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ON GERBER-SHIU FUNCTIONS AND OPTIMAL DIVIDEND DISTRIBUTION

FOR A LÉVY RISK-PROCESS IN THE PRESENCE OF A PENALTY FUNCTION

FLORIN AVRAM, ZBIGNIEW PALMOWSKI, AND MARTIJN R. PISTORIUS

Abstract. In this paper we consider an optimal dividend problem for an insurance company which risk process

evolves as a spectrally negative Lévy process (in the absence of dividend payments). We assume that the management

of the company controls timing and size of dividend payments. The objective is to maximize the sum of the expected

cumulative discounted dividends received until the moment of ruin and a penalty payment at the moment of ruin

which is an increasing function of the size of the shortfall at ruin; in addition, there may be a fixed cost for taking out

dividends. We explicitly solve the corresponding optimal control problem. The solution rests on the characterization

of the value-function as (i) the unique stochastic solution of the associated HJB equation and as (ii) the pointwise

smallest stochastic supersolution. We show that the optimal value process admits a dividend-penalty decomposition

as sum of a martingale (associated to the penalty payment at ruin) and a potential (associated to the dividend

payments). We find also an explicit necessary and sufficient condition for optimality of a single dividend-band

strategy, in terms of a particular Gerber-Shiu function. We analyze a number of concrete examples.
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1. Optimal control of Lévy risk models

The spectrally negative Lévy risk model. Recall the classical Cramér-Lundberg model

(1.1) Xt −X0 = η t− St, St =

Nt∑

k=1

Ck − λm t,

which is used in collective risk theory (e.g. Gerber [22]) to describe the surplus X = {Xt, t ∈ R+} of an insurance

company. Here, Ck are i.i.d. positive random variables representing the claims made, N = {Nt, t ∈ R+} is

an independent Poisson process with intensity λ modelling the times at which the claims occur, and p t, with

p = η + λm, represents the premium income up to time t, with profit rate η > 0 and mean m <∞ of C1.

In later years, the model (1.1) has been generalized to the “perturbed model”

(1.2) Xt −X0 := σBt + η t− St,

where Bt denotes an independent standard Brownian motion, which models small scale fluctuations of the risk

process.

Since the jumps of X are all negative, the moment generating function E[eθXt ] exists for all θ ≥ 0 and t ∈ R+,

and is log-linear in t, defining thus a function ψ(θ) satisfying:

E[eθ(Xt−X0)] = etψ(θ), ψ(θ) =
σ2

2
θ2 + η θ +

∫

(0,∞)

(e−θx − 1 + θx)ν(dx),(1.3)

where ν(dx) = λFC(dx), x ∈ R+, with FC the distribution function of C1, is the “Lévy measure” of the compound

Poisson process St, and η = ψ′(0) is the mean of X1 −X0.

The cumulant exponent ψ(θ) is well defined at least on the positive half-line, where it is strictly convex with the

property that limθ→∞ ψ(θ) = +∞. Moreover, ψ is strictly increasing on [Φ(0),∞), where Φ(0) is the largest root

of ψ(θ) = 0. We shall denote the right-inverse function of ψ by Φ : [0,∞)→ [Φ(0),∞).

An important generalization is to replace the process S in (1.2) by a general subordinator (a nondecreasing

Lévy process, with Lévy measure ν(dx), x ∈ R+, which may have infinite mass). Under this model, the “small

fluctuations” can arise either continuously, due to the Brownian motion, or due to the infinite jump-activity.

Taking S to be a pure jump-martingale with i.i.d. increments and negative jumps with Lévy measure ν(dx),

one arrives thus to a general integrable spectrally negative Lévy process X = {Xt, t ∈ R+} i.e. (see Bertoin [13],

Kyprianou [31], Sato [44]) a stochastic process that has stationary independent increments, no positive jumps and

càdlàg paths with Xt integrable for any t ∈ R+, defined on some filtered probability space (Ω,F ,F,P), where

F = {Ft}t∈R+ is the natural filtration satisfying the usual conditions of right-continuity and completeness. The

assumption that Xt has finite mean for any fixed t ∈ R+ is equivalent to the requirement that the Lévy measure ν

satisfies the integrability condition

ν1,∞ :=

∫

[1,∞)

xν(dx) <∞.

To avoid degeneracies, we exclude the case that X has monotone paths. We denote by {Px, x ∈ R} the family of

probability measures that correspond to the translations of X by a constant, that is, Px[X0 = x] = 1.

An alternative characterization of spectrally negative Lévy processes is via the “q-harmonic homogeneous scale

function” W (q), a non-decreasing function defined on the real line that is 0 on (−∞, 0), continuous on R+, with

Laplace transform given by
∫ ∞

0

e−θxW (q)(y)dy = (ψ(θ)− q)−1, θ > Φ(q).(1.4)

Despite of the diversity of possible path behaviors displayed by spectrally negative Lévy processes, a wide variety

of results may be elegantly expressed in a unifying manner via the homogeneous scale function W (q), bypassing thus
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“probabilistic complexity” via unified analytic methods. This paper further illustrates this aspect, by unveiling the

way the scale function intervenes in a quite complex control problem.

De Finetti’s dividend problem. Under the assumption that the increments of the surplus process have

positive mean, the Lévy risk model has the unrealistic property that it converges to infinity with probability one.

In answer to this objection, De Finetti [18] introduced the risk process with dividends

(1.5) Uπt = Xt −D
π
t , t ≥ 0,

where π is an “admissible” dividend control policy and Dπ
t denotes the cumulative amount of dividends that has

been transferred to a beneficiary up to time t, and where Uπ0− = X0 = x > 0 is the initial capital.

Writing τπ = inf{t ∈ R+ : Uπt < 0} for the time at which ruin occurs, the objective is to maximize the expected

cumulative dividend payments until the time of ruin

v∗(x) := sup
π∈Π

Ex

[∫

[0,τπ)

e−qtdDπ
t

]
,

with Ex[·] = E[·|X0 = x] and where Π denotes the set of all admissible strategies and q > 0 is the discount rate.

Note that ruin may be either exogeneous or endogeneous (i.e. caused by a claim or by a dividend payment).

A dividend strategy is admissible if ruin is always exogeneous, or more precisely, an admissible dividend strategy

Dπ = {Dπ
t , t ∈ R+} is a right-continuous F-adapted stochastic process that will satisfy that, at any time preceding

ruin, a dividend payment is smaller than the size of the available reserves:

(1.6) for any t ≤ τπ ,




∆Dπ

t := Dπ
t −D

π
t− ≤

(
Xt −Dπ

t−

)
∨ 0, and

D
π(c)
t −D

π(c)
u ≤ p(t− u) for all u ∈ [0, t), in the case ν0,1 <∞,

where Dπ(c) denotes the continuous part of Dπ and

p := η + ν0,1 + ν1,∞, with ν0,1 :=

∫

(0,1)

xν(dx).(1.7)

The second line in Eqn. (1.6) states that, if the jump-part of X is of bounded variation, it is not admissible to

pay dividends at a rate larger than the premium rate p at any time t that there are no reserves (i.e. Uπt = 0), as

this would lead to immediate ruin.

Single barrier policies. Recall first the simplest case when there are no transaction costs. One possible

dividends distribution policy is the “barrier policy” πb of transferring all surpluses above a given level b, which

results in the optimal value:

vb(x) := vπb
(x) = Ex

[∫

[0,τb)

e−qtdDb
t

]
=
W (q)(x)

W (q)′(b)
, x ∈ [0, b],

and vb(x) = x − b + vb(b) for x > b, where τb = inf{t ≥ 0 : Xt < Db
t}, and D

b = Dπb is a local time-type strategy,

given explicitly in terms of X by Db
0− = 0 and

Db
t = sup

s≤t
(Xs − b)

+
, t ∈ R+,

with x+ = max{x, 0}. As this equation shows, a non-zero optimal barrier must be an inflection point of the scale

function, if the latter is smooth.

Multiple bands policies. However, single barrier strategies might not be optimal cf. Gerber [20, 21]. The

optimal strategy may be a “multi-bands strategy”, involving several “continuation bands” [ai, bi), i = 0, 1, ... with

upper reflecting boundaries bi, separated by “lump-sum dividend taking bands” [bi, ai+1), i = 0, 1, ... of jumping

to the next reflecting barrier below bi, by paying all the excess as a lump-sum payment (see also Hallin [27], who
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formulated a system of time dependent integro-differential equations associated to multi-bands policies). Azcue &

Muler [10] established the optimality of multi-bands strategies under the Cramér-Lundberg model in the presence

of proportional and excess-of-loss reinsurance, adopting a viscosity approach. Recently, Albrecher & Thonhauser [2]

proved the optimality of bands strategies, in the case that the reserves attract a fixed interest rate.

Gerber showed also that for exponential claims (and with no constraints on the dividends rate), the optimal

policy involved only one barrier (and one continuation band); however, constructing examples where more than one

band was necessary remained an open problem for a long time.

Optimality conditions for single barrier strategies. The interest in bands strategies was reawakened by

Azcue & Muler [10], who produced the first example (with Gamma claims) in which a single constant barrier is not

optimal. Let

(1.8) b∗ = sup
{
b > 0 :W (q)′(b) ≤W (q)′(x) for all x

}

denote the last global minimum of the derivative of the q-scale function.

Avram et al. [8] showed that

(Γvb∗ − qvb∗)(x) ≤ 0, for all x > b∗,(1.9)

where Γ denotes the infinitesimal generator of X , is a sufficient optimality condition for the single barrier strategy

under a general spectrally negative Lévy model. In fact, the condition (1.8)–(1.9) is both necessary and sufficient,

as follows by examining the variational inequality characterizing the problem – see [34, Lemmas 1, 2].

A simpler sufficient condition for the optimality of single band policies was obtained by Loeffen [34, 35] (with and

without transaction costs), who showed that it is enough to check that the last local minimum of the q-scale function

is also a global minimum. Even more direct optimality conditions in terms of the Lévy measure ν were provided by

Kyprianou et al. [32], and Loeffen & Renaud [36], who showed respectively that log-convexity of the density and of

the survival functions suffice (the second condition is more general). Note that the second result allowed also for an

affine penalty function with slope less than unity, and that both results imply complete monotonicity of the Lévy

density, and constitute therefore powerful generalizations of Gerber’s unicity result [20, 21].

It turns out that b∗ in (1.8) is always the right end point of the first continuation band. As already demonstrated

in the rather terse Azcue & Muler example [10, pp. 274], left and right end points of subsequent bands can in

principle be determined recursively (the former by ensuring the ”smoothness” of the value function, and the latter

similarly with b∗, by selecting last global maxima of updated value functions, adjusted by using the values of

previous bands as stopping penalties). However, an explicit smoothness condition (6.11) seems not to have been

reported previously.

Balancing dividends and ruin penalties. Several alternative objectives have been proposed recently, invol-

ving final penalties w(x) at ruin, [17, 23, 49], or continuous payoffs until ruin [1, 16]. For example, the case where

the insurance company is bailed out by the beneficiaries every time that there is a shortfall in the reserves was

investigated in [8], and in Kulenko & Schmidli [30].

Our paper continues the investigation of the impact of a general final penalty and transaction costs on the optimal

dividends policy. Assuming that the management of the company controls timing and size of dividend payments

and is liable to pay a penalty that is a function of the shortfall at the moment of ruin, we solve the corresponding

optimal control problem by constructing explicitly its solution. To show that the constructed function solves the

stochastic optimal control problem, standard verification arguments that rely on the application of Itô’s lemma

cannot be employed, due to a lack of smoothness of the value function. In particular, it will follow from the form of

the value-function and from results concerning the smoothness of scale functions (Kyprianou et al. [32], Lambert

[33]) that, in general, the value-function is continuous but not C1 on R+\{0} if X has bounded variation, and is
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C1 but not C2 on R+\{0}, if X has unbounded variation. The approach followed in this paper is probabilistic

in nature and rests on the characterisation of the value-function as stochastic solution of the corresponding HJB

equation, and on a dual representation of the value function as the point-wise minimum of stochastic supersolutions

(Thm. 3.4), which yields as a consequence a comparison and local-verification result (Cor. 3.5). We also show (in

Cor. 3.9) that the optimal value process admits a dividend-penalty decomposition as sum of a martingale (equal to

the conditional expectation of the penalty payment at ruin) and a potential (related to the dividend payments).

A key point in our approach is the decomposition of the value function preceding and within a continuation band

[a, b]

(1.10) va,b(x) =





f(x), x < a,

F (x) +W (q)(x) G(a, b), x ∈ [a, b],

into a nonhomogeneous solution F (x), which we will call Gerber-Shiu function, and the product of the homogeneous

scale function W (q)(x) by a ”barrier-influence” function G(a, b) defined in (5.2), which needs to be maximized at b

and be smooth at a.

Note that that the function G in the decomposition (1.10) is only determined up to a constant, but becomes

fixed once F has been selected – see (5.2).

To ensure smoothness at a, it seems then natural to use a “smooth Gerber-Shiu function” Ff (x) associated to

a given penalty f(x), x ∈ (−∞, a). Informally, Ff (x) is the “smooth nonhomogeneous solution” of the Dirichlet

problem on {x ≥ a} with boundary condition f(x), x ∈ (−∞, a). More precisely, it is defined in Defs. 4.1 and 4.2

in Sect. 4 by subtracting a multiple of the homogeneous scale function W (q)(x) out of the solutions of either the

two-sided, or the reflected exit problem, such that the remaining part is continuous on R if f is continuous, and

continuously differentiable on R if f is continuously differentiable on R− and X has unbounded variation. This

results in the explicit formula (4.6).

For exponential penalties w(x) = exv, the Gerber-Shiu function takes a simple form (7.2), which may be used

also as a generating function for the expected payoffs associated to polynomial penalties xk, k = 0, 1, ...

The decomposition (1.10) with Ff (x) chosen to fit the imposed penalty f(x) = w(x) already determines the value

function on the first continuation band (and the value function in the lump-dividend taking bands surrounding it)

—see Prop. 5.1 and Thm. 6.5. It also leads to an explicit necessary and sufficient criterion for optimality of single

dividend barrier policies —see Thm. 5.3 in Sect. 5, which is analogous to (1.9), modulo replacing the function

1/W (q)′(b) by the two variables function G(a, b).

Quite paradoxically, it is possible that beyond the lump-sum dividend taking band following the first continuation

band, waiting for higher barriers bi, i ≥ 2, may become again optimal. The level a2 where the second continuation

band starts may be determined by examining the family of functions G
(a)
2 (b) defined in Eqn. (6.11), which are

computed from a second Gerber-Shiu function, which uses the first value functions as stopping penalties, and so

on, leading ultimately to all the optimal band levels —see Sect. 7.

