of the measure-valued process ρn: For any T ≥ 0 and p ≥ 0,

we have

sup
n≥0

sup
t∈[0,T ]

E [(ρnt (1))
p
] <∞. (4.4)

Proof . Since πn is a probability measure-valued process, we have that ρnt (1) = ξnt and (4.4) is immediate from

(4.2).

Proposition 4. The measure-valued process ρn satisfies the following evolution equation

ρnt (ϕ) = πn0 (ϕ) +

∫ t

0

ρns (Aϕ) ds+ S̄n,ϕt + M̄n,ϕ
t +

m∑

k=1

∫ t

0

ρns (hkϕ) dY ks , (4.5)

for any ϕ ∈ C2
b (Rd). In (4.5), S̄n,ϕ = {S̄n,ϕt : t ≥ 0} is the Ft-adapted martingale

S̄n,ϕt :=
1

n

∞∑

k=1

n∑

j=1

∫ Tk∧ t

Tk−1∧ t
ξnTk−1

anj (s)((∇ϕ)>σ)(vnj (s)) dV (j)
s

and M̄n,ϕ = {M̄n,ϕ
t : t ≥ 0} is the Ft-adapted martingale

M̄n,ϕ
t :=

∞∑

k=1

1[0,t](Tk)(ρnTk(ϕ)− ρnTk−(ϕ)).

13



Proof . Observe that for any t ≥ 0 and ϕ ∈ C2
b (Rd),

ρnt (ϕ) = πn0 (ϕ) +
∞∑

k=1

1[0,t](Tk)(ρnTk(ϕ)− ρnTk−(ϕ)) +
∞∑

k=1

ρnTk−∧t(ϕ)− ρnTk−1∧t(ϕ)

and

ρnTk−∧t(ϕ)− ρnTk−1∧t(ϕ) =

∫ Tk∧t

Tk−1∧t

ξnTk−1

n

n∑

j=1

d (anj (s)ϕ(vnj (s)), k ∈ N.

The proof then follows by a straightforward application of Itô’s formula. The fact that M̄n,ϕ is an Ft-adapted martin-

gale is proved in the appendix (See Proposition 33 ).

We remark that one can deduce the corresponding result for the evolution equation for πn. We do not state it here

as it plays no rôle in what follows. The mild version of (4.5) is given by

ρns (ϕ) = ρn0 (Ptϕ) +

∫ t

0

ρnr (Pt−rϕh
>) dYr + M̄n,ϕ

t + S̄n,ϕt (4.6)

where

S̄n,ϕt :=
1

n

∞∑

k=1

n∑

j=1

∫ Tk∧ t

Tk−1∧ t
ξnTk−1

anj (r)
(
(∇(Pt−rϕ))>σ

)
(vnj ) dV jr

and

M̄n,ϕ
t :=

∞∑

k=1

1[0,t](Tk)
(
ρnTk(Pt−Tkϕ)− ρnTk−(Pt−Tkϕ)

)
.

Note that (4.6) holds true for any ϕ ∈ C1
b (Rd). The error between the approximate measure and the target measure

is thus given by

δρnt (ϕ) = δρn0 (Ptϕ) +

∫ t

0

δρnr (Pt−rϕh
>) dYr + S̄n,ϕt + M̄n,ϕ

t , (4.7)

where δρn = ρnt − ρt. Being able to control the terms on the right hand side of (4.7) therefore is key to obtaining

relevant bounds on the error terms which hopefully will lead to information about the rate of convergence of the

approximations.

Lemma 5. For any T ′ ≥ 0 and any p ≥ 1 there exists a constant, βT ′,p independent of n such that, for any

ϕ ∈ C1
b (Rd), we have

E





(

sup
t∈[0,T ′]

|S̄n,ϕt |

)2p


 ≤
βT ′,p

np
‖∇ϕ‖2p∞. (4.8)

Proof . For t ≥ 0 we note that

S̄n,ϕt =
n∑

j=1

∫ t

0

ξnr ā
n
j (r)((∇(Pt−rϕ))>σ)(vnj (r)) dV jr . (4.9)
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By the Burkholder-Davis-Gundy and Jensen inequalities it follows for p ≥ 1 and T ′ ≥ 0 that

E





(

sup
t∈[0,T ′]

|S̄n,ϕt |

)2p


 ≤ Cp E[〈S̄n,ϕ〉pT ′ ]

= Cp E

[ n∑

j=1

∫ T ′

0

(ξnr ā
n
j (r))2

(
(∇PT ′−rϕ)>σσ>(∇PT ′−rϕ)

)
(vnj (r)) dr

]p

≤ Cpn
p−1T ′p−1d̃

n∑

j=1

∫ T ′

0

E[(ξnr )4p]
1
2 E[(ānj (r))4p]

1
2 ‖∇PT ′−rϕ‖

2p
∞ dr (4.10)

and since there exists CT ′ such that for any ϕ ∈ C1
b (Rd) we have ‖∇PT ′−rϕ‖∞ ≤ CT ′‖∇ϕ‖∞ (see Remark 4.5 in

[19]) we get that (4.8) holds true with

βT ′,p = CpT
′pd̃(cT

′,4p
2 )

1
2C2p

T ′d
2p.

Lemma 6. For any k ∈ N and ϕ ∈ Cb(Rd) there exist a constant Ck independent of n such that

E[(πn0 (Ptϕ)− π0(Ptϕ))2k] ≤
Ck‖ϕ‖2k∞

nk
. (4.11)

Proof . Let ζj ≡ Ptϕ(vnj (0))− π0(Ptϕ) so that

1

n

n∑

j=1

ζj =
1

n

n∑

j=1

(Ptϕ(vnj (0))− π0(Ptϕ)) ≡ πn0 (Ptϕ)− π0(Ptϕ)

Note that ζj , j = 1, . . . , n, are independent identically distributed random variables with mean 0. The bound (4.11)

then follows from

E[(πn0 (Ptϕ)− π0(Ptϕ))2k] = E

[(
1

n

n∑

j=1

ζj

)2k]

=
1

n2k
E

[ ∑

α1,...,αn
αj 6=1

(
2k

α1, . . . , αn

)

[ζα1
1 · · · ζ

αn
n ]

]

≤
1

n2k

∑

α1,...,αn
αj 6=1

(
2k

α1, . . . , αn

)

E[|ζ1|
α1 · · · |ζn|

αn ]

≤
Ck‖ϕ‖2k∞

nk
(4.12)

where the sum is taken all over the multi-indices (α1, . . . , αn) ∈ Nn satisfying αj 6= 1 for j = 1, . . . , n subject to

the condition that
∑n
j=1 αj = 2k and

(
2k

α1, . . . , αn

)

:=
2k!

α1! . . . , αn!
. The inequality (4.12) follows since the largest

coefficient that can be obtained from the preceding inequality is of order nk.
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Lemma 7. Assume that there exists p > 1 such that for all t > 0, condition (2.8) holds true. Then for any r < p and

any ϕ ∈ Cb(Rd) there exists a constant CT ′,4 such that

E

[

sup
t∈[0,T ′]

|M̄n,ϕ
t |2r

]

≤
CT ′,2r‖ϕ‖2r∞

nr
. (4.13)

Proof . Observe that by Burkholder-Davis-Gundy inequality and Fatou’s lemma that

E

[

sup
t∈[0,T ′]

|M̄n,ϕ
t |2r

]

≤ C lim
m
E

[( m∑

k=1

1[0,T ′](Tk)E[(ρnTk(ϕ)− ρnTk−(ϕ))2|FTk−]

)r]

= C lim
m
E

[( m∑

k=1

1[0,T ′](Tk)(ξnTk)2E[(πnTk(ϕ)− πnTk−(ϕ))2|FTk−]

)r]

. (4.14)

Now observe that

πnTk(ϕ)− πnTk−(ϕ) =
1

n

n∑

j=1

(ϕ(vnαj (Tk))− E[πnTk(ϕ)|FTk−]) =:
1

n

n∑

j=1

ζαj (4.15)

where we have used the fact that πnTk(ϕ) =
1

n

n∑

j=1

ϕ(vnαj (Tk)) where (αj)
n
j=1 is a random index of 1, . . . , n so that

vnαj (Tk) = vnj′(Tk) for some j′ ∈ {1, . . . , n} with probability ān,Tkj′ . Since

E[ϕ(vnαj (Tk))|FTk−] =

n∑

j′=1

ān,Tkj′ ϕ(vnj′(Tk)) = E[πnTk(ϕ)|FTk−],

E
[
ζαj
]

= E
[
E
[
ζαj |FTk−

]]
= 0 (4.16)

and hence,

E
[
πnTk(ϕ)− E[πnTk(ϕ)|FTk−]

]
= 0.

