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Abstract. We study here the large-time behaviour of all continuous affine stochastic volatility models

(in the sense of [15]) and deduce a closed-form formula for the large-maturity implied volatility smile.

Based on refinements of the Gärtner-Ellis theorem on the real line, our proof reveals pathological be-

haviours of the asymptotic smile. In particular, we show that the condition assumed in [10] under which

the Heston implied volatility converges to the SVI parameterisation is necessary and sufficient.

1. Introduction

We are interested here in the large-time behaviour of the process
(
t−1Xt

)
t>0

, where X is defined via

the system of stochastic differential equations

dXt = −1

2
(a+ Vt) dt+ ρ

√
Vt dW

1
t +

√
a+ (1− ρ2)Vt dW

2
t , X0 = x ∈ R,

dVt = (b+ βVt) dt+
√
αVt dW

1
t , V0 = v ∈ (0,∞),

with a, b ≥ 0, α > 0, β ∈ R, ρ ∈ [−1, 1] and
(
W 1

t ,W
2
t

)
t≥0

is a two-dimensional standard Brownian motion.

The couple (Xt, Vt)t≥0 represents the restriction to continuous paths of the whole class of affine stochastic

volatility models with jumps (ASVM), introduced by Keller-Ressel [15]. In particular it encompasses the

popular Heston stochastic volatility model [11], in which b > 0 and β < 0. The weak convergence of

the process
(
t−1Xt

)
t>0

has been studied in [6, 7] for the Heston model and in [12] for ASVM, via the

Gärtner-Ellis theorem from large deviations theory. This convergence is the main ingredient needed to

obtain the large-maturity behaviour of the implied volatility in these models. However the authors have

imposed technical conditions on the parameters, which ensures that the assumptions of the Gärtner-Ellis

theorem are met: (i) the limiting cumulant generating function Λ is essentially smooth inside a domain

D and (ii) the interior D contains the origin.

Even though these conditions are usually satisfied in practice, they can actually be broken when

calibrating the model for volatile markets. In terms of the parameters these two conditions—assumed

in [6, 7]—read β < 0 and β + ρ
√
α < 0. The second assumption makes sense on equity markets where

the correlation is usually negative. However, on FX markets, the correlation between the asset and

its volatility is not necessarily so (see [13] for instance), and a large value of the variance of volatility

parameter α can violate this assumption. In [1], Andersen and Piterbarg studied the moment explosions

of the Heston model (and other stochastic volatility models). They assume β < 0, but it appears that

the restriction β + ρ
√
α < 0 may also be needed. In [20] the authors highlighted the importance of this

latter condition by proving that the Heston model remains of Heston form under the Share measure (i.e.

taking the share price as the numeraire) with new mean-reversion speed −(β + ρ
√
α). This in particular

Date: March 22, 2012.

The authors would like to thank Jim Gatheral and Claude Martini for useful discussions.

1



2 ANTOINE JACQUIER AND ALEKSANDAR MIJATOVIĆ

implies that the left wing of the smile could be deduced from the right wing automatically by symmetry.

This may not be true however when this condition fails. Reversing the symmetry, the case where the

mean-reversion −β (in the original measure) is positive becomes interesting to study as well.

We show here that a large deviations principle still holds (as t tends to infinity) for the process(
t−1Xt

)
t>0

when the two conditions (i) and (ii) above fail, i.e. without the technical assumptions of [6, 7,

12]. As an application, we translate this asymptotic behaviour into asymptotics of the implied volatility,

corresponding to European vanilla options with payoff
(
eXt − ext

)
+
, for any real number x. In [10], the

authors proved that the so-called Stochastic Volatility Inspired (SVI) parametric form—first proposed

in [9]—of the implied volatility was the genuine limit (as the maturity tends to infinity) of the Heston

implied volatility under the same technical conditions as in [6, 7, 12]. We extend the scope of this result

by proving that it remains partially true—i.e. on some subsets of the real line—without the technical

conditions mentioned above.

In Section 2, we study the limiting behaviour of the limiting cumulant generating function of the process(
t−1Xt

)
t>0

and state the main result of the paper (Theorem 2.12), i.e. a large deviations principle for

this process. In Section 3, we translate this LDP into option price and implied volatility asymptotics.

Section 4 contains the proof of the main theorem and Section 5 contains some technical results needed

in the proof of the main theorem.

2. LDP for continuous affine stochastic volatility models

2.1. The model and its effective domain. Throughout this paper we work on a probability space

(Ω,F ,P) equipped with a filtration (Ft)t≥0 supporting two independent Brownian motions W 1 and W 2.

We consider affine stochastic volatility models in the sense of [15] with continuous paths. Let (Xt, Vt)t≥0

be an affine process with state-space R× R+ which satisfies the following SDE

(2.1)
dXt = −1

2
(a+ Vt) dt+ ρ

√
Vt dW

1
t +

√
a+ (1− ρ2)Vt dW

2
t , X0 = x ∈ R,

dVt = (b+ βVt) dt+
√
αVt dW

1
t , V0 = v ∈ (0,∞),

where the admissible parameter values are given by

a, b ≥ 0, α > 0, β ∈ R and ρ ∈ [−1, 1] .(2.2)

The process (Vt)t≥0 is a square-root diffusion process and the Yamada-Watanabe conditions [14] ensure

that a unique non-negative strong solution exists. The share price process S = (St)t≥0, defined by

St := exp (Xt), is a local martingale with respect to the filtration (Ft)t≥0, and [15, Theorem 2.5] implies

that S is a true martingale. The Heston model [11] with mean-reversion rate κ, positive long-time variance

level θ, volatility of volatility σ and correlation ρ, is in the class of models given by the SDE in (2.1) (take

a = 0, b = κθ > 0, β = −κ < 0, α = σ2; the correlation parameter ρ has the same role as in (2.1)).

Remark 2.1.

(i) The class of models defined by (2.1) coincides with the class of affine stochastic volatility models

with continuous sample paths.

(ii) The parameter a adds modelling flexibility.

(iii) The general form of the instantaneous variance of a continuous affine stochastic volatility log-

stock process X is given by a+α̃V for some α̃ > 0. A simple scaling of the process V in (2.1) maps
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the class of models given by (2.1) to the general case. Without loss of generality we therefore

assume α̃ = 1.

(iv) The process U = (Ut)t≥0 defined by Ut := a + Vt for all t ≥ 0 follows the shifted square-root

dynamics (see [16] for applications of the shifted square-root process in pricing theory).

Let us define the cumulant generating function 1 Λt of the random variable Xt, where X0 = 0, by

(2.3) Λt (u) := logE (exp (uXt)) , for any u ∈ R, t ≥ 0,

as an extended real number in (−∞,∞]. The effective domain of Λt is defined byDt := {u ∈ R : Λt (u) <∞}.
Note that by the Hölder inequality the function Λt is convex on Dt. In order to give the structure of

Λt(u) explicitly we need to define

(2.4) χ (u) := β + uρ
√
α,

as well as

(2.5) γ (u) :=
(
χ (u)

2
+ αu (1− u)

)1/2
and ft (u) := cosh

(
γ (u) t

2

)
− χ (u)

γ (u)
sinh

(
γ (u) t

2

)
.

In Proposition 2.2 we show how to express the cumulant generating function of X in terms of the

logarithmic moment generating function of model (2.1) with a = 0.

Proposition 2.2. The logarithmic moment generating function Λt defined in (2.3) reads

Λt (u) = ΛH
t (u) +

a

2
u (u− 1) t, for all t ≥ 0 and u ∈ Dt,

where ΛH
t is given by (2.3) for the process X in (2.1) with a = 0. Furthermore we have

Dt = {u ∈ R : ΛH
t (u) <∞}

and the following formula holds

(2.6) ΛH
t (u) = −2b

α

(
χ (u) t

2
+ log ft (u)

)
+

u (u− 1)

ft (u) γ(u)
sinh

(
γ (u) t

2

)
v, for all u ∈ Dt.

Proof. It is well known that the logarithmic moment generating function of an affine process X given as

a solution of SDE (2.1) is of the form

Λt (u) = φt (u) + ψt (u) v for all t ≥ 0 and u ∈ Dt,

where the functions φt, ψt : Dt → R satisfy the system of Riccati equations (see e.g. [15])

(2.7)
∂tφt (u) = F (u, ψt (u)) , φ0 (u) = 0,

∂tψt (u) = R (u, ψt (u)) , ψ0 (u) = 0,

with

R (u,w) :=
1

2
u (u− 1) +

α

2
w2 + uwρ

√
α+ βw and F (u,w) :=

a

2
u (u− 1) + bw.

