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Abstract. We consider the convergence of a continuous-time Markov chain approximation Xh,

h > 0, to an Rd-valued Lévy process X. The state space of Xh is an equidistant lattice and

its Q-matrix is chosen to approximate the generator of X. In dimension one (d = 1), and then

under a general sufficient condition for the existence of transition densities of X, we establish sharp

convergence rates of the normalised probability mass function of Xh to the probability density

function of X. In higher dimensions (d > 1), rates of convergence are obtained under a technical

condition, which is satisfied when the diffusion matrix is non-degenerate.

1. Introduction

Discretization schemes for stochastic processes are relevant both theoretically, as they shed light

on the nature of the underlying stochasticity, and practically, since they lend themselves well to

numerical methods. Lévy processes, in particular, constitute a rich and fundamental class with

applications in diverse areas such as mathematical finance, risk management, insurance, queuing,

storage and population genetics etc. (see e.g. [22]).

1.1. Short statement of problem and results. In the present paper, we study the rate of

convergence of a weak approximation of an Rd-valued (d ∈ N) Lévy process X by a continuous-

time Markov chain (CTMC). Our main aim is to understand the rates of convergence of transition

densities. These cannot be viewed as expectations of (sufficiently well-behaved, e.g. bounded

continuous) real-valued functions against the marginals of the processes, and hence are in general

hard to study.

Since the results are easier to describe in dimension one (d = 1), we focus first on this setting.

Specifically, our main result in this case, Theorem 2.4, establishes the precise convergence rate

of the normalised probability mass function of the approximating Markov chain to the transition

density of the Lévy process for the two proposed discretisation schemes, one in the case where X

has a non-trivial diffusion component and one when it does not. More precisely, in both cases

we approximate X by a CTMC Xh with state space Zh := hZ and Q-matrix defined as a natural
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discretised version of the generator of X. This makes the CTMC Xh into a continuous-time random

walk, which is skip-free (i.e. simple) if X is without jumps (i.e. Brownian motion with drift). The

quantity

κ(h) :=

∫
[−1,1]\[−h,h]

|x|dλ(x),

where λ is the Lévy measure of X, is related to the activity of the small jumps of X and plays

a crucial role in the rate of convergence. We assume that either the diffusion component of X is

present (σ2 > 0) or the jump activity of X is sufficient (Orey’s condition [29, p. 190, Proposition

28.3], see also Assumption 2.3 below) to ensure that X admits continuous transition densities

pt,T (x, y) (from x at time t to y at time T > t), which are our main object of study.

Let P ht,T (x, y) := P(Xh
T = y|Xh

t = x) denote the corresponding transition probabilities of Xh and

let

∆T−t(h) := sup
x,y∈Zh

∣∣∣∣pt,T (x, y)− 1

h
P ht,T (x, y)

∣∣∣∣ .
The following table summarizes our result (for functions f ≥ 0 and g > 0, we shall write

f = O(g) (resp. f = o(g), f ∼ g) for lim suph↓0 f(h)/g(h) < ∞ (resp. limh↓0 f(h)/g(h) = 0,

limh↓0 f(h)/g(h) ∈ (0,∞)) — if g converges to 0, then we will say f decays no slower than (resp.

faster than, at the same rate as) g):

σ2 > 0 σ2 = 0

λ(R) = 0 ∆T−t(h) = O(h2) ×
0 < λ(R) <∞ ∆T−t(h) = O(h) ×
λ(R) =∞ ∆T−t(h) = O(hκ(h/2))

We also prove that the rates stated here are sharp in the sense that there exist Lévy processes for

which convergence is no better than stated.

Note that the rate of convergence depends on the Lévy measure λ, it being best when λ = 0

(quadratic when σ2 > 0), and linear otherwise, unless the pure jump part of X has infinite variation,

in which case it depends on the quantity κ. This is due to the nature of the discretisation of the

Brownian motion with drift (which gives a quadratic order of convergence, when σ2 > 0), and then

of the Lévy measure, which is aggregated over intervals of length h around each of the lattice points;

see also (v) of Remark 3.11. In the infinite activity case, κ(h) = o(1/h), indeed κ is bounded, if in

addition κ(0) <∞. However, the convergence of hκ(h/2) to zero, as h ↓ 0, can be arbitrarily slow.

Finally, if X is a compound Poisson process (i.e. λ(R) ∈ (0,∞)) without a diffusion component,

but possibly with a drift, there is always an atom present in the law of X at a fixed time, which is

why the finite Lévy measure case is studied only when σ2 > 0.

The proof of Theorem 2.4 is in two steps: we first establish the convergence rate of the char-

acteristic exponent of Xh
t to that of Xt (Subsection 3.2). In the second step we apply this to

the study of the convergence of transition densities (Section 4) via their spectral representations

(established in Subsection 3.1). Note that in general the rates of convergence of the characteristic
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functions do not carry over directly to the distribution functions. We are able to follow through

the above programme by exploiting the special structure of the infinitely divisible distributions in

what amounts to a detailed comparison of the transition kernels pt,T (x, y) and P ht,T (x, y).

By way of example, note that if λ([−1, 1]\[−h, h]) ∼ 1/h1+α for some α ∈ (0, 1), then κ(h) ∼ h−α

and the convergence of the normalized probability mass function to the transition density is by

Theorem 2.4 of order h1−α, since κ(0) = ∞ and Orey’s condition is satisfied. In particular,

in the case of the CGMY [5] (tempered stable) or β-stable [29, p. 80] processes with stability

parameter β ∈ (1, 2), we have α = β − 1 and hence convergence of order h2−β. More generally, if

β := inf{p > 0 :
∫

[−1,1] |x|
pdλ(x) < ∞} is the Blumenthal-Getoor index, and β ≥ 1, then for any

p > β, ζ(δ) = O(δ2−p). Conversely, if for some p ≥ 1, ζ(δ) = O(δ2−p), then β ≤ p.
This gives the overall picture in dimension one. In dimensions higher than one (d > 1), and then

under a straightforward extension of the discretization described above, essentially the same rates

of convergence are obtained as in the univariate case; this time under a technical condition (cf.

Assumption 2.5), which is satisfied when the diffusion-matrix is non-degenerate. Our main result

in this case is Theorem 2.7.

1.2. Literature overview. In general, there has been a plethora of publications devoted to the

subject of discretization schemes for stochastic processes, see e.g. [19], and with regard to the

pricing of financial derivatives [15] and the references therein. In particular, there exists a wealth of

literature concerning approximations of Lévy processes in one form or another and a brief overview

of simulation techniques is given by [28].

In continuous time, for example, [18] approximates by replacing the small jumps part with a

diffusion, and discusses also rates of convergence for E[g ◦XT ], where g is real-valued and satisfies

certain integrability conditions, T is a fixed time and X the process under approximation; [9]

approximates by a combination of Brownian motion and sums of compound Poisson processes with

two-sided exponential densities. In discrete time, Markov chains have been used to approximate

the much larger class of Feller processes and [4] proves convergence in law of such an approximation

in the Skorokhod space of càdlàg paths, but does not discuss rates of convergence; [32] has a finite

state-space path approximation and applies this to option pricing together with a discussion of the

rates of convergence for the prices. With respect to Lévy process driven SDEs, [21] (resp. [34])

approximates solutions Y thereto using a combination of a compound Poisson process and a high

order scheme for the Brownian component (resp. discrete-time Markov chains and an operator

approach) — rates of convergence are then discussed for expectations of sufficiently regular real-

valued functions against the marginals of the solutions.

We remark that approximation/simulation of Lévy processes in dimensions higher than one is in

general more difficult than in the univariate case, see, e.g. the discussion on this in [6] (which has a

Gaussian approximation and establishes convergence in the Skorokhod space [6, p. 197, Theorem

2.2]). Observe also that in terms of pricing theory, the probability density function of a process
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can be viewed as the Arrow-Debreu state price, i.e. the current value of an option whose payoff

equals the Dirac delta function. The singular nature of this payoff makes it hard, particularly in

the presence of jumps, to study the convergence of the prices under the discretised process to its

continuous counterpart.

Indeed, Theorem 2.7 can be viewed as a generalisation of such convergence results for the well-

known discretisation of the multi-dimensional Black-Scholes model (see e.g. [24] for the case of

Brownian motion with drift in dimension one). In addition, existing literature, as specific to

approximations of densities of Lévy processes (or generalizations thereof), includes [12] (polynomial

expansion for a bounded variation driftless pure-jump process) and [13] (density expansions for

multivariate affine jump-diffusion processes). [20, 33] study upper estimates for the densities. On

the other hand [2] has a result similar in spirit to ours, but for solutions to SDEs: for the case of the

Euler approximation scheme, the authors there also study the rate of convergence of the transition

densities.

Further, from the point of view of partial integro-differential equations (PIDEs), the density

p : (0,∞)×Rd → [0,∞) of the Lévy process X is the classical fundamental solution of the Cauchy

problem (in u ∈ C1,2
0 ((0,∞),Rd)) ∂u

∂t = Lu, L being the infinitesimal generator of X [7, Chapter

12] [14, Chapter IV]. Note that Assumption 2.3 in dimension one (resp. Assumption 2.5 in the

multivariate case) guarantees p ∈ C1,∞
0 . There are numerous numerical methods in dealing with

such PIDEs (and PIDEs in general): fast Fourier transform, trees and discrete-time Markov chains,

viscosity solutions, Galerkin methods, see, e.g. [8, Subsection 1.1] [7, Subsections 12.3-12.7] and the

references therein. In particular, we mention the finite-difference method, which is in some sense

the counterpart of the present article in the numerical analysis literature, discretising both in space

and time, whereas we do so only in space. In general, this literature often restricts to finite activity

processes, and either avoids a rigorous analysis of (the rates of) convergence, or, when it does, it

does so for initial conditions h = u(0, ·), which exclude the singular δ-distribution. For example,

[8, p. 1616, Assumption 6.1] requires h continuous, piecewise C∞ with bounded derivatives of

all orders; compare also Propositions 5.1 and 5.4 concerning convergence of expectations in our

setting. Moreover, unlike in our case where the discretisation is made outright, the approximation

in [8] is sequential, as is typical of the literature: beyond the restriction to a bounded domain (with

boundary conditions), there is a truncation of the integral term in L, and then a reduction to the

finite activity case, at which point our results are in agreement with what one would expect from

the linear order of convergence of [8, p. 1616, Theorem 6.7].

The rest of the paper is organised as follows. Section 2 introduces the setting by specifying the

Markov generator of Xh and precisely states the main results. Then Section 3 provides integral

expressions for the transition kernels by applying spectral theory to the generator of the approxi-

mating chain and studies the convergence of the characteristic exponents. In section 4 this allows

us to establish convergence rates for the transition densities. While Sections 3 and 4 restrict this



MARKOV CHAIN APPROXIMATIONS FOR TRANSITION DENSITIES OF LÉVY PROCESSES 5

analysis to the univariate case, explicit comments are made in both, on how to extend the results

to the multivariate setting (this extension being, for the most part, direct and trivial). Finally, Sec-

tion 5 derives some results regarding convergence of expectations E[f ◦Xh
t ]→ E[f ◦Xt] for suitable

test functions f , presents a numerical algorithm, under which computations are eventually done,

discusses the corresponding truncation/localization error and gives some numerical experiments.

2. Definitions, notation and statement of results

2.1. Setting. Fix a dimension d ∈ N and let (ej)
d
j=1 be the standard orthonormal basis of Rd.

Further, let X be an Rd-valued Lévy process with characteristic exponent [29, pp. 37-39]:

Ψ(p) = −1

2
〈p,Σp〉+ i〈µ, p〉+

∫
Rd

(
ei〈p,x〉 − i〈p, x〉1[−V,V ]d(x)− 1

)
dλ(x) (2.1)

(p ∈ Rd). Here (Σ, λ, µ)c̃ is the characteristic triplet relative to the cut-off function c̃ = 1[−V,V ]d ;

V is 1 or 0, the latter only if
∫

[−1,1]d |x|dλ(x) < ∞. Note that X is then a Markov process with

transition function Pt,T (x,B) := P(XT−t ∈ B − x) (0 ≤ t ≤ T , x ∈ Rd and B ∈ B(Rd)) and (for

t ≥ 0, p ∈ Rd) φXt(p) := E[eipXt ] = exp{tΨ(p)}. We refer to [3, 29] for the general background on

Lévy processes.

Since Σ ∈ Rd is symmetric, nonnegative definite, it is assumed without loss of generality that

Σ = diag(σ2
1, . . . , σ

2
d) with σ2

1 ≥ · · · ≥ σ2
d. We let l := max{k ∈ {1, . . . , d} : σ2

k > 0} (max ∅ := 0).

In the univariate case d = 1, Σ reduces to the scalar σ2 := σ2
1.

Now fix h > 0. Consider a CTMC Xh = (Xh
t )t≥0 approximating our Lévy process X (in law).

We describe Xh as having [26] state space Zdh := hZd := {hk : k ∈ Zd} (Zh := Z1
h), initial state

Xh
0 = 0, a.s. and an infinitesimal generator Lh given by a spatially homogeneous Q-matrix Qh (i.e.

Qhss′ depends only on s− s′, for {s, s′} ⊂ Zdh). Thus Lh is a mapping defined on the set l∞(Zdh) of

bounded functions f on Zdh, and Lhf(s) =
∑

s′∈S Q
h
ss′f(s′).

It remains to specify Qh. To this end we discretise on Zdh the infinitesimal generator L of the

Lévy process X, thus obtaining Lh. Recall that [29, p. 208, Theorem 31.5]:

Lf(x) =
d∑
j=1

(
σ2
j

2
∂jjf(x) + µj∂jf(x)

)
+

∫
Rd

f(x+ y)− f(x)−
d∑
j=1

yj∂jf(x)1[−V,V ]d(y)

 dλ(y)

(f ∈ C2
0 (Rd), x ∈ Rd). We specify Lh separately in the univariate, d = 1, and in the general,

multivariate, setting.