By the conditional independence property of sampling with replacement it follows from (4.16) (and similar to (4.12))

that

E
[
(πnTk(ϕ)− πnTk−(ϕ))2|FTk−

]
= E

[( 1

n

n∑

j=1

ζαj

)2∣∣
∣FTk−

]

=
1

n2
E

[ n∑

j=1

ζ2
αj

∣
∣
∣FTk−

]

≤
C2‖ϕ‖2∞

n
. (4.17)

Hence, by Hölder’s and Jensen’s inequalities,

lim
m
E

[( m∑

k=1

1[0,T ′](Tk)E[(ρnTk(ϕ)− ρnTk−(ϕ))2|FTk−]

)r]

≤
C ′‖ϕ‖2r∞
nr

E





(

sup
s∈[0,t]

ξns

)2r

(Nn
t )r





≤
C ′‖ϕ‖2r∞
nr

E [(Nn
t )p]

r/p E





(

sup
s∈[0,t]

ξns

)2r(p−r)/p




p/p−r

.
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(4.13) now follows as a result of the condition on the family of stopping time {Tk}k and (4.2).

The convergence results of the paper rely on a general convergence criteria.

Let U := {Ut : t ≥ 0} be a continuous Rd-valued semi-martingale with the property that, for any t > 0 there exists a

constant Ct such that

E

[

sup
r∈[0,t]

∣
∣
∣
∣

m∑

k=1

∫ r

0

ξksdUks

∣
∣
∣
∣

p]

≤ Ct
m∑

k=1

E

[∫ t

0

|ξks |
pds

]

(4.18)

for any progressively measurable Ft-adapted Rd-valued process ξ := {ξt : t ≥ 0}. Let µn := {µnt : t ≥ 0} be a

measure-valued process such that for any ϕ ∈ C1
b (Rd) we have

µnt (ϕ) = µn0 (at(ϕ)) +mn,ϕ
t +

m∑

k=1

∫ t

0

µns (aks,t(ϕ)) dUks (4.19)

where mn,ϕ := {mn,ϕ
t : t ≥ 0} is a martingale and at, aks,t : C1

b (Rd) → C1
b (Rd) are bounded linear operators with

bounds c and Ck, k = 1, . . . ,m, respectively. That is, ‖at(ϕ)‖1,∞ ≤ c‖ϕ‖1,∞ and ‖aks,t(ϕ)‖1,∞ ≤ Ck‖ϕ‖1,∞,

k = 1, . . . ,m.

In the following, the notation |ν| denotes the total variation of a measure ν.

Theorem 8. If for any T ′ > 0 there exist constants γ1, γ2 such that for t ∈ [0, T ′] and p ≥ 2

E

[

|mn,ϕ
t |

p

]

≤
γ1

np/2
‖ϕ‖p1,∞; and E

[

|µn0 (at(ϕ))|p
]

<
γ2

np/2
‖ϕ‖p1,∞, (4.20)

and

d := sup
t∈[0,T ′]

E [(|µnt |(1))
p
] <∞, (4.21)

then for any t ∈ [0, T ′]

‖µnt (ϕ)‖pp := E

[

|µnt (ϕ)|p
]

≤
α

np/2
‖ϕ‖p1,∞ (4.22)

where α = α(t) is a constant independent of n.

Proof . Observe, by a combination of Jensen’s and Burkholder-Davis-Gundy inequalities, that

‖µnt (ϕ)‖p ≤ ‖µn0 (at(ϕ))‖p + ‖mn,ϕ
t ‖p +

[

E

∣
∣
∣
∣

m∑

k=1

∫ t

0

µns (aks,t(ϕ)) dUks

∣
∣
∣
∣

p] 1
p

≤ 2

(
γ

np/2
‖ϕ‖p1,∞

) 1
p

+

[

Kmp−1t
p
2−1

m∑

k=1

∫ t

0

E

[

|µns (aks,t(ϕ))|p
]

ds

] 1
p

,
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where γ := max{γ1, γ2}.

Let

Aks,t :=

∫ t

0

E

[

|µns (aks,t(ϕ))|p
]

ds =

∫ t

0

‖µns (aks,t(ϕ))‖pp ds

then

‖µnt (ϕ)‖pp ≤ 2p−12p
γ

np/2
‖ϕ‖p1,∞ + 2p−1Kmp−1t

p
2−1

m∑

k=1

Aks,t. (4.23)

It thus follows using the fact that for k = 1, . . . ,m, aks,t is a bounded operator and appealing to (4.21) that

‖µnt (ϕ)‖pp ≤ 2p−12p
γ

np/2
‖ϕ‖p1,∞ + 2p−1Kmp−1t

p
2−1

m∑

k=1

Cpk‖ϕ‖
p
1,∞dt

≤ 2p−12p
γ

np/2
‖ϕ‖p1,∞ + 2p−1KmpCp‖ϕ‖p1,∞dt

p
2 (4.24)

where C := max{C1, . . . , Cm}. From (4.24) it follows for k = 1, . . . ,m, that

Aks,t ≤ 2p−12p
γ

np/2
Cpk‖ϕ‖

p
1,∞t+ 2p−1KmpCpCpk‖ϕ‖

p
1,∞d

t
p
2 +1

(p/2 + 1)

≤ 2p−12p
γ

np/2
Cp‖ϕ‖p1,∞t+ 2p−1KmpC2p‖ϕ‖p1,∞d

t
p
2 +1

(p/2 + 1)
.

(4.23) therefore becomes

‖µnt (ϕ)‖pp ≤ δ [1 + βpt
κ] + β2

pd‖ϕ‖
p
1,∞

t2κ

(κ+ 1)
(4.25)

where δ = 2p−12p
γ

np/2
‖ϕ‖p1,∞; βp = 2p−1KmpCp and; κ = p/2. In turn, (4.25) now gives us that

Aks,t ≤ δC
pt+ δβpC

p tκ+1

(κ+ 1)
+ β2

pC
pd‖ϕ‖p1,∞

t2κ+1

(2κ+ 1)(κ+ 1)

hence

‖µnt (ϕ)‖pp ≤ δ

[

1 + βpt
κ + β2

p

t2κ

(κ+ 1)

]

+ β3
pd‖ϕ‖

p
1,∞

t3κ

(2κ+ 1)(κ+ 1)
. (4.26)

So in general with ‖µnt (ϕ)‖p,(k)
p denoting the kth-iteration, it follows by an induction argument that

‖µnt (ϕ)‖p,(k)
p ≡ ‖µnt (ϕ)‖pp

≤ δ

[

1 + βpt
κ + β2

p

t2κ

(κ+ 1)
+ · · ·+ βk−1

p

t(k−1)κ

((k − 2)κ+ 1) . . . (κ+ 1)

]

+βkpd‖ϕ‖
p
1,∞

tkκ

((k − 1)κ+ 1)((k − 2)κ+ 1) . . . (κ+ 1)
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and as k →∞,

‖µnt (ϕ)‖pp ≤ δ



1 + βpt
κ
∞∑

j=0

βjp
tjκ

κjj!



 = δ

(

1 + βpt
κe

βpt
κ

κ

)

= 22p−1

(

1 + βpt
κe

βpt
κ

κ

)
γ

np/2
‖ϕ‖p1,∞.

Hence (4.22) follows with α := 22p−1
(

1 + βpt
κe

βpt
κ

κ

)
γ.

Remark 9. If the norms in the bounds (4.20) can be replaced with ‖ · ‖∞ that is

E

[

|mn,ϕ
t |

p

]

≤
γ1

np/2
‖ϕ‖p∞; and E

[

|µn0 (at(ϕ))|p
]

<
γ2

np/2
‖ϕ‖p∞, (4.27)

then by defining at and aks,t to be bounded linear operators on Cb(Rd), we can reach a similar conclusion as in

Theorem 8 for ϕ ∈ Cb(Rd).