The Riccati equation equation for ψt can be solved in closed form

ψt (u) = sinh

(
γ (u) t

2

)
u (u− 1)

γ (u) ft (u)
,

1We will use here the terms “logarithmic moment generating function” and “cumulant generating function” as synonyms.
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where the functions γ and ft are defined in (2.5). The function φt can be determined by noting that equa-

tion (2.7) is equivalent to φt (u) =
∫ t

0
F (u, ψs (u)) ds. Therefore φt (u) = au (u− 1) t/2 + b

∫ t

0
ψs (u) ds.

The function ΛH
t can be constructed in an analogous way on the set {u ∈ R : ΛH

t (u) <∞} with R and

F as above and a = 0. This concludes the proof. �

In order to analyse the effective domain Dt we need to introduce the quantities u− and u+ given by

(2.8) u− :=


1

2
√
α

2βρ+
√
α−

√
(2βρ+

√
α)

2
+ 4β2 (1− ρ2)

1− ρ2
, if |ρ| < 1,

−∞, if |ρ| = 1 and 2βρ+
√
α ≤ 0,

−β2/
(
2βρ

√
α+ α

)
, if |ρ| = 1 and 2βρ+

√
α > 0,

and

(2.9) u+ :=


1

2
√
α

2βρ+
√
α+

√
(2βρ+

√
α)

2
+ 4β2 (1− ρ2)

1− ρ2
, if |ρ| < 1,

∞, if |ρ| = 1 and 2βρ+
√
α ≥ 0,

−β2/
(
2βρ

√
α+ α

)
, if |ρ| = 1 and 2βρ+

√
α < 0.

Note that the inequalities u− ≤ 0 and u+ ≥ 1 hold for all admissible values of the parameters and that

in the case |ρ| < 1 the parabola γ(u)2 is strictly positive on the interior of the interval [u−, u+] between

its distinct zeros. In the case |ρ| = 1 the graph of the function γ(u)2 is a line and either u− or u+ are

infinite. For notational convenience we shall understand the interval [x, y] ⊂ R as [x,∞) if y = ∞ and as

(−∞, y] if x = −∞. Proposition 2.3 analyses the structure of the effective domain Dt of the function Λt.

Proposition 2.3. The effective domain Dt of the cumulant generating function Λt (defined in (2.3))

satisfies [0, 1] ⊂ Dt for all t ≥ 0 and any set of admissible parameter values from (2.2). Furthermore the

following statements hold.

(i) If χ(0) ≤ 0 we have:

(a) if χ (1) ≤ 0 then [u−, u+] ⊂ Dt for any t > 0;

(b) if χ (1) > 0 then for all t large enough there exists u(t) ∈ (1, u+) such that

lim
t→∞

u (t) = 1 and [u−, u(t)) ⊂ Dt ⊂ (−∞, u (t)) .

(ii) If χ(0) > 0 we have:

(a) if χ (1) ≤ 0 then for all large t there exists u(t) ∈ (u−, 0) such that

lim
t→∞

u (t) = 0 and (u (t) , u+] ⊂ Dt ⊂ (u (t) ,∞) ;

(b) if χ (1) > 0 then for large t there exist u(t) ∈ (u−, 0) and u(t) ∈ (1, u+) such that

lim
t→∞

u (t) = 0, lim
t→∞

u (t) = 1 and Dt = (u (t) , u (t)) .

Remark 2.4. The following elementary facts are useful in the proof of Proposition 2.3.

(I) Note that u− = −∞ and u+ = ∞ if and only if the conditions |ρ| = 1 and
√
α+ 2ρβ = 0 hold.

(II) The condition χ(1) 6= 0 implies that u+ > 1 since u+ is the largest root of the quadratic γ(u)2

in (2.5). In particular in (i)(b) and (ii)(b) of Proposition 2.3 the interval (1, u+) is not empty.

(III) The condition χ(0) 6= 0 implies that u− < 0. In particular in (ii) we have χ(0) = β > 0 and

hence the interval (u−, 0) is not empty.
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(IV) The interval [0, 1] is contained in Dt for all t ≥ 0 since the stock price process (S0 exp(Xt))t≥0 is

a true martingale.

(V) If χ(0) = 0 then u− = 0 and u+ = 1/(1− ρ2) for |ρ| < 1 and u+ = ∞ for |ρ| = 1.

Remark 2.5. The variance process (Vt)t≥0 in (2.1) is a time-changed squared Bessel process (see [2]):

(Vt)t≥0
∆
=eβtR2

δ,τt ,

where τt := α4
(
1− e−βt

)
/ (4β), and

(
R2

δ,t

)
t≥0

is a squared Bessel process of dimension δ := 4b/α4, i.e.

dR2
t = 2Rt dWt + δ dt and R2

δ,0 = 0. The sign of χ(0) = β changes the convexity of the time-change τt.

Proof. Proposition 2.2 implies that it is enough to study the effective domain of the cumulant generating

function ΛH
t of the Heston model. It is clear that the function ft, defined in (2.5) by

ft (u) = cosh

(
γ (u) t

2

)
− χ (u)

γ (u)
sinh

(
γ (u) t

2

)
,

will play a key role in in understanding the set Dt.

Case (i): If we can prove that

(2.10) ft(u) > 0, for all u ∈ [u−, 1] ,

then Proposition 2.2 implies that [u−, 1] ⊂ Dt since the functions on both sides of (2.6) can be analytically

extended to a neighbourhood of [u−, 1] in the complex plane and hence coincide on the interval.

We now prove (2.10). It follows from the definition of γ in (2.5) that |χ(u)/γ(u)| ≤ 1 for all u ∈ [0, 1]

and hence (2.10) holds on [0, 1]. It is easy to see that limu↘u− χ(u) ≤ 0. Since χ(0) = β ≤ 0 we have

χ(u) ≤ 0 for all u ∈ [u−, 0] which implies (2.10).

In case (i)(a) assume first that u+ < ∞. Then elementary algebra shows that χ(u+) ≤ 0. Therefore

χ(u) ≤ 0, and hence ft(u) > 0, for all u ∈ [1, u+]. If u+ = ∞ the condition χ(1) ≤ 0 implies that ρ = −1

and therefore χ(u) < 0 for all u ≥ 1. Hence ft(u) ∈ (0,∞) for all u ∈ [1,∞) = [1, u+]. Proposition 2.2

and the analytic continuation argument as above imply [u−, u+] ⊂ Dt.

Recall that in case (i)(b) we have u+ > 1 (see Remark 2.4 (II)). Let u(t) be the smallest solution of the

equation ft(u) = 0 in the interval (1, u+). Note that, since γ is strictly positive on the interval (1, u+),

for a fixed t the equation ft(u) = 0 can be rewritten as

(2.11) t = F (u), where F (u) :=
2

γ(u)
arctanh

(
γ(u)

χ(u)

)
.

This equation has a solution in (1, u+) for large t since the continuous function F tends to infinity as u

decreases to 1 (since limu↘1 γ(u)/χ(u) = 1). This also implies that the smallest solution u(t) decreases

to one. The functions on both sides of (2.6) coincide on [u−, 1], are analytic on some neighbourhood of

this interval in the complex plane and the right-hand side in (2.6) is real and finite on [u−, u(t)). They

must therefore also coincide on [u−, u(t)), which in particular implies [u−, u(t)) ⊂ Dt. Formula (2.6)

implies that u(t) is not an element of Dt and the convexity of Λt yields that Dt ∩ [u(t),∞) = ∅.
Case (ii): In case (ii)(a) the condition χ(1) ≤ 0 implies ρ < 0 and hence χ(u) ≤ 0 for all u ∈ [1, u+].

Therefore ft(u) > 0 on [1, u+] and hence [0, u+] ⊂ Dt. Let u(t) be the largest solution of the equation

ft(u) = 0 in the interval (u,0). Since limu↗0(γ(u)/χ(u)) = 1, an analogous argument as in the proof of

(i)(b) shows that u(t) is well defined and the limit in the proposition holds. The proof for the inclusions

follows the same steps as in the proof of (i)(b).
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In case (ii)(b) we have χ(0) = β > 0 and χ(1) > 0. Therefore the definition of γ, given in (2.5), implies

lim
u↗0

γ(u)

χ(u)
= 1 and lim

u↘1

γ(u)

χ(u)
= 1

and hence, by (2.11), there exist solutions to the equation ft(u) = 0 in both intervals (u−, 0) and (1, u+).

Let u(t) be the largest solution in (u−, 0) and u(t) the smallest solution in (1, u+). An analogous argument

to the one in the proofs of (i)(b) and (ii)(a) gives the form of Dt. �

2.2. Large deviation principles and the Gärtner-Ellis theorem. We review here the key concepts

of large deviations for a family of real random variables (Zt)t≥1 and state the Gärtner-Ellis theorem

(Theorem 2.6). A general reference for all the concepts in this section is [4, Section 2.3].