2.1.1. Univariate case. In the case when d = 1, we introduce two schemes. Referred to as dis-

cretization scheme 1 (resp. 2), and given by (2.2) (resp. (2.4)) below, they differ in the

discretization of the first derivative, as follows.

Under discretisation scheme 1, for s ∈ Zh and f : Zh → R vanishing at infinity:

Lhf(s) =
1

2

(
σ2 + ch0

) f(s+ h) + f(s− h)− 2f(s)

h2
+
(
µ− µh

) f(s+ h)− f(s− h)

2h
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+
∑

s′∈Zh\{0}

[
f(s+ s′)− f(s)

]
chs′ (2.2)

where the following notation has been introduced:

• for s ∈ Zh:

Ahs :=


[s− h/2, s+ h/2), if s < 0

[−h/2, h/2], if s = 0

(s− h/2, s+ h/2], if s > 0

;

• for s ∈ Zh\{0}: chs := λ(Ahs );

• and finally:

ch0 :=

∫
Ah0

y2
1[−V,V ](y)dλ(y) and µh :=

∑
s∈Zh\{0}

s

∫
Ahs

1[−V,V ](y)dλ(y).

Note that Qh has nonnegative off-diagonal entries for all h for which:

σ2 + ch0
2h2

+
µ− µh

2h
+ chh ≥ 0 and

σ2 + ch0
2h2

− µ− µh

2h
+ ch−h ≥ 0 (2.3)

and in that case Qh is a genuine Q-matrix. Moreover, due to spatial homogeneity, its entries are

then also uniformly bounded in absolute value.

Further, when σ2 > 0, it will be shown that (2.3) always holds, at least for all sufficiently

small h (see Proposition 3.9). However, in general, (2.3) may fail. It is for this reason that we

introduce scheme 2, under which the condition on the nonnegativity of off-diagonal entries of Qh

holds vacuously.

To wit, we use in discretization scheme 2 the one-sided, rather than the two-sided discretisa-

tion of the first derivative, so that (2.2) reads:

Lhf(s) =
1

2

(
σ2 + ch0

) f(s+ h) + f(s− h)− 2f(s)

h2
+

∑
s′∈Zh\{0}

[f(s+ s′)− f(s)]chs′ +

+ (µ− µh)

(
f(s+ h)− f(s)

h
1[0,∞)(µ− µh) +

f(s)− f(s− h)

h
1(−∞,0](µ− µh)

)
(2.4)

Importantly, while scheme 2 is always well-defined, scheme 1 is not; and yet the two-sided

discretization of the first derivative exhibits better convergence properties than the one-sided one

(cf. Proposition 3.10). We therefore retain the treatment of both these schemes in the sequel.

For ease of reference we also summarize here the following notation which will be used from

Subsection 3.2 onwards:

c := λ(R), b := κ(0), d := λ(R\[−1, 1])

and for δ ∈ (0, 1]:

ζ(δ) := δ

∫
[−1,1]\[−δ,δ]

|x|dλ(x) and γ(δ) := δ2

∫
[−1,1]\[−δ,δ]

dλ(x).
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2.1.2. Multivariate case. For the sake of simplicity we introduce only one discretisation scheme in

this general setting. If necessary, and to avoid confusion, we shall refer to it as the multivariate

scheme. We choose V = 0 or V = 1, according as λ(Rd) is finite or infinite. Lh is then given by:

Lhf(s) =
1

2

d∑
j=1

(
σ2
j + ch0j

) f(s+ hej) + f(s− hej)− 2f(s)

h2
+

l∑
j=1

(µj − µhj )
f(s+ hej)− f(s− hej)

2h
+

d∑
j=l+1

(µj − µhj )

(
f(s+ hej)− f(s)

h
1[0,∞)(µj − µhj ) +

f(s)− f(s− hej)
h

1(−∞,0](µj − µhj )

)
+

∑
s′∈Zdh

(
f(s+ s′)− f(s)

)
chs′

(f ∈ c0(Zdh), s ∈ Zdh; and we agree
∑
∅ := 0). Here the following notation has been introduced:

• for s ∈ Zdh: Ahs :=
∏d
j=1 I

h
sj , where for s ∈ Zh:

Ihs :=


[s− h/2, s+ h/2), if s < 0

[−h/2, h/2], if s = 0

(s− h/2, s+ h/2], if s > 0

so that {Ahs : s ∈ Zdh} constitutes a partition of Rd;
• for s ∈ Zdh\{0}: chs := λ(Ahs );

• and finally for j ∈ {1, . . . , d}:

ch0j :=

∫
Ah0

x2
j1[−V,V ]d(x)dλ(x) and µhj :=

∑
s∈Zdh\{0}

sj

∫
Ahs

1[−V,V ]d(y)dλ(y).

Notice that when d = 1, this scheme reduces to scheme 1 or scheme 2, according as σ2 > 0 or

σ2 = 0. Indeed, statements pertaining to the multivariate scheme will always be understood to

include also the univariate case d = 1.

Remark 2.1. The complete analogue of ch0 from the univariate case would be the matrix ch0 , entries

(ch0)ij :=
∫
Ah0
xixj1[−V,V ]d(x)dλ(x), {i, j} ⊂ {1, . . . , d}. However, as h varies, so could ch0 , and thus

no diagonalization of ch0 + Σ possible (in general), simultaneously in all (small enough) positive h.

Thus, retaining ch0 in its totality, we should have to discretize mixed second partial derivatives, which

would introduce (further) nonpositive entries in the corresponding Q-matrix Qh of Xh. It is not

clear whether these would necessarily be counter-balanced in a way that would ensure nonnegative

off-diagonal entries. Retaining the diagonal terms of ch0 , however, is of no material consequence in

this respect.

It is verified just as in the univariate case, component by component, that there is some h? ∈
(0,+∞] such that for all h ∈ (0, h?), L

h is indeed the infinitesimal generator of some CTMC (i.e.
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the off-diagonal entries of Qh are nonnegative). Qh is then a regular (as spatially homogeneous)

Q-matrix, and Xh is a compound Poisson process, whose Lévy measure we denote λh.

2.2. Summary of results. We have, of course:

Remark 2.2 (Convergence in distribution). Xh converges to X weakly in finite-dimensional dis-

tributions (hence w.r.t. the Skorokhod topology on the space of càdlàg paths [17, p. 415, 3.9

Corollary]) as h ↓ 0.

Next, in order to formulate the rates of convergence, recall that P ht,T (x, y) (resp. pt,T (x, y))

denote the transition probabilities (resp. continuous transition densities, when they exist) of Xh

(resp. X) from x at time t to y at time T , {x, y} ⊂ Zdh, 0 ≤ t < T . Further, for 0 ≤ t < T define:

∆T−t(h) := sup
{x,y}⊂Zdh

Dh
t,T (x, y) where Dh

t,T (x, y) :=

∣∣∣∣pt,T (x, y)− 1

hd
P ht,T (x, y)

∣∣∣∣ . (2.5)

We now summarize the results first in the univariate, and then in the multivariate setting (Re-

mark 2.2 holding true of both).

2.2.1. Univariate case. The assumption alluded to in the introduction is the following (we state it

explicitly when it is being used):

Assumption 2.3. Either σ2 > 0 or Orey’s condition holds:

∃ε ∈ (0, 2) such that lim inf
r↓0

1

r2−ε

∫
[−r,r]

u2dλ(u) > 0.

The usage of the two schemes and the specification of V is as summarized in Table 1. In short

we use scheme 1 or scheme 2, according as σ2 > 0 or σ2 = 0, and we use V = 0 or V = 1, according

as λ(R) <∞ or λ(R) =∞. By contrast to Assumption 2.3 we maintain Table 1 as being in effect

throughout this subsubsection.

Table 1. Usage of the two schemes and of V depending on the nature of σ2 and λ.

Lévy measure/diffusion part σ2 > 0 σ2 = 0

λ(R) <∞ scheme 1, V = 0 scheme 2, V = 0

λ(R) =∞ scheme 1, V = 1 scheme 2, V = 1

Under Assumption 2.3 for every t > 0, φXt ∈ L1(m) where m is Lebesgue measure and (for

0 ≤ t < T , {x, y} ⊂ R):

pt,T (x, y) =
1

2π

∫
R

exp {ip(x− y)} exp {Ψ(p)(T − t)} dp (2.6)

(cf. Remark 3.1). Similarly, with Ψh denoting the characteristic exponent of the compound Poisson

process Xh (for 0 ≤ t < T , y ∈ Zh, PXh
t
-a.s. in x ∈ Zh):
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1

h
P ht,T (x, y) =

1

2π

∫ π
h

−π
h

exp{ip(x− y)} exp{Ψh(p)(T − t)}dp. (2.7)

Note that the right-hand side is defined even if P(Xh
t = x) = 0 and we let the left-hand side take

this value when this is so.

The main result can now be stated.

Theorem 2.4 (Convergence of transition kernels). Under Assumption 2.3, whenever s > 0, the

convergence of ∆s(h) is as summarized in the following table. In general convergence is no better

than stipulated.

λ(R) = 0 0 < λ(R) <∞ κ(0) <∞ = λ(R) κ(0) =∞
σ2 > 0 ∆s(h) = O(h2) ∆s(h) = O(h)

∆s(h) = O(h) ∆s(h) = O(hκ(h/2))
σ2 = 0 × ×

More exhaustive statements, of which this theorem is a summary, are to be found in Proposi-

tions 4.5 and 4.6, and will be proved in Section 4.

2.2.2. Multivariate case. The relevant technical condition here is:

Assumption 2.5. There are {P,C, ε} ⊂ (0,∞) and an h0 ∈ (0, h?], such that for all h ∈ (0, h0),

s > 0 and p ∈ [−π/h, π/h]d\(−P, P )d:

|φXh
s
(p)| ≤ exp{−Cs|p|ε} (2.8)

whereas for p ∈ Rd\(−P, P )d:

|φXs(p)| ≤ exp{−Cs|p|ε}. (2.9)

Again we shall state it explicitly when it is being used.

Remark 2.6. It is shown, just as in the univariate case, that Assumption 2.5 holds if l = d, i.e. if Σ

is non-degenerate. Moreover, then we may take P = 0, C = 1
2

(
2
π

)2 (∧dj=1σ
2
j

)
, ε = 2 and h0 = h?.

It would be natural to expect that the same could be verified for the multivariate analogue of

Orey’s condition, which we suggest as being:

lim inf
δ↓0

inf
e∈Sd−1

∫
B(0,r)

|〈e, x〉|2dλ(x)/r2−ε > 0

for some ε ∈ (0, 2) (with Sd−1 ⊂ Rd (resp. B(0, r) ⊂ Rd) the unit sphere (resp. closed ball of radius

r centered at the origin)). Specifically, it is easy to see that (2.9) of Assumption 2.5 still holds.

However, we are unable to show the validity of (2.8).

Under Assumption 2.5, Fourier inversion yields the integral representation of the continuous

transition densities for X (for 0 ≤ t < T , {x, y} ⊂ Rd):

pt,T (x, y) =
1

(2π)d

∫
Rd
ei〈p,x−y〉e(T−t)Ψ(p)dp.
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On the other hand, L2([−π/h, π/h]d) Hilbert space techniques yield for the normalized transition

probabilities of Xh (for 0 ≤ t < T , y ∈ Zdh and PXh
t
-a.s. in x ∈ Zdh):

1

hd
Pt,T (x, y) =

1

(2π)d

∫
[−π/h,π/h]d

ei〈p,x−y〉e(T−t)Ψh(p)dp,

where Ψh is the characteristic exponent of Xh.

Finally, we state the result with the help of the following notation:

• for δ ∈ [0,∞): κ(δ) :=
∫

[−1,1]d\[−δ,δ]d |x|dλ(x), ζ(δ) := δκ(δ) and χ(δ) :=∑
1≤i<j≤d

∫
[−δ,δ]d |xixj |dλ(x).

• σ̂2 := ∧dj=1σ
2
j and σ2 :=

∑d
j=1 σ

2
j .

Note that by the dominated convergence theorem, (ζ + χ)(δ) → 0 as δ ↓ 0 (this is seen as in the

univariate case, cf. Lemma 3.8).

Theorem 2.7 (Convergence — multivariate case). Let d ∈ N and suppose Assumption 2.5 holds.

Then for any s > 0, ∆s(h) = O(h∨(ζ+χ)(h/2)). Moreover, if σ̂2 > 0, then there exists a universal

constant Dd ∈ (0,∞), such that:

(1) if λ(Rd) = 0,

lim sup
h↓0

∆s(h)

h2
≤ Dd

[
σ2

σ̂2

1√
sσ̂2

+
|µ|
σ̂2

]
1

(sσ̂2)
d+1
2

.

(2) if 0 < λ(Rd) <∞,

lim sup
h↓0

∆s(h)

h
≤ Dd

λ(Rd)s
(sσ̂2)

d+1
2

.

(3) if κ(0) <∞ = λ(Rd),

lim sup
h↓0

∆s(h)

h
≤ Dd

[
λ(Rd\[−1, 1]d)s+

κ(0)s√
sσ̂2

]
1

(sσ̂2)
d+1
2

.

(4) if κ(0) =∞,

lim sup
h↓0

∆s(h)

(ζ + χ)(h/2)
≤ Dd

s

(sσ̂2)
d+2
2

.

Remark 2.8. Notice that in the univariate case ζ + χ reduces to ζ. The presence of χ is a conse-

quence of the omission of non-diagonal entries of ch0 in the multivariate approximation scheme (cf.

Remark 2.1).

The proof of Theorem 2.7 is an easy extension of the arguments behind Theorem 2.4, and we

comment on this immediately following the proof of Proposition 4.2.

3. Transition kernels and convergence of characteristic exponents

In the interest of space, simplicity of notation and ease of exposition, the analysis in this and

in Section 4 is restricted to dimension d = 1. Proofs in the multivariate setting are, for the most

part, a direct and trivial extension of those in the univariate case. However, when this is not so,

necessary and explicit comments will be provided in the sequel, as appropriate.
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3.1. Integral representations. First we note the following result (its proof is essentially by the

standard inversion theorem, see also [29, p. 190, Proposition 28.3]).