Fixed transaction costs. It is interesting to consider also the effect of adding fixed transaction costK > 0 that

are not transferred to the beneficiaries when dividends are being paid. The objective of the beneficiaries becomes

then to maximize vπ,K(x):

v∗(x) = sup
π∈ΠK

vπ,K(x), where vπ,K(x) = Ex

[∫

[0,τπ)

e−qtdDπ
t −K

∫

[0,τπ)

e−qtdNπ
t

]
,

where Nπ = {Nπ
t , t ∈ R+} is the stochastic process that counts the number of jumps of Dπ in the interval [0, t],

(1.11) Nπ
t = #{s ∈ [0, t] : ∆Dπ

s > 0} t ∈ R+.
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To avoid degeneracies the set ΠK is taken to be equal to the collection of admissible strategies for which any

dividend payment is larger or equal to K. For any π ∈ ΠK the range R(D−1) is discrete and Nπ
t is equal to the

number of times a dividend has been paid out by time t. In the sequel we will drop the subscripts K and write

Π = ΠK and vπ = vπ,K when no confusion is possible.

The introduction of a fixed transaction cost K > 0 has the usual effect of changing the optimal reflection

boundaries b into strips [b−, b+], so that when Ut = b+, a lump-sum dividend b+ − b− is paid, and the reserves

process is diminished to the lower “entrance” point b−. To emphasize this disappearance of reflection barriers, we

will always use the term band when K > 0, and also when more than one barrier is present.

The typical optimal dividend strategy consists of “lump sum payments” [4], with π of the form π = {(Jk, Tk), k ∈

N}, where 0 ≤ T1 ≤ T2 ≤ ... is an increasing sequence of F-stopping times representing the times at which a dividend

payment is made and Ji ≥ K is a sequence of positive FTi
-measurable random variables representing the sizes of

the dividend payments. Then,

Dπ
t =

Nπ
t∑

k=1

Jk,

where Nπ
t = #{k : Tk ≤ t} is the number of times that dividends have been paid by time t.

For single bands policies for example, the dividend distribution consists of the fixed amount Ji = bi,+ − bi,−.

Contents. The remainder of the paper is organized as follows. In Sect. 2 the dividend-penalty problem is

phrased and its optimal solution is presented, and Sect. 3 is devoted to the characterisation of the value-function as

stochastic solution of the HJB, and as minimal stochastic supersolution. Sect. 4 is concerned with two stochastic

boundary value problems associated to the value of dividend payments in the presence of a penalty, and Sects. 5

and 6 are devoted to single and two-bands strategies. In Sect. 7 the value function is constructed, and some examples

are analyzed in detail in Sect. 8. Sects. 9 and 10 contain the proofs of the results in Sect. 3 and 7, respectively. A

number of the proofs are presented in the Appendix.

2. The dividend-penalty control problem

Assume that the beneficiaries control the timing and size of dividend payments made by the company, and are

liable to pay at the moment τπ of ruin the penalty −w(Uπτπ), which may be used to cover (part of) the claim that

led to insolvency, where w is a penalty.

Def. 2.1. A penalty w : R− → R−, with R− = (−∞, 0], is an increasing function that is left-continuous at 0 with

a finite left-derivative w′(0−), and satisfies the integrability condition

(2.1)

∫

(1,∞)

|w(−z)|ν(dz) <∞.

The collection of penalties is denoted by P . We shall also consider the class R of functions that contains P .

Def. 2.2. We denote by R the set of Borel-measurable functions w : R− → R that are left-continuous at 0, admit

a finite left-derivative w′(0−), and satisfy the integrability conditions

(2.2) (i) wν(y) <∞ ∀y ∈ R+\{0} and (ii)

∫ ∞

0

∫ ∞

y

e−Φ(q)y|w(y − z)− w(0)|ν(dz)dy <∞,

where the function wν : R+\{0} → R is defined by

(2.3) wν(y) :=

∫

(y,∞)

{w(y − z)− w(0)} ν(dz), y ∈ R+\{0}.
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The beneficiaries seek to maximize the sum of the expected discounted cumulative dividends and an expected

penalty payment by paying out dividends according to an admissible policy. The present value of the penalty

payment discounted at rate q > 0, considered as function of the level of reserves, is called the “Gerber-Shiu penalty

function” associated to the penalty w, and is given by

Wπ
w(x) := Ex

[
e−qτ

π

w (Uπτπ)
]
, x ∈ R+.

Under condition (2.1), it holds that, for any level of initial capital x ∈ R+, Wπ
w(x) is bounded uniformly over π ∈ Π

(see Lemma 9.3).

The objective of the beneficiaries of the insurance company is described by the following stochastic optimal

control problem:

(2.4) v∗(x) = sup
π∈Π

vπ(x), vπ(x) :=W
π
w(x) + Ex

[∫

[0,τπ]

e−qtµK(dt)

]
, x ∈ R+,

where Π denotes the set of admissible dividend policies π and µK is the (signed) random measure on (R+,B(R+))

defined by

(2.5) µπK([0, t]) = Dπ
t −KN

π
t ,

with Nπ
t equal to the counting process defined in Eqn. (1.11) and Dπ

t equal to the cumulative amount of dividends

that has been paid out by time t. We will restrict ourselves to the case of positive net income (or infinitesimal

drift), η := E[X1] > 0. Here we note that we have µK({τπ}) = 0 for any admissible policy π ∈ Π. A solution to

the stochastic control problem in Eqn. (2.4) consists of a pair (u, π∗) of a function u : R+ → R and a policy π∗ ∈ Π

such that v∗(x) = u(x) = vπ∗(x) for all x ∈ R+.

3. Stochastic solution approach

In the literature two common approaches to solving stochastic control problems can be distinguished. In the

guess-and-verify approach a candidate solution is constructed and, provided the candidate solution is sufficiently

regular, optimality is subsequently verified using Itô’s lemma. The viscosity solution approach commences with

establishing that the value function solves the Hamilton-Jacobi-Bellman (HJB) equation in the viscosity sense and

proceeds with deriving the form of the optimal policy—this is the approach taken in e.g. Azcue & Muler [10] where

an analysis is presented of a dividend distribution problem with reinsurance under the Cramér-Lundberg model,

using viscosity methods. A direct approach was developed in Schmidli [45] where a recursive algorithm is provided

to find, in terms of solutions to certain integro-differential equations, the value function of the optimal dividend

problem under the Cramér-Lundberg model in the absence of a penalty. We will follow below a stochastic approach

to solve the optimal control problem in Eqn. (2.4), which will permit to by-pass the issues associated with the lack of

regularity of the value-function in the setting of a general spectrally negative Lévy process. It is shown (Thm. 3.8)

that the value-function of the stochastic control problem in Eqn. (2.4) is the unique function that is both a stochastic

supersolution and a stochastic subsolution of the HJB equation associated to the dividend-penalty control problem.

The concepts of stochastic super- and subsolution (described in Def. 3.2 below) bear similarity to the notions of

viscosity super- and subsolution (see [10, Def. 3.2 and Cor. 5.2] for the definition and the existence and uniqueness

result in the Cramér-Lundberg setting described above) but differ in one important aspect: whereas viscosity sub-

and supersolutions are defined pointwise, stochastic sub- and supersolutions are defined in terms of some super- or

sub-martingale property that these functions possess. In the course of showing that the value-function is a stochastic

supersolution it is also established (Thm. 3.4) that the value function admits a global dual representation as the

pointwise minimum of such stochastic supersolutions. Drawing on Thms. 3.4 and 3.8, we provide in Section 7 an
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explicit step-wise construction of the solution of the dividend-penalty control problem in terms of scale functions of

the Lévy process X .

3.1. Dynamic programming. The analysis of the stochastic optimal control problem starts from the observation

that the value function satisfies a dynamic programming equation.

Prop. 3.1. (i) Extending v∗ to the negative half-axis by v∗(x) = w(x) for x < 0, we have for any τ ∈ T , the set of

F-stopping times,

(3.1) v∗(x) = sup
π∈Π

vπ,τ (x), vπ,τ (x) := Ex

[
e−q(τ∧τ

π)v∗(U
π
τ∧τπ) +

∫

[0,τ∧τπ]

e−qsµπK(ds)

]
.

(ii) For any fixed π ∈ Π and x ∈ R+, the process V π = {V πt , t ∈ R+} given by

(3.2) V πt = e−q(τ
π∧t)v∗(U

π
τπ∧t) +

∫

[0,τπ∧t]

e−qsµπK(ds),

is a Px-supermartingale.

The proof of Prop. 3.1(i) follows by straigtforward adaptation of classical arguments— see e.g. [10, pp.276-277],

while that of Prop. 3.1(ii) is deferred to Appendix A. The corresponding HJB equation is given in terms of a

gradient-type constraint, as follows:

max {Lg(x)− qg(x), 1 − dg(x)} = 0, x > 0,(3.3)

where

dg(x) =





inf
y∈(0,x)

g(x)− g(x− y) +K

y
, in the case K > 0,

g′+(x), in the case K = 0,

(3.4)

with g′+(x) denoting the right-derivative of g at x, subject to the boundary condition

(3.5)




g(x) = w(x), for all x < 0,

g(0) = w(0), in the case {σ2 > 0 or ν0,1 =∞},

where L denotes the infinitesimal generator of the Feller semi-group of X which acts on f ∈ C2
c (R+) as follows (cf.

Sato [44, Thm. 31.5]):

Lf(x) =
σ2

2
f ′′(x) + ηf ′(x) +

∫

R+\{0}

[f(x− y)− f(x) + yf ′(x)]ν(dy), x ∈ R+,

where f ′ denotes the derivative of f .

Remark. The boundary condition at x = 0 is of the form as stated in Eqn. (3.5) because of the fact that ruin is

immediate (that is, τπ = 0 P0 a.s.) if and only if X has unbounded variation which corresponds precisely to the

case {σ2 > 0 or ν0,1 =∞}.
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3.2. Stochastic solutions and dual representation. The solution of the stochastic control problem in Eqn. (2.4)

is based on a characterization of the optimal value function v∗ as stochastic solution of the HJB equation.

Def. 3.2. (i) For given a, b ∈ R+ with a < b, a function g : (−∞, b]→ R is a local stochastic supersolution on the

interval [a, b] of the HJB equation (3.3)—(3.5) if g|[a,b] is continuous,

M
g,Ta,b

:=
{
e−q(t∧Ta,b)g

(
Xt∧Ta,b

)
, t ∈ R+

}
is a uniformly integrable (UI) Px-supermartingale,(3.6)

for any x ∈ [a, b], and g satisfies the condition

g(x)− g(x− y) ≥ y −K for all x, y ∈ [a, b] with y < x,(3.7)

and the boundary condition

(3.8)




g(x) = v∗(x) for all x ∈ (−∞, a) ∪ {b},

g(a) = v∗(a) in case {σ2 > 0 or ν0,1 =∞}.

The family of local stochastic supersolutions on the interval [a, b] is denoted by G+a,b.

(ii) A function g : R→ R is a stochastic supersolution of the HJB equation in (3.3)—(3.5) if g|R+ is continuous,

M
g
:=
{
e−q(t∧T

−

0 )g
(
Xt∧T−

0

)
, t ∈ R+

}
is a UI Px-supermartingale, for any x ∈ R+,(3.9)

and g satisfies the conditions in Eqns. (3.5) and (3.7). The family of stochastic supersolutions is denoted by G+.

(iii) A function g : R→ R that is such that g|R+ is continuous (in the case K > 0), and g|R+ is continuous, g(x)

is right-differentiable at any x > 0, and g′+|(0,∞) is right-continuous (in the case K = 0), is a called a stochastic

subsolution of the HJB equation in (3.3)—(3.5) if g satisfies the boundary condition stated in Eqn. (3.5) and we

have

Mg :=
{
M

g

t∧H
Og
−M

g

0, t ∈ R+

}
is a UI Px-submartingale,(3.10)

with HOg
= inf{t ∈ R+ : Xt /∈ Og}, for any x ∈ Og and any open interval Og (with closure Og) satisfying

Og ⊂ Cg := {x ∈ R+ : dg(x) > 1}.

The family of stochastic subsolutions will be denoted by G−.

(iv) A function g : R→ R is a stochastic solution of the HJB equation in (3.3)—(3.5) if we have g ∈ G+ ∩ G−.

Rem. 3.3. For any stochastic subsolution g the corresponding set Cg is right-open, that is, for every x > 0 with

dg(x) > 1 there exists an ǫ > 0 such that for all y ∈ [x, x + ǫ] we have dg(y) > 1. In the case K > 0 this can

be seen to hold by noting that for any x > 0 satisfying, for some δ > 0, g(x) − g(x − y) > (1 + δ)y − K for all

y ∈ (0, x), the continuity of g on [0, x + 1] implies that there exists an ǫ ∈ (0, 1) such that also the inequality

g(x + ǫ) − g(x− y + ǫ) > (1 + δ/2)y −K holds for all y ∈ (0, x + ǫ). The argument for the case K = 0 is similar.

Note that, since the set C is right-open, it is equal to a countable union of intervals with non-empty interior. As a

consequence, the interior Dog = R+\Cg of the set

Dg := C
c
g = R+\Cg

is a countable union of disjoint open intervals.

Thm. 3.4. The value function v∗ is the smallest stochastic supersolution of the HJB equation in (3.3)—(3.5):

v∗(x) = min
g∈G+

g(x) for all x ∈ R+.(3.11)

In particular, for any a, b ∈ R+, a < b, Eqn. (3.11) remains valid if G+ is replaced by G+a,b.
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The proof of Thm. 3.4 is given in Sect. 9. As direct consequence of the dual representation in Eqn. (3.11), the

dynamic programming equation and the definition of v∗ we get a local verification theorem.

Cor. 3.5. If there exist b > a ≥ 0, π ∈ Π and g ∈ G+ such that g(x) = vπ,τπ
a
(x) for all x ∈ [a, b] where

τπa = inf{t ≥ 0 : Uπt < a}, then we have v∗(x) = vπ,τπ
a
(x) for all x ∈ [a, b].

This verification result will be used in the piecewise construction of the value-function, in Sections 5—7.

In the next result it is shown that given the optimal value function v∗ a corresponding admissible optimal strategy

π∗ can be constructed.

Def. 3.6. To a stochastic solution g ∈ G+ ∩ G− of the stochastic control problem in Eqn. (2.4) is associated the

policy π(g) = {D
π(g)
t , t ∈ R+} ∈ Π defined in terms of the sets Cg and Dg, the controlled process U = Uπ(g) and

the level y∗(v) := sup{u ∈ [0, v] : g(v)− g(v − u) +K = u} (with sup ∅ = 0) as follows:

(a) In the case K = 0, let D = Dπ(g) be the increasing right-continuous F-adapted process that satisfies




Ut = Xt −Dt ∈ Cg, for any t ∈ [0, τπ(g)),
∫

[0,τπ(g))

1{s:Xs−Ds−
/∈Dg}(t)dDt = 0,

where 1A denotes the indicator of the set A.