Assume that the cumulant generating function ΛZ
t (u) := logE

(
euZt

)
is finite on some neighbourhood

of the origin and that for every u ∈ R the following limit exists as an extended real number

(2.12) Λ(u) := lim
t→∞

t−1ΛZ
t (ut).

Let DΛ := {u ∈ R : |Λ(u)| <∞} be the effective domain of Λ and assume that

(2.13) 0 ∈ Do
Λ,

where Do
Λ is the interior of DΛ (in R). Since ΛZ

t is convex for every t by Hölder’s inequality, the limit Λ is

also convex and the set DΛ is an interval. Since Λ(0) = 0, convexity implies that for any u ∈ R we have

Λ(u) > −∞. The function Λ : R → (−∞,∞] is said essentially smooth if (a) it is differentiable in Do
Λ

and (b) it satisfies limn→∞ |Λ′(un)| = ∞ for every sequence (un)n∈N in Do
Λ that converges to a boundary

point of Do
Λ. A cumulant generating function Λ which satisfies (b) is called steep. The Fenchel-Legendre

transform Λ∗ of Λ is defined by the formula

(2.14) Λ∗(x) := sup{ux− Λ(u) : u ∈ R}, for all x ∈ R

with an effective domain DΛ∗ := {x ∈ R : Λ∗(x) < ∞}. Under certain assumptions Λ∗ is a good

rate function, i.e. is lower semicontinuous (since it is a supremum of continuous functions), satisfies

Λ∗(R) ⊂ [0,∞] (since Λ(0) = 0) and the level sets {x : Λ∗(x) ≤ y} are compact for all y ≥ 0 (see [4,

Lemma 2.3.9(a)]). In general Λ∗ can be discontinuous and DΛ∗ can be strictly contained in R (see [4,

Section 2.3] for elementary examples of such rate functions). We say that the family of random variables

(Zt)t≥1 satisfies the large deviations principle (LDP) with the good rate function Λ∗ if for every Borel

measurable set B in R the following inequalities hold

(2.15)

− inf{Λ∗(x) : x ∈ Bo} ≤ lim inf
t→∞

1

t
logP [Zt ∈ B] ≤ lim sup

t→∞

1

t
logP [Zt ∈ B] ≤ − inf{Λ∗(x) : x ∈ B},

where the interior Bo and the closure B of the set B are taken in the topology of R and inf ∅ = ∞.

It is clear from definition (2.15) that if (Zt)t≥1 satisfies the LDP and Λ∗ is continuous on B, then

limt→∞ t logP [Zt ∈ B] = − inf{Λ∗(x) : x ∈ B}. An element y ∈ R is an exposed point of Λ∗ if there

exists uy ∈ R such that

(2.16) yuy − Λ∗(y) > xuy − Λ∗(x) for all x ∈ R\{y}.

Intuitively the exposed points are those at which Λ∗ is strictly convex (e.g. the second derivative is

continuous and strictly positive). The segments over which Λ∗ is affine are not exposed. Note that (2.16)
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can only hold for y ∈ DΛ and, if Λ is differentiable in Do
Λ, than uy is the unique solution of Λ′(u) = y.

We now state the Gärtner-Ellis theorem the proof of which can be found in [4, Section 2.3].

Theorem 2.6. Let (Zt)t≥1 be a family of random variables for which the function Λ : R → (−∞,∞]

in (2.12) satisfies (2.13). Let F be a closed and G an open set in R. Then the following inequalities hold

lim sup
t→∞

t−1P [Zt ∈ F ] ≤ − inf{Λ∗(x) : x ∈ F},

lim inf
t→∞

t−1P [Zt ∈ G] ≥ − inf{Λ∗(x) : x ∈ G ∩ E},

where E := {y ∈ R : y satisfies (2.16) with uy ∈ Do
Λ}. Furthermore if Λ is essentially smooth and lower

semicontinuous, then the LDP holds for (Zt)t≥1 with the good rate function Λ∗.

2.3. LDP in affine stochastic volatility models. In this section we analyse the large deviations

behaviour of the family of random variables Zt := Xt/t for t ≥ 1. Corollary 2.7—which follows from

Propositions 2.2 and 2.3—describes the properties of the cumulant generating function Λ defined in (2.12),

and its Fenchel-Legendre transform Λ∗ is studied in Proposition 2.10. The main result of this section,

Theorem 2.12, states that the family (Zt)t≥1 satisfies a large deviations principle with rate function Λ∗.

Corollary 2.7. The limiting cumulant generating function (2.12) for the family of random variables

(Xt/t)t≥1, where (Xt)t≥0 is defined by SDE (2.1),is given by

Λ (u) = − b

α
(χ (u) + γ (u)) +

a

2
u (u− 1) for all u ∈ DΛ,

with the functions χ and γ given in (2.4) and (2.5) respectively. The function Λ is infinitely differentiable

on the interior Do
Λ of its effective domain. The boundary points u− and u+, defined in (2.8) and (2.9),

can be used to describe the effective domain DΛ as follows.

(i) If χ (0) ≤ 0 we have:

(a) if χ (1) ≤ 0 then DΛ = [u−, u+];

(b) if χ (1) > 0 then DΛ = [u−, 1].

(ii) If χ (0) > 0 we have:

(a) if χ (1) ≤ 0 then DΛ = [0, u+];

(b) if χ (1) > 0 then DΛ = [0, 1].

Remark 2.8. From Corollary 2.7, the following facts can be deduced immediately for the large deviations

behaviour of the family of random variables (Xt/t)t≥1.

(I) In case (i)(a) the function Λ is essentially smooth.

(II) In case (i)(b) (resp. (ii)(a)) the function Λ is steep at the left boundary u− (resp. right boundary

u+) but not at the right (resp. left) boundary of the effective domain.

(III) In case (i)(b) (resp. (ii)(a)) the right (resp. left) boundary point of the effective domain is strictly

smaller (resp. greater) than u+ (resp. u−). This is a consequence of (II) and (III).

(IV) In case (ii)(b) the function Λ is not steep at either of the two boundaries of its effective domain.

Furthermore DΛ is contained in the interior of the interval [u−, u+] by (II) and (III).

(V) As a consequence of (I)–(IV) the limiting cumulant generating function Λ is steep at a boundary

point of the effective domain if and only if this point is an element of the set {u−, u+}.
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(a) Case (i)(a) (b) Case (i)(b) (c) Case (i)(a) (d) Case (i)(b)

(e) Case (ii)(a) (f) Case (ii)(b) (g) Case (ii)(a) (h) Case (ii)(b)

Figure 1. The four figures on the left represent the function Λ characterised in Corol-

lary 2.7. The four figures on the right represent the Fenchel-Legendre Λ∗ determined in

Proposition 2.10. The dotted line on the graphs for Λ∗ represent the threshold Λ′
− (1)

and Λ′
+ (0) above or below which Λ∗ becomes linear.

Note that when u− (resp. u+) is not in DΛ then the function Λ is discontinuous at 0 (resp. at 1). We

henceforth define the following extended real numbers

(2.17) Λ− (1) := lim
u↗1

Λ (u) , Λ+ (0) := lim
u↘0

Λ (u) , Λ′
− (1) := lim

u↗1
Λ′ (u) , Λ′

+ (0) := lim
u↘0

Λ′ (u) .

The functions Λ and Λ′ are monotone on the intervals (0, ε) and (1− ε, 1) for small enough ε, hence all

the limits exist. Note further that the limit Λ′
+ (0) (resp. Λ′

− (1)) is equal to −∞ (resp. ∞) if and only

if χ (0) = 0 (resp. χ (1) = 0).

Remark 2.9. At zero and one the following identities hold

Λ+ (0) = − b

α
(χ (0) + |χ (0)|) and Λ′

+ (0) =


1

|χ (0)|

(
(χ (1)− χ (0)) Λ+ (0)− b

2

)
− a

2
, if χ (0) 6= 0,

−a/2, if χ (0) = 0, b = 0,

−∞, if χ (0) = 0, b 6= 0,

Λ− (1) = − b

α
(χ (1) + |χ (1)|) and Λ′

− (1) =


1

|χ (1)|

(
(χ (1)− χ (0)) Λ− (1) +

b

2

)
+
a

2
, if χ (1) 6= 0,

a/2, if χ (1) = 0, b = 0,

∞, if χ (1) = 0, b 6= 0.

Note that the inequalities Λ+ (0) ≤ 0 and Λ− (1) ≤ 0 hold for any admissible set of parameters. The case

χ(0) = 0 and b = 0 is rather degenerate, and we refer the reader to Remark 3.4 for further details.