We also have the following almost sure convergence result

Corollary 10. Under the same conditions as Theorem 8 but with the exception that p > 2 there exists a positive

random variable, cµ,ε, almost surely finite, such that

|µnt (ϕ)| ≤
cµ,ε

nε
(4.28)

where ε ∈

(

0,
1

2
−

1

p

)

.

That is

µnt (ϕ)→ 0 P̃− a.s. (4.29)

as n→∞.

Proof . Recall from (4.22) in Theorem 8 that

‖µnt (ϕ)‖pp := E

[

|µnt (ϕ)|p
]

≤
α

np/2
‖ϕ‖p1,∞ (4.30)

where α = α(t) is a constant independent of n.

By Fatou’s Lemma it follows therefore that for ε ∈

(

0,
1

2
−

1

p

)

E

[ ∞∑

n=1

nεp|µnt (ϕ)|p
]

≤ α‖ϕ‖p1,∞

∞∑

n=1

1

np−2εp
<∞.
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Let cµ,ε :=

[
∞∑

n=1

nεp|µnt (ϕ)|p
] 1
p

. Then cµ,ε is integrable and cµ,ε is finite a.s. (4.28) now follows since

n2εp|µnt (ϕ)|2p ≤
∞∑

n=1

n2εp (|µnt (ϕ)|)2p
.

In the following we will use the notation δρnt (ϕ) to denote (ρnt − ρt)(ϕ) and δπnt (ϕ) to denote (πnt − πt)(ϕ). Theorem

1 is proved in the following:

Theorem 11. Assume that there exists p > 1 such that for all t > 0, condition (2.8) holds true. Then for any T ′ ≥ 0

and for any r < p, there exists a constant α = α(T ′), independent of n such that for any ϕ ∈ C1
b (Rd), we have

E
[
((ρnt − ρt)(ϕ))2r

]
≤

α

nr
‖ϕ‖2r1,∞, t ∈ [0, T ′] (4.31)

and

E [((πnt − πt)(ϕ))r] ≤
α

n
r
2
‖ϕ‖r1,∞, t ∈ [0, T ′]. (4.32)

Proof . (4.31) follows from Theorem 8 by setting:

µnt (·) := (ρnt − ρt)(·); µn0 (at(·)) := (ρn0 − ρ0)(Pt·);

mn,ϕ
t := S̄n,ϕt + M̄n,ϕ

t ; µnr (akr,t(·)) ≡ (ρnr − ρr)(Pt−r · h
>) , 0 < r ≤ t;

and appealing to Lemma 5, Lemma 6 and Lemma 7. Note that the observation process Y satisfies condition (4.18).

The control on the total mass (4.21) follows from Lemma 3 and the fact that supt∈[0,T ′] E [(ρt(1))
p
] < ∞, see

Proposition 4.23 in [1].

In order to prove (4.32), note that πnt (ϕ)ρnt (1) = ξnt π
n
t (ϕ) = ρnt (ϕ). It follows thus that

δπnt (ϕ) =
1

ρt(1)
δρnt (ϕ) −

πnt (ϕ)

ρt(1)
δρnt (1). (4.33)

One can show that ut :=

√

E
[
(ρt (1))

−p
]
<∞ (see for example Exercise 9.16 in [1]).

By a combination of Jensen’s and Cauchy-Schwartz inequalities

E
[
|δπnt (ϕ)|p

]
≤ 2

(

ut

√

E
[
δ2p
ρnt

(ϕ)
]

+ ut‖ϕ‖
2
0,∞

√

E
[
δ2p
ρnt

(1)
]
)

.

(4.32) now follows from (4.31).
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Remark 12. Further to the results in Theorem 11. It can be shown that for 0 < ε < 1
2 −

1
2p and t ∈ [0, T ′],

|δρnt (ϕ)| ≤
ct, ε
nε

(4.34)

where ct, ε is a positive, almost surely finite random variable and hence (as in Corollary 10),

ρnt (ϕ)→ ρt(ϕ) P− a.s.. (4.35)

Hence also πnt (ϕ)→ πt(ϕ) P-a.s.

Remark 13. Under the same conditions as in Theorem 11 with the exception that ϕ ∈ C3
b (Rd), one can prove (see

[19]) the following stronger results:

E

[

sup
t∈[0,T ′]

δ2r
ρnt

(ϕ)

]

≤
βT ′

nr
‖ϕ‖2r3,∞, t ∈ [0, T ′], (4.36)

E

[

sup
t∈[0,T ′]

δrπnt (ϕ)

]

≤
β̃T ′

n
r
2
‖ϕ‖r3,∞, t ∈ [0, T ′].

5 Examples of convergent adaptive particle filters

We show now that the results of the preceding section are valid for the case where the predictable stopping times are

determined by the effective sample size. We will show that for any p > 1, condition (2.8) holds true. By applications

of Itô’s formula we have:

Proposition 14. For t ≥ 0 let S̄t :=
∑n
j=1 ā

n
j (t)2 so that S̃t := S̄−1

t ≡ n̂eff . Then for t ∈ [Tk′ , Tk′+1), 0 ≤ k′ ∈ N,

S̃t = n exp

( m∑

k=1

∫ t

Tk′

η̃n,ks dY ks +

m∑

k=1

∫ t

Tk′

ζ̃n,ks ds−
1

2

m∑

k=1

∫ t

Tk′

(η̃n,ks )2 ds

)

where

η̃n,kt := 2
(
πnt
(
hk
)
− π̃nt

(
hk
))
, (5.1)

and

ζ̃n,kt := πnt
(
hk
)2

+ 2πnt
(
hk
)
π̃nt
(
hk
)
− π̃nt

(
(hk)2

)
+ 4π̃nt

(
hk
)2
, (5.2)

with

ãnj (t)2 := S̄−1
t ānj (t)2 =

ānj (t)2

∑n
j=1 ā

n
j (t)2

and π̃nt :=
n∑

j=1

ãnj (t)2δvnj (t). (5.3)
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So after the k′th stopping time, it follows that

S̃t = S̃Tk′ +

m∑

k=1

∫ t

Tk′

S̃sη̃
n,k
s dY ks +

m∑

k=1

∫ t

Tk′

S̃sζ̃
n,k
s ds,

where t > Tk′ . In particular for t ∈ [Tk′ , Tk′+1),

S̃t = n exp

( m∑

k=1

∫ t

Tk′

η̃n,ks dY ks +

m∑

k=1

∫ t

Tk′

ζ̃n,ks ds−
1

2

m∑

k=1

∫ t

Tk′

(η̃n,ks )2 ds

)

Remark 15. For t ∈ [Tk′ , Tk′+1), we can also write

S̃t = n exp(−αn,k
′

t ) (5.4)

where

αn,k
′

t :=

∫ t

Tk′

βn,ks dY ks +

∫ t

Tk′

γn,ks ds (5.5)

is a semimartingale with

βn,ks = −
m∑

k=1

η̃n,ks ; γn,ks = −
m∑

k=1

(

ζ̃n,ks −
1

2

(
η̃n,ks

)2
)

, s ∈ [Tk′ , Tk′+1)

where we use the convention that

βn,ks dY ks :=

m∑

k=1

η̃n,ks dY ks .

Recall from (3.4) that the family of predictable stopping times {Tk}k∈N determined by the ESS is defined for 1 ≤

k′ ∈ N by

Tk′ := inf{t ≥ Tk′−1 : neff ≤ λthresn} (5.6)

where λthres ∈ (0, 1).