(b) In the case K > 0, pay ∆Dt = y∗(Ut) as lump-sum dividend whenever we have Ut ∈ Dg and y∗(Ut) > 0.

(c) Otherwise, pay no dividends.

Rem. 3.7. The Skorokhod embedding lemma implies that the strategy π(g) = {D
π(g)
t , t ∈ R+} in Def. 3.6(a) is

explicitly given by

D
π(g)
t = sup

s∈[0,t∧τπ(g)]

(Xs − b(s)) ∨ 0, where b(s) = bι(s), ι(s) = inf{n ∈ N : Xs −Ds− < an},

where we denoted the interior D0
g of Dg by D0

g = ∪n(bn, an) with 0 ≤ bn < an such that the intervals (bn, an) are

disjoint. The condition in Def. 3.6(a) implies that the dividend strategy π(g) is chosen such as to pay the minimal

amount of dividends that will ensure that the process Uπ(g) takes values in the set Cg (the closure of the set Cg).

Thm. 3.8. (i) The optimal strategy for the stochastic control problem in Eqn. (2.4) is given by π∗ := π(v∗), that

is, v∗ = vπ∗
.

(ii) The value function v∗ is the unique stochastic solution of the HJB equation in (3.3)—(3.5) satisfying the

condition

v∗(0) = min
g∈G+

g(0),

which reduces to v∗(0) = w(0) in the case {σ2 > 0 or ν0,1 =∞}.

The proof of Thm. 3.8 is given in Sect. 9. The set D will be identified explicitly in Sect. 7 in terms of the scale

functions of the underlying Lévy process X .

From Thms. 3.4 and 3.8 a decomposition can be derived of the value-function v∗ of the stochastic control problem

in Eqn. (2.4) into the sum of the classical Gerber-Shiu function (which definition is recalled in Eqn. (4.7) below)

and the expected discounted dividend payments adjusted for the additional penalty payment that will be incurred

due to dividend payments that have been made (compared with the benchmark penalty payment in the case that

no dividends had been paid out). The dynamic counterpart of this decomposition states that the discounted

optimal value e−q(t∧T
−

0 )v∗(Xt∧T−

0
), which is a supermartingale by Thm. 3.4, is equal to the sum of a martingale

(the collection of Ft-conditional expectations of the discounted penalty at ruin) and a potential (the conditional

expectations of the remaining cumulative discounted dividend payments until the moment of ruin, again adjusted
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for the risk of incurring an additional penalty payment at ruin due to the dividend payments that have been made).

This potential is explicitly expressed in terms of the interior Do∗ of the set

(3.12) D∗ := {x ∈ R+ : dv∗(x) = 1}

where dv∗ is defined in Eqn. (3.4) and of collection {J∗(x), x ∈ Do∗}, with

J∗(x) = ψ′(0) +

∫ ∞

0

[v∗(x− z)− v∗(x) + z] ν(dz)− qv∗(x), x ∈ Do∗,

where v∗ is extended to the negative half-line by v∗(x) = w(x) for x < 0.

Cor. 3.9 (Dividend-penalty decomposition). (i) The process S∗ = {S∗
t , t ∈ R+} given by

S∗
t = e−q(t∧T

−

0 )v∗

(
Xt∧T−

0

)

admits the decomposition

(3.13) S∗
t = E

[
e−qT

−

0 w
(
XT−

0

) ∣∣∣∣Ft
]
+

(
E

[
A∗
T−

0

∣∣∣∣Ft
]
−A∗

t

)
, t ∈ R+,

where A∗ = {A∗
t , t ∈ R+} is the increasing process given by

A∗
t =

∫ t∧T−

0

0

e−qs1{X
s−

∈Do
∗}
[−J∗(Xs−)]ds,(3.14)

(ii) In particular, we have

v∗(x) = V
0,∞
w (x) + Ex

[
A∗
T−

0

]
, x ∈ R+,

where V0,∞
w denotes the classical Gerber-Shiu function defined in Eqn. (4.7) below.

Proof. (i) Since the process S∗
t is a UI supermartingale (Thm. 3.4), the Doob-Meyer decomposition (e.g. [43, Thm.

7]) implies that S∗
t can be decomposed as S∗

t = M∗
t − A

∗
t , where M

∗ is a local martingale and A∗ is a increasing

locally natural process. It follows that A∗ is dominated by the random variable A∗
T−

0

that is integrable since S∗ is

uniformly integrable. As a consequence, the process M∗ is a UI martingale. Thus, we have for any t ∈ R+

S∗
t +A∗

t =M∗
t = E

[
M∗
T−

0

∣∣∣∣Ft
]
= E

[
e−qT

−

0 w
(
XT−

0

)
−A∗

T−

0

∣∣∣∣Ft
]
.

The proof that A∗ is of the form stated in Eqn. (3.14) is given in Sect. 9.

(ii) The statement follows from part (i) by taking expectations under the measure Px in Eqn. (3.13). �

Rem. 3.10. In Sect. 6 we encounter a generalisation of the control problem in Eqn. (2.4) that is used in the

construction of its solution and is phrased as follows: assume that in addition to deciding the timing and size of

dividend payments the management of the company also has the option to “wind up the company” at any stopping

time τ before the ruin time τπ . The beneficiaries receive the payment f(Uπτ ) if τ is before the ruin time τπ , and

are liable to pay a penalty payment −f(Uπτπ) if ruin occurs before the company is wound up, for some pre-specified

function f : R→ R. In this control problem the controls are pairs (τ, π) of dividend strategies π ∈ Π and F-stopping

times τ ∈ T , and the value-function is given by

v∗f (x) = sup
τ∈T ,π∈Π

ṽτ,π,f(x), ṽτ,π,f(x) := Ex

[∫ τ∧τπ

0

e−qtµπK(dt) + e−q(τ∧τπ)f(Uπτ∧τπ)

]
.(3.15)

As generalisation of Thm. 3.4 we then have the following representation of the value function v∗f :

v∗f (x) = min
g∈Gf

g(x),(3.16)
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where Gf denotes the set of stochastic supersolutions of the control problem in Eqn. (3.15), which is equal to the

collection of functions g ∈ G satisfying in addition the requirement

g(x) ≥ f(x), for all x ∈ R+.(3.17)

The corresponding local verification theorem (that generalises Cor. 3.5) states

If there exist b > a ≥ 0, π ∈ Π, τ ∈ T and g ∈ Gf such that g(x) = vπ,τ,f(x) for all x ∈ [a, b], then

we have v∗f (x) = vπ,τ,f(x) for all x ∈ [a, b].

In particular, the dynamic programming equation in Prop. 3.1 implies that when the pay-off function f is specified

by f (a) = v∗1(∞,a] for some a ∈ R+, we have v∗
f(a) = v∗.

4. Two related exit problems

The local verification theorem suggests to construct the optimal value-function step-wise, by identifying at

each stage a policy that is “locally optimal”. Such a strategy and the corresponding value-function are explicitly

constructed in Sects. 5 and 6. In preparation for these sections the problem under consideration in the current

section is the identification of the solutions of the two-sided exit problem (with two absorbing boundaries) and

the mixed absorption/reflection exit problems, in terms of the q-scale function W (q). We note that these two

solutions can both be expressed in terms of a common “continuous nonhomogeneous solution”, which we chose to

call Gerber-Shiu function – a non-standard terminology – see Defs. 4.1 and 4.2.

It is well known that, on (0,∞), W (q) is non-decreasing and everywhere right- and left-differentiable (with

finite derivative). Throughout the paper, we will denote by W (q)′(x) the right-derivative at x > 0, which is right-

continuous on (0,∞). We also recall that, if the Gaussian coefficient σ is positive, then W (q)|R+ is C2 (see [32]),

and W (q)′(0+) = 2
σ2 .

To state the stochastic representation of the solutions to the two-sided and mixed absorption/reflection problems

some extra notation is needed. Given a ∈ R+, b ∈ R+ ∪ {+∞}, a < b, let T+
b , T

−
a be the first entrance times of X

into the sets (b,∞) and (−∞, a),

T+
b = inf{t ∈ R+ : Xt > b}, T−

a = inf{t ∈ R+ : Xt < a},

with inf ∅ = +∞, and let Ta,b = T−
a ∧ T

+
b denote the two-sided exit time from the interval [a, b]. Also consider, for

any a, b ∈ R with a < b, the first-passage time into (a,∞)

τa = inf{t ∈ R+ : Y bt < a}

of the process Y b = {Y bt , t ∈ R+} that is equal to the process X reflected at the level b,

Y bt = Xt −X
b

t with X
b

t = sup
s≤t

(Xt − b) ∨ 0.

The solutions Va,bw : (a, b) → R and Ua,bw : (a, b) → R to the two-sided exit problem and the reflected exit problem

are given by

Va,bw (x) = Ex

[
exp {−qTa,b}w

(
XT−

a

)
1{T−

a <T
+
b
}

]
+ δEx

[
exp {−qTa,b}1{T−

a >T
+
b
}

]
,(4.1)

Ua,bw (x) = Ex

[
exp {−qτa}w

(
Y bτa
)]

+ β Ex

[∫ τa

0

e−qsdX
b

s

]
,(4.2)

for q ∈ R+, β, δ ∈ R, and any given Borel-measurable function w : (−∞, a] → R (the “pay-off”) satisfying the

integrability condition
∫

(b,∞)

|w(x − y)|ν(dy) <∞ for all x ∈ [a, b].(4.3)
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Def. 4.1. Let a < b < ∞, δ, β ∈ R and pay-off w : (−∞, a] → R be given. We will call F : R → R a Gerber-Shiu

function for payoff w if F |R+\{0} is right-differentiable, with right-derivative at x > 0 denoted by F ′(x), and the

following hold:

Va,bw (x) = F (x− a) +W (q)(x− a)
δ − F (b− a)

W (q)(b− a)
, x ∈ (a, b),(4.4)

Ua,bw (x) = F (x− a) +W (q)(x− a)
β − F ′(b − a)

W (q)′(b− a)
, x ∈ (a, b).(4.5)

Of course, such a function F is not unique. In this section, we construct special Gerber-Shiu functions that are

continuous on R for continuous payoffs w and continuously differentiable on R if X has unbounded variation and w

is continuously differentiable (note that neither Va,bw , Ua,bw , nor W (q) are continuous or continuously differentiable

on R in general). Note that in the literature V0,∞
w is often called a Gerber-Shiu function. The proofs of results in

this Section are deferred to Appendix B.

To each payoff w in the set R (which was defined in Def. 2.2) we associate a scale function Fw:

Def. 4.2. Let q ∈ R+ and w ∈ R. The function Fw : R→ R is given by Fw(x) = w(x) for x < 0, is continuous on

R+ and has Laplace transform given by

(4.6)

∫ ∞

0

e−θxFw(x)dx = (ψ(θ) − q)−1

[
σ2

2
[w′(0−)] +

ψ(θ)

θ
w(0)− w∗

ν(θ)

]
, θ > Φ(q),

where w∗
ν denotes the Laplace transform of wν .

Rem. 4.3. Key properties of the function Fw are collected in Appendix B.4.

The classical Gerber-Shiu function V0,∞
w (x) corresponding to penalty w can be explicitly expressed in terms of

Fw, as follows (See Biffis & Kyprianou [15] for an equivalent representation of V0,∞
w in terms of W (q)):

Prop. 4.4 (Classical Gerber-Shiu function). Let w ∈ R. For any x ∈ R it holds

(4.7) V0,∞
w (x) = Ex

[
exp

{
−qT−

0

}
w(XT−

0
)1{T−

0 <∞}

]
= Fw(x)−W

(q)(x)κw,

where

(4.8) κw :=

[
σ2

2
w′(0−) +

q

Φ(q)
w(0)− w∗

ν(Φ(q))

]
.

In particular, the following martingale properties hold true:
(
e−q(t∧T

−
a )W (q)

(
Xt∧T−

a
− a
)
, t ∈ R+

)
and(4.9)

(
e−q(t∧T

−
a )Fw

(
Xt∧T−

a
− a
)
, t ∈ R+

)
are Px-martingales, for any x, a ∈ R.(4.10)

Denoting the composition of a function f with a translation θa over a ∈ R by

af := f ◦ θa := f(·+ a).(4.11)

a regular Gerber-Shiu function is identified as follows:

Thm. 4.5. Let w ∈ R and a ∈ R.

(i) The function F
aw is a Gerber-Shiu function for the payoff aw.

(ii) If aw is continuous, then F
aw is continuous.

(iii) In the case w ∈ C1(R−) and {σ2 > 0 or ν0,1 =∞} we have F
aw ∈ C

1(R).
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4.1. Notation: generator and boundary condition. To express explicity the dependence of the infinitesimal

generator of the Feller-semigroup of X on the function w and the domain, we will denote by aLw∞ the operator

aLw∞ : C2([a,∞))→ D([a,∞)) for a ∈ R that is defined by

aL
w
∞f(x) =

σ2

2
f ′′(x) + (η + ν1(x− a))f

′(x)− (q + ν(x − a))f(x)(4.12)

+

∫

(0,x−a]

[f(x− y)− f(x) + f ′(x)y] ν(dy) +

∫

(x−a,∞)

w(x − y)ν(dy), x ≥ a,

where ν(x) = ν((x,∞)) and ν1(x) =
∫
(x,∞) yν(dy). In case that X has bounded variation the operator aLw∞ takes

the following equivalent form:

aL
w
∞f(x) = pf ′(x) +

∫

(0,x−a]

[f(x− y)− f(x)] ν(dy) +

∫

(x−a,∞)

w(x − y)ν(dy)

− (q + ν(x− a))f(x), x ≥ a.(4.13)

The operator aLw∞ coincides with L, that is, Lf(x) = aLw∞g(x) for x > a, where g = f |[a,∞) for functions f in the

set {f ∈ C2
c (R) : f |(−∞,a) = w|(−∞,a)}.

5. Single dividend-band strategies

We will first consider the case of single dividend band strategies. The value vb(x) := vπb
(x) associated to the

single dividend band strategy πb at a non-zero level b when X0 is equal to x, is given by

vb(x) = Ex

[∫ τb

0

e−qtµbK(dt) + e−qτbw(U bτb)

]
,

where µbK := µπb

K , U b := Uπb and τb = τπb = inf{t ∈ R+ : U
b+
t < 0}. In the following result vb is explicitly expressed

in terms of scale functions.