Proposition 2.10. The Fenchel-Legendre transform Λ∗ defined in (2.14) for the family of random vari-

ables (Xt/t)t≥1, where (Xt)t≥0 is given by SDE (2.1), can be represented as follows

(2.18) Λ∗ (x) =


xux − Λ (ux) , for all x ∈ Λ′ (Do

Λ) ,

x− Λ− (1) , for all x ∈
[
Λ′
− (1) ,∞

)
∩ (R\Λ′ (Do

Λ)) ,

−Λ+ (0) , for all x ∈
(
−∞,Λ′

+ (0)
]
∩ (R\Λ′ (Do

Λ)) ,
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where ux is the unique solution in Do
Λ to the equation Λ′ (u) = x for all x ∈ Λ′ (Do

Λ). Furthermore Λ∗ is

continuously differentiable on its effective domain DΛ∗ and DΛ∗ = R.

(i) The function Λ∗ attains its global minimal value −Λ+ (0) at Λ′
+(0). If 0 ∈ Do

Λ then the minimum

is attained at the unique point Λ′
+(0) = Λ′(0) and the minimal value is Λ∗(Λ′(0)) = Λ+ (0) = 0.

If 0 /∈ Do
Λ the minimal value is attained at every x ∈

(
−∞,Λ′

+ (0)
]
∩ (R\Λ′ (Do

Λ))

(ii) The function x 7→ Λ∗(x)− x attains its global minimal value −Λ− (1) at Λ′
−(1). If 1 ∈ Do

Λ then

the minimum value Λ− (1) = Λ(1) = 0 is attained at the unique point Λ′
−(1) = Λ′(1) which is

therefore the unique solution to the equation Λ∗(x) = x. If 1 /∈ Do
Λ the function x 7→ Λ∗(x) − x

attains the minimal value at every x ∈
[
Λ′
− (1)∞

)
∩ (R\Λ′ (Do

Λ)).

Remark 2.11.

(i) Since Λ is a strictly convex smooth function on Do
Λ, the first derivative Λ′ is invertible on this

interval and ux is a strictly increasing, differentiable function of x on Λ′ (Do
Λ). Furthermore the

equality (Λ∗)′ (x) = ux holds for any x ∈ Λ′ (Do
Λ).

(ii) Corollary 2.7 implies the following form for the interval Λ′(Do
Λ):

(2.19) Λ′ (Do
Λ) =


R, if χ(0) ≤ 0, χ(1) ≤ 0,(

−∞,Λ′
−(1)

)
, if χ(0) ≤ 0, χ(1) > 0,(

Λ′
+(0),∞

)
, if χ(0) > 0, χ(1) ≤ 0,(

Λ′
+(0),Λ

′
−(1)

)
, if χ(0) > 0, χ(1) > 0.

Hence the second case in (2.18) corresponds to χ (1) > 0 and the third case occurs when χ (0) > 0.

(iii) When a is null, the unique solution ux to the equation Λ′ (u) = x, when x ∈ Λ′ (Do
Λ) is given by

(2.20) ux =
1

2 (1− ρ2)
√
α

2ρβ +
√
α+

p (x) ξ√
p (x)

2
+ b2 (1− ρ2)

 ,

where

p (x) := bρ+ x
√
α, and ξ :=

√(
2ρβ +

√
α
)2

+ 4β2 (1− ρ2).

This, together with (2.18), yields an explicit formula for the rate function Λ∗. Note that ux is well

defined as a limit when |ρ| tends to 1 and

(2.21) ux =
1

4

b− 2βx

2β + ρ
√
α

4bβ + ρ(b+ 2βx)
√
α

(bρ+ x
√
α)

2 , whenever ρ ∈ {−1, 1} .

(iv) When the parameter a is not null, we do not have a closed-form representation for ux, and hence

not for the function Λ∗ either. However computing Λ∗ is a simple root-finding exercise and the

smoothness of the function Λ makes it computationally quick.

Proof of Proposition 2.10. Let ux ∈ Do
Λ be the unique solution of Λ′ (u) = x, which exists by Re-

mark 2.11 (i). It is clear from definition (2.14) that, for x ∈ Λ′ (Do
Λ), the Fenchel-Legendre Λ∗ takes

the form given in the proposition.

Assume now that Λ′
−(1) is finite. This is equivalent to χ(1) 6= 0 which implies that for every u ∈ Do

Λ

we have u < 1. Then for any x ∈
[
Λ′
− (1) ,∞

)
∩ (R\Λ′ (Do

Λ)) the inequality Λ− (1) − Λ (u) ≤ x (1− u)

holds by the Lagrange theorem (and the fact that Λ′ is strictly increasing). Hence formula (2.18) follows.
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If Λ′
+(0) is finite, then for every u ∈ Do

Λ we have u > 0. For any x ∈
(
−∞,Λ′

+ (0)
]
∩ (R\Λ′ (Do

Λ)) the

inequality ux− Λ (u) ≤ −Λ+ (0) holds for all u ∈ Do
Λ. Hence formula (2.18) follows.

The function Λ∗ is continuously differentiable on R by (2.18) and Remark 2.11 (i). Note that, if

0 ∈ Do
Λ, at the minimum we have ux = 0. This implies by definition that the minimum of Λ∗ is attained

at Λ′(0) = x. The case 0 /∈ Do
Λ follows in a similar way.

If 1 ∈ Do
Λ, then by differentiating the formula in (2.18) we find that the minimum of x 7→ Λ∗(x) = x

is attained if and only if ux = 1, which is equivalent to Λ′(1) = x. If 1 /∈ Do
Λ, it is easy to see that the

minimum is attained for all x ≥ Λ′
−(1). This concludes the proof. �

Before stating the main theorem of this paper, let us define a probability measure P̃, known as the

Share measure, via the Radon-Nikodym derivative dP̃/dP which at time t takes the form eXt . Since

(eXt)t≥0 is a martingale, P̃ is a well-defined probability measure. The cumulant generating functions and

consequently the Fenchel-Legendre transforms of X under P and P̃ are related by

(2.22) Λ̃(u) = Λ(u+1), for all u such that (1+u) ∈ DΛ, and Λ̃∗(x) = Λ∗(x)−x, for all x ∈ R.

We are now equipped to state the main theorem of this paper, the proof of which is postponed to Section 4.

Theorem 2.12. The family of random variables (Xt/t)t≥1 where the process X is defined in (2.1)

satisfies a large deviations principle under P (respectively under P̃) with rate function Λ∗ described in

Proposition 2.10 (resp. Λ̃∗ in (2.22)) .

3. Asymptotics of option prices and implied volatilities

In this section we relate the rate function Λ∗ governing the large deviations of the family (Xt/t)t≥1 to

the option prices in the case of model (2.1) and the Black-Scholes model. These asymptotic option prices

will then be translated into implied volatility asymptotics.

3.1. Asymptotics of option prices. Theorem 3.1 and Corollary 3.2 below describe the limiting be-

haviour of European option prices respectively in the model (2.1) and in the Black-Scholes model when

the maturity tends to infinity. These results were proved in [12] and we recall them here to highlight the

importance of proving a large deviations principle under both probability measures P and P̃.

Theorem 3.1. Let the Fenchel-Legendre transform Λ∗ be as in (2.14) for the family of random variables

(Xt/t)t≥1, where (Xt)t≥0 is given by SDE (2.1), and let x ∈ R be a fixed number.

(i) If (Xt/t)t≥1 satisfies the LDP under the measure P with the good rate function Λ∗, the asymptotic

behaviour of a put option with strike ext is given by the following formula

lim
t→∞

1

t
logE

[(
ext − eXt

)+]
=

{
x− Λ∗ (x) , if x ≤ Λ′

+ (0) ,

x− Λ+ (0) , if x > Λ′
+ (0) ,

where Λ+ (0) and Λ′
+(0) are defined in (2.17).

(ii) If (Xt/t)t≥1 satisfies the LDP under the measure P̃ with the good rate function Λ̃∗, the asymptotic

behaviour of a call option, struck at ext, is given by

lim
t→∞

1

t
logE

[(
eXt − ext

)+]
=

{
x− Λ∗ (x) , if x ≥ Λ′

− (1) ,

−Λ− (1) , if x < Λ′
− (1) ,
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(iii) If (Xt/t)t≥1 satisfies the LDP under both P and P̃ with the respective good rate functions Λ∗ and

Λ̃∗, the asymptotic behaviour of a covered call option with payoff eXt −
(
eXt − ext

)+
is given by

lim
t→∞

t−1 log
(
1− E

[(
eXt − ext

)+])
= x− Λ∗ (x) , if x ∈

[
Λ′
+ (0) ,Λ′

− (1)
]
.