Remark 3.1. Under Assumption 2.3, for some {P,C, ε} ⊂ (0,∞) depending only on {λ, σ2} and

then all p ∈ R\(−P, P ) and t ≥ 0: |φXt(p)| ≤ exp{−Ct|p|ε}. Moreover, when σ2 > 0, one

may take P = 0, C = 1
2σ

2 and ε = 2, whereas otherwise ε may take the value from Orey’s

condition in Assumption 2.3. Consequently, Xt (t > 0) admits the continuous density fXt(y) =
1

2π

∫
R e
−ipyφXt(p)dp (y ∈ R). In particular, the law Pt,T (x, ·) is given by (2.6).

Second, to obtain (2.7) we apply some classical theory of Hilbert spaces, see e.g. [10].

Definition 3.2. For s ∈ Zh let gs : [−π
h ,

π
h ] → C be given by gs(p) :=

√
h
2πe
−isp. The (gs)s∈Zh

constitute an orthonormal basis of the Hilbert space L2([−π
h ,

π
h ]).

Let A ∈ l2(Zh). We define: FhA :=
∑

s∈Zh A(s)gs. The inverse of this transform F−1
h :

L2([−π
h ,

π
h ])→ l2(Zh) is given by:

(F−1
h φ)(s) = 〈φ, gs〉 :=

∫
[−π

h
,π
h

]
φgsdm

for φ ∈ L2([−π
h ,

π
h ]) and s ∈ Zh.

Definition 3.3. For a bounded linear operator A : l2(Zh)→ l2(Zh), we say FA : [−π/h, π/h]→ R
is its diagonalization, if FhAF−1

h φ = FAφ for all φ ∈ L2([−π
h ,

π
h ]).

We now diagonalize Lh, which allows us to establish (2.7). The straightforward proof is left to

the reader.

Proposition 3.4. Fix C ∈ l1(Zh). The following introduces a number of bounded linear operators

A : l2(Zh)→ l2(Zh) and gives their diagonalization. With f ∈ l2(Zh), s ∈ Zh, p ∈ [−π
h ,

π
h ]:

(i) ∆hf(s) := f(s+h)+f(s−h)−2f(s)
h2

. F∆h
(p) = 2 cos(hp)−1

h2
.

(ii) ∇hf(s) := f(s+h)−f(s−h)
2h . F∇h(p) = i sin(hp)

h . Under scheme 2 we let ∇+
h f(s) := f(s+h)−f(s)

h

(resp. ∇−h f(s) := f(s)−f(s−h)
h ) and then F∇+

h
(p) = eihp−1

h (resp. F∇−h
(p) = 1−e−ihp

h ).

(iii) LCf(s) :=
∑

s′∈Zh(f(s+ s′)− f(s))C(s′). FLC (p) =
∑

s∈Zh C(s)(eisp − 1).

As λ is finite outside any neighborhood of 0, Lh|l2(Zh) (as in (2.2), resp. (2.4)) is a bounded linear

mapping. We denote this restriction by Lh also. Its diagonalization is then given by Ψh := FLh ,

where, under scheme 1,

Ψh(p) = i(µ− µh)
sin(hp)

h
+ (σ2 + ch0)

(cos(hp)− 1)

h2
+

∑
s∈Zh\{0}

chs
(
eisp − 1

)
(3.1)

and under scheme 2,

Ψh(p) = (µ− µh)

(
eihp − 1

h
1[0,∞)(µ− µh) +

1− e−ihp

h
1(−∞,0](µ− µh)

)
+
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+ (σ2 + ch0)
(cos(hp)− 1)

h2
+

∑
s∈Zh\{0}

chs
(
eisp − 1

)
(3.2)

(with p ∈ [−π
h ,

π
h ], but we can and will view Ψh as defined for all real p by the formulae above).

Under either scheme, Ψh is bounded and continuous as the final sum converges absolutely and

uniformly.

Proposition 3.5. For scheme 1 under (2.3) and always for scheme 2, for every 0 ≤ t < T , y ∈ Zh
and PXh

t
-a.s. in x ∈ Zh (2.7) holds, i.e.:

P(Xh
T = y|Xh

t = x) =
h

2π

∫ π
h

−π
h

exp{ip(x− y)} exp{Ψh(p)(T − t)}dp.

Proof. (Condition (2.3) ensures scheme 1 is well-defined (Qh needs to have nonnegative off-diagonal

entries).) Note that: P(Xh
T = y|Xh

t = x) = (e(T−t)Lh
1{y})(x). Thus (2.7) follows directly from the

relation FhLhF−1
h = Ψh· (where Ψh· is the operator that multiplies functions pointwise by Ψh). �

In what follows we study the convergence of (2.6) to (2.7) as h ↓ 0. These expressions are

particularly suited to such an analysis, not least of all because the spatial and temporal components

are factorized.

One also checks that for every t ≥ 0 and p ∈ R:

φXh
t
(p) = E[eipX

h
t ] = exp{tΨh(p)}.

Hence Xh are compound Poisson processes [29, p. 18, Definition 4.2].

In the multivariate scheme, by considering the Hilbert space L2([−π/h, π/h]d) instead, Xh is

again seen to be compound Poisson with characteristic exponent given by (for p ∈ Rd):

Ψh(p) =

d∑
j=1

(σ2
j + ch0j)

cos(hpj)− 1

h2
+ i

l∑
j=1

(µj − µhj )
sin(hpj)

h

+
d∑

j=l+1

(µj − µhj )

(
eihpj − 1

h
1[0,∞)(µj − µhj ) +

1− e−ihpj
h

1(−∞,0](µj − µhj )

)
+

∑
s∈Zdh\{0}

(
ei〈p,s〉 − 1

)
chs . (3.3)

In the sequel, we shall let λh denote the Lévy measure of Xh.

3.2. Convergence of characteristic exponents. We introduce for p ∈ R:

fh(p) :=
cos(hp)− 1

h2
+
p2

2

and, under scheme 1:

gh(p) := i

(
sin(hp)

h
− p
)
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lh(p) := ch0
cos(hp)− 1

h2
− µhisin(hp)

h
+
∑

s∈Zh\{0}

chs
(
eisp − 1

)
−
∫
R

(
eipu − 1− ipu1[−V,V ](u)

)
dλ(u),

respectively, under scheme 2:

gh(p) :=
eihp − 1

h
1(0,∞)(µ− µh) +

1− e−ihp

h
1(−∞,0](µ− µh)− ip;

lh(p) := ch0
cos(hp)− 1

h2
− µh

[
eihp − 1

h
1(0,∞)(µ− µh) +

1− e−ihp

h
1(−∞,0](µ− µh)

]
+

+
∑

s∈Zh\{0}

chs
(
eisp − 1

)
−
∫
R

(
eipu − 1− ipu1[−V,V ](u)

)
dλ(u).

Thus:

Ψh −Ψ = σ2fh + µgh + lh.

Next, three elementary but key lemmas. The first concerns some elementary trigonometric

inequalities as well as the Lipschitz difference for the remainder of the exponential series fl(x) :=∑∞
k=l+1

(ix)k

k! (x ∈ R, l ∈ {0, 1, 2}): these estimates will be used again and again in what follows.

The second is only used in the estimates pertaining to the multivariate scheme. Finally, the third

lemma establishes key convergence properties relating to λ.

Lemma 3.6. For all real x: 0 ≤ cos(x) − 1 + x2

2 ≤
x4

4! , 0 ≤ sgn(x)(x − sin(x)) ≤ sgn(x)x
3

3! and

0 ≤ x2 + 2(1− cos(x))− 2x sin(x) ≤ x4/4. Whenever {x, y} ⊂ R we have (with δ := y − x):

(1) |eix − 1− (eiy − 1)|2 ≤ δ2.

(2) |eix − 1− ix− (eiy − 1− iy)|2 ≤ δ4/4 + δ2x2 + |δ|3|x|.
(3) |eix−1−ix+x2/2−(eiy−1−iy+y2/2)|2 ≤ δ6/36+|δ|5|x|/6+(5/12)δ4x2+|δ|3|x|3/2+δ2x4/4.

Proof. The first set of inequalities may be proved by comparison of derivatives. Then, (1) follows

from |ei(x−y) − 1|2 = 2(1− cos(x− y)) and |eiy| = 1; (2) from

|eix− ix− eiy + iy|2 =
(
δ2 + 2(1− cos(δ))− 2δ sin(δ)

)
− 2δ(cos(x)− 1) sin(δ) + 2δ sin(x)(1− cos(δ))

and finally (3) from the decomposition of |eix − ix + x2/2 − eiy + iy − y2/2|2 into the following

terms:

(1) 2(1− cos(δ)) + δ2 + δ4/4− 2δ sin(δ)− (1− cos(δ))δ2 ≤ δ6/36 for any real δ.

(2) δ3x− sin(x) sin(δ)δ2 = δ2(δ(x− sin(x)) + sin(x)(δ − sin(δ))) ≤ |δ|3|x|3/6 + |δ|5|x|/6.

(3) −2(1− cos(δ))δx+2δx(1− cos(x))(1− cos(δ))+2δ(1− cos(δ)) sin(x) = 2δ(1− cos(δ))(x(1−
cos(x)) + sin(x)− x) ≤ |δ|3|x|3/3, since for all real x one has | sin(x)− x cos(x)| ≤ |x|3/3.

(4) −(cos(x)− 1)(1− cos(δ))δ2 ≤ x2δ4/4.

(5) δ2x2 − 2δx sin(x) sin(δ) − 2δ sin(δ)(cos(x) − 1) = x2δ(δ − sin(δ)) + 2δ sin(δ)(1 − cos(x) −
x sin(x) + x2/2) ≤ δ4x2/6 + δ2x4/4 since for all real x, one has 0 ≤ 1− cos(x)− x sin(x) +

x2/2 ≤ x4/8.

The latter inequalities are again seen to be true by comparing derivatives. �
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Lemma 3.7. Let {p, x, y} ⊂ Rd. Then:

(1) |(ei〈p,x〉 − 1)− (ei〈p,y〉 − 1)| ≤ |p||x− y|.
(2) |(ei〈p,x〉 − i〈p, x〉 − 1)− (ei〈p,y〉 − i〈p, y〉 − 1)| ≤ 2|p|2(|x|+ |y|)|x− y|.

Proof. This is an elementary consequence of the complex Mean Value Theorem [11, p. 859, Theorem

2.2] and the Cauchy-Schwartz inequality. �

Lemma 3.8. For any Lévy measure λ on R, one has for the two functions (given for 1 ≥ δ > 0):

M0(δ) := δ2
∫

[−1,1]\(−δ,δ) dλ(x) and M1(δ) := δ
∫

[−1,1]\(−δ,δ) |x|dλ(x) that M0(δ)→ 0 and M1(δ)→ 0

as δ ↓ 0. If, moreover,
∫

[−1,1] |x|dλ(x) <∞, then δ
∫

[−1,1]\(−δ,δ) dλ(x)→ 0 as δ ↓ 0.

Proof. Indeed let µ be the finite measure on ([−1, 1],B[−1,1]) given by µ(A) :=
∫
A x

2dλ(x) (A Borel

subset of [−1, 1]) and let f0
δ (x) :=

(
δ
x

)2
1[−1,1]\(−δ,δ)(x) and f1

δ (x) := δ
|x|1[−1,1]\(−δ,δ)(x) be functions

on [−1, 1]. Clearly 0 ≤ f0
δ , f

1
δ ≤ 1 and f0

δ , f
1
δ → 0 pointwise as δ ↓ 0. Hence by Lebesgue dominated

convergence theorem (DCT), we have M0(δ) =
∫
f0
δ dµ and M1(δ) =

∫
f1(δ)dµ converging to∫

0dµ = 0 as δ ↓ 0. The “finite first absolute moment” case is similar. �

Proposition 3.9. Under scheme 1, with σ2 > 0, (2.3) holds for all sufficiently small h. Notation-

wise, under either of the two schemes, we let h? ∈ (0,+∞] be such that Qh has non-negative

off-diagonal entries for all h ∈ (0, h?).

Proof. If V = 0 this is immediate. If V = 1, then (via a triangle inequality):

h|µh| ≤ h

∣∣∣∣∣∣
∑

s∈Zh\{0}

s

∫
Ahs

1[−1,1](y)dλ(y)

∣∣∣∣∣∣ ≤ h
∑

s∈Zh\{0}

∫
Ahs

|s− u+ u|1[−1,1](y)dλ(y)

≤ h

(
h

2
λ([−1, 1]\[−h/2, h/2]) +

∫
[−1,1]\[h/2,h/2]

|u|dλ(u)

)
→ 0

as h ↓ 0 by Lemma 3.8. Eventually the expression is smaller than σ2 > 0 and the claim follows. �

Furthermore, we have the following inequalities, which together imply an estimate for |Ψh −
Ψ|. In the following, recall the notation (δ ∈ (0, 1]): ζ(δ) := δ

∫
[−1,1]\[−δ,δ] |x|dλ(x), γ(δ) :=

δ2
∫

[−1,1]\[−δ,δ] dλ(x), c := λ(R), b := κ(0), d := λ(R\[−1, 1]). Recall also the definition of the

sets Ahs following (2.2).

Proposition 3.10 (Convergence of characteristic exponents). For all p ∈ R: 0 ≤ fh(p) ≤ p4h2/4!

and 0 ≤ isgn(p)gh(p) ≤ h2|p|3/3! (resp., under scheme 2, |gh(p)| ≤ hp2/2!). Moreover:

(i) when c <∞; with V = 0: |lh(p)| ≤ c|p|h/2.