Prop. 5.1. For b+ > b− ≥ 0 and x ∈ [0, b+] it holds that

vb(x) =





w(x), x < 0,

W (q)(x) G(b−, b+) + F (x), x ∈ [0, b+],

x− b+ + vb(b+) x > b+,

(5.1)

where F = Fw and

(5.2) G(b−, b+) :=





b+ − b− −K − (F (b+)− F (b−))

W (q)(b+)−W (q)(b−)
, K > 0, b+ > b−,

1− F ′(b+)

W (q)′(b+)
, K = 0, b+ = b−.

Proof. Consider the case K > 0. Taking note of the fact that no dividend payment takes place before X reaches

the level b+ it follows that {Xt, t ≤ T0,b+} and {U
b+
t , t ≤ τπb} have the same law. In view of the strong Markov

property of X and the absence of positive jumps it follows then that for all x ∈ [0, b+] and with v = vb:

v(x) = Ex

[
e
−qT+

b+ (v(b−) + ∆b−K)1{T+
b+
<T−

0 }

]
+ Ex

[
e−qT

−

0 w(UT−

0
)1{T+

b+
>T−

0 }

]

=
W (q)(x)

W (q)(b+)
[v(b−) + ∆b−K] +

[
F (x)− F (b+)

W (q)(x)

W (q)(b+)

]
,(5.3)

where F = Fw and we used the form in Eqn. (4.4) of Vwa,b for w ≡ 0 and δ = 1, and the definition of a single dividend

band strategy. Evaluating Eqn. (5.3) at x = b−, solving the resulting linear equation for v(b−) and inserting the
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result in Eqn. (5.3) yields the stated form. The case K = 0 follows by a similar line of reasoning (using the form of

Eqn. (4.5) with β = 0, w ≡ 0 which was established in [8]). �

We next turn to the determination of the candidate optimal levels. The form of G suggests to define the level

b∗ = (b∗−, b
∗
+) as a maximizer of G(x, y) over all x, y ≥ 0 in the caseK > 0, and similarly, to define b∗+ as a maximizer

of G(x, x) over all x ≥ 0 in the case K = 0.

Rem. 5.2. Observe that in the case K > 0 the partial right-derivatives of G(x, y) are given by

∂G

∂x
(x, y) =

W (q)′(x)

W (q)[x, y]
[G(x, y) −G#(x)],

∂G

∂y
(x, y) = −

W (q)′(y)

W (q)[x, y]
[G(x, y) −G#(y)],(5.4)

where W (q)[x, y] :=W (q)(y)−W (q)(x) and G#(x) is given by

(5.5) G#(x) :=
1− F ′(x)

W (q)′(x)
.

Therefore, an interior maximum (x∗, y∗) will satisfy G(x∗, y∗) = G#(x∗) = G#(y∗), and a candidate optimum may

be found by fixing d = y − x, and optimizing the left end-point x(d) for fixed d (graphically, this would amount to

determining the highest value of the function G# where the “width” y(d)− x(d) of the function G# is d).

In the case of strictly positive K we fix therefore d > 0, we let

b∗ = b∗(d) = sup{b ≥ 0 : G(b, b+ d) ≥ G(x, x + d) ∀x ≥ 0}(5.6)

denote the last global maximum of G(x, x + d).

We choose now d∗ to be the last global maximum of G(b∗(y), b∗(y) + y):

d∗ = sup{d > 0 : G(b∗(d), b∗(d) + d) ≥ G(b∗(y), b∗(y) + y) ∀y ≥ 0},(5.7)

where inf ∅ = +∞.

The candidate optimal levels are then defined as follows:

(5.8) b∗ = (b∗−, b
∗
+) with b∗− = b∗(d∗), b∗+ = b∗(d∗) + d∗.

In the absence of transaction cost (K = 0), we set

b∗+ = b∗− = sup{b ≥ 0 : G#(b) ∨G#(b−) ≥ G#(x) ∀x ≥ 0},(5.9)

where we denote G#(0−) = G#(0).

Thm. 5.3. We have b∗+ <∞ and it holds

v∗(x) =W (q)(x)G#
(
b∗+
)
+ F (x), x ∈ [0, b∗+],(5.10)

where F = Fw. In particular, if X0 ∈ [0, b∗+], it is optimal to adopt the strategy πb∗ .

Proof. b∗+ is finite: On account of the facts that the map x 7→ G#(x) defined in (5.2) is right-continuous and

monotone decreasing for all x sufficiently large (Prop. C.1), there exists an x∗ ∈ R+ such that supx≥0G
#(x) =

G#(x∗) ∨ G#(x∗−) where G#(0−) := G#(0). In the case that K is strictly positive, G attains its maximum at

some (x∗, y∗) ∈ (R+\{0})2, since G(x, y) is continuous at any (x, y) with y > x ≥ 0, is monotone decreasing for

y sufficiently large and fixed x (Prop. C.1, Appendix C) and tends to minus infinity if x ց y and tends to the

constant κw in Eqn. (4.8) if |x|+ |y| ր ∞ such that x < y.

Verification of optimality: We claim that the function h∗ : R+ → R defined by the right-hand side of Eqn. (5.10) is

a supersolution in the sense of Def. 3.2, and hence dominates the value-function v∗. In fact, since h∗(x) is equal to

the value vb∗(x) of the strategy πb∗ for any level x of initial reserve smaller or equal to b∗+, Cor. 3.4 implies that
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h∗(x) is equal to the optimal value v∗(x) for all x ∈ [0, b∗+]. That h∗ is a supersolution follows from the facts that

we have that (a) e−q(t∧T
−

0 )h∗(Xt∧T−

0
) is a martingale and (b) h∗ satisfies the inequality

h∗(x)− h∗(y) ≥ x− y −K for any 0 ≤ y < x.

Fact (a) in turn follows from the martingale properties of Fw andW (q), while (b) follows on account of the definitions

of b∗ and G#. In the case K = 0, we have

h′∗(x) =W (q)′(x)G#(b∗)− F ′
w(x) ≥W

(q)′(x)G∗(x) − F
′
w(x) = 1, x > 0.

Similarly, if K > 0 and x > y, h∗(x)−h∗(y) = (W (q)(x)−W (q)(y))G(b∗−, b
∗
+)−Fw(x)+Fw(y) is bounded below by

(W (q)(x) −W (q)(y))G(y, x) − Fw(x) + Fw(y) = x− y −K.

The two displays imply that h∗(x) − h∗(y) ≥ x − y −K for any x, y,K ≥ 0 with x ≥ y. This completes the proof

of Thm. 5.3. �

6. Two-bands strategies

When the level of the reserves is larger than b∗+ then it may be optimal to pay out the overflow over b∗− as a

lump-sum dividend payment, and then adopt the policy πb∗ —necessary and sufficient conditions for such a strategy

to be optimal are given in Sect. 7. In this section we consider a complementary case in which it is optimal to have

a second dividend band. The problem to find the optimal levels of the second dividend band differs from the

single-band optimisation problem in two respects:

(i) at any time t prior to the time of ruin it is possible to make a lump sum payment to bring the reserves

down to the level b∗−, yielding a pay-off of vb∗(Ut) = Ut − b
∗
+ + vb∗(b

∗
+), and

(ii) it is not optimal to place a barrier at levels close to b∗+.

The observation in item (i) in combination with the dynamic programming principle and Thm. 5.3 yields the

representation

v∗(x) = sup
π∈Π,τ∈T

Ex

[∫ τ∧τπ
b∗

0

e−qtµπK(dt) + e−q(τ
π
b∗∧τ)vb∗

(
Uπτπ

b∗
∧τ

)]
,(6.1)

where τπb∗ = inf{t ≥ 0 : Uπt < b∗+}. In this section we consider the generic form of this optimal control problem

(which will also turn up in the case the optimal strategy takes the form of a general multi-dividend bands strategy

that is considered in Sect. 7), given by

V f∗ (x) = sup
π∈Π,τ∈T

V fτ,π(x), V fτ,π(x) = Ex

[∫ τ∧τπ

0

e−qtµπK(dt) + e−q(τ
π∧τ)f (Uπτπ∧τ )

]
,(6.2)

where, as before τπ = inf{t ≥ 0 : Uπt < 0}, and the function f : R→ R satisfies

f |R+ is given by f(x) = x+ c for x ∈ R+, for some c ∈ R,(6.3)

f ′(0−) = 1,(6.4)

0L
w̄
∞f(u) > 0 for some u > 0, with w̄ = f |R−

,(6.5)

lim sup
ǫց0

(V̄ f (ǫ)− f(0))/ǫ < 1,(6.6)

where V̄ f (x) is the value associated to the single band strategy πβ∗
f
(0) at the level β

∗
f (0) that is defined in Eqn. (6.13)

below.

The following result shows that in the setting of the stochastic control problem in Eqn. (6.1) the conditions in

Eqns. (6.3)—(6.6) are satisfied.
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Lem. 6.1. If we have vπb∗
(x) < v∗(x) for some x > b∗+, then the function f : R→ R defined by f(x) = vb∗(b

∗
+ +x)

satisfies the stated conditions in Eqns. (6.3)—(6.6).

The proof of this lemma is given at the end of this section. Next we specify candidate optimal policies for the

control problem in Eqn. (6.2). Since, as suggested in item (ii) above, we expect that it is not optimal to place a

barrier at levels sufficiently close to 0, and consider the strategy (τπb
a , πb) to pay out dividends according the single

dividend-band strategy πb at levels (b−, b+) and to stop at the first moment τπb
a = inf{t ≥ 0 : Uπb

t < a} that Uπb

falls below the level a > 0. Another strategy that is worth considering in case K > 0 is to refrain from paying

dividends and to stop at the first moment that the reserves process exits the interval [a, b+]; we denote this strategy

by (π∅, Ta,b+). The value associated to the strategies (τπb
a , πb) and (π∅, Ta,b+) is given by

V fa,b−,b+(x) = Ex

[∫ τ
πb
a

0

e−qtµbK(dt) + e−qτ
πb
a f

(
U b
τ
πb
a

)]
, V f,∅a,b+

(x) = Ex

[
e−qTa,b+ f

(
XTa,b+

)]
,

where µbK = µπb

K . In the following result, which can be derived by a line of reasoning similar to the one used in the

proof of Prop. 5.1, the functions V fa,b−,b+ and V f,∅a,b+
are explicitly expressed in terms of scale functions and of the

families of functions (y, z) 7→ G
(a)
f (y, z), G

(a)
f,∅(y, z), a ≥ 0, that are defined as follows:

G
(a)
f (b−, b+) =





b+ − b− −K − (F (a)(b+ − a)− F (a)(b− − a))

W (q)(b+ − a)−W (q)(b− − a)
, K > 0,

G
(a)
f,#(b+) :=

1− F (a)′(b+ − a)

W (q)′(b+ − a)
, K = 0,

(6.7)

G
(a)
f,∅(b+) =

f(b+)− F (a)(b+ − a)

W (q)(b+ − a)
,(6.8)

where F (a) = F
af is the Gerber-Shiu function for pay-off af = f(a+ ·).

Prop. 6.2. For any b−, b+, a such that b+ ≥ b− ≥ a ≥ 0 the following holds true:

V fa,b−,b+(x) =





f(x), x ∈ [0, a),

W (q)(x− a)G
(a)
f (b−, b+) + F (a)(x− a), x ∈ [a, b+],

x− b+ + V fa,b−,b+(b+), x ∈ (b+,∞);

(6.9)

V f,∅a,b+
(x) =




f(x), x /∈ [a, b+],

W (q)(x− a)G
(a)
f,∅(b+) + F (a)(x − a), x ∈ [a, b+].

(6.10)

Next we turn to the determination of the candidate optimal levels. Focussing first on the case where dividends

are paid and fixing a for the moment, we define β∗
f (a) =

(
β∗
f,−(a), β

∗
f,+(a)

)
to be the pair that maximizes G

(a)
f ,

similarly as was done in the case of the single dividend-band strategy. Hence, in the case K > 0 we set β∗
f,+(a) =

β∗
f (a, δ

∗
f (a)) + δ∗f (a) where




β∗
f (a, d) = sup

{
b ≥ a : G

(a)
f (b, b+ d) ≥ G

(a)
f (x, x + d) ∀x ≥ 0

}
,

δ∗f (a) = sup
{
d > 0 : G

(a)
f

(
β∗
f (a, d), β

∗
f (a, d) + d

)
≥ G

(a)
f

(
β∗
f (a, y), β

∗
f (a, y) + y

)
∀y ≥ 0

}
,

while in the case K = 0, we define the levels β∗
f,+(a) = β∗

f,−(a) by

β∗
f,+(a) = β∗

f,−(a) = β∗
f,#(a) := sup

{
b ≥ a : G

(a)
f,#(b) ∨G

(a)
f,#(b−) ≥ G

(a)
f,#(x) ∀x ≥ 0

}
.

The candidate optimal specification α∗
f of a is given by

α∗
f = inf

{
a ≥ 0 : G

(a)
f

(
β∗
f,−(a), β

∗
f,−(a) + d∗f (a)

)
> 0
}
,(6.11)
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in the case K > 0, and by

α∗
f = inf

{
a ≥ 0 : G

(a)
f,#

(
β∗
f,#(a)−

)
∨G

(a)
f,#

(
β∗
f,#(a)

)
> 0
}
,(6.12)

in the case K = 0, and we have

β∗
f =

(
β∗
f,−, β

∗
f,+

)
, β∗

f,− = β∗
f,−

(
a∗f
)
, β∗

f,+ = β∗
f,+

(
a∗f
)
.(6.13)

Next we turn to the strategy to continue without paying dividends and stop upon exiting a finite interval. It will

turn out that in the case K = 0 such a strategy will never be optimal. In the case K > 0 we define

β∗
f,∅(a) = sup

{
b ≥ a : G

(a)
f,∅(b) ≥ G

(a)
f,∅(x) ∀x ≥ 0

}
,(6.14)

α∗
f,∅ = inf

{
a ≥ 0 : G

(a)
f,∅

(
β∗
f,∅(a)

)
> 0
}
, β∗

f,∅ = β∗
f,∅(α

∗
f,∅).(6.15)

The levels β∗
f,+, α

∗
f , β

∗
f,∅ and α∗

f,∅ given above are finite and strictly positive:

Lem. 6.3. Suppose that f satisfies the conditions in Eqns. (6.3)—(6.6) and denote w̄ = f |R−
.

(i) In the case K = 0 we have 0 < α∗
f ≤ β∗

f,+ < ∞ and G
(α∗

f )

f,# (β∗
f−) ∨ G

(α∗
f )

f,# (β∗
f ) = 0. Furthermore, we have

0Lw̄∞f(u) ≤ 0 for all u ∈
(
0, α∗

f

)
.

(ii) In the case K > 0 it holds 0 < α∗
f,∅ ≤ β

∗
f,∅ <∞ and G

(α∗
f,∅)

f,∅ (β∗
f,∅) = 0. If we have in addition α∗

f <∞, then

it holds 0 < α∗
f < β∗

f,+ <∞ and G
(α∗

f )

f

(
β∗
f

)
= 0. Furthermore, we have 0Lw̄∞f(u) ≤ 0 for all u ∈

(
0, α∗

f,∅

)
.