Let us consider the Black-Scholes model where the process (Xt)t≥0 satisfies the SDE dXt = −Σ2/2dt+

ΣdWt, with Σ > 0. Its limiting cumulant generating function reads ΛBS(u) = u (u− 1)Σ2/2 for all u ∈ R,
and we define its Fenchel-Legendre transform (2.14) Λ∗

BS(·,Σ). Since the function ∂xΛ
′
BS(·,Σ) is strictly

increasing on the whole real line, the equation Λ′
BS (u) = x has a unique solution ux ∈ R for any real

number x. It is straightforward to see that ux = x/Σ2+1/2 and hence Λ∗
BS (x,Σ) =

(
x+Σ2/2

)2
/
(
2Σ2

)
for all x ∈ R. From this characterisation it is immediate to see that ∂xΛ

∗
BS (x,Σ) = 0 if and only if

x = −Σ2/2 and ∂xΛ
∗
BS (x,Σ) = 1 if and only if x = Σ2/2.

Corollary 3.2. Under the Black-Scholes model, we have the following option price asymptotics.

lim
t→∞

1

t
logE

(
ext − eXt

)
+
=

{
x− Λ∗

BS (x,Σ) , if x ≤ −Σ2/2,

x, if x > −Σ2/2,

lim
t→∞

1

t
logE

(
eXt − ext

)
+
=

{
x− Λ∗

BS (x,Σ) , if x ≥ Σ2/2,

0, if x < Σ2/2,

lim
t→∞

1

t
log
(
1− E

(
eXt − ext

)
+

)
=


2x+Σ2, if x ≤ −3Σ2/2,

x− Λ∗
BS (x,Σ) , if x ∈

(
−3Σ2/2,Σ2/2

]
,

0, if x > Σ2/2.

3.2. Implied volatility asymptotics. We now translate the large-maturity asymptotics for option

prices proved above to the study of the implied volatility. Proposition 3.3 provides the limit of the

implied volatility for continuous affine stochastic volatility models (2.1). For any real number x, let σt(x)

represent the Black-Scholes implied volatility of a European call option with strike price S0e
xt in the

model (2.1). Let us further define the function σ∞ : R → R+ by

(3.1) σ2
∞(x) := 2

(
2Λ∗ (x)− x+ I (x)

(
Λ∗ (x) (Λ∗ (x)− x)

)1/2)
, for all x ∈ R,

where the function I : R → R is given by

I (x) := 2
(
11{x∈(Λ′

+(0),Λ′
−(1))} + sgn (χ(0)) 11{x<Λ′

+(0)} + sgn (χ(1)) 11{x>Λ′
−(1)}

)
,

with sgn(x) = 1 if x ≥ 0 and −1 otherwise, and where the function Λ∗ is defined in (2.18). The following

proposition gives the behaviour of the implied volatility σt as t tends to infinity for all affine stochastic

volatility models with continuous paths. In [6] and [12], the quantities χ(0) and χ(1) are assumed to be

strictly negative, and hence the function I here is more general than the function I in these two papers.

Proposition 3.3. The function σ∞ defined in (3.1) is continuous and the equality lim
t→∞

σt (x) = σ∞ (x)

holds for all x ∈ R if the parameter b in the model (2.1) is not null.

Proof. From Theorem 3.1 and Corollary 3.2, the implied volatility σ∞ satisfies the quadratic equation

(3.2) Λ∗(x) = Λ∗
BS (x, σ∞(x)) ,
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for all real number x. The proof of the corollary therefore consists of (a) finding the correct root of

this quadratic equation and (b) proving the the function σt(x) converges to this root for all x in the

corresponding subset of the real line. The proof is analogous to the proof of [12, Theorem 14], and we

therefore omit it for brevity. We also refer the reader to the recent work [8] for the general methodology

to transform option price asymptotics into implied volatility asymptotics. �

Remark 3.4. From Corollary 2.7, the case b = 0 can be handled directly since the limiting cumulant

generating function reads Λ(u) = 1
2au (u− 1), for all u ∈ DΛ = [0, u+], where u+ is given in (2.9).

Proposition 2.10 also implies that Λ∗(x) = 0 for all x < Λ′
+(0) = −a/2 and Λ∗(x) = Λ∗

BS (x,
√
a)

otherwise. Therefore the limiting implied variance σ2
∞(x) is equal to −2x for all x < −a/2 and is equal

to a for all x ≥ −a/2. Note that in the case χ(1) = 0, the effective domain DΛ reads [u−, 1], where u− is

given in (2.9), but the function Λ is steep at the right boundary of the domain.

3.3. Convergence of the implied volatility of the Heston model to SVI. In [9], Gatheral proposed

the so-called ‘Stochastic Volatility Inspired’ (SVI) parameterisation of the implied volatility smile. Using

the closed-form representation of the rate function Λ∗ (Proposition 2.10 and Equation (2.20)) in the

Heston model a = 0, Gatheral and Jacquier [10] proved that this parameterisation was indeed the true

limit of the Heston implied volatility smile as the maturity tends to infinity for strikes of the form S0e
xt,

whenever both conditions χ(0) < 0 and χ(1) < 0 are met. Corollary 3.5 below extends their result

without these conditions. Its proof follows from straightforward manipulations of Formula (3.1) and we

therefore omit it. Recall that the SVI parameterisation for the implied variance reads

(3.3) σ2
SVI (x) =

ω1

2

(
1 + ω2ρx+

√
(ω2x+ ρ)

2
+ 1− ρ2

)
, for all x ∈ R,

where (ω1, ω2) ∈ R2 and ρ ∈ [−1, 1]. Let us further define the mappings

(3.4) ω1 :=
4b

α (1− ρ2)

(√(
2β + ρ

√
α
)2

+ α (1− ρ2) +
(
2β + ρ

√
α
))

and ω2 :=

√
α

b
.

Corollary 3.5. If a = 0 and b 6= 0, the asymptotic implied volatility σ∞ in (3.1) simplifies as follows:

(i) for all x ∈ Λ′ (Do
Λ), under the mappings (3.4), σ2

∞ (x) = σ2
SVI (x);

(ii) if χ(1) > 0, define λ1 :=
√

2bχ(1), then

σ2
∞(x) = 2x+

4λ1
α

(
λ1 +

√
λ21 + αx

)
, for all x > Λ′

−(1);

(iii) if χ(0) > 0, define λ0 :=
√

2bχ(0), then

σ2
∞(x) = −2x+

4λ0
α

(
λ0 +

√
− (λ20 + αx)

)
, for all x < Λ′

+(0);

Remark 3.6.

(a) The case b = 0 was treated in Remark 3.4.

(b) The interval Λ′ (Do
Λ) corresponds to the subset of the real line where the function Λ∗ is strictly convex.

When χ(1) < 0 and χ(0) < 0 (as in [10]), this interval corresponds to the whole real line.
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(c) When a = 0, the quantities in Remark 2.9 simplify to

Λ+(0) = −2bβ

α
, Λ′

+(0) = − b

2
√
α

(
4ρ+

√
α

β

)
, when χ(0) > 0,

Λ−(1) = −2b

α

(
β + ρ

√
α
)
, Λ′

−(1) = − b

2
√
α

(
4ρ+

√
α

β + ρ
√
α

)
, when χ(1) > 0.

Remark 3.7. Note that ω1 in (3.4) is a continuous function of ρ ∈ (−1, 1) and has the following limits:

ω1 = −2b/ (2β +
√
α) , if 2β + ρ

√
α < 0, when ρ = 1,

ω1 = −2b/ (2β −
√
α) , if 2β + ρ

√
α < 0, when ρ = −1,

It diverges to ±∞ in the other cases. In terms of the SVI implied volatility smile, whenever ρ ∈ {−1, 1},
we can plug these limits when they exist into (3.3), or simplify directly (3.1) using (2.21), and we obtain

σ2
SVI(x) =

 −2
b+ ρx

√
α

2β + ρ
√
α
, if b+ ρx

√
α > 0,

0, if b+ ρx
√
α ≤ 0.

When χ(0) < 0 and χ(1) < 0, this is consistent with the fact—see [20, Proposition 5]—that for any

maturity the implied volatility is decreasing (resp. increasing) whenever the correlation parameter ρ is

equal to −1 (resp. equal to 1). In the case ρ = −1, the proof of this statement in [20, Proposition 5] is

based on the following remark: if (Xt)t≥0 satisfies the SDE (2.1), then Itô’s formula gives

Xt = X0 −
1

2

∫ t

0

Vsds+
bt+ V0√

α
− 1√

α

(
Vt − β

∫ t

0

Vsds

)
, for any t ≥ 0.