(ii) when b < ∞ = c; with V = 1; for all h ≤ 2: |lh(p)| ≤ h
2

(
|p|d+ p2b

)
+ (p2 + |p|3 + p4)o(h)

(resp. under scheme 2, |lh(p)| ≤ h
2

(
|p|d+ 2p2b

)
+ (p2 + |p|3 + p4)o(h)) where o(h) depends

only on λ.
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(iii) when b =∞; with V = 1; for all h ≤ 2: |lh(p)| ≤ p2
(
ζ(h/2) + 1

2γ(h/2)
)
+(|p|+|p|3+p4)O(h)

(resp. under scheme 2, |lh(p)| ≤ p2
[
2ζ(h/2) + 1

2γ(h/2)
]

+ (|p|+ p2 + |p|3 + p4)O(h)) where

again O(h) depends only on λ. Note here that we always have γ ≤ ζ and that ζ decays

strictly slower than h, as h ↓ 0.

Remark 3.11. (i) We may briefly summarize the essential findings of Proposition 3.10 in Ta-

ble 2, by noting that the following will have been proved for p ∈ R and h ∈ (0, h? ∧ 2):

|Ψh(p)−Ψ(p)| ≤ f(h)R(|p|) + o(f(h))Q(|p|) (3.4)

where R and Q are polynomials of respective degrees α and β and f : (0, h?∧2)→ (0,∞).

Table 2. Summary of Proposition 3.10 via the triplet (f(h), α, β) introduced in (i)

of Remark 3.11. We agree deg 0 = −∞, where 0 is the zero polynomial.

(f(h), α, β) σ2 > 0 (scheme 1) σ2 = 0 (scheme 2)

λ(R) = 0 (V = 0) (h2, 4,−∞) (h, 2,−∞)

λ(R) <∞ (V = 0) (h, 1, 4) (h, 2,−∞)

κ(0) <∞ = λ(R) (V = 1) (h, 2, 4)

κ(0) =∞ (V = 1) (ζ(h/2), 2, 4)

(ii) An analogue of (3.4) is got in the multivariate case, simply by looking directly at the

difference of (3.3) and (2.1). One does so either component by component (when it comes

to the drift and diffusion terms), the estimates being then the same as in the univariate

case; or else one employs, in addition, Lemma 3.7 (for the part corresponding to the integral

against the Lévy measure). In particular, (3.4) (with p ∈ Rd) follows for suitable choices

of R, Q and f , and Table 2 remains unaffected, apart from its last entry, wherein ζ should

be replaced by ζ + χ (one must also replace “σ2 = 0” (resp. “σ2 > 0”) by “Σ (resp. non-)

degenerate” (amalgamating scheme 1 & 2 into the multivariate one) and λ(R) by λ(Rd)).
(iii) The above entails, in particular, convergence of Ψh(p) to Ψ(p) as h ↓ 0 pointwise in p ∈ R.

Lévy’s continuity theorem [10, p. 326] and stationarity and independence of increments

yield at once Remark 2.2.

(iv) Note that we use V = 1 rather than V = 0 when b < ∞ = c, because this choice yields

linear convergence (locally uniformly) of Ψh → Ψ. By contrast, retaining V = 0, would

have meant that the decay of Ψh − Ψ would be governed, modulo terms which are O(h),

by the quantity Q(h) :=
∑

s∈Zh\{0}
∫
Ahs∩[−1,1](s − u)dλ(u) (as will become clear from the

estimates in the proof of Proposition 3.10 below). But the latter can decay slower than h. In

particular, consider the family of Lévy measures, indexed by ε ∈ [0, 1): λε =
∑∞

n=1wnδ−xn ,

with hn = 1/3n, xn = 3hn/2, wn = 1/xεn, n ≥ 1. For all these measures b < ∞ = c.

Furthermore, it is straightforward to verify that lim infn→∞Q(hn)/K(hn) > 0, where K(h)

is h1−ε or h log(1/h), according as ε ∈ (0, 1) or ε = 0.
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(v) It is seen from Table 2 that the order of convergence goes from quadratic (at least when

σ2 > 0) to linear, to sublinear, according as the Lévy measure is zero, λ(R) > 0 & κ(0) <∞,

or κ becomes more and more singular at the origin. Let us attempt to offer some intuition in

this respect. First, the quadratic order of convergence is due to the convergence properties

of the discrete second and symmetric first derivative. Further, as soon as the Lévy measure

is non-zero, the latter is aggregated over the intervals (Ahs )s∈Zh\{0}, length h, which (at least

in the worst case scenario) commit respective errors of order λ(Ahs )h or
∫
Ahs

(|x| ∧ 1)dλ(x)h

(s ∈ Zh\{0}) each, according as V = 0 or V = 1. Hence, the more singular the κ, the

bigger the overall error. Figure 1 depicts this progressive worsening of the convergence rate

for the case of α-stable Lévy processes.
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Figure 1. Comparison of the convergence of characteristic exponents for α-stable

Lévy processes, α ∈ {1/2, 1, 4/3, 5/3}; σ2 = 0, µ = 0 and λ(dx) = dx/|x|1+α (scheme

2, V = 1). Each plot is of Ψ and of Ψh (h ∈ {1, 1/2, 1/4, 1/8}) on the interval [0, π].

Note that κ(0) = ∞, precisely when α ≥ 1. The plots are indeed suggestive of a

progressive worsening of the rate of convergence as α ↑.
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Proof. (Of Proposition 3.10.) The first two assertions are transparent by Lemma 3.6 — with the

exception of the estimate under scheme 2, where (with δ := hp):

|gh(p)| = 1

h

√
δ2 − 2δ sin(δ) + 2(1− cos(δ)) ≤ 1

h

δ2

2
= hp2/2!.

Further, if c <∞ (under V = 0):∣∣∣∣∣∣
∑

s∈Zh\{0}

chs (eisp − 1)−
∫
R\[−h

2
,h
2

]
(eipu − 1)dλ(u)

∣∣∣∣∣∣ =

∣∣∣∣∣∣
∑

s∈Zh\{0}

chse
isp −

∫
R\[−h

2
,−h

2
]
eipudλ(u)

∣∣∣∣∣∣ =

=

∣∣∣∣∣∣
∑

s∈Zh\{0}

∫
Ahs

(
eisp − eipu

)
dλ(u)

∣∣∣∣∣∣ ≤
∑

s∈Zh\{0}

∫
Ahs

∣∣∣1− eip(u−s)∣∣∣ dλ(u) ≤ |p|hλ
(
R\
[
−h

2
,
h

2

])
/2,

where in the second inequality we apply (1) of Lemma 3.6 and the first follows from the triangle

inequalities. Finally, |
∫

[−h/2,h/2](e
ipu−1)dλ(u)| ≤ λ([−h/2, h/2])|p|h/2, again by (1) of Lemma 3.6,

and the claim follows.

For the remaining two claims, in addition to recalling the general results of Lemma 3.6, we

prepare the following specific estimates. Whenever {x, y} ⊂ R, with δ := y − x, 0 6= |x| ≥ |δ|, we

have:

• using the inequality
√

1 + z ≤ 1 + z/2 (z ≥ 0) and (2) of Lemma 3.6:

|eix − ix− eiy + iy| ≤ |δx|
(

1 +
1

2

∣∣∣∣ δx
∣∣∣∣+

1

8

δ2

x2

)
= |δx|+ 1

2
δ2 +

1

8

∣∣∣∣δ3

x

∣∣∣∣ ≤ |δx|+ 5

8
δ2. (3.5)

• using (3) of Lemma 3.6:

|eix− ix− eiy + iy| ≤ |eix− eiy − ix+ iy+ x2/2− y2/2|+ 1

2
|x2− y2| ≤ 7

6
|δ|x2 + |δ||x|+ 1

2
δ2. (3.6)

Now, when c =∞ (under V = 1; for all h ≤ 2), denoting ξ(δ) :=
∫

[−δ,δ] x
2dλ(x), we have, under

scheme 1, as follows: ∣∣∣∣ch0 (cos(hp)− 1

h2
+
p2

2

)∣∣∣∣ ≤ p4h2ξ(h/2)/4!. (3.7)

∣∣∣∣∣
∫

[−h
2
,h
2

]
u2

(
−p

2

2

)
dλ(u)−

∫
[−h

2
,h
2

]

(
eipu − 1− ipu

)
dλ(u)

∣∣∣∣∣
≤

∣∣∣∣∣
∫

[−h
2
,h
2

]

(
cos(pu)− 1 +

p2u2

2!

)
dλ(u)

∣∣∣∣∣+

∣∣∣∣∣
∫

[−h
2
,h
2

]
(sin(pu)− pu) dλ(u)

∣∣∣∣∣
≤ p4(h/2)2ξ(h/2)/4! + |p|3(h/2)ξ(h/2)/3!. (3.8)

| − µhgh(p)| =
∣∣∣∣−iµh(sin(hp)

h
− p
)∣∣∣∣ ≤ 1

3!
h2|p|3 (ζ(h/2) + κ(h/2)) . (3.9)
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∣∣∣∣∣∣
∑

s∈Zh\{0}

chs (eisp − 1)− ipµh −
∫
R\[−h

2
,h
2

]
(eipu − 1− ipu1[−1,1](u))dλ(u)

∣∣∣∣∣∣
≤

∑
s∈Zh\{0}

∫
Ahs

∣∣eipu − eips − ipu1[−1,1](u) + ips1[−1,1](u)
∣∣ dλ(u)

≤
∑

s∈Zh\{0}

[∫
Ahs∩(R\[−1,1])

+

∫
Ahs∩[−1,1]

] ∣∣eipu − eips − ipu1[−1,1](u) + ips1[−1,1](u)
∣∣ dλ(u)

≤ h

2
|p|
∫
R\[−1,1]

dλ(u) + p2h

2

∫
[−1,1]\[−h

2
,h
2

]
|u|dλ(u) + p2 5

8

(
h

2

)2

λ([−1, 1]\[−h/2, h/2]), (3.10)

where, in particular, we have applied (3.5) to x = ps, y = pu. If in addition b =∞, we opt rather

to use (3.6), again with x = ps and y = pu, and obtain instead:∣∣∣∣∣∣
∑

s∈Zh\{0}

chs (eisp − 1)− ipµh −
∫
R\[−h

2
,h
2

]
(eipu − 1− ipu1[−1,1](u))dλ(u)

∣∣∣∣∣∣
≤ h

2
|p|
∫
R\[−1,1]

dλ(u) + p2h

2

∫
[−1,1]\[−h

2
,h
2

]
|u|dλ(u) + p2 1

2

(
h

2

)2

λ([−1, 1]\[−h/2, h/2]) +

+
7

6
|p|3h

2

∫
[−1,1]

x2dλ(x). (3.11)

Under scheme 2, (3.7), (3.8) and (3.10)/(3.11) remain unchanged, whereas (3.9) reads:∣∣∣µhgh(p)
∣∣∣ ≤ h

2
p2 (ζ(h/2) + κ(h/2)) . (3.12)

Now, combining (3.7), (3.8), (3.9) and (3.10) under scheme 1 (resp. (3.7), (3.8), (3.12) and (3.10)

under scheme 2), yields the desired inequalities when b < ∞. If b = ∞ use (3.11) in place of

(3.10). �

4. Rates of convergence for transition kernels

Finally let us incorporate the estimates of Proposition 3.10 into an estimate of Dh
t,T (x, y) (recall

the notation in (2.5)). Assumption 2.3 and Table 1 are understood as being in effect throughout

this section from this point onwards. Recall that |Ψh − Ψ| ≤ σ2|fh| + µ|gh| + |lh| and that the

approximation is considered for h ∈ (0, h?) (cf. Proposition 3.9).

First, the following observation, which is a consequence of the h-uniform growth of −<Ψh(p) as

|p| → ∞, will be crucial to our endeavour (compare Remark 3.1).

Proposition 4.1. For some {P,C, ε} ⊂ (0,∞) and h0 ∈ (0, h?], depending only on {λ, σ2}, and

then all h ∈ (0, h0), p ∈ [−π/h, π/h]\(−P, P ) and t ≥ 0: |φhXt(p)| ≤ exp{−Ct|p|ε}. Moreover, when

σ2 > 0, we may take ε = 2, P = 0, C = 1
2

(
2
π

)2
and h0 = h?, whereas otherwise ε may take the

same value as in Orey’s condition (cf. Assumption 2.3).
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Proof. Assume first σ2 > 0, so that we are working under scheme 1. It is then clear from (3.1)

that:

−<Ψh(p) ≥ σ2 1− cos(hp)

h2
≥ 1

2

(
2

π

)2

σ2p2,

since 1 − cos(x) = 2 sin2(x/2) ≥ 2
(
x
π

)2
for all x ∈ [−π, π]. On the other hand, if σ2 = 0, we

work under scheme 2 and necessarily V = 1. In that case it follows from (3.2) for h ≤ 2 and

p ∈ [−π/h, π/h]\{0}, that:

−<Ψh(p) ≥

ch0 1− cos(hp)

h2
+

∑
s∈Zh\{0}

chs (1− cos(sp))


≥ 2

π2
p2

∫
Ah0

u2dλ(u) +
∑

s∈Zh\{0},|s|≤ π
|p|

s2chs


≥ 2

π2
p2

∫
Ah0

u2dλ(u) +
4

9

∑
s∈Zh\{0},|s|≤ π

|p|

∫
Ahs

u2dλ(u)


≥ 2

π2
p2

(∫
Ah0

u2dλ(u) +
4

9

∫
[−
(
π
|p|−

h
2

)
, π|p|−

h
2

]\Ah0
u2dλ(u)

)

≥ 8

9

1

π2
p2

∫
[
−
((

π
|p|−

h
2

)
∨h

2

)
,
((

π
|p|−

h
2

)
∨h

2

)] u2dλ(u)

≥ 8

9

1

π2
p2

∫
[− 1

2
π
|p| ,

1
2
π
|p| ]

u2dλ(u).