(iii) If either (a) K > 0 or (b) K = 0 and X has unbounded variation, then we have α∗
f < β∗

f,+.

The proof of Lem. 6.3 is given in Sect. 10.

Rem. 6.4. The choice of α∗
f coincides with what would be found by applying the principles of continuous and

smooth fit from the theory of optimal stopping (see [40, Ch. IV.9]), which state that in this case it can be expected

that v∗ be continuous and continuously differentiable at the level α∗ if α∗ is irregular for (−∞, α∗) or if α∗ is

regular for (−∞, α∗) for Uπ∗ , where π∗ denotes the optimal strategy, respectively. Since in our case α∗ is regular

for (−∞, α∗) if and only if X has unbounded variation, the heuristic yields that

α∗ satisfies V ′
α∗,β∗(α∗+) = f ′(α∗−) if X has unbounded variation,

and

α∗ satisfies Vα∗,β∗(α∗) = f(α∗) if X has bounded variation.

The equation in the first display equation is equivalent to the expression in Eqn. (6.11) on account of the form of

Va,b and the facts (i) F ′
af
(0+) = f ′(a−) for any a > 0 and (ii) W (q)′(0+) ∈ (0,∞]. The equation in the second

display can also be equivalently expressed as Eqn. (6.11), in view of (i) the form of V fa,b−,b+ in Eqn. (6.9) and (ii)

the fact that W (q)(0) is strictly positive precisely if X has bounded variation.

We next state the solution of the optimal control problem in Eqn. (6.2) for small levels of the reserves.

Thm. 6.5. Suppose that f satisfies the conditions in Eqns. (6.3)—(6.6).

(i) When we have either K = 0 or {K > 0 and α∗
f,∅ ≥ α

∗
f}, it holds

V f∗ (x) = V fα∗
f
,β∗

f
(x) for any x ∈

[
0, β∗

f,+

]
.

Moreover, for X0 ∈
[
0, β∗

f,+

]
it is optimal to adopt the policy

(
τ
πβ∗

α∗ , πβ∗

)
.
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(ii) In the case {K > 0 and α∗
f,∅ < α∗

f}, then we have

V f∗ (x) = V f,∅α∗
f,∅
,β∗

f,∅
(x) for any x ∈

[
0, β∗

f,∅

]
.

Moreover, for X0 ∈
[
0, β∗

f,∅

]
it is optimal to adopt the policy

(
Tα∗

f,∅
,β∗

f,∅
, π∅
)
.

Furthermore we have

V f∗ (x) =




f(x), x ∈ [0, a∗),

F (a∗)(x− a∗), x ∈ [a∗, b∗],
(6.16)

where F (a∗) = F
a∗f and (a∗, b∗) =

(
α∗
f , β

∗
f,+

)
in the cases K = 0 or {K > 0 and α∗

f,∅ ≥ α∗
f}, and (a∗, b∗) =

(
α∗
f,∅, β

∗
f,∅

)
in the case {K > 0 and α∗

f,∅ < α∗
f}.

Proof of Thm. 6.5. (i) Analogously as in the proof of Thm. 5.3 it follows from the definition of β∗
f and the form of

the function V = V fα∗
f
,β∗

f
given in Prop. 6.2 that we have the inequality

V (x) − V (y) ≥ x− y −K(6.17)

for all x, y ≥ 0 satisfying x ≥ y ≥ α∗
f . Taking note of the fact V ′(x) = 1 for x ∈ (0, α∗

f ), we see that the inequality

in the previous display is in fact valid for all x and y satisfying x ≥ y ≥ 0.

Next we verify that V satisfies the inequality

V (x) ≥ f(x).(6.18)

for all x ≥ 0. To see why this relation holds true, we first note that we have V (0) = f(0), as a consequence of

the form of V (Prop. 6.2) and the fact α∗
f > 0 (Lem. 6.3). In the case K = 0, Eqn. (6.18) is hence a special

case of Eqn. (6.17) (with y = 0). In the case {K > 0 and α∗
f,∅ ≥ α∗

f}, the definitions of α∗
f,∅, β

∗
f,∅ and G

(a)
f,∅, the

monotonicity of the map x 7→W (q)(x) and the fact β∗
f,+ ≤ β

∗
f,∅ (Lem. 6.3(ii)) imply

F (a)(x− a) ≥ f(x) for all x ∈
[
0, β∗

f,∅(a)
]
and a ∈

[
0, α∗

f,∅

]
,

which yields the inequality in Eqn. (6.18), in view of the facts V (x) = F (a)(x − a) for x ≤ b := β∗
f,+ and V (x) =

V (b) + x− b for x > b (Prop. 6.2 and Lem. 6.3(i)).

In view of the observations

e
−q

(

t∧T0,α∗
f

)

f
(
Xt∧T0,α∗

f

)
is a Px-supermartingale, for all x ∈

(
0, α∗

f

)
, and(6.19)

e
−q

(

t∧T−

α∗
f

)

F (α∗
f )

(
Xt∧T−

α∗
f

− α∗
f

)
is a Px-martingale, for all x ≥ α∗

f ,(6.20)

and the pasting lemma, it follows that

e−q(t∧T
−

0 )F (α∗
f )
(
Xt∧T−

0
− α∗

f

)
is a Px-super martingale, for all x ∈ R+.

Here, the supermartingale property in Eqn. (6.19) follows from Lem. 6.3(i), reasoning as in the proof of Lem. 7.13

below, while the martingale property in Eqn. (6.20) follows from Prop. 4.4.

This supermartingale property and the inequalities in Eqns. (6.17) and (6.18) imply that F (α∗
f )(x − α∗

f ) is a

stochastic supersolution for the stochastic control problem in Eqn. (6.2). Since we have V fα∗
f
,β∗

f
(x) = F (α∗

f )(x− α∗
f )

for x ≤ β∗
f , the assertion follows from Rem. 3.10.

(ii) The line of reasoning is analogous to the one in part (i), and omitted. �
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Figure 1. Illustrated in the figure on the left is a path of the risk process Uπ in the absence of transaction

cost (K = 0) for a three-bands strategy with the lowest level b+1 equal to zero. The figure on the right

pictures a path of the risk process Uπ in the case K > 0 and π is a two-bands strategy with b
−

2 = b
−

1 . The

vertical dashed stretches represent the claims, while lump sum dividend payments are indicated by arrows.

At the moment τ of ruin a penalty payment w(Uτ ) is required that is a function of the shortfall Uτ

Proof of Lem 6.1. We verify that the conditions in Eqns. (6.3)—(6.6) are satisfied. Firstly, we note that the condi-

tion in Eqn. (6.3) holds since we have vb∗(x) = x− b∗+ + vb∗(b
∗
+) for x > b∗+ and v′b∗(b

∗
+−) = 1. Furthermore, if the

condition in Eqn. (6.5) does not hold then we have vb∗ = v∗ by Thm. 7.3 in Sect. 7 below. In view of the definition

of b∗ in Eqns. (5.8) and (5.9) (as last supremum) it follows that we have G(b∗−, b
∗
++ c)−G(b∗−, b

∗
+) < 0 for all c > 0.

Hence, the identity in Eqn. (C.1) in the Appendix implies

F ′
vb∗

(c) > 1 for all c > 0,(6.21)

so that G
(0)
f (β∗

f (0)) < 0. That the condition in Eqn. (6.6) is satisfied follows from the form of V fa,b−,b+ in Eqn. (6.9)

and the facts (from Thm. 4.5) F
b∗
+
vb∗ (0) = vb∗(b

∗
+), and F ′

vb∗
(0) = v′b∗(b

∗
+−) = 1 (in the case {σ2 > 0 or ν0,1 =

∞}). �

7. Multi dividend-band policies: the recursion for the dividend band levels

A flexible class of dividend strategies are the so-called multi dividend-bands strategies, that generalize the single

and double dividend-bands strategies and are specified as follows:

Def. 7.1. The multi dividend-bands strategy πa,b, associated to sequences a = (an)n, b
− = (b−n )n, b

+ = (b+n )n with

an, b
−
n , b

+
n ∈ [0,∞] satisfying the intertwining conditions

a1 = 0 ≤ b+1 < a2 ≤ b
+
2 < ... < an ≤ b

+
n < . . . , b−n ≤ b

+
n ,

is described as follows:

(i) When we have Ua,b := Uπa,b = y ∈ (b+n , an+1), make a lump-sum payment y − b−n ;

(ii) When we have Ua,b = b+n make a lump-sum payment b+n − b
−
n , if K > 0, and pay the minimal amount to

keep Ua,b below b−n = b+n if K = 0;

(iii) While we have Ua,b ∈ [an, b
+
n ) do not pay any dividends.

The strategy πa,b is called an N -dividend-bands strategy if b+N <∞ = aN+1.

Analogously s in Rem. 3.7 it follows that in the case K = 0 a multi dividend-bands strategy πa,b consists in

paying out “the minimal amount to keep U
a,b
t below the boundary b(t)”, where

b(t) = b+ρ(t) with ρ(t) = min{i ≥ 1 : U
a,b
t < ai}.
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In this case the process Ua,b is equal to the process X is reflected at the level b+ρ(t) and the corresponding cumulative

dividend process Da,b is equal to a local time of Ua,b at the boundary b = (b(t))t∈R+ . In the case of a positive fixed

transaction cost K the “reflection boundaries” b+n widen to strips [b−n , b
+
n ] and the “local time” type payments are

replaced by lump-sum payments b+n − b
−
n where b−n may lie below an−1 (see Figure 7).

7.1. Optimality of single band policies. A necessary and sufficient condition for the optimality of the single

band policy πb∗ at levels b = b∗1 = (b∗−, b
∗
+) defined in Eqns. (5.8)–(5.9) can be explicitly expressed in terms of the

function G∗ : (b∗−,∞)→ R given by

G∗(y) = G(b∗−, y) =





y − b∗− −K − (F (y)− F (b∗−))

W (q)(y)−W (q)(b∗−)
, if K > 0,

G#(x) =
1− F ′(x)

W (q)′(x)
, if K = 0.

(7.1)

We present next necessary and sufficient optimality conditions for single barrier policies, which generalize the

results of [8]. These conditions are expressed in terms of the following function:

Def. 7.2. For q ∈ R+, v ∈ R+, the function Z(q,v) : R→ R is defined by Z(q,v)(x) = evx for x ≤ 0 and, for x > 0,

by

Z(q,v)(x) = evx + (q − ψ(v))

∫ x

0

ev(x−y)W (q)(y)dy.(7.2)

Recall that a function f : (a,∞) → R+\{0}, a ∈ R, is completely monotone if (−1)k−1f (k)(x) ≥ 0 for all k ∈ N

and x > a, where f (k) denotes the kth derivative with respect to x.

Thm. 7.3. (i) The single-band policy πb∗ at level b∗ = b∗1 is optimal for the stochastic control problem (2.4) if and

only if

b∗+
(Lw∞vb∗+ − q vb∗+)(x) ≤ 0,

or, alternatively, if and only if Ξ∗ : (Φ(q),∞)→ R is completely monotone, where

Ξ∗(θ) = −
eθb

∗
+

θ

∫

(b∗+,∞)

e−θzZ(q,θ)′(z)G∗(dz).(7.3)

(ii) In particular, if G∗ is non-increasing on (b∗+,∞), then the strategy πb∗ is optimal.

Thm. 7.3(ii) yields a useful very simple sufficient optimality condition:

Cor. 7.4. (i) The unimodality of the function G∗ implies the optimality of single dividend-band policies.

(ii) In particular, in the case K = 0 and if G# is monotone decreasing, then a “lump sum” strategy π0 is optimal.

The proof of Thm. 7.3 is given in Sect. 10.2.

Rem. 7.5. In the absence of transaction cost (K = 0), the function Ξ∗ in (7.3) can be equivalently expressed as

Ξ∗(θ) = G#(b∗+)L0(θ) +
(ψ(θ)− q)

θ2
E[F ′(b∗+ + eθ)− F

′(b∗+)],

where eθ denotes an independent exponential random variable with mean θ−1 and L0 : R+\{0} → R is given by

θ 7→ L0(θ) :=
ψ(θ) − q

θ2
E[W (q)′(b∗+ + eθ)−W

(q)′(b∗+)].

In particular, if the penalty is zero and there are no transaction cost (w = K = 0), the necessary and sufficient

optimality condition simplifies to the complete monotonicity of L0(θ) on the interval (Φ(q),∞). This observation

appears new even in this particular case.
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Rem. 7.6. The integral in Eqn. (7.3) is a Stieltjes integral with respect to the function G∗, which is equal to a

difference of two monotone real-valued functions (cf. Lem. B.2(vi)).

Rem. 7.7 (Lump sum strategy). In the absence of transaction cost (K = 0), the “lump sum” strategy π0 is

to “pay out all the reserves to the beneficiaries and subsequently pay all the premiums as dividends, until the

moment of ruin.” Note that π0 is a single dividend-band strategy at level 0. In the case that X is given by the

Cramér-Lundberg model, the first jump (claim) arrives after an exponential time eλ with finite mean λ−1, and the

value v0 of the liquidation strategy is equal to

v0(x) = Ex

[
x+ p

∫
eλ

0

e−qtdt+ e−qTw(∆Xeλ
)

]

= Ex

[
x+

p

q
(1 − e−qeλ) + e−qeλ(w(∆Xeλ

)− w(0)) + w(0)e−qeλ

]

=

[
x+

p

λ+ q
+

1

λ+ q
wν(0) +

λ

λ+ q
w(0)

]
=

[
x+

p+ wν(0) + λw(0)

λ+ q

]
,

where ∆Xeλ
= X(eλ)−X(eλ−), and wν : R+\{0} → R is defined by (2.3). If X0 is zero and X has infinite activity,

ruin occurs immediately if strategy π0 is followed, that is, in this case τπ0 = 0, P0-a.s. and v0(x) = x+ w(0).

Hence, the value of the lump-sum strategy is equal to v0(x) = (x+ γw)1{x≥0} + w(x)1{x<0} where

γw = v0(0) =





1
q+ν [p+ wν(0) + ν w(0)] , in the case ν := ν(R+) <∞,

w(0), in the case ν =∞.

If G# is monotone decreasing, it attains it maximum over R+ at zero and the function Ξ is completely monotone,

so that π0 is optimal (Thm. 7.3(ii)).

Rem. 7.8 (Single barrier strategies at positive levels). In the absence of transaction cost (K = 0) we will call

a penalty w ∈ R severe if (i) w(0) ≤ γw := v0(0), and (ii) w(x + y) − w(y) ≤ x for all x, y ∈ R−. Condition

(i) states that the penalty payment for ruin occurring without shortfall is not smaller than the expected value

minus transaction cost of liquidation (i.e. the sum of the expected premium income until the moment of ruin and

the expected penalty payment), while condition (ii) implies that the additional penalty payment for an additional

shortfall of size x is at least x.