When β ≤ 0, since the variance process (Vt)t≥0 is not negative, it is clear that for any t ≥ 0, the random

variable Xt is bounded above, and hence, the implied volatility is null above this level. As soon as β is

strictly positive, this bound does not hold anymore and the implied volatility is not flat any more. Note

further than the condition χ(1) ≥ 0 implies the inequality χ(0) ≥ 0 when ρ = −1. In the Heston model,

this implies that only Case (i) in Corollary 3.5 applies, i.e. the SVI parameterisation holds on the whole

real line. The case ρ = 1 is symmetric (under the Share measure) and we omit an analogous discussion.

4. Proof of Theorem 2.12

We split the proof of the theorem according to the four cases arising in Corollary 2.7. In the case (i) (a),

since the limiting cumulant generating function Λ is differentiable and essentially smooth in the interior

of its domain DΛ and 0 ∈ DΛ (Corollary 2.7), then the theorem follows by a direct application of the

Gärtner-Ellis theorem. This case was already proved when a = 0 in [6] and when a 6= 0—albeit in a

more general framework—in [12]. In the case (i) (b), the effective domain DΛ is [u−, 1] with u− < 0, but

the function Λ is not steep at the right boundary, and hence the Gärtner-Ellis theorem does not apply.

Proposition 4.1 shows that a full LDP however still holds in this case. The proof of this theorem relies on

Lemma 5.2 and Lemma 5.3. Lemma 5.2 concerns the behaviour of the function Λt in (2.6) around 1 as t

tends to infinity and Lemma 5.3 is a weak convergence result for the process (Xt)t>0. For sake of clarity,

we postpone these lemmas and their proofs to Appendix 5. Proposition 4.2 deals with the case where

DΛ = [0, u+] with u+ > 1 and Proposition 4.2 states a LDP when DΛ = [0, 1]. By a shifting argument,

Theorem 2.12 clearly holds under P̃ as soon as a large deviations principle is satisfied in all cases under P.
We therefore state the three propositions below under the measure P.
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Proposition 4.1. In case (i)(b), the family (Xt/t)t>0 satisfies a LDP under P with rate function Λ∗.

Proposition 4.2. In case (ii)(a), the family (Xt/t)t>0 satisfies a LDP under P with rate function Λ∗.

Proposition 4.3. In case (ii)(b), the family (Xt/t)t>0 satisfies a LDP under P with rate function Λ∗.

Remark 4.4.

(i) In the case χ(1) = 0, the domain DΛ of the limiting cumulant generating function Λ is [u−, 1] and

the function is steep at the right boundary u+ = 1 and therefore the Gärtner-Ellis theorem holds.

However, under the Share measure defined on Page 10, the origin is in DΛ but not in its interior.

(ii) In view of Remark 2.4 (III) and Corollary 2.7, the origin is not in the interior of DΛ when χ (0) ≥ 0.

Notation. For any t > 0, we shall denote by Pt the law of the random variable Xt.

Proof of Proposition 4.1. In the case DΛ = [u−, 1] with u− < 0, the limiting cumulant generating function

Λ is not steep at the right boundary 1 any more. The upper bound holds for compact sets in R by

Chebychev inequality, and its extension to closed sets is a consequence of the origin being inside the

interior of the domain of the limiting log Laplace transform Λ. These arguments are the same as in the

proof of the Gärtner-Ellis theorem [4, Section 2.3].

We now prove the lower bound for the lim inf on open sets in R. The set of exposed points of the

function Λ is the interval
(
−∞,Λ′

− (1)
)
so that the lower bound for open sets in this interval follows

from the Gärtner-Ellis theorem. We therefore consider x ≥ Λ′
− (1) from now on. Since the function Λ is

continuously differentiable and convex on Do
Λ, two possible cases arise: either it attains its minimum at

a unique point u0 ∈ Do
Λ, and hence Λ′

−(1) > 0, or it is strictly decreasing on its effective domain, which

implies Λ′
−(1) ≤ 0. In the case Λ′

−(1) > 0, we can define a new probability measure P0
t for each t > 0 via

dP0
t

dPt
(z) := exp

(
u0zt− Λt(u0)

)
, for any z ∈ R.

The proof of the lower bound then follows exactly as in the standard Gärtner-Ellis theorem with this

change of measure. It can similarly be shown that since Λ is strictly convex on Do
Λ, the measure P0

t

converges weakly to a Gaussian random measure with zero mean and variance Λ′′(u0).

We now consider the case Λ′
−(1) ≤ 0. As in the Gärtner-Ellis theorem, it suffices to prove the equality

lim
δ→0

lim inf
t→∞

t−1 logP (Xt/t ∈ (x, x+ δ)) ≥ −Λ∗ (x) .

In view of Lemma 5.2, let us define the function Λt : Dt ∩ (−∞, 1) by

(4.1) Λt(u) := Λ (u) t− 2b

α
log (1− u) .

The key ingredient now is to remark that, for each t > 0, the function u 7→ t−1Λt(u) is smooth and

convex in the interval (0, 1) and furthermore is steep at 1. Therefore for any t > 0, there exists a unique

solution ut to the equation Λ
′
t (ut) = 0. Using similar arguments as in [5], it is clear that ut converges to

1 from below as t tends to infinity. Let us further define a new measure Pt by

(4.2)
dPt

dPt
(z) := exp

(
utzt− Λt (ut)

)
, for any z ∈ R.
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For any δ > 0 we then have

t−1 logPt

(
Xt/t ∈ (x, x+ δ)

)
= t−1 log

∫
(x,x+δ)

exp
(
Λt (ut)− utzt

)
dPt (z)

= t−1Λt (ut)− utx+ t−1 log

∫
(x,x+δ)

e−ut(z−x)tdPt (z)(4.3)

≥ t−1Λt (ut)− ut (x+ δ) + t−1 logPt

(
Xt/t ∈ (x, x+ δ)

)
,

for t large enough so that ut > 0, and hence

lim
δ→0

lim inf
t→∞

t−1 logP
(
Xt/t ∈ (x, x+ δ)

)
≥ lim inf

t→∞

(
t−1Λt (ut)− utx

)
(4.4)

+ lim
δ→0

lim inf
t→∞

t−1 logPt

(
Xt/t ∈ (x, x+ δ)

)
We now have to find a lower bound for both terms on the right-hand side of this inequality. Since the

function Λt is convex for all t > 0, we have Λt (ut) − Λt (u) ≥ (ut − u) Λ′
t (u) for all u < 1. From [18,

Theorem 25.7] we have limt→∞ t−1Λ′
t (u) = Λ′ (u) for all u < 1 and lim inft→∞ t−1Λt (ut) ≥ Λ (u) +

(1− u) Λ′ (u), which implies that lim inft→∞ t−1Λt (ut) ≥ Λ− (1). The fact that ut converges to 1 as t

tends to infinity and the characterisation of the Fenchel-Legendre transform Λ∗ in Proposition 2.10 gives

lim inf
t→∞

(
t−1Λ (ut)− utx

)
≥ Λ∗ (x) .

When Λ′
−(1) < 0, Lemma 5.3 implies that Pt converges to a probability measure P with full support as t

tends to infinity, and therefore the last term on the right-hand side of the inequality (4.4) tends to zero

as t tends to infinity (for any δ > 0). This proves the theorem in the case Λ′
−(1) < 0.

When Λ′
−(1) = 0, we cannot conclude immediately since Lemma 5.3 is a convergence result for the family(

Xt/
√
t
)
t>0

and we need a convergence property for the family (Xt/t)t>0. However, we can argue as

follows. Let (ξt)t≥0 be an independent Lévy process with Lévy exponent φ defined on a domain Dφ

strictly containing DΛ and such that φ′(1) 6= 0. Consider now the random variable Yt := Xt + ξ. The

moment generating function of Y is then

ΛY
t (u) := logE

(
euYt

)
= Λt(u) + φ(u)t,

for any t ≥ 0 and any u ∈ Dt. Therefore

ΛY (u) := lim
t→∞

t−1ΛY
t (u) = Λ(u) + φ(u), for all u ∈ DΛ,

where DΛ is characterised in Corollary 2.7. In particular, note that

∂uΛ
Y
−(1) := lim

u↗1
∂uΛ

Y (u) = Λ′
−(1) + φ′(1).