Now invoke Assumption 2.3. There are some {r0, A0} ∈ (0,+∞) such that for all r ∈ (0, r0]:∫
[−r,r] u

2dλ(u) ≥ A0r
2−ε. Thus for P = π/(2r0) and then all p ∈ R\(−P, P ), we obtain:∫

[− 1
2
π
|p| ,

1
2
π
|p| ]

u2dλ(u) ≥ A0

(
1

2

π

|p|

)2−ε
,

from which the desired conclusion follows at once. Remark that, possibly, r0 may be taken as +∞,

in which case P may be taken as zero. �

Second, we have the following general observation which concerns the transfer of the rate of

convergence from the characteristic exponents to the transition kernels. Its validity is in fact

independent of Assumption 2.3.

Proposition 4.2. Suppose there are {P,C, ε} ⊂ (0,∞), a real-valued polynomial R, an h0 ∈ (0, h?],

and a function f : (0, h0)→ (0,∞), decaying to 0 no faster than some power law, such that for all

h ∈ (0, h0):

(1) for all p ∈ [−π/h, π/h]: |Ψh(p)−Ψ(p)| ≤ f(h)R(|p|).
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(2) for all s > 0 and p ∈ [−π/h, π/h]\(−P, P ): |φXh
s
(p)| ≤ exp{−Cs|p|ε}; whereas for p ∈

R\(−P, P ): |φXs(p)| ≤ exp{−Cs|p|ε}.

Then for any s > 0, ∆s(h) = O(f(h)).

Before proceeding to the proof of this proposition, we note explicitly the following elementary,

but key lemma:

Lemma 4.3. For {z, v} ⊂ C: |ez − ev| ≤ (|ez| ∨ |ev|)|z − v|.

Proof. This follows from the inequality |ez − 1| ≤ |z| for <z ≤ 0, whose validity may be seen by

direct estimation. �

Proof. (Of Proposition 4.2.) From (2.6) and (2.7) we have for the quantity ∆s(h) from (2.5):

∆s(h) ≤
∫
R\(−π/h,π/h)

| exp{Ψ(p)s}|dp+

∫
[−π/h,π/h]

| exp{Ψh(p)s} − exp{Ψ(p)s}|dp.

Then the first term decays faster than any power law in h by (2) and L’Hôpital’s rule, say, while

in the second term we use the estimate of Lemma 4.3. Since exp{−Ct|p|ε}dp integrates every

polynomial in |p| absolutely, by (1) and (2) integration in the second term can then be extended

to the whole of R and the claim follows. �

This last proposition allows us to transfer the rates of convergence directly from those of the char-

acteristic exponents to the transition kernels. In particular, Theorem 2.5 follows from a straight-

forward extension (of the proof) of Proposition 4.2 to the multivariate setting, (ii) of Remark 3.11,

Assumption 2.5 and Remark 2.6. Returning to the univariate case, analogous conclusions could

be got from Remark 3.1, Proposition 4.1 (themselves both consequences of Assumption 2.3) and

Proposition 3.10. In the sequel, however, in the case when σ2 > 0, we shall be interested in a

more precise estimate of the constant in front of the leading order term (D1 in the statement of

Theorem 2.5). Moreover, we shall want to show our estimates are tight in an appropriate precise

sense.

To this end we assume given a function K with the properties that:

(F) 0 ≤ K(h)→∞ as h ↓ 0 and K(h) ≤ π
h for all sufficiently small h;

(E) the quantity

A(h) :=

[∫ −K(h)

−∞
+

∫ ∞
K(h)

]
|exp{Ψ(p)s}| dp+

[∫ −K(h)

−π
h

+

∫ π
h

K(h)

] ∣∣∣exp{Ψh(p)s}
∣∣∣ dp

decays faster than the leading order term in the estimate of Dh
t,T (x, y) (for which see, e.g.,

Table 2);

(C) sup[−K(h),K(h)] |Ψh −Ψ| ≤ 1 for all small enough h.

(suitable choices of K will be identified later, cf. Table 3). We now comment on the reasons behind

these choices.
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First, the constants {C,P, ε} are taken so as to satisfy simultaneously Remark 3.1 and Proposi-

tion 3.10. In particular, if σ2 > 0, we take ε = 2, P = 0, C = 1
2σ

2, and if σ2 = 0, we may take ε

from Orey’s condition (cf. Assumption 2.3).

Next, we divide the integration regions in (2.6) and (2.7) into five parts (cf. property (F)):

(−∞,−π
h ], (−π

h ,−K(h)), [−K(h),K(h)], (K(h), πh ), [πh ,∞). Then we separate (via a triangle

inequality) the integrals in the difference Dh
t,T (x, y) accordingly and use the triangle inequality in

the second and fourth region, thus (with s := T − t > 0):

2πDh
t,T (x, y) ≤

[∫ −π/h
−∞

+

∫ ∞
π/h

]
|exp{Ψ(p)s}| dp+

[∫ −K(h)

−π
h

+

∫ π
h

K(h)

](∣∣∣exp{Ψh(p)s}
∣∣∣+ |exp{Ψ(p)s}|

)
dp+

+

∫ K(h)

−K(h)

∣∣∣exp{Ψ(p)s} − exp{Ψh(p)s}
∣∣∣ dp.

Finally, we gather the terms with |exp{Ψ(p)s}| in the integrand and use |ez − 1| ≤ e|z| − 1 (z ∈ C)

to estimate the integral over [−K(h),K(h)], so as to arrive at:

2πDh
t,T (x, y) ≤ A(h) +

∫ K(h)

−K(h)
| exp{Ψ(p)s}|

(
exp

{
s
∣∣∣Ψh(p)−Ψ(p)

∣∣∣}− 1
)
dp. (4.1)

Now, the rate of decay of A(h) can be controlled by choosing K(h) converging to +∞ fast enough,

viz. property (E). On the other hand, in order to control the second term on the right-hand side

of the inequality in (4.1), we choose K(h) converging to +∞ slowly enough so as to guarantee (C).

Table 3 lists suitable choices of K(h). It is easily checked from Table 2 (resp. using L’Hôpital’s

rule coupled with Remark 3.1 and Proposition 4.1), that these choices of K(h) do indeed satisfy

(C) (resp. (E)) above. Property (F) is straightforward to verify.

Table 3. Suitable choices of K(h). For example, the σ2 > 0 and λ(R) = 0 entry

indicates that we choose K(h) =
√

2
Cs log 1

h and then A(h) is of order o(h2).

σ2 > 0 (scheme 1) σ2 = 0 (scheme 2)

λ(R) = 0 (V = 0) K(h) =
√

2
Cs log 1

h → A(h) = o(h2) ×

λ(R) <∞ (V = 0) K(h) =
√

1
Cs log 1

h → A(h) = o(h) ×

κ(0) <∞ = λ(R) (V = 1) K(h) =
√

1
Cs log 1

h → A(h) = o(h) K(h) = ε

√
2
Cs log 1

h → A(h) = o(h)

κ(0) =∞ (V = 1) K(h) =
(

1
ζ(h/2)

)1/4
→ A(h) = o(ζ(h/2))

Further, due to (C), for all sufficiently small h, everywhere on [−K(h),K(h)]:

es|Ψ
h−Ψ|−1 = s|Ψh−Ψ|+

∞∑
k=2

(s|Ψh −Ψ|)k

k!
≤ s|Ψh−Ψ|+(s|Ψh−Ψ|)2es|Ψ

h−Ψ| ≤ s|Ψh−Ψ|+e(s|Ψh−Ψ|)2.

Manifestly the second term will always decay strictly faster than the first (so long as they are

not 0). Moreover, since exp{−Cs|p|ε}dp integrates every polynomial in |p| (cf. the findings of
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Proposition 3.10) absolutely, it will therefore be sufficient in the sequel to estimate (cf. (4.1)):

s

2π

∫
R

exp{−Cs|p|ε}
∣∣∣Ψh(p)−Ψ(p)

∣∣∣ dp. (4.2)

On the other hand, for the purposes of establishing sharpness of the rates for the quantity

Dh
t,T (x, y), we make the following:

Remark 4.4 (RD). Suppose we seek to prove that f ≥ 0 converges to 0 no faster than g > 0, i.e.

that lim suph↓0 f(h)/g(h) ≥ C > 0 for some C. If one can show f(h) ≥ A(h)−B(h) and B = o(g),

then to show lim suph↓0 f(h)/g(h) ≥ C, it is sufficient to establish lim suph↓0A(h)/g(h) ≥ C. We

refer to this extremely useful principle as reduction by domination (henceforth RD).

In particular, it follows from our above discussion, that it will be sufficient to consider (we shall

always choose x = y = 0):

s

2π

∫ K(h)

−K(h)
esΨ(p)

(
Ψh(p)−Ψ(p)

)
dp, (4.3)

i.e. in Remark 4.4 this is A, and the difference to Dt,T (0, 0) represents B. Moreover, we can further

replace Ψh(p)−Ψ(p) in the integrand of (4.3) by any expression whose difference to Ψh(p)−Ψ(p)

decays, upon integration, faster than the leading order term. For the latter reductions we (shall)

refer to the proof of Proposition 3.10.

We have now brought the general discussion as far as we could. The rest of the analysis must

invariably deal with each of the particular instances separately and we do so in the following two

propositions. Notation-wise we let DCT stand for Lebesgue dominated convergence theorem.

Proposition 4.5 (Convergence of transition kernels — σ2 > 0). Suppose σ2 > 0. Then for any

s = T − t > 0:

(1) if λ(R) = 0:

∆s(h) ≤ h2

[
1

3π

|µ|
σ4s

+
1

8
√

2π

1

(sσ2)3/2

]
+ o(h2).

Moreover, with σ2s = 1 and µ = 0 we have lim suph↓0D
h
t,T (0, 0)/h2 ≥ 1/(8

√
2π), proving

that in general the convergence rate is no better than quadratic.

(2) if 0 < λ(R) <∞:

∆s(h) ≤ h 1

2π

c

σ2
+ o(h).

Moreover, with σ2 = s = 1, µ = 0 and λ = 1
2(δ1/2 +δ−1/2) one has lim suph↓0D

h
t,T (0, 0)/h >

0 showing that convergence in general is indeed no better than linear.

(3) if κ(0) <∞ = λ(R):

∆s(h) ≤ h
[

1

2π

d

σ2
+

1

2
√

2π

bs

(σ2s)3/2

]
+ o(h).

Moreover, with σ2 = s = 1, µ = 0 and λ = 1
2(δ3/2 + δ−3/2) + 1

2

∑∞
k=1(δ1/3k + δ−1/3k), one

has lim suph↓0D
h
t,T (0, 0)/h > 0.
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(4) if κ(0) =∞:

∆s(h) ≤ 1√
2π

s

(σ2s)3/2

(
ζ(h/2) +

1

2
γ(h/2)

)
+ o(ζ(h/2)).

Moreover, with σ2 = s = 1, µ = 0, and λ =
∑∞

k=1wk(δxk + δ−xk), where xn = 3
2

1
3n and

wn = 1/xn (n ∈ N), one has lim suph↓0D
h
t,T (0, 0)/ζ(h/2) > 0.

Proof. Estimates of ∆s(h) follow at once from (4.2) and Proposition 3.10, simply by integration.

As regards establishing sharpness of the estimates, however, we have as follows (recall that we

always take x = y = 0):

(1) λ(R) = 0. Using (4.3) it is sufficient to consider:

A(h) :=
1

2π

∣∣∣∣∣
∫ K(h)

−K(h)
exp

{
−1

2
p2

}
fh(p)dp

∣∣∣∣∣ .
By DCT, we have A(h)/h2 → 1

2π

∫∞
−∞ exp{−1

2p
2}p4/4!dp and the claim follows.

(2) 0 < λ(R) < ∞. Using (4.3) and further RD via the estimates in the proof of Proposi-

tion 3.10, we conclude that it is sufficient to observe for the sequence (hn = 1
3n )n≥1 ↓ 0

that:

lim sup
n→∞

1

2πhn

∣∣∣∣∣
∫ K(hn)

−K(hn)
exp

{
−1

2
p2 − 1 + cos(p/2)

}
lhn(p)dp

∣∣∣∣∣ > 0.

It is also clear that we may express:

lhn(p) = 2
1

2
<
(
eip(1/2−hn/2) − eip/2

)
= cos(p/2)(cos(phn/2)− 1) + sin(p/2) sin(phn/2).

Therefore, by further RD, it will be sufficient to consider:

lim sup
n→∞

1

2πhn

∣∣∣∣∣
∫ K(hn)

−K(hn)
exp

{
−1

2
p2 − 1 + cos(p/2)

}
sin(phn/2) sin(p/2)dp

∣∣∣∣∣ .
By DCT it is equal to:

I :=
1

2π

∫ ∞
0

p sin(p/2) exp{−1

2
p2 − 1 + cos(p/2)}dp.

The numerical value of this integral is (to one decimal place in units of 2π) 0.4/(2π), but

we can show that I > 0 analytically. Indeed the integrand is positive on [0, 6]. Hence

2πeI ≥ sin(1/2)ecos(3/2)
∫ 3

1 pe
−p2/2dp − e

∫∞
6 pe−p

2/2dp = sin(1/2)ecos(3/2)[e−1/2 − e−9/2] −
e−17. Now use sin(1/2) ≥ (1/2) · (2/π) (which follows from the concavity of sin on [0, π/2]),

so that, very crudely: 2πeI ≥ (1/π)e−1/2(1 − e−4) − e−17 ≥ (1/π)e−1/2(1/2) − e−17 ≥
(1/e2)e−1/2(1/e)− e−17 ≥ e−4 − e−17 > 0.

(3) κ(0) <∞ = λ(R). Let hn = 1/3n, n ≥ 1. Because the second term in λ lives on ∪n∈NZhn ,

it is seen quickly (via RD) that one need only consider (to within non-zero multiplicative

constants):

lim sup
n→∞

∫ K(hn)

−K(hn)

1

hn
sin(phn/2) sin(3p/2) exp

{
−1

2
p2 + (cos(3p/2)− 1) +

∞∑
k=1

(cos(p/3k)− 1)

}
dp.
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By DCT it is sufficient to observe that:∫ 2π/3

0

sin(3p/2)p exp

{
−1

2
p2 + (cos(3p/2)− 1)− p2

2

∞∑
k=1

1

9k

}
dp−

∫ ∞
2π/3

p exp

{
−1

2
p2
}
dp > 0.