Observe that by (5.4), (5.6) can be rewritten as

Tk′ = inf{t ≥ Tk′−1 : αn,k
′−1

t ≥ log λ−1}. (5.7)

Lemma 16. Let t ∈ [Tk−1′ , Tk′), k′ ≥ 1 an integer. Then

Tk′ := inf{t ≥ Tk′−1 : neff ≤ λn}

can be equivalently rewritten as

Tk′ := inf{t ≥ 0 : αnt ≥ k
′ log λ−1} (5.8)

where for ease of notation, λ ≡ λthres and using the notation of Remark 15, the semi-martingale αnt is defined by

αnt = αn,0T1
+ αn,1T2

+ · · ·+ αn,k
′−2

Tk′−1
+ αn,k

′−1
t . (5.9)
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That is,

αnt =

∫ T1

0

βn,ks dY ks +

∫ T1

0

γn,ks ds+ · · ·+
∫ Tk−1′

Tk′−2

βn,ks dY ks +

∫ Tk′−1

Tk′−2

γn,ks ds+

∫ t

Tk′−1

βn,ks dY ks

+

∫ t

Tk′−1

γn,ks ds

=

∫ t

0

βns dYs +

∫ t

0

γns ds (5.10)

where for s ∈ [Tp, Tp+1), p = 0, . . . , k − 1′,

βns := βn,ps ; Ys := Y ps ; γns := γn,ps .

Proof . The result follows by the definition of αnt and noting that αn,k
′−1

t ≥ log λ−1 and for 0 ≤ r ≤ k′ − 2, αn,rTr+1
=

log λ−1.

Proposition 17. We will show that for any p > 1, condition (2.8) holds true, i.e.,

sup
n>0

E[(Nn
t )p] <∞ (5.11)

Proof . From (5.8)

{Tk ≤ t} ≡

{

sup
s∈[0,t]

αns ≥ k log λ−1

}

(5.12)

therefore

Nn
t = max{k ≥ 0; Tk ≤ t} = max{k ≥ 0; sup

s∈[0,t]

αns ≥ k log λ−1} ≤
sups∈[0,t] α

n
s

log λ−1

By Jensen’s and the Burkholder-Davis-Gundy inequalities, the fact that
∑n
j=1 ā

n
j (t) = 1 =

∑n
j=1 ã

n
j (t) and h(vnj (t))

being bounded for any t ≥ 0, it follows from (5.1) and (5.2) that E[(βns )p] <∞ and E[(γns )p] <∞ and

E

[(

sup
s∈[0,t]

αns

)p]

≤ E

[

sup
s∈[0,t]

(∫ s

0

βnr dYr +

∫ s

0

γnr dr

)p]

≤ 2p E

[

sup
s∈[0,t]

∣
∣
∣
∣

∫ s

0

βnr dYr

∣
∣
∣
∣

p]

+ 2p E

[

sup
s∈[0,t]

∣
∣
∣
∣

∫ s

0

γnr dr

∣
∣
∣
∣

p]

≤ C

where C is a constant independent of the number of particles, n. The claim is proved.

The following result is now immediate
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Proposition 18. The approximating measure of the signal converges to the true measure in a Lp-sense when the

predictable stopping resampling times are determined by the effective sample size.

Moreover we can also conclude that

Proposition 19. The approximating measure of the signal converges to the true measure in a Lp-sense when the

predictable stopping resampling times are determined by the soft maximum.

Proof . Observe that for any t ≥ 0 there exist a M ∈ N such that

ξn,∞t = ξn,Mt

:=

M∏

i=1

1

n

n∑

j=1

an,ij (t) (5.13)

=
1

nM

∑

(j1,...,jM )∈JM

exp

(
M∑

i=1

(∫ Ti∧t

Ti−1∧t
h(vnji(s))

> dYs −
1

2

∫ Ti∧t

Ti−1∧t
‖h(vnji(s))‖

2 ds

))

=
1

nM

∑

(j1,...,jM )∈JM

exp

(∫ TM∧t

0

h(vnj1,...,jM (s))> dYs −
1

2

∫ TM∧t

0

‖h(vnj1,...,jM (s))‖2 ds

)

where JM is the set of multi-indices defined by

JM := {(j1, . . . , jM ) : ji ∈ {1, . . . , n}, i = 1, . . . ,M}

and

vnj1,...,jM = vnji if s ∈ [Ti−1 ∧ t, Ti ∧ t), i = 1, . . . ,M.

The claim now follows by using a similar approach to the one employed for the ESS.

6 A central Limit Theorem

In the section we will assume throughout that the conditions stated in Theorem 2 hold true. That is we assume that

for any k ≥ 0, limn→∞ Tnk = Tk, where (Tk)k≥0 is a strictly increasing sequence of Yt-adapted predictable stopping

times. We also assume that (2.8) is satisfied and also there exists p > 2 such that for all t > 0, condition (2.10) holds

true. That is

lim
δ→0

sup
n>0

E[ sup
s∈[0,t]

E[(Nn
s+δ −N

n
s )p|Fs]] = 0,

Let {Un}n∈N be the family of measure-valued processes defined as

Unt :=
√
n(ρnt − ρt), t ≥ 0. (6.1)
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We will show that Un converges in distribution to a certain process U identified as the unique solution of a certain

evolution equation. Both Un and U are viewed as processes with values in the space MF (Rd) endowed with

a vague topology, that is, the weak*-topology on C0(Rd). It is possible to obtain the same results by endowing

MF (Rd) with the weak topology (see Remark 27 for details).

6.1 The Tightness of the sequence Un

Let {Pn} ⊂ P
(
DMF (Rd)[0, T ]

)
be the family of associated probability distributions of {Un}. Let (ιk)k≥0 be a

sequence of functions defined as ι0 ≡ 1 and (ιk)k≥1, a dense sequence in C∞0
(
Rd
)
. Then by Theorem 2.1 in [21] it

follows that to show that {Pn} is tight if the probability distributions of the sequence Unt (ιk) is tight. To show this we

make use of the following theorem (see Theorems 8.8 + 8.6 in [8]):

Theorem 20 (Kurtz’s criteria of relative compactness ). Let (E, d) be a separable and complete metric space and

let {Xn}n∈N be a sequence of processes with sample paths in DE [0,∞). Suppose that for every η > 0 and rational

t, there exists a compact set Γη,t such that

sup
n
P(Xn

t /∈ Γη,t) ≤ η. (6.2)

Then {Xn}n∈N is relatively compact if for each T ′ > 0, there exists β > 0 and a family {γn(δ) : 0 < δ < 1} of

non-negative random variables satisfying

E[(1 ∧ d(Xn
t+u, X

n
t ))β |Ft] ≤ E[γn(δ)|Ft] (6.3)

for 0 ≤ t ≤ T ′, 0 ≤ u ≤ δ and

lim
δ→0

lim sup
n→∞

E[γn(δ)] = 0. (6.4)

We have the following

Theorem 21. Provided that h in (2.3) and the coefficients aij and f i, 1 ≤ i, j ≤ d, in (2.2) belong to C3
b (Rd) then

the sequence {Un}n∈N is relatively compact.

Proof. It suffices to show that {Un(ιk)}n is relatively compact for any k ≥ 0. To show this we use Theorem 20 with

E = R, d the Euclidean metric and {Xn} = {Un(ιk)}. First note that (6.2) holds as a consequence of the fact that

E[supt(U
n(ιk))2] is bounded above by a constant independent of n which is is an immediate consequence of the

bound (4.31) (or (4.36)).

We now obtain a suitable family of random variables {γn(δ) : 0 < δ < 1} that satisfies (6.3). Firstly observe that, for

any 0 ≤ a ≤ b

Unb (ιk)− Una (ιk) = qn,1a,b + qn,2a,b +
√
n(S̄n,ιkb − S̄n,ιka ) +

√
n(M̄n,ιk

b − M̄n,ιk
a ), (6.5)
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where

qn,1a,b =

∫ b

a

√
n(ρns (Aιk)− ρs(Aιk)) ds (6.6)

qn,2a,b =

m∑

l=1

∫ b

a

√
n (ρns (hlιk)− ρs(hlιk)) dY ls . (6.7)

We find L2r-bounds for each of the terms in (6.5). Observe that, from (4.36), we have that

E[ sup
u∈[0,δ]

|qn,1t,t+u|
r|Ft] ≤ δrnr/2E[ sup

s∈[0,T ′+δ]

(ρns (Aιk)− ρs(Aιk))r|Ft] (6.8)

E[ sup
u∈[0,δ]

|qn,2t,t+u|
r|Ft] ≤ cδr/2nr/2

m∑

l=1

E[ sup
s∈[0,T ′+δ]

(ρns (hlιk)− ρs(hlιk))r|Ft] (6.9)

Also similar with the proof of the bound (4.8), we have

E[ sup
u∈[0,δ]