Note that Λ′
−(1) = 0 implies that ∂uΛ

Y
−(1) 6= 0. Since the effective domain of the limiting cumulant

generating function of Y is the same as that of X, we therefore obtain a large deviations principle for

the family
(
t−1Yt

)
t>0

as t tends to infinity using the analysis above. If the two families
(
t−1Xt

)
t>0

and(
t−1Yt

)
t>0

are exponentially equivalent, then the LDP for
(
t−1Yt

)
t>0

implies the LDP for
(
t−1Xt

)
t>0

by [4, Theorem 4.2.13]. Recall that two families are said to be exponentially equivalent if for all δ > 0,

lim sup
t→∞

t−1 logP
(
|Xt − Yt|

t
> δ

)
= −∞.
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Since P
(

|Xt−Yt|
t > δ

)
= P (|ξt| > δt), we simply need to find a (Lévy process) satisfying P (|ξt| > δt) ∼

t−β exp (−αtγ), for some α > 0, β > 0 and γ > 1 as t tends to infinity. The existence of such a Lévy

process is given in [19, Theorem 26.1, case (i)]. �

Remark 4.5. A similar issue arose in [3] where the authors studied large deviations properties for the

maximum likelihood estimator of an Ornstein-Uhlenbeck process. When the limiting cumulant generating

function is flat at the boundary of the domain, i.e. Λ′
−(1) = 0, they showed that the same large deviations

principle holds. Only the higher-order terms in the asymptotic expansion of the probability change.

Proof of Proposition 4.2. Let us first consider open and closed sets in the set of exposed points
(
Λ′
+(0),∞

)
.

By [4, Theorem 4.5.3] we know that the upper bound of the Gärtner-Ellis theorem holds on compact sets

even when the origin is not in the interior of the domain of the limiting cumulant generating function.

In the proof of the Gärtner-Ellis theorem the assumption ensuring that the origin lies within the interior

of DΛ is required (i) to derive the upper bound for closed sets and not only for compact sets, and (ii) to

prove that the Fenchel-Legendre transform Λ∗ of Λ is a good rate function. We know that the function

Λ∗ is not a good convex rate function, and we shall see how to deal with this. Let us first prove (i). Let

B be a Borel set in R. We want to prove that

(4.5) − inf
z∈Bo

Λ∗ (z) ≤ lim inf
t→∞

t−1 logP (Xt/t ∈ B) ≤ lim sup
t→∞

t−1 logP (Xt/t ∈ B) ≤ − inf
z∈B

Λ∗ (z) .

The upper bound for compact subsets of the real line follows from Chebychev inequality, and [17, Propo-

sition 5.2] shows that this extends to closed sets even when 0 /∈ DΛ. In the case where we are only

interested in intervals (i.e. P (Xt/t ≤ x) or P (Xt/t ∈ [y, x])), the following argument is self-contained

and does not rely on [17]: let x be a real number. For any y < x, Chebychev inequality implies the

following upper bound on the compact interval [y, x]:

(4.6) lim sup
t→∞

t−1 logP (Xt/t ∈ [y, x]) ≤ − inf
z∈[y,x]

Λ∗ (z) .

Since χ (0) > 0, the function Λ∗ is constant on
(
−∞,Λ′

+ (0)
)
and strictly increasing outside. Since we

are interested in the limit as y tends to −∞, we can consider y ≤ Λ∗ (Λ′
+ (0)

)
without loss of generality,

and hence infz∈[y,x] Λ
∗ (z) = Λ∗ (Λ′

+ (0)
)
always holds for such y. Using the fact that P (Xt/t ≤ x) =

limy→−∞ P (Xt/t ∈ [y, x]), Inequality (4.6) implies that for any ε > 0 there exists t∗ (ε) > 0 such that

P (Xt/t ∈ [y, x]) ≤ exp
(
−Λ∗ (Λ′

+ (0)
)
t+ εt

)
, for any t > t∗ (ε) .

Since the right-hand side does not depend on y we can now take the limit on both sides as y tends

to −∞, and hence t−1 logP (Xt/t ≤ x) ≤ −Λ∗ (Λ′
+ (0)

)
+ ε holds. Since ε can be taken arbitrarily small

we obtain lim supt→∞ t−1 logP (Xt/t ≤ x) ≤ −Λ∗ (Λ′
+ (0)

)
. A similar argument leads the upper bound

lim supt→∞ t−1 logP (Xt/t ≥ x) ≤ −Λ∗ (x) 11{x≥Λ′
+(0)} − Λ∗ (Λ′

+ (0)
)
11{x<Λ′

+(0)}.
We now want to prove lower bound estimates for the lim inf on open sets of the real line. Let us

consider x > Λ′
+ (0) and let η be the unique solution to Λ′ (η) = x. Let us define a new measure Qt by

(4.7)
dQt

dP
(z) := exp (ηzt− Λt (η)) , for any z ∈ R.
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For any δ > 0 small enough, denote Bx,δ the open ball centered on x with radius δ, then we have

t−1 logP
(
Xt/t ∈ Bx,δ

)
= t−1 log

∫
Bx,δ

exp
(
Λt (η)− ηzt

)
dQt (z)

= t−1Λt (η)− ηx+ t−1 log

∫
Bx,δ

exp (−η (z − x) t) dQt (z)

≥ t−1Λt (η)− ηx− |η| δ + t−1 logQt

(
Xt/t ∈ Bx,δ

)
,

and hence

lim
δ→0

lim inf
t→∞

t−1 logP
(
Xt/t ∈ Bx,δ

)
≥ lim inf

t→∞

(
t−1Λ (η)− ηx

)
+ lim

δ→0
lim inf
t→∞

t−1 logQt

(
Xt/t ∈ Bx,δ

)
≥ −Λ∗ (x) + lim

δ→0
lim inf
t→∞

t−1 logQt

(
Xt/t ∈ Bx,δ

)
.(4.8)

We now have to find a lower bound for the last term on the right-hand side of this inequality as t tends to

infinity and δ to zero. Define the function Λ̂ (·) := Λ (·+ η)−Λ (η). Λ̂ is the limiting logarithmic moment

generating function of Qt and for each t > 0, we denote Λ̂t the logarithmic mgf of Qt, and we have

t−1Λ̂t (λ) := t−1 log

∫
R
eλztdQt (z) = t−1Λt (λ+ η)− t−1Λt (η) ,

which converges to Λ̂ (λ) as t tends to infinity. We now define the Fenchel-Legendre transform Λ̂∗ of Λ̂ as

Λ̂∗ (z) := sup
λ∈R

{
λz − Λ̂ (λ)

}
= Λ∗ (z)− ηz + Λ(η) .

Let Bc
x,δ denote the complement in R of the open ball Bx,δ. We can now apply the upper bound estimate

derived above for the measure Qt on the closed set Bc
x,δ:

lim sup
t→∞

t−1 logQt

(
Xt/t ∈ Bc

x,δ

)
≤ − inf

z∈Bc
x,δ

Λ̂∗ (z) .

Since Λ∗ (x) ≥ ηx− Λ (η) by definition of the Fenchel-Legendre transform, we have

inf
z∈Bc

x,δ

Λ̂∗ (z) = inf
z∈Bc

x,δ

{Λ∗ (z)− (ηz − Λ (η))} = inf
z∈Bc

x,δ

{
sup
λ∈R

(
λz − Λ (λ)

)
− (ηz − Λ (η))

}
≥ 0.

The expression supλ∈R (λz − Λ (λ))− (ηz − Λ (η)) above is always not negative and is null if and only if

η = λ. The strict monotonicity of the function Λ′ on the interval
(
Λ′
+ (0) ,∞

)
implies that z = x, which

is not possible since z takes values only in the complement of the open ball Bx,δ. Hence infz∈Bc
x,δ

Λ̃∗ (z)

is strictly positive for all x > Λ′
+ (0). This implies that lim supt→∞ t−1 logQt

(
Xt/t ∈ Bc

x,δ

)
< 0 and

therefore Qt

(
Xt/t ∈ Bc

x,δ

)
tends to zero and Qt (Xt/t ∈ Bx,δ) tends to one as t tends to infinity for all

δ > 0. In particular this implies

lim
δ→0

lim inf
t→∞

t−1Qt

(
Xt/t ∈ Bc

x,δ

)
= 0,

and the result follows from (4.8).

Consider now open or closed sets in the interval
(
−∞,Λ′

+(0)
)
. The proof of the theorem follows

analogous steps as the proof of Proposition 4.1 on sets in
(
Λ′
−(1),∞

)
. We consider a time-dependent

change of measure, use an auxiliary convex function Λt, steep at 0 and well-defined on (0,∞)∩Dt, for each

t > 0. This function clearly exists since the function Λt itself is steep at the left boundary of its effective

domain Dt which converges to the origin from below. Lemma 5.4 proves weak convergence results for
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the random variable
(
π
(0)
t Xt/t

)
, where π

(0)
t is equal to 1 if Λ′

+(0) > 0 and is equal to
√
t if Λ′

+(0) = 0.