To see the latter, note that the second integral is immediate and equal to: e−(2π/3)2/2. As

for the first one, make the change of variables u = 3p/2. Thus we need to establish that:

A := (4/(9e))

∫ π

0
sin(u)u exp{−u2/4 + cos(u)}du− e−(2π/3)2/2 > 0.

Next note that −u2/4 + cos(u) is decreasing on [0, π] and the integrand in A is positive. It

follows that:

A ≥ 4

9e

[∫ π/3

0

u sin(u) exp

{
−1

4

(π
3

)2
+ cos

(π
3

)}
du+

∫ π/2

π/3

u sin(u) exp

{
−1

4

(π
2

)2
+ cos

(π
2

)}
du

]
− e−2π2/9.

Using integration by parts, it is now clear that this expression is algebraic over the rationals

in e,
√

3 and the values of the exponential function at rational multiples of π2. Since this

explicit expression can be estimated from below by a positive quantity, one can check that

A > 0.

(4) κ(0) =∞. Let again hn = 1/3n, n ≥ 1. Notice that:

σ1 :=

∫
[−1,1]\[−hn/2,hn/2]

u2dλ(u) = 2

n∑
k=1

x2kwk, and σ2 :=
∑

s∈Shn\{0}

chns s2 = 2

n∑
k=1

(
xk −

hn
2

)2

wk,

so that ∆ := σ1 − σ2 = 2ζ(hn/2) − γ(hn/2) ≥ ζ(hn/2). Using (3) of Lemma 3.6 in the

estimates of Proposition 3.10, it is then not too difficult to see that it is sufficient to show∫K(hn)
−K(hn) p

2 exp{Ψ(p)}dp converges to a strictly positive value as n→∞, which is transparent

(since Ψ is real valued).

�

Proposition 4.6 (Convergence of transition kernels — σ2 = 0). Suppose σ2 = 0. For any s =

T − t > 0:

(1) if Orey’s condition is satisfied and κ(0) < ∞ = λ(R), then ∆s(h) = O(h). Moreover, with

σ2 = 0, s = 1, µ = 0 and λ = 1
2

∑∞
k=1wk(δxk + δ−xk), where, xn = 3

2
1

3n and wn = 1/
√
xn

(n ∈ N), Orey’s condition holds with ε = 1/2 and one has lim suph↓0D
h
t,T (0, 0)/h > 0.

(2) if Orey’s condition is satisfied and κ(0) = ∞, then ∆s(h) = O(ζ(h/2)). Moreover, with

σ2 = 0, s = 1, µ = 0, and λ =
∑∞

k=1wk(δxk + δ−xk), where xn = 3
2

1
3n and wn = 1/xn

(n ∈ N), Orey’s condition holds with ε = 1 and one has lim suph↓0D
h
t,T (0, 0)/ζ(h/2) > 0.

Proof. Again the rates of convergence for ∆s(h) follow at once from (4.2) and Proposition 3.10 (or,

indeed, from Proposition 4.2). As regards sharpness of these rates, we have (recall that we take

x = y = 0):

(1) κ(0) < ∞ = λ(R). Let hn = 1/3n, n ≥ 1. By checking Orey’s condition on the decreasing

sequence (hn)n≥1, Assumption 2.3 is satisfied with ε = 1/2 and we have b < ∞ = c.
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µh = 0 by symmetry. Moreover by (4.3), and by further going through the estimates of

Proposition 3.10 using RD, it suffices to show:

lim sup
n→∞

1

hn

∣∣∣∣∣∣
∫ K(hn)

−K(hn)
exp{Ψ(p)}

 ∑
s∈Zhn\{0}

∫
Ahns

(cos(ps)− cos(pu)) dλ(u)

 dp

∣∣∣∣∣∣ > 0.

Now, one can write for s ∈ Zhn\{0} and u ∈ Ahs ,

cos(sp)− cos(pu) = cos(pu)(cos((s− u)p)− 1)− sin(pu)(sin((s− u)p)− (s− u)p)− sin(pu)(s− u)p

and via RD get rid of the first two terms (i.e. they contribute to B rather than A in

Remark 4.4). It follows that it is sufficient to observe:

lim sup
n→∞

1

hn

∣∣∣∣∣
∫ K(hn)

−K(hn)
exp

{ ∞∑
k=1

(cos(pxk)− 1)wk

}(
n∑
k=1

wk sin(pxk)

)
hnpdp

∣∣∣∣∣ > 0.

Finally, via DCT and evenness of the integrand, we need only have:∫ ∞
0

( ∞∑
k=1

wk sin(pxk)

)
p exp

{ ∞∑
k=1

(cos(pxk)− 1)wk

}
dp 6= 0.

One can in fact check that the integrand is strictly positive, as Lemma 4.7 shows, and thus

the proof is complete.

(2) κ(0) = ∞. The example here works for the same reasons as it did in (4) of the proof of

Proposition 4.5 (but here benefiting explicitly also from µh = 0). We only remark that

Orey’s condition is of course fulfilled with ε = 1, by checking it on the decreasing sequence

(hn)n≥1.

�

Lemma 4.7. Let ψ(p) :=
∑∞

k=1 3k/2 sin(3
2p/3

k). Then ψ is strictly positive on (0,∞).

Proof. We observe that, (i) ψ|(0,π
2

] > 0 and (ii) for p ∈ (π/2, 3π/2] we have: ψ(p) >
√

3/(
√

3−1) =:

A0. Indeed, (i) is trivial since for p ∈ (0, π/2], ψ(p) is defined as a sum of strictly positive terms.

We verify (ii) by observing that (ii.1) ψ(π/2) > A0 and (ii.2) ψ is nondecreasing on [π/2, 3π/2].

Both these claims are tedious but elementary to verify by hand. Indeed, with respect to (ii.1),

summing three terms of the series defining ψ(π/2) is sufficient. Specifically we have ψ(π/2) >
√

3 sin(π/4) + 3 sin(π/12) + 3
√

3 sin(π/36) and we estimate sin(π/36) ≥ π
36 sin(π/3)/(π/3). With

respect to (ii.2) we may differentiate under the summation sign, and then ψ′(p) ≥
√

3
2 cos(3π/4) +

1
2 cos(π/4) +

√
3

6 cos(π/12). The final details of the calculations are left to the reader.

Finally, we claim that if for some B > 0 we have ψ|(0,B] > 0 and ψ|(B,3B] > A0, then ψ|(0,3B] > 0

and ψ|(3B,9B] > A0, and hence the assertion of the lemma will follow at once (by applying the

latter first to B = π/2, then B = 3π/2 and so on). So let 3p ∈ (3B, 9B], i.e. p ∈ (B, 3B]. Then

ψ(3p) =
√

3(sin(3p/2) + ψ(p)) >
√

3(−1 +A0) = A0, as required. �
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5. Convergence of expectations and algorithm

5.1. Convergence of expectations. For the sake of generality we state the results in the multi-

variate setting, but only do so, when this is not too burdensome on the brevity of exposition. For

d = 1, either the multivariate or the univariate schemes may be considered.

Let f : Rd → R be bounded Borel measurable and define for t ≥ 0 and h ∈ (0, h?): pt := p0,t

and P ht := P h0,t, whereas for x ∈ Zdh, we let pt(x) := pt(0, x) and P ht (x) = P ht (0, x) (assuming the

continuous densities exist). Note that for t ≥ 0, and then for x ∈ Rd,

Ex[f ◦Xt] =

∫
R
f(y)pt(x, y)dy, (5.1)

whereas for x ∈ Zdh and h ∈ (0, h?):

Ex[f ◦Xh
t ] =

∑
y∈Zdh

f(y)P ht (x, y). (5.2)

Moreover, if f is continuous, we know that, as h ↓ 0, Ex[f ◦Xh
t ] → Ex[f ◦Xt], since Xh

t → Xt in

distribution. Next, under additional assumptions on the function f , we are able to establish the

rate of this convergence and how it relates to the convergence rate of the transition kernels, to wit:

Proposition 5.1. Assume (2.9) of Assumption 2.5. Let h0 ∈ (0,∞), g : (0, h0) → (0,∞) and

t > 0 be such that ∆t = O(g). Suppose furthermore that the following two conditions on f are

satisfied:

(i) f is (piecewise1, if d = 1) Lipschitz continuous.

(ii) suph∈(0,h0) h
d
∑

x∈Zdh
|f(x)| <∞.

Then:

sup
x∈Zdh

|Ex[f ◦Xt]− Ex[f ◦Xh
t ]| = O(h ∨ g(h)).

Remark 5.2. (1) Condition (ii) is fulfilled in the univariate case d = 1, if, e.g.: f ∈ L1(R), w.r.t.

Lebesgue measure, f is locally bounded and for some K ∈ [0,∞), |f ||(−∞,−K] (restriction

of |f | to (−∞,−K]) is nondecreasing, whereas |f ||[K,∞) is nonincreasing.

(2) The rate of convergence of the expectations is thus got by combining the above proposition

with the findings of Theorems 2.4 and 2.7.

Proof. Decomposing the difference Ex[f ◦Xt]− Ex[f ◦Xh
t ] via (5.1) and (5.2), we have:

Ex[f ◦Xt]− Ex[f ◦Xh
t ] =

∑
y∈Zdh

∫
Ahy

(f(z)− f(y)) pt(x, z)dz + (5.3)

+
∑
y∈Zdh

∫
Ahy

f(y) (pt(x, z)− pt(x, y)) dz + (5.4)

1In the sense that there exists some natural n, and then disjoint open intervals (Ii)
n
i=1, whose union is cofinite in

R, and such that f |Ii is Lipschitz for each i ∈ {1, . . . , n}.
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+
∑
y∈Zdh

f(y)hd
[
pt(x, y)− 1

hd
P ht (x, y)

]
. (5.5)

Now, (5.5) is of order O(g(h)), by condition (ii) and since ∆t = O(g). Further, (5.3) is of order

O(h) on account of condition (i), and since
∫
pt(x, z)dz = 1 for any x ∈ Rd (to see piecewise

Lipschitzianity is sufficient in dimension one (d = 1), simply observe sup{x,y}⊂R pt(x, y) is finite,

as follows immediately from the integral representation of pt). Finally, note that pt(x, ·) is also

Lipschitz continuous (uniformly in x ∈ Rd), as follows again at once from the integral representation

of the transition densities. Thus, (5.4) is also of order O(h), where again we benefit from condition

(ii) on the function f . �

In order to be able to relax condition (ii) of Proposition 5.1, we first establish the following

Proposition 5.3, which concerns finiteness of moments of Xt.

In preparation thereof, recall the definition of submultiplicativity of a function g : Rd → [0,∞):

g is submultiplicative⇔ ∃a ∈ (0,∞) such that g(x+ y) ≤ ag(x)g(y), whenever {x, y} ⊂ Rd (5.6)

and we refer to [29, p. 159, Proposition 25.4] for examples of such functions. Any submultiplicative

locally bounded function g is necessarily bounded in exponential growth [29, p. 160, Lemma 25.5],

to wit:

∃{b, c} ⊂ (0,∞) such that g(x) ≤ bec|x| for x ∈ Rd. (5.7)

Proposition 5.3. Let g : Rd → [0,∞) be measurable, submultiplicative and locally bounded, and

suppose
∫
Rd\[−1,1]d gdλ < ∞. Then for any t > 0, E[g ◦ Xt] < ∞ and, moreover, there is an

h0 ∈ (0, h?) such that

sup
h∈(0,h0)

E[g ◦Xh
t ] <∞.

Conversely, if
∫
Rd\[−1,1]d gdλ =∞, then for all t > 0, E[g ◦Xt] =∞.

Proof. The argument follows the exposition given in [29, pp. 159-162], modifying the latter to the

extent that uniform boundedness over h ∈ (0, h0) may be got. In particular, we refer to [29, p.

159, Theorem 25.3] for the claim that E[g ◦Xt] < ∞, if and only if
∫
Rd\[−1,1]d gdλ < ∞. We take

{a, b, c} ⊂ (0,∞) satisfying (5.6) and (5.7) above. Recall also that λh is the Lévy measure of the

process Xh, h ∈ (0, h?).

Now, decompose X = X1 +X2 and Xh = Xh1 +Xh2, h ∈ (0, h?) as independent sums, where X1

is compound Poisson, Lévy measure λ1 := 1Rd\[−1,1]d ·λ, and Xh1 are also compound Poisson, Lévy

measures λh1 := 1Rd\[−1,1]d · λh, h ∈ (0, h?). Consequently X2 is a Lévy process with characteristic

triplet (Σ,1[−1,1]d · λ, µ)c̃ and Xh2 are compound Poisson, Lévy measures 1[−1,1]d · λh, h ∈ (0, h?).

Moreover, for h ∈ (0, h?), by submultiplicativity and independence:

E[g ◦Xh
t ] = E[g ◦ (Xh1

t +Xh2
t )] ≤ aE[g ◦Xh1

t ]E[g ◦Xh2
t ].
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We first estimate E[g ◦Xh1
t ]. Let (Jn)n≥1 (resp. Nt) be the sequence of jumps (resp. number of

jumps by time t) associated to (resp. of) the compound Poisson process Xh1. Then Xh1
t =

∑Nt
j=1 Jj

and so by submultiplicativity:

E[g ◦Xh1
t ] ≤ E

g(0)1{Nt=0} + aNt−1
Nt∏
j=1

g(Jj)1{Nt>0}


= g(0)e−tλ

h
1 (Rd) +

∞∑
n=1

tnan−1

n!
e−tλ

h
1 (Rd)

(∫
gdλh1

)n
.