(
√
n|S̄n,ιkt+u − S̄

n,ιk
t |)r|Ft] ≤ cδ

r/2‖∇ik‖
r
∞E[ sup

s∈[0,T ′+δ]

(ρns (1))r|Ft]. (6.10)

Finally, similar with the proof of the bound (4.13) we have that for any r < p and any ϕ ∈ Cb(Rd)

E[ sup
u∈[0,δ]

√
n|M̄n,ιk

t+u − M̄
n,ιk
t |r|Ft] ≤ CT ′,2r‖ϕ‖

r
∞E[(Nn

t+δ −N
n
t )r/2 sup

s∈[0,T ′+δ]

(ξns (1))r|Ft]. (6.11)

Hence, following from (6.8),(6.9),(6.10) and (6.11), we get that (6.3) holds true with

γn(δ) = δrnr/2 sup
s∈[0,T ′+δ]

(ρns (Aιk)− ρs(Aιk))r + cδr/2nr/2
m∑

l=1

sup
s∈[0,T ′+δ]

(ρns (hlιk)− ρs(hlιk))r

+cδr/2‖∇ik‖
r
∞ sup
s∈[0,T ′+δ]

(ρns (1))r + CT ′,2r‖ϕ‖
r
∞ sup
t∈[0,t′+δ]

[E[(Nn
t+δ −N

n
t )r/2 sup

s∈[0,T ′+δ]

(ξns (1))r|Ft]

which in turn satisfy (6.4) following the bounds (4.2), (4.36) and the condition (2.10).

6.2 The process U

We start by introducing the process ρ̃ = {ρ̃t, t ≥ 0}.

ρ̃t(ϕ) = ρ̃0(ϕ) +

∫ t

0

[

ρs(1)ρs(Aϕ)−
m∑

r′=1

(
ρs(1)ρs(h

r′ϕ)− ρs(h
r′)ρs(ϕ)

)
πs(h

r′)

+

m∑

k′=1

πs(ϕ)ρs(h
k′)2 + 2

m∑

k′=1

(
ρs(h

k′)ρs(h
k′ϕ)− ρs(h

k′)2πs(ϕ)
)
]

ds

+
m∑

k′=1

∫ t

0

[
ρs(1)ρs(h

k′ϕ) + ρs(h
k′)ρs(ϕ)

]
dY k

′

s

The following lemma is proved in the same manner as the results in the previous section:
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Lemma 22. Let ρ̃n = {ρ̃nt , t ≥ 0} be the sequence of processes

ρ̃nt := (ξnt )2 n

n∑

j=1

ānj (t)2δvnj (t)).

Then ρ̃nt (ϕ)→ ρ̃t(ϕ) P-a.s. for any ϕ ∈ C2
b (Rd) and t ≥ 0.

Let Nϕ be a (Ft ∨ Y)-adapted square-integrable martingale given by

Nϕ
t =

∫ t

0

∫

Rd

√
ρ̃s ((∇ϕ)>σσ>(∇ϕ))B(dx, ds) +

∞∑

k=1

1[0,t](Tk)ρTk(1)
√
πTk(ϕ2)− πTk−(ϕ)2Υk (6.12)

where B(dx, ds) is a Brownian sheet or space-time white noise, {Υk}k∈N is a sequence of i.i.d standard normal

random variables mutually independent given the sigma algebra Y .

Proposition 23. If U := {Ut : t ≥ 0} is a DMF (Rd)[0,∞)-valued process such that for ϕ ∈ C2
0(Rd)

Ut(ϕ) = U0(ϕ) +

∫ t

0

Us(Aϕ) ds+Nϕ
t +

m∑

k=1

∫ t

0

Us(h
kϕ) dY ks (6.13)

then U is pathwise unique.

Proof. Let U and Ũ be two solutions of (6.13). Define Û := U − Ũ . Then Ût satisfies the following equation

Ût(ϕ) = Û0(ϕ) +

∫ t

0

Ûs(Aϕ) ds+

m∑

k=1

∫ t

0

Ûs(h
kϕ) dY ks (6.14)

and it follows similarly to Theorem 2.21(i) and Remark 3.4 in [17] or Lemma 4.2 in [16] that Û = 0.

Remark 24. That a solution to (6.13) exists will be shown in Theorem 25 where it will be shown that {Un}n converges

in distribution to U .

6.3 Convergence in distribution

Theorem 25. {Un}n converges in distribution to a unique DMF (Rd)[0,∞)-valued process, U := {Ut : t ≥ 0}, such

that for ϕ ∈ C2
0(Rd)

Ut(ϕ) = U0(ϕ) +

∫ t

0

Us(Aϕ) ds+Nϕ
t +

m∑

k=1

∫ t

0

Us(h
kϕ) dY ks . (6.15)

where Nϕ is an (Ft ∨ Y)-adapted martingale with quadratic variation

〈Nϕ
· 〉t =

∫ t

0

ρ̃s
(
(∇ϕ)>σσ>(∇ϕ)

)
ds+

∞∑

k=1

E
[
1[0, t](Tk)ρTk(1)2

[
πTk(ϕ2)− πTk−(ϕ)2|FTk−

]]
. (6.16)
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Proof. By Proposition 5.3.20 in [12] and its extension to stochastic partial differential equations and infinitely dimen-

sional stochastic differential equations (see [15] and [23]) it follows that the Yamada-Watanabe results applies to

equation (6.15), in other words, pathwise uniqueness implies uniqueness in law for (6.15). Hence the solution of

(6.15) is unique in distribution.

Let {Unr}r be any convergent subsequence of {Un}n. We denote the limit of {Unr}r by U and show that it is a

solution of (6.15). The result then follows by the uniqueness in law of the solution of (6.15) since this then implies

that the original sequence {Un} converges to the unique solution of of (6.15). Define

Nϕ
t = Ut(ϕ)− U0(ϕ)−

∫ t

0

Ur(Aϕ) dr −
m∑

k=1

∫ t

0

Us(h
kϕ) dY kr ,

To prove the result it suffices to show that Nϕ is an (Ft ∨ Y)-adapted martingale with quadratic variation given by

(6.16). For this it is enough to show that for all d, d′ ≥ 0, 0 ≤ t1 ≤ t2 · · · ≤ td ≤ s, 0 ≤ t′1 ≤ t′2 · · · ≤ t′d′ , continuous

bounded functions α1, . . . , αd onMF (Rd) and continuous bounded functions α′1, . . . , α
′
d′ on Rm we have

E



(Nϕ
t −N

ϕ
s )

d∏

i=1

αi(Uti)

d′∏

j=1

α′j(Yt′j )



 = 0 (6.17)

and

E

[(

(Nϕ
t −N

ϕ
s )2 −

∫ t

s

ρ̃s
(
(∇ϕ)>σσ>(∇ϕ)

)
ds

−
∞∑

k=1

1(s, t] (Tk)ρTk(1)2
[
πTk(ϕ2)− πTk−(ϕ)2

]
)

d∏

i=1

αi(Uti)

d′∏

j=1

α′j(Yt′j )



 = 0.

(6.18)

Both (6.17) and (6.18) follow by using the argument in Theorem 4.8.2 of [8]. The approach used is identical with the

proofs of Theorem 4.11 in [3] and Theorem 5.3 in [2] and we omit it here.

Corollary 26. Let Ūn : {Ūnt : t ≥ 0} be the process defined as Ūnt :=
√
n(πnt −πt), t ≥ 0. Then {Ūn}n converges

in distribution to the measure-valued process Ū : {Ūt : t ≥ 0} defined as

Ūt =
1

ρt(1)
(Ut − Ut(1)πt) , t ≥ 0, (6.19)

where U satisfies (6.15).