We have the following explicit condition for optimality of a single barrier-strategy at a positive level:

Cor. 7.9. In the case {K = 0 and b∗1 > 0}, if ν admits a convex density ν′ and the penalty w is severe, then the

strategy πb∗1 is optimal.

The proof of Cor. 7.9 is given in Appendix C.

7.2. Optimality of two-bands policies. When a single dividend-band strategy is not globally optimal for the

stochastic control problem in Eqn. (2.4), it is not optimal to pay out a lump-sum dividend at all levels above b∗+
and will be optimal to postpone paying dividends when the reserves process is in a certain region of (b+∗ ,∞). In

this section we consider the case that it is optimal to adopt a two-bands policy with only one additional band. The

candidate optimal two-bands strategy πa∗,b∗ is fixed at the levels a∗ = (0, a∗2) and b∗ = (b∗1, b
∗
2) where the levels

b∗1 = (b∗−, b
∗
+) associated to the first band have been defined in Eqns. (5.8)–(5.9), and where the levels associated to

the second band are given by

{a∗2, b
∗
2} = b∗1,+ +





{
α∗
w∗ ,
(
β∗
w∗,−, β

∗
w∗,+

)}
, in the cases K = 0 and {K > 0 and α∗

w∗,∅ ≥ α
∗
w∗};{

α∗
vb∗1

,∅,
(
b∗−, β

∗
w∗,∅

)}
, in the case {K > 0 and α∗

w∗,∅ < α∗
w∗}
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where we denote

w∗ := b∗1,+
vb∗1

and the levels α∗
w∗ , α∗

w∗,∅, β
∗
w∗,−, β

∗
w∗,+ and β∗

w∗,∅ have been defined in Eqns. (6.11)–(6.14).

Necessary and sufficient conditions for the two-bands policy πa∗,b∗ to be (globally) optimal are expressed in terms

of the functions Ξ∗ defined in Eqn. (7.3) and the function

Ξ∗∗ =




Ξa∗2 ,b∗2 (w

∗) in the cases K = 0 and {K > 0 and α∗
w∗,∅ ≥ α

∗
w∗},

Ξ∅
a∗2 ,b

∗
2
(w∗) in the case {K > 0 and α∗

w∗,∅ < α∗
w∗},

where for any levels a, b− and b+ with a ≤ b− ≤ b+ and any f ∈ P the functions Ξa,b−,b+(f) and Ξ∅
a,b+

(f) are given

by

Ξa,b−,b+(f) : θ 7→ −
eθb+

θ

∫

(b+,∞)

e−θzZ(q,θ)′(z)G
(a)
f,b−

(dz),

Ξ∅
a,b+

(f) : θ 7→ −
eθb

θ

∫

(b,∞)

e−θzZ(q,θ)′(z)G
(a)
f,∅(dz),

with, for any z ≥ b−, G
(a)
f,b−

(z) := G
(a)
f (b−, z), where the functions G

(a)
f,∅ and G

(a)
f have been defined in Eqns. (6.8)

and (6.7).

Before stating the optimality condition for this two-bands policy, we first state a condition for (global) optimality

of the policies
(
τ
πβ∗

f

α∗
f
, πβ∗

f

)
and

(
Tα∗

f,∅
,β∗

f,∅
, π∅
)
in the auxiliary stochastic optimal control problem in Eqn. (3.15).

Thm. 7.10. Suppose that f satisfies the conditions in Eqns. (6.3)—(6.6).

(i) Suppose that we have either K = 0 or {K > 0 and α∗
f,∅ ≥ α

∗
f}. Then the strategy (τ

πβ∗
f

α∗
f
, πβ∗

f
) is optimal for

the stochastic optimal control problem in Eqn. (3.15) if and only if the function Ξα∗
f
,β∗

f,−
,β∗

f,+
(f) is completely

monotone.

(ii) Suppose that we have {K > 0 and α∗
f,∅ < α∗

f}. Then the strategy
(
Tα∗

f,∅
,β∗

f,∅
, π∅
)
is optimal for the stochastic

optimal control problem in Eqn. (3.15) if and only if the function Ξα∗
f,∅
,β∗

f,∅
(f) is completely monotone.

The relationship between the stochastic control problems in Eqns. (2.4) and (3.15) (cf. discussion at the beginning

of Sect. 6) immediately yields necessary and sufficient conditions for the two-bands strategy πa∗,b∗ to be an optimal

policy (from Thm. 7.10) and the form of the optimal strategy that should be applied when reserves are below b∗2,+
(from Thm. 6.5).

Cor. 7.11. (i) The two-bands strategy πa∗,b∗ at finite levels a = (0, a∗2) and b = (b∗1, b
∗
2) is optimal for the stochastic

control problem in Eqn. (2.4) if and only if Ξ∗ is not completely monotone and Ξ∗∗ is completely monotone.

(ii) If Ξ∗ is not completely monotone then the levels a∗2 and b∗2,+ are finite, and it is optimal to adopt the two-bands

strategy πa∗,b∗ when X0 ∈ [0, b∗2,+], and it holds (with F
(a∗2,+)
∗ = F

a∗
2,+

v∗)

v∗(x) =





W (q)(x)
1−F ′

w(b∗1,+)

W (q)′(b∗1,+)
+ Fw(x), x ∈ [0, b∗1,+],

x− b∗1,+ + v∗(b
∗
1,+), x ∈ (b∗1,+, a

∗
2,+),

F
(a∗2,+)
∗ (x− a∗2,+), x ∈ [a∗2,+, b

∗
2,+].

(7.4)

The proof of Thm. 7.10 is given in Sect. 10.2.
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7.3. Large levels of the reserves. From the form of the infinitesimal generator L it can be deduced that the

value-function is affine for large levels of the reserves.

Prop. 7.12. Suppose that either K = 0 or {K > 0 and ν(R+) < ∞}. Then, for sufficiently large levels of the

reserves, it is optimal to immediately pay out a lump-sum dividend, and for some y ∈ R+, the function v∗ restricted

to [y,∞) takes the form

v∗(x) = x− y + v∗(y) for any x− y ∈ R+.

The proof rests on the following observation:

Lem. 7.13. Suppose that the function ℓy : [y,∞)→ R defined by ℓy(x) = x− y + v∗(y) satisfies

(yL
v∗
∞ℓy)(x) ≤ 0 ∀x > y.

Then {e−q(t∧T
−
y )ℓy(Xt∧T−

y
), t ∈ R+} is a Px-supermartingale for all x ≥ y.

Proof. An application of Itô’s lemma (which is justified since ℓy ∈ C
2([y,∞))) shows

e−q(t∧T
−
y )ℓy(Xt∧T−

y
)−

∫ t∧T−
y

0

e−qs(Lℓy)(Xs)ds is a Px-martingale, for x ≥ y,(7.5)

Here we used that we have
∫ T−

y

0 1{Xs=y}ds = 0, Px-a.s. for all x ≥ y, Lem. 7.13 and Eqn. (7.5) imply the asserted

supermartingale property. �

Proof of Prop. 7.12. We claim that in the cases K = 0 and {K > 0 and ν(R+) < ∞} we have the inequality in

Lem. 7.13 for all y ∈ R+ sufficiently large. The assertion in Prop. 7.12 follows by combining Prop. 9.5, Lem. 7.13

and the shifting lemma, Lem. 9.6 below.

We next show that the criterion in Lem. 7.13 is satisfied. Observe that, for any x ∈ R+,

(yL
v∗
∞ℓy)(x) = ηℓ′y(x)− qℓy(x) +

∫

R+\{0}

[ℓy(x− z)− ℓy(x) + zℓ′y(x)]ν(dz)(7.6)

= η − q(x− y + v∗(y)) +

∫

(x−y,∞)

[v∗(x − z)− v∗(y) + z + y − x]ν(dz).

Since we have v∗(x−z)−v∗(y) ≤ x−z−y+K for all z ∈ (x−y, x) on account of Lem. 9.1 below, and since w is non-

positive, it follows that the integral term in (7.6) is bounded above by Kν(x− y, x)+
∫
[x,∞)

(z+ y−x− v∗(y))ν(dz).

Moreover, since v∗ is bounded by an affine function (Lem. 9.3(ii)) and ν1,∞ is finite, the integral tends to zero

when x = y + a and y tend to infinity such that a = x − y is fixed to be equal to a positive constant. As we have

v∗(y) → ∞ as y → ∞ (Lem. 9.3) and Kν(a,∞) is bounded under the assumptions (a) and (b), it follows that

(yLv∗∞ℓy)(x) is strictly negative for all y sufficiently large and all x > y. �

7.4. General solution of the stochastic control problem. Repeatedly solving optimal control problems that

are of the same form as the one in Eqn. (3.15) but with suitablly updated choices of reward functions f and

successively applying Thm. 6.5, would suggest that the candidate optimal policy is given by a multi-dividend-bands

strategy πa∗,b∗ with levels a∗, b∗ specified in the recursive construction given below, and with corresponding value

function Va∗,b∗ = vπa∗,b∗
given by

(7.7) Va∗,b∗(x) :=





W (q)(x)C∗
1 + Fw(x), x ∈ [a∗i−1, b

∗
i,+], i = 1,

x− b∗i,− + Va
∗
,b

∗
(b∗i,−), x ∈ (b∗i,+, a

∗
i+1), i ≥ 1,

Ffi(x− a
∗
i ), x ∈ [a∗i , b

∗
i,+], i > 1,
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where fi : R− → R is given by fi(x) = Va
∗
,b

∗
(a∗i−1 + x), i > 1, and

C∗
1 = G(b∗1,−, b

∗
1,+) ∨G(b

∗
1,−, b

∗
1,+−).

The recursive procedure for obtaining the candidate optimal levels a∗, b∗− and b∗+ is given as follows:

Recursion to find the candidate optimal band levels

[0.] Set i← 1, a∗ ← {0}, b∗ ← {b∗}, f ← b∗+
v∗b and Ξ← Ξ∗(f), where Ξ∗(f) is given by Eqn. (7.3).

[1.] If Ξ is completely monotone, set a∗ ← a∗ ∪ {∞}. Return {a, b}.

[2.] Else if K = 0 or if {K > 0 and α∗
f,∅ ≥ α

∗
f} define

(
a∗i+1, b

∗
i+1

)
←
(
b∗i,+ + α∗

f , b
∗
i,+ + β∗

f

)
,

where the levels α∗
f and β∗

f are defined in Eqns. (6.11) and (6.13) above.

Else if {K > 0 and α∗
f,∅ < α∗

f} define
(
a∗i+1, b

∗
i+1

)
←
(
b∗i,+ + α∗

f,∅,
{
b∗∗i,−, b

∗
i,+ + β∗

f,∅

})
.

with

b∗∗i,− = inf
{
b∗i,− : Va∗,b∗(b

∗
i,+ + β∗

f,∅)− Va∗,b∗(b
∗
i,−) = β∗

f,∅ + b∗i,+ − b
∗
i,− −K

}
.

where the levels α∗
f,∅ and β∗

f,∅ are defined in Eqn. (6.14) above.

[3.] Set a∗ ← a ∪ {a∗i+1}, b
∗ ← b ∪ {b∗i+1}, f ← b∗i+1,+

Va∗,b∗ , Ξ← Ξa∗,b∗(f), i← i+ 1.

[4.] Go to step 1.

Rem. 7.14. There may exist a limit point γ∗ = limi→∞ b∗i,+ = limi→∞ a∗i of the band levels. In that case the

procedure will converge to the value-function Vã∗,b̃
∗ corresponding to the levels ã∗ = (a∗i ), b̃

∗
= (b∗i ), and needs to

be re-started as follows:

[0.′ ] Set i← 1, a∗ ← ã∗, b∗ ← b̃
∗
, f ← γ∗Vã∗,b̃∗ , Ξ← Ξã∗,b̃∗(f).

In the following result it is confirmed that the constructed candidate policy πa∗,b∗ is indeed optimal:

Thm. 7.15. The multi dividend-bands strategy πa∗,b∗ is an optimal strategy for the control problem in Eqn. (2.4)

and the optimal value function is given by v∗ = Va∗,b∗ .

Rem. 7.16. In Shreve et al. [46, p. 74] an explicit example is given of an optimal control problem in a diffusion

setting in which a multi-dividend-bands strategy is optimal with countably many bands. Azcue & Muler [11]

provide an example of an optimal strategy with infinitely many bands below a finite level, for the classical De

Finetti’s dividend problem with bounded dividend rates in the setting of a compound Poisson process. It is an open

problem to construct an explicit example in which a multi-dividend-bands strategy with countably many bands is

optimal in the dividend-penalty problem.

8. Examples

8.1. Exponential and polynomial boundary conditions. In the case that the penalty w is exponential, w(x) =

−exv for x ∈ R−, or polynomial, w(x) = xk for x ∈ R− and k ∈ N, the solutions of the two-sided and mixed

absorbing/reflected exit problems from Sect. 4 can be expressed in terms of the function Z(q,v) specified in Def. 7.2

and closely related functions Zk that are defined as follows:
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Def. 8.1. With n the largest integer such that
∫ −1

−∞ |x|
nν(dx) < ∞, the related family of functions Zk : R → R,

k = 0, . . . n, is defined by

Zk(x) =
∂k

∂vk

∣∣∣∣
v=0+

Z(q,v)(x).(8.1)

Note that, for any q, v ∈ R+, Z
(q,v)|R+ is C1, as a consequence of the continuity of W (q)|R+ .

Let ev(x) := evx1R−
(x) denote an exponential pay-off, and ev,a :=−a ev the translated version. In the case

δ = β = 0 and with pay-off w = ev,a the functions Uwa,b and Vwa,b are given as follows (with proof given in

Appendix B.4):

Prop. 8.2. For q ∈ R+ and v ∈ R+, Z
(q,v) is a Gerber-Shiu function with payoff ev,a. In particular, the following

hold true:

Va,bev,a (x) = Ex

[
e−qTa,b+v(XTa,b

−a)1{T−
a <T

+
b
}

]
= Z(q,v)(x− a)−W (q)(x− a)

Z(q,v)(b− a)

W (q)(b− a)
,(8.2)

Ua,bev,a (x) = Ex

[
e−qτa+v(Y

a
τa

−a)
]
= Z(q,v)(x− a)−W (q)(x − a)

Z(q,v)′(b− a)

W (q)′(b − a)
.(8.3)

For use in the sequel we record the special case of the kth moment of the overshoot

(8.4) mk(x) := Ex

[
e−qTa,b(XTa,b

− a)k1{T−
a <T

+
b
}

]
, m̃k(x) := Ex

[
e−qτa(Y aτa − a)

k
]
,

which follows as a direct consequence of Prop. 8.2. If E[|X1|k] <∞, then ψ(r)(0) andmr(x) are finite for r = 1, . . . , k,

and it follows that mk(x) and m̃k(x) are equal to the kth derivative of (8.2) and (8.3) with respect to v at v = 0.