We also have for all h ∈ (0, 1 ∧ h?):∫
gdλh1 =

∑
s∈Zdh\[−1,1]d

∫
Ahs

g(s)dλ =
∑

s∈Zdh\[−1,1]d

∫
Ahs

g(u+ (s− u))dλ(u)

≤ a

(
sup
k∈A0

h

g(k)

) ∑
s∈Zdh\[−1,1]d

∫
Ahs

gdλ,by submultiplicativity

≤ a

(
sup
k∈A0

1

g(k)

)∫
Rd\[−1/2,1/2]d

gdλ.

Now, since g is locally bounded, λ is finite outside neighborhoods of 0, and since by assumption∫
Rd\[−1,1]d gdλ <∞, we obtain: suph∈(0,1∧h?) E[g ◦Xh1

t ] <∞.

Second, we consider E[g ◦ Xh2
t ]. First, by boundedness in exponential growth and the triangle

inequality:

E[g ◦Xh2
t ] ≤ bE[ec|X

h2
t |] ≤ bE[ec

∑d
j=1 |Xh2

tj |] = bE

 d∏
j=1

ec|X
h2
tj |

 .
It is further seen by a repeated application of the Cauchy-Schwartz inequality that it will be

sufficient to show, for each j ∈ {1, . . . , d}, that for some h0 ∈ (0, h?]:

sup
h∈(0,h0)

E
[
e2d−1c|Xh2

tj |
]
<∞.

Here Xh2
t = (Xh2

t1 , . . . , X
h2
td ) and likewise for X2

t . Fix j ∈ {1, . . . , d}.
The characteristic exponent of Xh2

j , denoted Ψh
2 , extends to an entire function on C. Likewise

for the characteristic exponent of X2
j , denoted Ψ2 [29, p. 160, Lemma 25.6]. Moreover, since, by

expansion into power series, one has, locally uniformly in β ∈ C, as h ↓ 0:

• eβh+e−βh−2
2h2

→ 1
2β

2;

• eβh−e−βh
2h → β;

• eβh−1
h → β and 1−e−βh

h → β;

since furthermore:

•
(

(β, u) 7→ eβu−βu−1
u2

)
: R\{0} × C→ C is bounded on bounded subsets of its domain;

and since finally by the complex Mean Value Theorem [11, p. 859, Theorem 2.2]:
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• as applied to the function (x 7→ eβx) : C → C; |eβx − eβy| ≤ |x − y||β|(|eβz1 | + |eβz2 |) for

some {z1, z2} ⊂ conv({x, y}), for all {x, y} ⊂ R;

• as applied to the function (x 7→ eβx − βx) : C → C; |eβx − βx − (eβy − βy)| ≤ |x −
y||β|

(
|eβz1 − 1|+ |eβz2 − 1|

)
for some {z1, z2} ∈ conv({x, y}), for all {x, y} ⊂ R;

then the usual decomposition of the difference Ψh
2 −Ψ2 (see proof of Proposition 3.10) shows that

Ψh
2 → Ψ2 locally uniformly in C as h ↓ 0. Next let φh2 and φ2 be the characteristic functions of

Xh2
tj and X2

tj , respectively, h ∈ (0, h?); themselves entire functions on C. Using the estimate of

Lemma 4.3, we then see, by way of corollary, that also φh2 → φ2 locally uniformly in C as h ↓ 0.

Now, since φh2 is an entire function, for n ∈ N∪ {0}, inE[(Xh2
tj )n] = (φh2)(n)(0) and it is Cauchy’s

estimate [31, p. 184, Lemma 10.5] that, for a fixed r > 2d−1c,
∣∣(φh2)(n)(0)

∣∣ ≤ n!
rnM

h, where

Mh := sup{z∈C:|z|=r} |φh2 |. Observe also that for some h0 ∈ (0, h?], suph∈(0,h0)M
h < ∞, since

φh2 → φ2 locally uniformly as h ↓ 0 and φ2 is continuous (hence locally bounded).

Further to this E[|Xh2
tj |2k+1] ≤ 1 + E[|Xh2

tj |2k+2] (k ∈ N ∪ {0}) and E
[
e2d−1c|Xh2

tj |
]

=∑∞
n=0

1
n!E[|Xh2

tj |n](c2d−1)n. From this the desired conclusion finally follows.

�

The following result can now be established in dimension d = 1:

Proposition 5.4. Let d = 1 and t > 0. Let furthermore:

(i) g : R → [0,∞), measurable, satisfy E[g ◦ Xt] < ∞, g locally bounded, submultiplicative,

g 6= 0.

(ii) f : R → R, measurable, be locally bounded,
∫
R |f | ∈ (0,∞], |f | ultimately monotone (i.e.

|f ||[K,∞) and |f ||(−∞,−K] monotone for some K ∈ [0,∞)), |f |/|g| ultimately nonincreasing

(i.e. (|f |/|g|)|[K,∞) and (−|f |/|g|)|(−∞,−K] nonincreasing for some K ∈ [0,∞)), and with

the following Lipschitz property holding for some {a,A} ∈ (0,∞): f |[−A,A] is piecewise

Lipschitz, whereas

|f(z)− f(y)| ≤ a|z − y|(g(z) + g(y)), whenever {z, y} ⊂ R\(−A,A).

(iii) K : (0,∞)→ [0,∞), with lim0+K = +∞.

Then |E[f ◦Xt]− E[f ◦Xh
t ]| is of order:

O

((∫
[−K(h),K(h)]
|f(x)|dx

)
(h ∨∆t(h)) +

(
|f |
|g|
∨ |f |
|g|
◦ (−idR)

)
(K(h)− 3h/2)

)
, (5.8)

where ∆t(h) is defined in (2.5).

Remark 5.5. (1) In (5.8) there is a balance of two terms, viz. the choice of the function K.

Thus, the slower (resp. faster) that K increases to +∞ at 0+, the better the convergence

of the first (resp. second) term, provided f /∈ L1(R) (resp. |f |/|g| is ultimately converging

to 0, rather than it just being nonincreasing). In particular, when so, then the second term

can be made to decay arbitrarily fast, whereas the first term will always have a convergence
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which is strictly worse than h ∨∆t(h). But this convergence can be made arbitrarily close

to h ∨∆t(h) by choosing K increasing all the slower (this since f is locally bounded). In

general the choice of K would be guided by balancing the rate of decay of the two terms.

(2) Since, in the interest of relative generality, (further properties of) f and λ are not specified,

thus also g cannot be made explicit. Confronted with a specific f and Lévy process X, we

should like to choose g approaching infinity (at ±∞) as fast as possible, while still ensuring

E[g ◦Xt] < ∞ (cf. Proposition 5.3). This makes, ceteris paribus, the second term in (5.8)

decay as fast as possible.

(3) We exemplify this approach by considering two examples. Suppose for simplicity ∆t(h) =

O(h).

(a) Let first |f | be bounded by (x 7→ A|x|n) for some A ∈ (0,∞) and n ∈ N, and assume

that for some m ∈ (n,∞), the function g = (x 7→ |x|m ∨ 1) satisfies E[g ◦ Xt] < ∞
(so that (i) holds). Suppose furthermore condition (ii) is satisfied as well (as it is

for, e.g., f = (x 7→ xn)). It is then clear that the first term of (5.8) will behave as

∼ K(h)n+1h, and the second as ∼ K(h)−(m−n), so we choose K(h) ∼ 1/h1/(1+m) for a

rate of convergence which is of order O(h
m−n
m+1 ).

(b) Let now |f | be bounded by (x 7→ Aeα|x|) for some {A,α} ⊂ (0,∞), and assume that

for some β ∈ (α,∞), the function g = (x 7→ eβ|x|) indeed satisfies E[g ◦ Xt] < ∞ (so

that (i) holds). Suppose furthermore condition (ii) is satisfied as well (as it is for, e.g.,

f = (x 7→ (eαx − k)+), where k ∈ [0,∞) — use Lemma 4.3). It is then clear that

the first term of (5.8) will behave as ∼ eαK(h)h, and the second as ∼ e−(β−α)K(h), so

we choose, up to a bounded additive function of h, K(h) = log(1/h1/β) for a rate of

convergence which is of order O(h
1−α

β ).

Proof. (Of Proposition 5.4.) This is a simple matter of estimation; for all sufficiently small h > 0:

|E[f ◦Xt]− E[f ◦Xh
t ]| =

∣∣∣∣∣∣
∫
R
f(z)pt(z)dz −

∑
y∈Zh

f(y)P ht (y)

∣∣∣∣∣∣
≤

∣∣∣∣∣∣
∑

y∈[−K(h),K(h)]∩Zh

(∫
Ahy

f(z)pt(z)dz − f(y)P ht (y)

)∣∣∣∣∣∣+
∑

y∈Zh\[−K(h),K(h)]

|f(y)|P ht (y) +

∫
R\[−(K(h)−h/2),K(h)−h/2]

|f(z)| pt(z)dz

≤

∣∣∣∣∣∣
∑

y∈Zh∩[−K(h),K(h)]

∫
Ahy

(f(z)− f(y)) pt(z)dz

∣∣∣∣∣∣︸ ︷︷ ︸
(A)

+

∣∣∣∣∣∣
∑

y∈Zh∩[−K(h),K(h)]

∫
Ahy

f(y) (pt(z)− pt(y)) dz

∣∣∣∣∣∣︸ ︷︷ ︸
(B)

+
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∑

y∈Zh∩[−K(h),K(h)]

f(y)h

[
pt(y)− 1

h
P ht (y)

]∣∣∣∣∣∣︸ ︷︷ ︸
(C)

+

(
|f |
|g|
∨ |f |
|g|
◦ (−idR)

)
(K(h))E[g ◦Xh

t ]︸ ︷︷ ︸
(D)

+

(
|f |
|g|
∨ |f |
|g|
◦ (−idR)

)
(K(h)− h/2)E[g ◦Xt]︸ ︷︷ ︸

(E)

.

Thanks to Proposition 5.3, and the fact that |f |/|g| is ultimately nonincreasing, (D) & (E) are

bounded (modulo a multiplicative constant) by |f ||g| (K(h) − h/2) ∨ |f ||g| (−(K(h) − h/2)). From the

Lipschitz property of f , submultiplicativity and local boundedness of g, and the fact that E[g◦Xt] <

∞, we obtain (A) is of order O(h). By the local boundedness and eventual monotonicity of |f |,
the Lipschitz nature of pt and the fact that

∫
|f | > 0, (B) is bounded (modulo a multiplicative

constant) by h
∫

[−(K(h)+h),K(h)+h] |f |. Finally, a similar remark pertains to (C), but with ∆t(h) in

place of h. Combining these, using once again
∫
|f | > 0, yields the desired result, since we may

finally replace K(h) by (K(h)− h) ∨ 0. �

5.2. Algorithm. From a numerical perspective we must ultimately consider the processes Xh on

a finite state space, which we take to be ShM := {x ∈ Zdh : |x| ≤ M} (M > 0, h ∈ (0, h?)). We

let Q̂h denote the sub-Markov generator got from Qh by restriction to ShM , and we let X̂h be the

corresponding Markov chain got by killing Xh at the time T hM := inf{t ≥ 0 : |Xh
t | > M}, sending

it to the coffin state ∂ thereafter.

Then the basis for the numerical evaluations is the observation that for a (finite state space)

Markov chain Y with generator matrix Q, the probability Py(Yt = z) (resp. the expectation

Ey[f ◦ Y ], when defined) is given by (etQ)yz (resp. (etQf)(y)). With this in mind we propose the:

Sketch algorithm

(i) Choose {h,M} ⊂ (0,∞).

(ii) Calculate, for the truncated sub-Markov generator Q̂h, the matrix ex-

ponential exp{tQ̂h} or action exp{tQ̂h}f thereof (where f is a suitable

vector).

(iii) Adjust truncation parameterM , if needed, and discretization parameter

h, until sufficient precision has been established.

Two questions now deserve attention: (1) what is the truncation error and (2) what is the expected

cost of this algorithm. We address both in turn.

First, with a view to the localization/truncation error, we shall find use of the following:

Proposition 5.6. Let g : [0,∞)→ [0,∞) be nondecreasing, continuous and submultiplicative, with

lim+∞ g = +∞. Let t > 0 and denote by:

X?
t = sup

s∈[0,t]
|Xs|, Xh?

t = sup
s∈[0,t]

|Xh
s |,
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the running suprema of |X| and of |Xh|, h ∈ (0, h?), respectively. Suppose furthermore E[g◦|Xt|] <
∞. Then E[g ◦X?

t ] <∞ and, moreover, there is some h0 ∈ (0, h?] such that

sup
h∈(0,h0)

E[g ◦Xh?
t ] <∞.

Remark 5.7. The function g◦|·| : Rd → [0,∞) is measurable, submultiplicative and locally bounded,

so for a condition on the Lévy measure equivalent to E[g ◦Xt] <∞ see Proposition 5.3.

We prove Proposition 5.6 below, but first let us show its relation to the truncation error. For a

function f : Zdh → R, we extend its domain to Zdh∪{∂}, by stipulating that f(∂) = 0. The following

(very crude) estimates may then be made:

Corollary 5.8. Fix t > 0. Assume the setting of Proposition 5.6. There is some h0 ∈ (0, h?] and

then C := suph∈(0,h0) E[g ◦Xh?
t ] <∞, such that the following two claims hold:

(i) For all h ∈ (0, h0):∑
x∈Zdh

|P(Xh
t = x)− P(X̂h

t = x)| ≤ P(T hM < t) ≤ C/g(M).

(ii) Let f : Zdh → R and suppose |f | ≤ f̃ ◦ | · |, with f̃ : [0,∞)→ [0,∞) nondecreasing and such

that f̃/g is (resp. ultimately) nonincreasing. Then for all (resp. sufficiently large) M > 0

and h ∈ (0, h0):

|E[f ◦Xh
t ]− E[f ◦ X̂h

t ]| ≤ C

(
f̃

g

)
(M).

Remark 5.9. (1) Ad (i). Note that M may be taken fixed (i.e. independent of h) and chosen

so as to satisfy a prescribed level of precision. In that case such a choice may be verified

explicitly at least retrospectively: the sub-Markov generator Q̂h gives rise to the sub-Markov

transition matrix P̂ ht := etQ̂
h
; its deficit (in the row corresponding to state 0) is precisely

the probability P(T hM < t).