Proof . Follows from (4.33) and the fact that ρnt (ϕ)
a.s
→ ρt(ϕ) and πnt (ϕ)

a.s
→ πt(ϕ).
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Remark 27. It is possible to obtain the tightness and convergence in distribution of the processes Un when the

space MF (Rd) is endowed with the weak topology in the sense that a sequence of finite measures {µn}n∈N in

MF (Rd) converges to µ ∈ MF (Rd) if and only if µn(ϕ) converges to µ(ϕ) for all ϕ ∈ Cb(Rd). To do this one

introduces the metric

dM :MF (Rd)×MF (Rd)→ [0,∞), dM(µ, ν) =

∞∑

i=0

|µ(ϕ)− ν(ϕ)|
2i‖ϕ‖∞

where ϕ0 ≡ 1 and {ϕi}i≥0 is a sequence of functions dense in Ck(Rd), the space of continuous functions with

compact support on Rd. Then dM generates the weak topology onMF (Rd). The main obstacle to obtaining the

tightness and convergence in distribution results under this new metric is that DMF (Rd)[0,∞) is not complete under

dM since the underlying spaceMF (Rd) is separable but not complete under dM. This inconvenience is catered for

by using the same approach presented in Section 5 of [2]: The space DMF (Rd)[0,∞) is embedded into the compact

and separable space DMF (Rd)[0,∞) by defining a map or projection P such that

µ ∈MF (Rd)
P
→ µ|Rd ∈MF (Rd).

HereRd is the one point compactificationRd. Note thatP(MF (Rd)) =MF (Rd). The family of measures {Pn}n can

therefore now be viewed as measures over DMF (Rd)[0,∞) (and {Un}n∈N consequently can be seen as processes

with sample paths in DMF (Rd)[0,∞)). By employing the strategy outlined above, we can show that {Un}n∈N
converges in distribution to U where U has sample paths in DMF (Rd)[0,∞). Finally since the weak topology on

MF (Rd) coincides with the trace topology fromMF (Rd) toMF (Rd), it is enough to show that U only takes values

in the spaceMF (Rd) (i.e. U is indeed a DMF (Rd)[0,∞)-valued random variable). To do this we have to show that

P(U) = U . In other words U doesn’t ‘put’ any ‘mass at ∞’. To show this, we need to prove that for arbitrary t,

there exists a sequence of compact sets {Kp}p≥0 ∈ Rd (possibly depending on t) which exhaust Rd such that for

all ε > 0,

lim
p→∞

P

[

sup
s∈[0,t]

(
Us(1Kc

p
)
)
]

= 0,

where Kc
p denotes the compliment of Kp. Consequently it follows that by using the approach described above, we

obtain identical results to the ones obtained under the vague topology for the weak topology.
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6.4 Tightness and Convergence of Resampling Times in the case of the Effective Sample
Size

6.4.1 Tightness Condition

Theorem 28. Let {Tk}k∈N be the resampling times as determined by the ESS. Then {Tk}k∈N satisfies the tightness

condition (2.10). In particular for all t > 0, we have

lim
δ→0

sup
n>0

E[ sup
s∈[0,t]

E[(Nn
s+δ −N

n
s )2|Fs]] = 0,

Proof . Since

t < Tnk ≤ t+ δ ⇔ αn∗t < k ≤ αn∗t+δ

where αn∗t :=
(
log λ−1

)−1
sups∈[0,t] α

n
s , we get that

E[(Nn
s+δ −N

n
s )2|Fs] = E[([αn∗s+δ]− [αn∗s ])2|Fs]

By the tail sum theorem (see Theorems 4.3.11 and 4.3.12 in [24]) we have that for any random variable X taking

integer values,

E
[
X2
]

= E [X(X − 1)] + E [X]

= 2
∞∑

r=1

(r − 1)P(X ≥ r) +

∞∑

r=1

P(X ≥ r).

Hence,

E
[(

[αn∗t+δ]− [αn∗t ]
)2
|Fs
]

= 2
∞∑

r=2

(r − 1)P
[
[αn∗t+δ]− [αn∗t ] ≥ r|Fs

]
+
∞∑

r=1

P
[
[αn∗t+δ]− [αn∗t ] ≥ r|Fs

]
. (6.20)

We will use the convention that Kp, where p ∈ N is a constant independent of n. Since for r > 1

{[αn∗t+δ]− [αn∗t ] ≥ r} ⊂ { sup
s∈[0,δ]

(αnt+s − α
n
t ) ≥ r − 1}
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it follows by the conditional Markov inequality that

2

∞∑

r=2

(r − 1)P
[
[αn∗t+δ]− [αn∗t ] ≥ r|Ft

]
≤ 2

∞∑

r=2

(r − 1)P

[

sup
s∈[0,δ]

(αnt+s − α
n
t ) ≥ (r − 1)|Ft

]

≤ 2

∞∑

r=2

(r − 1)

E

[(
sups∈[0,δ](α

n
t+s − α

n
t )
)3

|Ft

]

(r − 1)3

= 2E





(

sup
s∈[0,δ]

(αnt+s − α
n
t )

)3

|Ft




∞∑

r=2

1

(r − 1)2

=
π2

3
E





(

sup
s∈[0,δ]

(αnt+s − α
n
t )

)3

|Ft





≤ K1δ
3
2 . (6.21)

Note that

∞∑

r=1

P
[
[αn∗t+δ]− [αn∗t ] ≥ r|Ft

]
= P

[
[αn∗t+δ]− [αn∗t ] ≥ 1|Ft

]
+
∞∑

r=2

P
[
[αn∗t+δ]− [αn∗t ] ≥ r|Ft

]
. (6.22)

Similar to (6.21)

∞∑

r=2

P
[
[αn∗t+δ]− [αn∗t ] ≥ r|Ft

]
≤ E





(

sup
s∈[0,δ]

(αnt+s − α
n
t )

)2

|Ft




∞∑

r=2

1

(r − 1)2
.

≤ K2δ. (6.23)

We will now show that as δ → 0

P
[
[αn∗t+δ]− [αn∗t ] ≥ 1|Ft

]
≤ c(δ)→ 0

where c(δ) is a constant depending only on δ.

For ε > 0 let

Aε =
⋃

r∈N

[r − 1, r −
ε

r4
] and (Aε)c := [0,∞)\Aε =

⋃

r∈N

(r −
ε

r4
, r )

then with B := {[αn∗t+δ]− [αn∗t ] ≥ 1},

P(B|Ft) = P(B ∩ {αn∗t ∈ A
ε}|Ft) + P(B ∩ {αn∗t ∈ (Aε)c}|Ft)

≤ P(B ∩ {αn∗t ∈ A
ε}|Ft) + P({αn∗t ∈ (Aε)c}|Ft)

Note then that since αnt
a.s.
→ αt and αn∗t

a.s.
→ α∗t as n→∞

P ({αn∗t ∈ (Aε)c}|Ft)→ P ({α∗t ∈ (Aε)c}|Ft) . (6.24)
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Also as ε→ 0,

(Aε)c ↘ φ⇒ P((Aε)c|Ft)↘ 0

and hence,

f(ε) := P({α∗t ∈ (Aε)}|Ft)
c → 0. (6.25)

To control P(B ∩ {αn∗t ∈ A
ε}) we make use of the conditional Markov inequality and the fact (see Proposition C.1 in

the appendix in [19]) that

{[αn∗t+δ]− [αn∗t ] ≥ 1} ⊆ { sup
s∈[0,δ]

(αnt+s − α
n
t ) ≥ 1− {αn∗}}

where {·} denotes the fractional part function, to get that

P(B ∩ {αn∗t ∈ A
ε}|Ft) = E [1Aε(α

n∗
t )1B |Ft]

= E
[
1Aε(α

n∗
t )1{[αn∗t+δ]−[αn∗t ]≥1}|Ft

]

= 1Aε(α
n∗
t )E

[
1{[αn∗t+δ]−[αn∗t ]≥1}|Ft

]

≤ 1Aε(α
n∗
t )P

[

sup
s∈[0,δ]

(
αnt+s − α

n
t

)
≥ 1− {αn∗t }

∣
∣
∣
∣Ft

]

≤
1Aε(α

n∗
t )E

[√
sups∈[0,δ]

(
αnt+s − α

n
t

)
∣
∣
∣
∣Ft

]

√
1− {αn∗t }

.