Therefore, using analogous arguments as in the proof of Proposition 4.1, the proposition follows. �

Proof of Proposition 4.3. The limiting cumulant generating function Λ is not steep at either boundary 0 or

1. A large deviations principle clearly holds on any subsets of
(
Λ′
+(0),Λ

′
−(1)

)
. For subsets of

(
Λ′
−(1),∞

)
,

we appeal to Proposition 4.1 and for subsets of
(
−∞,Λ′

+(0)
)
, we appeal to Proposition 4.2. �

5. Technical lemmas

Lemma 5.1. If χ (0) > 0, the following holds for the function Λt as t tends to infinity:

t−1Λt (u) = Λ(u)− 2b

αt
log(u) + t−1R

(0)
t (u), for any u ∈ Dt ∩ (0,∞) ,

where for any t ≥ 0, the function R
(0)
t : Dt∩ (0,∞) → R is analytic and converges on any compact subset

of Dt ∩ (1,∞).

Proof. From (2.5), we clearly have ft (u) ∼ cosh (γ (u) t/2) |1− χ (u) /γ (u)| as t tends to infinity, so that

log (ft (u)) = log

∣∣∣∣1− χ (u)

γ (u)

∣∣∣∣+ γ (u) t/2− log (2) + o
(
e−γ(u)t

)
, as t tends to infinity.

The condition χ(0) > 0 implies that 1 − χ(u)
γ(u) = αu

2β2 +O
(
u2
)
, and the last term in the expression (2.6)

for ΛH
t clearly satisfy the properties we need for the function R

(0)
t . �

Lemma 5.2. The following holds for the function Λt as t tends to infinity:

t−1Λt (u) = Λ (u)− 2b

αt
log (1− u) + t−1R

(1)
t (u) , for any u ∈ Dt ∩ (−∞, 1) ,

where for any t ≥ 0, the function R
(1)
t : Dt ∩ (−∞, 1) → R is analytic and converges on any compact

subsets of Dt ∩ (−∞, 1).

Proof. Let us consider the first case χ (0) ≤ 0 and χ (1) > 0. From (2.5), we clearly have that ft (u) ∼
cosh (γ (u) t/2) |1− χ (u) /γ (u)| as t tends to infinity, so that

log (ft (u)) = log

∣∣∣∣1− χ (u)

γ (u)

∣∣∣∣+ γ (u) t/2− log (2) + o
(
e−γ(u)t

)
, as t tends to infinity.

Note further that the assumption χ (1) > 0 implies the expansion 1 − χ(u)
γ(u) = −α

2 (u− 1) /χ (1)
2
+

O
(
(u− 1)

2
)
. It is straightforward to see that the last term in the expression (2.6) for ΛH

t satisfy the

properties we need for the function R
(1)
t . �

Recall that the logarithmic Laplace transform of a Gamma-distributed random variable Y with strictly

positive parameters ζ1 and ζ2 (Y ∼ Γ (ζ1, ζ2)) reads logE (exp (uY )) = −ζ1 log (1− ζ2u), for all u < 1/ζ2.

We also denote δ (ζ) the distribution of a Dirac random variable with parameter ζ, N (µ, ν) a standard

Gaussian with mean µ and variance ν, and the symbol ∗ stands for the convolution operator.
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Lemma 5.3. Under the measure Pt defined in (4.2), the sequence of random variables
(
π
(1)
t Xt/t

)
t
> 0

converges weakly to the random variable Y where

Y
∆
=


δ
(
Λ′
− (1)

)
∗ Γ
(
2b

α
,− 2b

αΛ′
− (1)

)
, and π

(1)
t = 1, if Λ′

− (1) < 0;

N

(
−
√

2bΛ′′
− (1)

α
,Λ′′

− (1)

)
∗ Γ

(
2b

α
,

√
2b

αΛ′′
− (1)

)
, and π

(1)
t =

√
t, if Λ′

− (1) = 0.

Proof. Consider first that Λ′
− (1) < 0. For all t > 0 and all ξ such that ut + ξ/t ∈ Dt, we can write

logEPt

(
exp

(
ξ
Xt

t

))
= logEPt

(
exp

((
ut +

ξ

t

)
Xt − Λt (ut)

))
= Λt

(
ut +

ξ

t

)
− Λt (ut) .

From Lemma 5.2 and the fact that Λ
′
t (ut) = 0 (see (4.1)), a Taylor expansion around 1 gives

(5.1) Λ′
− (1) + (ut − 1)Λ′′

− (1) +
2b

αt (1− ut)
+O

(
(1− ut)

2
)
= 0.

From (5.1) we have

(5.2) lim
t→∞

t (1− ut) = − 2b

αΛ′
− (1)

,

and hence using Lemma 5.2,

Λt

(
ut +

ξ

t

)
− Λt (ut) = t

(
Λ

(
ut +

ξ

t

)
− Λ (ut)

)
− 2b

α
log

(
1− t−1ξ

1− ut

)
+Rt

(
ut +

ξ

t

)
−Rt (ut) .

Therefore the equality (5.1) and the limit in (5.2) imply the following behaviours

t

(
Λ

(
ut +

ξ

t

)
− Λ (ut)

)
= ξΛ′

− (1)+o (1) , and −2b

α
log

(
1− t−1ξ

1− ut

)
= −2b

α
log

(
1 +

αξ

2b
Λ′
− (1)

)
+o (1) .

Since the function Rt converges on any compact subset of Dt we eventually obtain

lim
t→∞

EPt
(exp (ξXt/t)) = ξΛ′

− (1)− 2b

α
log

(
1 +

αξ

2b
Λ′
− (1)

)
,

which proves the lemma in the case Λ′
− (1) < 0.

Let us now consider the case Λ′
− (1) = 0. For all t > 0 and all ξ such that ut + ξ/

√
t ∈ Dt, we have

logEPt

(
exp

(
ξ
Xt√
t

))
= logEPt

(
exp

((
ut +

ξ√
t

)
Xt − Λt (ut)

))
= Λt

(
ut +

ξ√
t

)
− Λt (ut) .

The expansion (5.1) now gives us

(5.3) lim
t→∞

t (1− ut)
2
=

2b

αΛ′′
− (1)

,

and hence using Lemma 5.2 we again have

Λt

(
ut +

ξ√
t

)
−Λt (ut) = t

(
Λ

(
ut +

ξ√
t

)
− Λ (ut)

)
− 2b

α
log

(
1− t−1/2ξ

1− ut

)
+Rt

(
ut +

ξ√
t

)
−Rt (ut) .

Therefore the equality (5.1) and the limit in (5.3) imply the following behaviours

t

(
Λ

(
ut +

ξ√
t

)
− Λ (ut)

)
=
ξ2

2
Λ′′
− (1)− ξ

√
2bΛ′′

− (1)

α
+ o (1) ,

−2b

α
log

(
1− t−1/2ξ

1− ut

)
= −2b

α
log

(
1− ξ

√
αΛ′′

− (1)

2b

)
+ o (1) .
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Since the function Rt converges on any compact subset of Dt we obtain

lim
t→∞

EPt

(
exp

(
ξXt/

√
t
))

=
ξ2

2
Λ′′
− (1)− ξ

√
2bΛ′′

− (1)

α
− 2b

α
log

(
1− ξ

√
αΛ′′

− (1)

2b

)
,

which proves the lemma in the case Λ′
− (1) = 0. �

Following similar steps as in the proof of Proposition 4.1, Lemma 5.1 above implies that for any t > 0,

the function Λ
(o)

defined on Dt ∩ (0,∞) defined by

Λ
(o)

(u) := Λ(u)t− 2b

α
log(u),

is well defined, convex and steep at the origin. Furthermore for any t > 0, there exists a unique u
(o)
t > 0

satisfying ∂uΛ
(o)
(
u
(o)
t

)
= 0 and u

(o)
t converges to zero from above as t tends to infinity. Similar to (4.2),

we can now define a new probability measure P(o) by

(5.4)
dP(o)

t

dPt
(z) := exp

(
u
(o)
t zt− Λt

(
u
(o)
t

))
, for any z ∈ R.

An analogue to Lemma 5.3—the proof of which follows similarly—brings the following weak convergence

result under the probability measure P(o).

Lemma 5.4. Under the measure P(o)
t defined in (5.4), the sequence of random variables

(
π
(1)
t Xt/t

)
t
> 0

converges weakly to the random variable Y where

Y
∆
=


δ
(
Λ′
+ (0)

)
∗ Γ
(
2b

α
,− 2b

αΛ′
+ (0)

)
, and π

(1)
t = 1, if Λ′

+ (0) > 0;

N

(
−
√

2bΛ′′
+ (0)

α
,Λ′′

+ (0)

)
∗ Γ

(
2b

α
,

√
2b

αΛ′′
+ (0)

)
, and π

(1)
t =

√
t, if Λ′

+ (0) = 0.
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