This implies the following form of mk(x) and m̃k(x):

Cor. 8.3. Let k ∈ N. Suppose that
∫ −1

−∞
|x|kν(dy) <∞. Then, for x ∈ [a, b], mk(x) and m̃k(x) are finite, and are

given by

mk(x) = Zk(x− a)−W
(q)(x − a)

Zk(b− a)

W (q)(b − a)
, m̃k(x) = Zk(x− a)−W

(q)(x− a)
Z ′
k(b− a)

W (q)′(b− a)
.

In particular, Zk is a Gerber-Shiu function with payoff w(x) = (x− a)k.

8.2. General computations for processes with rational Laplace exponent. The determination of the opti-

mal policy start with the identification of the last global maximum of the barrier influence function G. For example,

in the presence of an exponential penalty w(x) = cevx or a linear penalty w(x) = cx + c0, we must compute the

extrema of the functions

G(v)(x) :=
1− cZ(q,v)′(x)

W (q)′(x)
, G1(x) :=

1− cZ ′
1(x)− c0qW

(q)(x)

W (q)′(x)
,(8.5)

respectively.

Therefore, our first step will be computing the homogeneous and generating scale functions W (q)(x), Z(q,v)(x),

for processes with rational Laplace exponent. We will assume the typical case

W (q)(x) =
∑

Aie
ζi(q)x,

with Ai ∈ R and the roots ζi(q) of the Cramér-Lundberg equation ψ(ζ) = q being distinct.

This implies

Z(q,v)(x) = evx(1 + (q − ψ(v))

∫ x

0

e−vyW (q)(y)dy) = evx + (q − ψ(v))
∑

i

Ai
eζi(q)x − evx

ζi(q)− v
(8.6)

= (ψ(v)− q)
∑

i

Ai
v − ζi(q)

eζi(q)x,(8.7)
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where we have used that
∑ Ai

v−ζi(q)
= 1

ψ(v)−q . In particular,

Z(q)(x) = q
∑

i

Ai
eζi(q)x

ζi(q)
,(8.8)

Z1(x) = Z
(q)

(x) − ψ′(0)W
(q)

(x) = q
∑

i

Ai
eζi(q)x

ζ2i (q)
− ψ′(0)

∑

i

Ai
eζi(q)x

ζi(q)
,(8.9)

and

Z(q,v)(x) = Z(q)(x) +
∑

i

Aie
ζi(q)x

v

v − ζi(q)

(
ψ(v)

v
−

q

ζi(q)

)
.

The simplest examples may be completely analyzed by studying the sign of the functions that are given by

D#(x) = −G#′(x)W (q)′(x)2, and D∗(x) = −G∗′(x)W (q)′(x)2, which determine the critical point b∗ (in particular

whether it is 0), and the eventual unimodality after b∗, which implies optimality of the single barrier policy. To

alleviate notation, we will omit the #, ∗ in this section, since the function considered can always be inferred from

the absence/presence of transaction costs.

For exponential and affine penalties, we must compute therefore

D(v)(x) = −G(v)′(x)W (q)′(x)2 =W (q)′′(x) + c(W (q)′(x)Z(q,v)′′(x) −W (q)′′(x)Z(q,v)′(x)),

D1(x) = −G
′
1(x)W

(q)′(x)2

=W (q)′′(x)− c(Z ′
1(x)W

(q)′′(x) − Z ′′
1 (x)W

(q)′(x)) − c0(Z(x)
′W (q)′′(x) − Z ′′(x)W (q)′(x))

=W (q)′′(x)− c(Z(q)(x)W (q)′′(x) − Z(q)′(x)W (q)′(x)) + (cψ′(0)− c0q)(W
(q)(x)W (q)′′(x)− (W (q)′(x))2),

which results in

D(v)(x) = W (q)′′(x)(1 − cZ(q,v)′(x)) + cZ(q,v)′′(x)W (q)′(x)

=
∑

j

Ajζj(q)
2eζj(q)x + c(ψ(v) − q)

∑

j

∑

k>j

ζj(q)ζk(q)(ζj(q)− ζk(q))2

(v − ζj(q))(v − ζk(q))
AjAke

(ζj(q)+ζk(q))x,

D1(x) =
∑

j

Ajζj(q)
2eζj(q)x − cq

∑

j

∑

k>j

(ζj(q) + ζk(q))

ζj(q)ζk(q)
(ζj(q)− ζk(q))

2AjAke
(ζj(q)+ζk(q))x

+(cψ′(0)− c0q)
∑

j

∑

k>j

(ζj(q)− ζk(q))
2AjAke

(ζj(q)+ζk(q))x.

(Note that the coefficients of c and cψ′(0) − c0q are the intervening Wronskians, and that the function D(v)(x) −

W (q)′′(x) is a generating function for the corresponding functions obtained with polynomial penalties).

Let us record also the form of the function (bLf∞v − qv)(x) in case v is the linear value function following a

continuation interval x ≥ b > a,

(bL
f
∞v − qv)(x) = p− (λ+ q)(x − b+ v(b))

+

(∫ x−b

0

(x− y − b+ v(b))ν(dy) +

∫ x−a

x−b

v(x− y)ν(dy) +

∫ ∞

x−a

f(x− y)ν(dy)

)
,

where v(x) = v(x, a, b) = F (x)+G(a, b)W (x), is the value in the preceding continuation band, and f(x) denotes the

value function in previous bands (which is equal to the penalty w on the negative half-line), which is the cornerstone

in the determination of the optimal dividend band policy. The three integrals correspond respectively to jumps

above the barrier, in the preceding continuation band, and in the “preceding stopping domain”.
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8.3. Cramér-Lundberg model with exponential jumps. We analyze now the Cramér-Lundberg model (1.1)

with exponential jump sizes with mean 1/µ, jump rate λ, and Laplace exponent ψ(s) = ps − λs/(µ + s). The

homogeneous scale function is:

W (q)(x) = A+e
ζ+(q)x −A−e

ζ−(q)x,

where A± = p−1 µ+ζ±(q)
ζ+(q)−ζ−(q) , and ζ

+(q) = Φ(q), ζ−(q) are the largest and smallest roots of the polynomial (ψ(s)−

q)(s+ µ) = ps2 + s(pµ− λ− q)− qµ:

ζ±(q) =
q + λ− µp±

√
(q + λ− µp)2 + 4pqµ

2p
.

Hence, we find

Z(q)(x) = q

(
A+

ζ+(q)
eζ

+(q)x −
A−

ζ−(q)
eζ

−(q)x

)
= µ−1

(
ζ+(q)A−e

ζ−(q)x − ζ−(q)A+e
ζ+(q)x

)

=
(q − ζ−(q))eζ

+(q)x + (ζ+(q)− q)eζ
−(q)x

ζ+(q)− ζ−(q)
,

Z(q,v)(x) = Z(q)(x) + λ
v

v + µ

eζ
+(q)x − eζ

−(q)x

ζ+(q)− ζ−(q)
,

D(v)(x) = W (q)′′(x) + c
ψ(v) − q

(v − ζ+(q))(v − ζ−(q))
A+A−(ζ

+(q)− ζ−(q))2(−(ζ+(q)ζ−(q)))e(ζ
+(q)+ζ−(q))x

= α+e
ζ+(q)x − α−e

ζ−(q)x + cαve
(ζ+(q)+ζ−(q))x,

where

α+ = A+(ζ+(q))
2 > 0, α− = A−(ζ−(q))

2 > 0, C = (µ+ ζ+(q))(µ + ζ−(q)) =
λµ

p
> 0,

αv =
p

v + µ

C

p2
qµ

p
=
λqµ2

p3
1

v + µ
> 0.

Then, differentiating v 7→ Z(q,v)(x), v 7→ αv or by (8.9) and using that (ζ+(q) + ζ−(q) )/(ζ+(q) ζ−(q) ) =

ψ′(0)/q − 1/µ, we find

Z1(x) = λµ−1 e
ζ+(q)x − eζ

−(q)x

ζ+(q)− ζ−(q)
= C+e

ζ+(q)x + C−e
ζ−(q)x,

D1(x) = α+e
ζ+(q)x − α−e

ζ−(q)x + α1e
(ζ+(q)+ζ−(q))x,

where C± = ±λµ−1(ζ+(q)− ζ−(q))−1 and

α1 = A+A−(ζ
+ − ζ−)2(cq

ζ+ + ζ−

ζ+ζ−
− cψ′(0) + c0q)

=
C

p2
(c0q − c

q

µ
) =

λq

p3
(c0µ− c).

Let us recall now that in the absence of penalty and costs (w(x) = K = 0), the function W (q)′(x) = G(x)−1 is

unimodal [8] with global minimum at

b∗ =
1

ζ+(q)− ζ−(q)




log ζ−(q)2(µ +ζ−(q))

ζ+(q)2(µ +ζ+(q)) , in the case W (q)′′(0) < 0⇔ (q + λ)2 − pλµ < 0,

0, in the case W (q)′′(0) ≥ 0⇔ (q + λ)2 − pλµ ≥ 0.

(Since W (q)′′(0) ∼ ζ+(q)2(µ + ζ+(q))− ζ−(q)2(µ + ζ−(q))/(ζ+(q))− ζ−(q)) = (q+λ)2−pλµ , the optimal strategy

is always the barrier strategy at level b∗).



28 FLORIN AVRAM, ZBIGNIEW PALMOWSKI, AND MARTIJN R. PISTORIUS

We show next that the functions G(v) and G1 continue to be unimodal when w is exponential or affine and

K = 0, as a consequence of the Lemma 8.4 below, and hence single barrier policies continue to be optimal, in view

of Lem. 7.4 (in the case of affine penalties this has already been established in [36, 9]).

Lem. 8.4. Let αi, λi ∈ R, i = 1, 2, 3 satisfy α1 > 0 > α3, and λ1 > λ2 > λ3. Then the function f(x) :=
∑3

i=1 αie
λix

has a unique root c∗ of f(c∗) = 0, and it holds f ′(c∗) > 0, and

f(x) > 0 for all x > c∗.

Furthermore, if h : R+ → R is such that h′(x) = k(x)f(x) for x > 0, where k : R+ → R+\{0}, then h is unimodal.

Proof. The function g(x) := e−λ3xf(x) tends to +∞ and to α3 < 0 as x → ±∞. If we have α2 ≥ 0, g is strictly

convex and strictly increasing. In the case α2 < 0, g attains a minimum at the unique root of g′. In both cases

the equation g(c) = 0 admits a unique root c, and it holds g′(c) > 0. Hence we have that c is a unique root of

f(c) = 0, with f ′(c) > 0 and with f(x) > 0 for x > c. In particular, h has a unique stationary point where it attains

a maximum, so that it is unimodal. �

Let us next characterize the optimal level b∗.

(1) For K = 0 and in the case of an exponential penalty, b∗v,+ = 0 iff

G(v)′(0) ≤ 0⇔ (q + λ)2 − λµp ≥ −cλq
µ2

v + µ
,

as follows from the expression for D(v)(x). Similarly, in the case of linear penalty, it holds b∗1,+ = 0 iff

G′
1(0) ≤ 0⇔ (q + λ)2 − λµp ≥ λq(c − c0µ),

in view of the expression for D1(x). If b
∗
+ is positive, it is a stationary point, and hence solves the equation

G(v)′(b) = 0⇔ 0 = D(v)(b) = α+e
ζ+(q)b − α−e

ζ−(q)b + cαve
(ζ+(q)+ζ−(q))b,

if the penalty w is exponential and

G′
1(b) = 0⇔ 0 = D1(b) = α+e

ζ+(q)b − α−e
ζ−(q)b + α1e

(ζ+(q)+ζ−(q))b,

if w is an affine penalty.

(2) Suppose next K > 0. Then b∗+ is strictly positive as a consequence of the positive transaction cost K, and

the optimal levels (b∗−, b
∗
+) are given by (b∗−, b

∗
− + d∗) where (b, d) maximizes over (b, d) ∈ R+ ×R+\{0} the

function

G̃(v) : (b, d) 7→
d−K −B+e

ζ+(q)b(eζ
+(q)d − 1) +B−e

ζ−(q)b(eζ
−(q)d − 1)

A+eζ
+(q)b(eζ+(q)d − 1)−A−eζ

−(q)b(eζ−(q)d − 1)

if w is an exponential penalty, and the function

G̃1 : (b, d) 7→
d−K − C+e

ζ+(q)b(eζ
+(q)d − 1) + C−e

ζ−(q)b(eζ
−(q)d − 1)

A+eζ
+(q)b(eζ+(q)d − 1)−A−eζ

−(q)b(eζ−(q)d − 1)

if w is an affine penalty.

The following result sums up the form of the optimal dividend policy:

Lem. 8.5. Consider a Cramér-Lundberg process (1.1) with exponential jump sizes with mean 1/µ, and fixed cost

K ≥ 0. The optimal dividend policy is given by a single dividend-band strategy πb∗ for the following Gerber-Shiu

penalties w:

a) Exponential penalties: w(x) = cexv, c < 0.

(i) In the case {K = 0 and (q + λ)2 − λµp ≥ −cλq µ2

v+µ}, then b
∗ = 0.



OPTIMAL DIVIDEND DISTRIBUTION IN THE PRESENCE OF A PENALTY 29

(ii) In the case {K = 0 and (q + λ)2 − λµp < −cλq µ2

v+µ}, then b∗ is the unique solution b ∈ R+\{0} of the

equation D(v)(b) = 0.

(iii) In the case K > 0, we have b∗+ = b∗− + d∗ where b∗− and d∗ maximize over b ≥ 0, d > 0, the function G̃(v).

b) Affine penalties: w(x) = cx+ c0, c ≥ 0.

(i) In the case {K = 0 and (q + λ)2 − λµp ≥ λq(c− c0µ)}, then we have b∗ = 0.

(ii) In the case {K = 0 and (q + λ)2 − λµp < λq(c − c0µ)}, then b∗ is the unique solution b ∈ R+\{0} of the

equation D1(b) = 0.

(iii) In the case K > 0, we have b∗+ = b∗− + d∗ where b∗1,− ≥ 0 and d∗ > 0 maximize over (b, d), the function G̃1.