(2) Ad (ii). But M may also be made to depend on h, and then let to increase to +∞ as

h ↓ 0, in which case it is natural to balance the rate of decay of |E[f ◦ Xh
t ] − E[f ◦ X̂h

t ]|
against that of |E[f ◦Xt]−E[f ◦Xh

t ]| (cf. Proposition 5.4). In particular, since E[g ◦ |Xt|] <
∞ ⇔ E[g ◦X?

t ] ⇔
∫
Rd\[−1,1]d g ◦ | · |dλ < ∞ [29, p. 159, Theorem 25.3 & p. 166, Theorem

25.18], this problem is essentially analogous to the one in Proposition 5.4. In particular,

Remark 5.5 extends in a straightforward way to account for the truncation error, with M

in place of K(h)− 3h/2.

Proof. (i) follows from the estimate
∑

x∈Zdh
|P(Xh

t = x) − P(X̂h
t = x)| ≤ P(T hM < t) = P(Xh?

t >

M) ≤ E[g◦Xh?
t ]

g(M) , which is an application of Markov’s inequality. When it comes to (ii), we have for

all (resp. sufficiently large) M > 0:

|E[f ◦Xh
t ]− E[f ◦ X̂h

t ]| ≤ E
[(
|f | ◦Xh

t

)
1(T hM < t)

]
≤ E

[(
f̃ ◦ |Xh

t |
)
1(T hM < t)

]
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≤ E
[(
f̃ ◦Xh?

t

)
1(T hM < t)

]
= E

[((
f̃

g

)
◦Xh?

t

)(
g ◦Xh?

t

)
1(Xh?

t > M)

]

≤

(
f̃

g

)
(M)E[g ◦Xh?

t ],

whence the desired conclusion follows. �

Proof. (Of Proposition 5.6.) We refer to [29, p. 166, Theorem 25.18] for the proof that E[g ◦X?
t ] <

∞. Next, by right continuity of the sample paths of X, we may choose b > 0, such that P(X∗t ≤
b/2) > 0 and we may also insist on b/2 being a continuity point of the distribution function of X?

t

(there being only denumerably many points of discontinuity thereof). Now, Xh → X as h ↓ 0 w.r.t.

the Skorokhod topology on the space of càdlàg paths. Moreover, by [17, p. 339, 2.4 Proposition], the

mapping Φ := (α 7→ sups∈[0,t] |α(s)|) : D([0,∞),Rd)→ R is continuous at every point α in the space

of càdlàg paths D([0,∞),Rd), which is continuous at t. In particular, Φ is continuous, a.s. w.r.t.

the law of the process X on the Skorokhod space [29, p. 59, Theorem 11.1]. By the Portmanteau

Theorem, it follows that there is some h0 ∈ (0, h?] such that infh∈(0,h0) P(Xh?
t ≤ b/2) > 0.

Moreover, from the proof of [29, p. 166, Theorem 25.18], by letting g̃ : [0,∞) → [0,∞) be

nondecreasing, continuous, vanishing at zero and agreeing with g on restriction to [1,∞), we may

then show for each h ∈ (0, h?) that:

E[g̃ ◦ (Xh?
t − b);Xh?

t > b] ≤ E[g̃ ◦ |Xh
t |]/P(Xh?

t ≤ b/2).

Now, since E[g ◦ |Xt|] < ∞, by Proposition 5.3 (cf. Remark 5.7), there is some h0 ∈ (0, h?] such

that suph∈(0,h0) E[g ◦ |Xh
t |] <∞, and thus suph∈(0,h0) E[g̃ ◦ |Xh

t |] <∞.

Combining the above, it follows that for some h0 ∈ (0, h?], suph∈(0,h0) E[g̃ ◦ (Xh?
t − b);X

h?
t > b] <

∞ and thus suph∈(0,h0) E[g ◦ (Xh?
t −b);X

h?
t > b] <∞. Finally, an application of submultiplicativity

of g allows to conclude. �

Having thus dealt with the truncation error, let us briefly discuss the cost of our algorithm.

The latter is clearly governed by the calculation of the matrix exponential, or, resp., of its action

on some vector. Indeed, if we consider as fixed the generator matrix Q̂h, and, in particular, its

dimension n ∼ (M/h)d, then this may typically require O(n3) [25, 16], resp. O(n2) [1], floating

point operations. Note, however, that this is a notional complexity analysis of the algorithm. A

more detailed argument would ultimately have to specify precisely the particular method used to

determine the (resp. action of a) matrix exponential, and, moreover, take into account how Q̂h

(and, possibly, the truncation parameter M , cf. Remark 5.9) behave as h ↓ 0. Further analysis in

this respect goes beyond the desired scope of this paper.

We finish off by giving some numerical experiments in the univariate case. To compute the action

of Q̂h on a vector we use the MATLAB function expmv.m [1], unless Q̂h is sparse, in which case we

use the MATLAB function expv.m from [30].
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We begin with transition densities. To shorten notation, fix the time t = 1 and allow p := p1(0, ·)
and ph := 1

h P̂
h
1 (0, ·) (P̂ h being the analogue of P h for the process X̂h). Note that to evaluate the

latter, it is sufficient to compute (eQ̂
ht)0· = e(Q̂h)′t

1{0}, where (Q̂h)′ denotes transposition.

Example 5.10. Consider first Brownian motion with drift, σ2 = 1, µ = 1, λ = 0 (scheme 1, V = 0).

We compare the density p with the approximation ph (h ∈ {1/2n : n ∈ {0, 1, 2, 3}}) on the interval

[−1, 1] (see Figure 2), choosing M = 5. The vector of deficit probabilities (P(T
1/2n

M < t))3
n=0

corresponding to using this truncation was (5.9 · 10−4, 1.5 · 10−4, 5.8 · 10−5, 4.4 · 10−5). In this case

the matrix Q̂h is sparse.

−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2
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0.3

0.35

0.4

0.45

 

 

p

p1

p1/2

p1/4

p1/8

Figure 2. Convergence of ph to p (as h ↓ 0) on the interval [−1, 1] for Brownian

motion with drift (σ2 = µ = 1, λ = 0, scheme 1, V = 0). See Example 5.10 for

details.

Example 5.11. Consider now α-stable Lévy processes, σ2 = 0, µ = 0, λ(dx) = dx/|x|1+α (scheme 2,

V = 1). We compare the density p with ph on the interval [0, 1] (see Figure 3). Computations are

made for the vector of alphas given by (αk)
4
k=1 := (1/2, 1, 4/3, 5/3) with corresponding truncation

parameters (Mk)
4
k=1 = (500, 100, 30, 20) resulting in the deficit probabilities (uniformly over the h

considered) of (P(T hMk
< t))4

k=1 = (1.7 ·10−1, 2.0 ·10−2, (from 1.7 to 1.8) ·10−2, (from 0.94 to 1.01) ·
10−2). The heavy tails of the Lévy density necessitate a relatively high value of M . Nevertheless,

excluding the case α = 5/3, a reduction of M by a factor of 5 resulted in an absolute change of the
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approximating densities, which was at most of the order of magnitude of the discretization error

itself. Conversely, for α = 1/2, when the deficit probability is highest and appreciable, increasing

M by a factor of 2, resulted in an absolute change of the calculated densities of the order 10−6

(uniformly over h ∈ {1, 1/2, 1/4}). Finally, note that α = 1 gives rise to the Cauchy distribution,

whereas otherwise we use the MATLAB function stblpdf.m to get a benchmark density against

which a comparison can be made.
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Figure 3. Convergence of ph to p (as h ↓ 0) on the interval [0, 1] for α-stable

Lévy processes (σ2 = 0, µ = 0, λ(dx) = dx/|x|1+α, scheme 2, V = 1), α ∈
{1/2, 1, 4/3, 5/3}. See Example 5.11 for details. Note that convergence becomes

progressively worse as α ↑, which is precisely consistent with Figure 1 and the the-

oretical order of convergence, this being O(h(2−α)∧1) (up to a slowly varying factor

log(1/h), when α = 1; and noting that Orey’s condition is satisfied with ε = α). For

example, when α = 5/3 each successive approximation should be closer to the limit

by a factor of
(

1
2

)1/3 .
= 0.8, as it is.
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Example 5.12. A particular VG model [5, 23] has σ2 = 0, µ = 0, λ(dx) = e−|x|

|x| 1R\{0}(x)dx (scheme

2, V = 1). Again we compare p with ph (h ∈ {1/2n : n ∈ {0, 1, 2, 3}}) on the interval [0, 1] (see

Figure 4), choosing M = 5. The vector of deficit probabilities (P(T
1/2n

M < t))3
n=0 corresponding to

using this truncation was (5.2 ·10−3, 6.4 ·10−3, 7.2 ·10−3, 7.6 ·10−3). The density p is given explicitly

by (x 7→ e−|x|/2).
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Figure 4. Convergence of ph to p (as h ↓ 0) on the interval [0, 1] for the VG model

(σ2 = 0, µ = 0, λ(dx) = e−|x|

|x| 1R\{0}(x)dx, scheme 2, V = 1). Note that in this case

Orey’s condition fails, but (at least as evidenced numerically) linear convergence

does not. See Example 5.12 for details.

Finally, to illustrate convergence of expectations, we consider a particular option pricing problem.

Example 5.13. Suppose that, under the pricing measure, the stock price process S = (St)t≥0 is

given by St = S0e
rt+Xt , t ≥ 0, where S0 is the initial price, r is the interest rate, and X is a

tempered stable process with Lévy measure given by:

λ(dx) = c

(
e−λ+x

x1+α
1(0,∞)(x) +

e−λ−|x|

|x|1+α
1(−∞,0)(x)

)
dx.
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Table 4. Convergence of the put option price for a CGMY model (scheme 2, V =

1). See Example 5.13 for details.

K → 80 85 90 95 100 105 110 115 120

P (T,K)→ 1.7444 2.3926 3.2835 4.5366 6.3711 9.1430 12.7631 16.8429 21.1855

n P̂ hn(T,K)− P (T,K)

1 0.6411 0.5422 0.2006 -0.5033 -1.7885 -0.8227 0.0970 0.5570 0.7542

2 -0.1089 0.2816 0.4295 0.2151 -0.5806 0.0975 0.5341 0.5109 0.2250

3 -0.2271 -0.1596 -0.1928 0.0920 -0.2046 0.1405 0.0348 -0.4356 -0.3937

4 -0.0904 -0.0753 -0.0517 -0.0442 0.0652 0.1487 0.0057 -0.1511 -0.1838

5 -0.0411 -0.0338 -0.0193 -0.0053 0.0679 0.0569 -0.0073 -0.0616 -0.0833

6 -0.0184 -0.0163 -0.0081 0.0022 0.0347 0.0314 -0.0033 -0.0244 -0.0384

7 -0.0079 -0.0069 -0.0040 0.0019 0.0152 0.0109 -0.0034 -0.0108 -0.0164

8 -0.0034 -0.0029 -0.0016 0.0011 0.0072 0.0053 -0.0012 -0.0048 -0.0070

9 -0.0014 -0.0012 -0.0007 0.0006 0.0033 0.0026 -0.0004 -0.0020 -0.0030

To satisfy the martingale condition, we must have E[eXt ] ≡ 1, which in turn uniquely determines

the drift µ (we have, of course, σ2 = 0). The price of the European put option with maturity T

and strike K at time zero is then given by:

P (T,K) = e−rTE[(K − ST )+].

We choose the same value for the parameters as [27], namely S0 = 100, r = 4%, α = 1/2, c = 1/2,

λ+ = 3.5, λ− = 2 and T = 0.25, so that we may quote the reference values P (T,K) from there.

Now, in the present case, X is a process of finite variation, i.e. κ(0) <∞, hence convergence of

densities is of order O(h), since Orey’s condition holds with ε = 1/2 (scheme 2, V = 1). Moreover,

1R\[−1,1] · λ integrates (x 7→ e2|x|), whereas the function (x 7→ (K − ert+x)+) is bounded. Pursuant

to (2) of Remark 5.9 we thus choose M = M(h) :=
(

1
2 log(1/h)

)
∨ 1, which by Corollary 5.8 and

Proposition 5.4 (with K(h) = M(h)) (cf. also (3b) of Remark 5.5) ensures that:

|P̂ h(T,K)− P (T,K)| = O(h log(1/h)),

where P̂ h(T,K) := e−rTE[(K−S0e
rT+X̂h

T )+]. Table 4 summarizes this convergence on the decreas-

ing sequence hn := 1/2n, n ≥ 1.

In particular, we wish to emphasize that the computations were all (reasonably) fast. For

example, to compute the vector (P̂ hn(T,K))9
n=1 withK = 80, the times (in seconds; entry-by-entry)

(0.0106, 0.0038, 0.0044, 0.0078, 0.0457, 0.0367, 0.0925, 0.4504, 2.4219) were required on an Intel 2.53

GHz processor (times obtained using MATLAB’s tic-toc facility). This is much better than, e.g.,

the Monte Carlo method of [27] and comparable with the finite difference method of [8] (VG2 model

in [8, p. 1617, Section 7]).
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In conclusion, the above numerical experiments serve to indicate that our method behaves ro-

bustly when the Blumenthal-Getoor index of the Lévy measure is not too close to 2 (in particular,

if the pure-jump part has finite variation). It does less well if this is not the case, since then the

discretisation parameter h must be chosen small, which is expensive in terms of numerics (viz. the

size of Q̂h).
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stochastic differential equations. 2012. arXiv:1204.4877 [math.PR].

22. Andreas E. Kyprianou. Introductory Lectures on Fluctuations of Lévy Processes with Applications. Springer-
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33. Pawel Sztonyk. Transition density estimates for jump Lévy processes. Stochastic Processes and their Applications,

121(6):1245–1265, 2011.

34. Hideyuki Tanaka and Arturo Kohatsu-Higa. An operator approach for Markov chain weak approximations with
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