By observing that

∞∑

r=1

(r − 1)21[r−1, r− ε

r4
] (αn∗t ) ≤

∞∑

r=1

(r − 1)21[r−1 , r ) (αn∗t )

= [αn∗t ]2

≤ (αn∗t )
2 (6.26)

and noting similarly that
∞∑

r=1

(r − 1)1[r−1, r− ε

r4
] (αn∗t ) ≤ (αn∗t ) (6.27)

and
∞∑

r=1

1[r−1, r− ε

r4
] (αn∗t ) ≤ 1, (6.28)
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it follows thus that

E

[

1Aε(α
n∗
t )
√

sups∈[0,δ]

(
αnt+s − α

n
t

)
∣
∣
∣
∣Ft

]

√
1− {αn∗t }

≤
1
√
ε

∞∑

r=1

r2E

[

1[ r−1,r− ε

r4
)(α

n∗
t )
√

sup
s∈[0,δ]

(
αnt+s − α

n
t

)
|Ft

]

=
1
√
ε

∞∑

r=1

(
(r − 1)

2
+ 2 (r − 1) + 1

)
E

[

1[ r−1,r− ε

r4
)(α

n∗
t )
√

sup
s∈[0,δ]

(
αnt+s − α

n
t

)
|Ft

]

≤
1
√
ε

{

E

[

(αn∗t )
2
√

sup
s∈[0,δ]

(
αnt+s − α

n
t

)
|Ft

]

+ 2E

[

(αn∗t )
√

sup
s∈[0,δ]

(
αnt+s − α

n
t

)
|Ft

]

+ E

[
√

sup
s∈[0,δ]

(
αnt+s − α

n
t

)
|Ft

]}

≤
1
√
ε
E

[

sup
s∈[0,δ]

(
αnt+s − α

n
t

)
|Ft

] 1
2 [

E
[
(αn∗t |Ft)

4
] 1

2

+ E
[
(αn∗t )

2 |Ft
] 1

2

+ 1

]

≤
1
√
ε
K3δ

1
2 . (6.29)

Hence it follows from (6.24), (6.25) and (6.29) and choosing ε = δ
1
2 that

P
[
[αn∗t+δ]− [αn∗t ] ≥ 1|Ft

]
≤

1
√
ε
K3δ

1
2 + f(ε)

≤ K3δ
3
8 + f(δ

1
2 ) (6.30)

and so from (6.21), (6.22), (6.23) and (6.30),

E
[(

[αn∗t+δ]− [αn∗t ]
)2
|Ft
]

= 2

∞∑

r=2

(r − 1)P
[
[αn∗t+δ]− [αn∗t ] ≥ r|Ft

]
+

∞∑

r=1

P
[
[αn∗t+δ]− [αn∗t ] ≥ r|Ft

]

≤ K1δ
3
2 +K2δ +K3δ

3
8 + f(δ

1
2 )

≤ K4δ
3
8 + f(δ

1
2 ).

(2.10) now holds as δ → 0.

6.4.2 Convergence of Resampling Times

Recall that the predictable stopping times as determined by the ESS is defined by

Tn,λk+1 ≡ T
n
k+1 = inf{t ≥ Tk : αn,kt ≥ log λ−1}. (6.31)
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The notation Tn,λk is used the emphasise the dependence on the threshold λ.

Now define

αkt :=
m∑

r=1

∫ t

0

η̃rs dY rs +
m∑

r=1

∫ t

0

ζ̃rs ds−
1

2

m∑

r=1

∫ t

0

(η̃rs)2 ds

where η̃rs := limn η̃
n,r
s and ζ̃rs := limn ζ̃

n,r
s with η̃n,rs and ζ̃n,rs as in (5.1) and (5.2) so that

η̃rs = 2 (πt (hr)− π̃t (hr)) ,

and

ζ̃rs = πt (hr)
2

+ 2πt (hr) π̃t (hr)− π̃t
(
(hr)2

)
+ 4π̃t

(
hk
)2
.

We observe that αn,kt
a.s.
→ αkt . Ignoring ‘k’ in αn,kt and αkt , recall that

Tn,λk ≡ Tnk = inf{t ≥ 0 : αnt ≥ k log λ−1}. (6.32)

Now let

Tλk := inf{t ≥ 0 : αt ≥ k log λ−1} (6.33)

where αt is defined (and obtained) in a similar manner to αnt in (5.10). Then clearly for k ∈ N Tλk is a stopping time.

Theorem 29. Tn,λk

a.s.
→ Tλk

Proof . As already indicated in Remark 13 we can show for any p > 0, T > 0 and ϕ ∈ C3
b (Rd) that there exists

constants cp,t and c̄p,t such that

E

[

sup
t∈[0,T ′]

δ2p
ρnt

(ϕ)

]

≤
cp,t

np
and E

[

sup
t∈[0,T ′]

δ2p
πnt

(ϕ)

]

≤
c̄p,t

np
.

Similarly we can show that

E

[

sup
t∈[0,T ′]

δ2p
π̃nt

(ϕ)

]

≤
c̃p,t

np
,

where π̃ is as defined in (5.3).

It follows thus that for any p > 0 and T > 0,

E

[

sup
t∈[0,T ]

|αnt − αt|
2p

]

≤
cp,T

np

which, by choosing p > 1 and appealing to the proof of Lemma 5, implies that

sup
t∈[0,T ]

|αnt − αt| → 0.
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Hence for any ε′ > 0 there exist N ∈ N such that for n > N ,

sup
t∈[0,T ]

|αnt − αt| < ε′.

Now let ε > 0 be such that (λ+ ε) ∈ (0, 1) and let

Tλ−εk := inf{t ≥ 0 : αt ≥ k log(λ+ ε)−1}

so that for t ∈ [0, Tλ−εk ], αt ≤ k log(λ+ ε)−1.

Also let ε′ = 1
2 min

(
k
(
log(λ− ε)−1 − log λ−1

)
, k
(
log λ−1 − log(λ+ ε)−1

))
> 0 then for n > N and t ∈ [0, Tλ−εk ]:

αnt = αnt − αt + αt < k log λ−1

and hence by (6.32) we have that Tλ−εk ≤ Tn,λk .

By a similar, symmetric argument we conclude also that Tn,λk ≤ Tλ+ε
k .

So

Tλ−εk ≤ Tn,λk ≤ Tλ+ε
k

and hence for k ∈ N, Tn,λk

a.s.
→ Tλk as n→∞.

Remark 30. That the (soft) maximum also satisfies the tightness condition (2.10) and the convergence of resampling

times (as determined by it) follows using an approach similar to case of the effective sample size.

7 Appendix

We include below a number of useful lemmas and results use throughout the paper.

Lemma 31. For any t ≥ 0 and p ≥ 1 there exists constants ct,p0 , ct,p1 and ct,p2 which depend on max
i=1,...,m

‖hi‖0,∞ such

that the bounds (4.1), (4.2) and (4.3) hold true.

Proof. Let P̃ be a measure absolutely continuous with respect to P given by

dP̃

dP

∣
∣
∣
∣
∣
Ft

=
1

Z̃t
,

where Z̃ = {Z̃t : t ≥ 0} is the process given by

Z̃t = exp

(∫ t

0

h(X(s))> dYs −
1

2

∫ T

Tk

‖h(X(s))‖2 ds

)

t ≥ 0. (7.1)
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Under P̃ the process Y is a Brownian motion and both the unnormalized weights and the process ξn are Ft-adapted

martingale. The proof of the estimates (under P̃ ) then follows by a standard argument using Burkholder-Davis-

Gundy’s inequality (see for example Exercise 9.10 in [1] and [19]). Finally observe that, for example

E[ sup
s∈[0,t]

(anj (s))p] = Ẽ[ sup
s∈[0,t]

(anj (s))pZ̃t] ≤
√
Ẽ[ sup
s∈[0,t]

(anj (s))2p]Ẽ[Z̃2
t ],

which give us the corresponding bounds under P after observing that Z̃t has finite second moment under P̃ .

Lemma 32. Let S and T be stopping times such that S < T and T is predictable then FS ⊂ FT−.

Proof . Let (Tn) be an announcing sequence for T . Then (S ∨ Tn)n is also an announcing sequence for T . In

particular, S ∨ Tn ↗ S ∨ T = T, hence FS ⊂ FS∨T ⊂
∨
n FS∨Tn = FT−.

Proposition 33. The process M̄n,ϕ := {M̄n,ϕ
t : t ≥ 0} defined by

M̄n,ϕ
t :=

∞∑

k=1

1[0,t](Tk)(ρnTk(ϕ)− ρnTk−(ϕ))

≡
∞∑

k=1

1[0,t](Tk)ξn,∞Tk (πnTk(ϕ)− πnTk−(ϕ)) (7.2)

where ϕ ∈ Cb(Rd) is an Ft-adapted martingale provided there exists p > 1 such that condition (2.8) holds true.

Proof . Let η̄(t) := {η̄m(t) : m ∈ N} and M̄n,ϕ
t ≡ η̄∞(t) where

η̄m(t) :=

m∑

k=1

1[0,t] (Tk)ξn,∞Tk (πnTk(ϕ)− πnTk−(ϕ)),

and

η̄∞(t) :=

∞∑

k=1

1[0,t] (Tk)ξn,∞Tk (πnTk(ϕ)− πnTk−(ϕ)).

We will show that t 7→ η̄m(t) is a Ft-martingale that is

E[η̄m(t)|Fs] = η̄m(s), ∀s ≤ t.

By linearity it suffices to show for any k ∈ N that

E[1[0,t](Tk)ξnTk(πnTk(ϕ)− πnTk−(ϕ))|Fs] = 1[0,s](Tk)ξnTk(πnTk(ϕ)− πnTk−(ϕ)) (7.3)

and noting that

1[0,s](Tk)ξnTk(πnTk(ϕ)− πnTk−(ϕ))
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is FTk∧s-measurable and hence Fs-measurable. It follows that to obtain (7.3), it now remains to show that

E[1A1(s,t](Tk)ξnTk(πnTk(ϕ)− πnTk−(ϕ))] = 0, ∀A ∈ Fs.

To this extent note that

E
[
1A1(s,t](Tk)ξnTk(πnTk(ϕ)− πnTk−(ϕ))

]

= E[(1A1(s,∞) − 1A1(t,∞))(Tk)ξnTk(πnTk(ϕ)− πnTk−(ϕ))]

= E
[
(1A1(s,∞) − 1A1(t,∞))(Tk)ξnTk E[(πnTk(ϕ)− πnTk−(ϕ))|FTk− ]

]

= 0

since 1A1(s,∞)(Tk) and 1A1(t,∞)(Tk) corresponds to the FTk− -measurable sets A ∩ {s < Tk} and A ∩ {t < Tk}

respectively (see Theorem 7 on pp. 106 of [20]).

We will now show that m 7→ η̄m(t), where t ≥ 0, is a FTm∧t-adapted martingale. That is, for any m ∈ N,

E[η̄m+1|FTm∧t] = η̄m(t).

Since for 1 ≤ k ≤ m

1[0,t](Tk)ξnTk(πnTk(ϕ)− πnTk−(ϕ))

is FTm∧t-measurable, the result will then follow if

E
[
1A1[0,t](Tm+1)ξnTm+1

(πnTm+1
(ϕ)− πnTm+1−

(ϕ))
]

= 0, ∀A ∈ FTm∧t.

By Lemma 32 and the tower property

E
[
1A1[0,t](Tm+1)ξnTk(πnTm+1

(ϕ)− πnTm+1−
(ϕ))

]

= E
[
1A1[0,t](Tm+1)ξnTm+1

E[(πnTm+1
(ϕ)− πnTm+1−

(ϕ))|FTm+1− ]
]

= 0

and so, (η̄m(t))m is a FTm∧t-adapted martingale.

We now proceed to show that η̄∞(t) ≡Mn,ϕ
t exists almost surely, is finite, integrable and (η̄∞(t))t is an Ft-adapted

martingale provided condition (2.8) is satisfied. Observe that

sup{|η̄m(t)|,m ≥ 1, |η̄∞(t)}| ≤ ‖ϕ‖0,∞
∞∑

k=1

1[0,t] (Tk)ξn,∞Tk ≤ ‖ϕ‖0,∞N
n
t sup
s∈[0,t]

ξn,∞s

Hence η̄(t) := {η̄m(t) : m ∈ N} is bounded in Lr for any r < p (using condition (2.8) and Hölder’s inquality) which

implies that η̄(t) is bounded in L1 and is a uniformly integrable martingale.
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The boundedness of η̄(t) in L1 implies the almost sure existence and finiteness of η̄∞(t)(see II.49, Theorem 49.1 in

[22]). By II.50, Theorem 50.1 in [22], we then have that η̄m(t)→ η̄∞(t) in L1, that is, E[|η̄m(t)− η̄∞(t)|]→ 0.

Furthermore ∀s ≤ t,

E

[∣∣
∣
∣E[η̄m(t)|Fs]− E[η̄∞(t)|Fs]

∣
∣
∣
∣

]

≤ E

[

E
[
|η̄m(t)− η̄∞(t)|

∣
∣
∣Fs
]]

= E[|η̄m(t)− η̄∞(t)|]

→ 0,

that is, E[η̄m(t)|Fs]→ E[η̄∞(t)|Fs] in L1 and since E[η̄m(t)|Fs] = η̄m(s)→ η̄∞(s) in L1 it follows that

E[η̄∞(t)|Fs] = η̄∞(s), ∀s ≤ t.

Hence (η̄∞(t))t is an Ft-adapted martingale. We now proceed to show that η̄(t) := {η̄m(t) : m ∈ N} is indeed

bounded in L2. We need to first show that η̄m(t) ∈ L2, for all m ∈ N and by II.53, Theorem 53.3 in [22], the

boundedness property follows if and only if

∞∑

m=1

E[(η̄m(t)− η̄m−1(t))2] <∞. (7.4)

Observe that for any integer k ≥ 2,

η̄k(t)− η̄k−1(t) = 1[0,t](Tk)ξnTk(πnTk(ϕ)− πnTk−(ϕ))

with η̄0(t) := 0 so that

E[(η̄k(t)− η̄k−1(t))2] = E
[
1[0,t](Tk)ξnTk(πnTk(ϕ)− πnTk−(ϕ))2

]

= E
[
1[0,t](Tk)ξnTk E[(πnTk(ϕ)− πnTk−(ϕ))2|FTk− ]

]

= E
[
1[0,t](Tk)ξnTk E

[
(πnTk(ϕ)− E[πnTk(ϕ)|FTk− ])2

∣
∣
∣FTk−

]]
. (7.5)

Now,

πnTk(ϕ)− E[πnTk(ϕ)|FTk− ] =
1

n

n∑

j=1

(
ϕ(vnαj )− E[πnTk(ϕ)|FTk− ]

)

where αj , j = 1, . . . , n is a random index of 1, . . . , n and vnαj (Tk) = vnl (Tk) for some l ∈ {1, . . . , n} with probability

ān,Tkl so that

E
[
ϕ(vαj (Tk))|FTk−

]
=

n∑

l=1

ān,Tkl ϕ(vnl (Tk)) = E[πnTk(ϕ)|FTk− ]

that is,

E
[(
ϕ(vαj (Tk))− E[πnTk(ϕ)|FTk− ]

)]
= 0
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and so

E
[(
πnTk(ϕ)− E[πnTk(ϕ)|FTk− ]

)2∣∣
∣FTk−

]
= E

[
1

n2

( n∑

j=1

(
ϕ(vnαj )− E[πnTk |FTk− ]

))2∣
∣
∣FTk−

]

=
1

n2

n∑

j=1

E
[
(ϕ(vnαj )− E[πnTk |FTk− ])2

∣
∣
∣FTk

]

=
1

n2

n∑

j=1

(

E[(ϕ(vnαj )
2|FTk− ]−

(
E[πnTk |FTk− ]

)2
)

≤
1

n2

n∑

j=1

E[(ϕ(vnαj )
2|FTk− ]

≤
‖ϕ‖2

n
. (7.6)

Using (7.6) and (7.5) we get

∞∑

k=1

E[(η̄k(t)− η̄k−1(t))2] = E
[
1[0,t](Tk)ξnTk E

[
(πnTk(ϕ)− E[πnTk(ϕ)|FTk− ])2

∣
∣
∣FTk−

]]

≤
‖ϕ‖2

n

∞∑

k=1

E[1[0,t](Tk)ξnTk ] ≤
‖ϕ‖2

n
E[Nn

t sup
s∈[0,t]

ξn,∞s ]

Therefore η̄(t) is a martingale bounded in L2 again by using condition (2.8) and Hölder’s inquality.
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