8.4. Cramér-Lundberg model with Erlang jumps. Suppose next that X is given by the Cramér-Lundberg

model (1.1) with the Erlang (n, µ) jump sizes. The corresponding Laplace exponent is equal to ψ(s) = ps+ λµn

(µ+s)n−λ,

and by Laplace inversion it follows that its q-scale function is given by

W (q)(x) =

n∑

j=0

Aje
ζj(q)x, x > 0,

where ζ0(q) > 0 > ζ1(q) > −µ > ζ2(q) > ... are the n+ 1 roots of the Cramér-Lundberg equation ψ(ζ) = q, and

Aj =
(ζj(q) + µ)n

p
∏
k 6=j(ζj(q)− ζk(q))

.

Let K = 0 and w(x) = cevx an exponential penalty (c < 0), and denote by b the point where G(v) attains its

maximum. In general a single dividend-band strategy may not be optimal. A necessary and sufficient criterion for

optimality of πb is the complete monotonicity of the function Ξv : (Φ(q),∞)→ R+ given by

Ξv(s) =
ψ(s)− q

s
· esb

∫ ∞

b

e−sz
(
W (q)′(z)G∗(b)− [1− F ′(z)]

)
dc = I(s) ·W (q)′(b)−1 Iv(s),

where

I(s) = s−1

[
ps+

λµn

(µ+ s)n
− λ− q

]
,

Iv(s) = I0(s)− c
∑

j>i

(ζj(q)− ζi(q)2(v − ζi(q)− ζj(q))

(s− ζj(q))(s − ζi(q))(v − ζj(q))(v − ζi(q))
AjAie

(ζi(q)+ζj(q))b,

I0(s) =

∫ ∞

0

e−sx[W (q)′(b+ x) −W (q)′(b)]dx =
n∑

j=0

Aj
ζj(q)

2

s(s− ζj(q))
eζj(q)b.

If in addition there is no penalty (w = 0), the expressions simplify. If b denote the minimum of W (q)′, πb is optimal

precisely if Ξ0 : (Φ(q),∞)→ R+ is completely monotone, where

Ξ0(s) = I(s) · I0(s).

The Azcue-Muler example. Let us consider the example in Azcue and Muller [10], with pure Erlang claims of

order n = 2, with µ = 1, λ = 10, p = 107
5 , q = 1

10 , θ =
7

100 and Laplace exponent ψ(s)− q = ps+λ( µ
µ+s )

2−λ− q =
p

(µ+s)2 (s+ ζ1)(s+ ζ2)(s− ζ0), with ζ0 ≈ 0.0396, ζ1 ≈ 0.0794, ζ2 ≈ 1.4882. In addition we consider a linear penalty

w(x) = cx, c ∈ R+. We will analyze below four particular cases c ∈ {0, 0.2, 0.6, 1.0}. In cases c ∈ {0.6, 1.0} the

optimal strategy is a single dividend band strategy at level b0, while in the cases c ∈ {0, 0.2} it is optimal to

adopt a two-band stratregy with b0 = 0 (in the case c = 0 we thus recover the form of the optimal strategy found

in [10]) . The parameters of the three optimal strategies are summarised in the following table (with v1 denoting

the difference of the value function and the identity x 7→ x at the end of the non-empty continuation band):
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b0 v1 a1 b1

c = 0 0 ≈ 2.44 ≈ 1.83 ≈ 10.45

c = 0.2 0 ≈ 1.72 ≈ 1.90 ≈ 10.47

c = 0.6 ≈ 10.96 ≈ 1.71 ∞ ∞

c = 1.0 ≈ 11.37 ≈ 1.30 ∞ ∞

In the cases c ∈ {0.6, 1} a plot of the function G1 defined in (8.5) reveals that G1 is monotone decreasing on the

right of the level at which attains its unique global maximum which implies the optimal strategy is a single-dividend

band strategy at this level (Thm. 7.3). In the cases c ∈ {0, 0.2} a plot of G1 shows that this function attains its

global maximum at 0 but also attains a second local maximum at some strictly positive level. The optimal value

function in these cases is given by

v(x) =





x+ v0, a0 = 0 ≤ x < a1,

F1(x − a1), x ∈ [a1, b1],

x+ v1, x > b1.

Here v1 = −b1+F1(b1−a1) and v0 = p−20c
q+λ = 214−200c

101 is the value of the strategy (at zero) of paying all premiums

as dividends until the moment the first claim arrives, which is also the moment of ruin, and F1(x) is given by

F1(x) = p(a1 + v0)W
(q)(x) −

∫ x

0

W (q)(x− y)[fν,a1(y)]dy,

with

fν,a(y) =

∫ a

0

(a− z + v0)k(y + z)]dz + c

∫ ∞

a

(a− z)k(y + z)dz,

where k(y) = λµ2ye−µy denotes the Lévy density at y.

The function v is the value function of a two-band strategy at levels (b0, a1, b1) with b0 = 0. The unknowns a1, b1

are determined by the optimality equations F ′
1((b1 − a1)−) = 1 and F ′′

1 ((b1 − a1)−) = 0 which yield the following

system of two non-linear equations for a1 and b1,

1 = p(a1 + v0)W
(q)′(b1 − a1)− p

−1fν,a1(b1)−

∫ b1−a1

0

W (q)′(b1 − a1 − y)fν,a1(y)dy

0 = p(a1 + v0)qW
(q)′′(b1 − a1)− p

−1f ′
ν,a1(b1)−W

(q)′(0)fa1,ν(b1)−

∫ b1−a1

0

W (q)′′(b1 − a1 − y)fν,a1(y)dy,

with W
(q′)
+ (0) = 101

10 ·
25

1072 . The two-band strategies at the levels (a1, b1) = (1.83, 10.45) [c = 0] and (a1, b1) =

(1.90, 10.47) [c = 0.2] are indeed optimal since it holds (b1L
w
∞v − qv)(y) ≤ 0 for all y > b1 and (0Lw∞v − qv)(y) ≤ 0

for all y ∈ (0, a1).

9. Proofs of the stochastic solution approach

This section is devoted to the proofs of Thms. 3.4 and 3.8 and Cor. 3.9.

9.1. Properties of the value function. Before proceeding to the proofs of Thms. 3.4 and 3.8 and Cor. 3.9, we

collect a number of properties of the value function v∗ for later reference.

Lem. 9.1. (i) For every x, y ≥ 0, with x ≥ y, it holds

(x− y −K) ≤ v∗(x) − v∗(y).(9.1)

(ii) The function x 7→ v∗(x) is continuous on R+.
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Proof of Lem. 9.1. (i) Let x > y. Denote by πǫ(y) an ǫ-optimal strategy for the case U0 = y. Then a possible

strategy is to immediately pay out x− y and subsequently to adopt the strategy πǫ(y), so that the following holds:

v∗(x) ≥ x− y −K + vπǫ
(y) ≥ v∗(y)− ǫ+ x− y −K.

Since this inequality holds for any ǫ > 0, the lower bound in Eqn. (9.1) follows.

(ii) To prove the stated continuity we first establish an upper bound for the difference v∗(x)− v∗(y) with x > y.

Let π̃ǫ(x) denote an ǫ-optimal strategy for the case U0 = x for a given ǫ > 0. Then a possible strategy is to refrain

from paying any dividends until the first time that the reserves hit the level x, and to subsequently follow the policy

π̃ǫ. Hence the following bound holds:

v∗(y) ≥
W (q)(y)

W (q)(x)
(vπ̃ǫ

(x)− Fw(x)) + Fw(y).

Rearranging and letting ǫ tend to zero yields the upper-bound

(9.2) v∗(x)− v∗(y) ≤

(
1−

W (q)(y)

W (q)(x)

)
[v∗(x) − Fw(x)] + Fw(x)− Fw(y), x ≥ y.

In the case K = 0 the bounds in Eqns. (9.1) and (9.2) yield that v∗ is continuous on R+. In the case K > 0

continuity of v∗ on R+ follows by combining the upper bound in Eqn. (9.2) with a different lower bound that we

derive next.

For fixed ǫ > 0 and given initial reserves U0 = y for some y > x, a possible strategy is to adopt π̃ǫ(x) until the

first moment that the reserves U fall below δ := y− x, and to follow then a waiting strategy πw (of not paying any

dividends). Then we have, with π = π̃ǫ(x),

v∗(y)− v∗(x) ≥ Ey

[∫ τπ
δ

0

e−qtµπK(dt) + e−qτ
π
δ w
(
Uπτπ

δ

)
1{τπ

δ
=τπ

0 } + e−qτ
π
δ vπw

(
Uπτπ

δ

)
1{τπ

δ
<τπ

0 }

]
− v∗(x)

= vπ(x)− v∗(x) + Ey

[
e−qτ

π
δ

(
w
(
U δτπ

δ

)
− w

(
U δτπ

d
− δ
))

1{τπ
δ
=τπ

0 }

]
+ fǫ(x, y)

≥ −ǫ+ fǫ(x, y), y ≥ x,

where we denoted τπδ = inf{t ≥ 0 : Uπt < δ} and

fǫ(x, y) = Ey

[
e−qτ

π
δ

(
vπw

(
Uπτπ

δ

)
− w

(
Uπτπ

δ
− δ
))

1{τπ
δ
<τπ

0 }

]
,

and where we used the monotonicity of w. We claim that fǫ(x, y) tends to zero when δ = y − x tends to 0. Given

this claim and the bound in Eqn. (9.2) it follows that we have (since ǫ was arbitrary)

lim inf
|x−y|→0

[v∗(y)− v∗(x)] ≥ 0.(9.3)

Similarly, it follows lim sup|x−y|→0[v∗(y) − v∗(x)] ≤ 0. Combining the two limits yields that v∗(x) is continuous at

each x ∈ R+.

Finally, we turn to the proof of the claim that fǫ(x, y) tends to zero. We have the estimate

fǫ(x, y) ≤

(
sup
x∈[0,δ]

vπw
(x) − w(−δ)

)
Ey[e

−qτπ
δ 1{τπ

δ
<τπ

0 }].(9.4)

If X has unbounded variation, then we have vπw
(0) = w(0), so that the left-continuity of w at zero, the right-

continuity of V0,∞
w (y) at y = 0 and the fact vπw

= V0,∞
w combined with the inequality in Eqn. (9.4) imply fǫ(x, y)→ 0

when δ = y − x → 0. If X has bounded variation, vπw
(0) is (in general) not equal to w(0), and we show that the

second factor in Eqn. (9.4) tends to zero if δ → 0. Note that the policy π̃ǫ(x), being element of Π = ΠK , consists of
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only finitely many dividends payments almost surely. Denoting the times of the dividend payments by τ1, τ2, . . . ,

and the values of U π̃ǫ(x) at those times by U1, U2, . . ., the strong Markov property of X implies

Ey [e
−qτπ

δ 1{τπ
δ
<τπ

0 }] =
∑

i

Ey[e
−qτπ

δ 1{τπ
δ
<τπ

0 ,τ
π
δ
∈[τi,τi+1)}]

≤
∑

i

Ey[e
−qτi1{τi<τπ

0 }EUi
[e−qT

−

δ 1{T−

δ
<T−

0 }]].

As X has bounded variation, we have Px(X(T−
δ ) < δ) = 1 for all x ∈ [δ,∞) so that it follows that, for any

x ∈ [δ,∞), the probability Px(T
−
d < T−

0 ) = Px(0 < X(T−
δ ) < δ) tends to zero as δ tends to zero. By the bounded

convergence theorem it follows that the right-hand side of the previous display converges to zero when δ tends to

0. This completes the proof of the claim in Eqn. (9.3) �

In the following result additional regularity of the value-function v∗ is established in the case K = 0.

Lem. 9.2. In the case K = 0, v∗(x) is right-differentiable at any x > 0, and x 7→ v∗′+ (x) is right-continuous on

(0,∞).

Proof. Let x > 0 be arbitrary. Following the procedure in Sect. 7.4 a stochastic supersolution g̃ for the HJB

equation in Eqn. (3.3) can be constructed that is equal to the value-function of some admissible strategy on the

interval [0, x+ 1]. Cor 3.5 then implies that v∗ is equal to g̃ on this interval [0, x+ 1]. In view of the form of g̃ (see

Eqn. (7.7)) and the fact that the q-scale function W (q) and Gerber-Shiu function Fw are right-differentiable at any

x > 0 with a derivative that is right-continuous (Lem B.2), the proof of the assertion is complete. �

Lem. 9.3. (i) For any q > 0, and w ∈ P, there exists a C ∈ R+\{0} such that the following bound holds true:

sup
x∈R+

sup
π∈Π

Ex

[
e−qτw(Uπτ )

]
≥ −C.

Furthermore, for any x ∈ R+, we have

Ex

[
sup

t∈R+,π∈Π

{
e−qt Uπt 1{t<τπ} +

∫ t

0

e−qsdDπ
s +

∫ t

0

e−qsXsds

}]
<∞,(9.5)

with Xt = sups≤tXs denoting the supremum of Xs over the s ∈ [0, t].

(ii) v∗ is dominated by an affine function: for any x ∈ R+, v∗(0) − K ≤ v∗(x) − x ≤
1

Φ(q) , and the process

V π = {V πt , t ∈ R+} defined in Eqn. (3.2) is UI under Px.

Proof. (i) The following bounds hold true:

sup
t∈R+

e−qtUπt 1{t<τπ} ≤ sup
t∈R+

e−qtXt ≤ sup
t∈R+

∫ ∞

t

qe−qsXsds.(9.6)

Since the running supremumXη(q) at an independent exponential random time with mean q−1 follows an exponential

distribution with parameter Φ(q) (e.g. [13, Cor. VII.2]), the expectation under Px of the expression on the rhs of

Eqn. (9.6) is bounded by x+ 1/Φ(q).

The compensation formula applied to the Poisson point process (∆Xt, t ∈ R+), the monotonicity of w and the

fact that w(0) is non-positive yield that the following inequalities holds true, for any x ∈ R+:

Ex

[
e−qτ

π

w(Uπτπ)
]
≥ w(−1) + Ex

[
e−qτ

π

w(Uπτπ )1{Uπ
τπ<−1}

]

= w(−1) +

∫ ∞

0

∫ ∞

0

w(y − z)1{y−z<−1}ν(dz)R̃
q
x(dy)

≥ w(−1) +

∫ ∞

1

∫ ∞

0

w(−z)R̃qx(dy)ν(dz) ≥ w(−1) +
1

q

∫ ∞

1

w(−z)ν(dz),(9.7)
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where R̃qx(dy) denote the q-potential measure of Uπ under Px,

R̃qx(dy) =

∫ ∞

0

e−qtPx(U
π
t ∈ dy, t < τπ).

The rhs of (9.7) is bounded below, since the bound in Eqn. (2.1) holds as w is element of P .

(ii) In the case K = 0 integration by parts, the non-negativity of w and the condition (1.6) of “no exogeneous

ruin” imply that

vπ(x) ≤ Ex

[∫

[0,τπ)

e−qtdDπ
t

]
= Ex

[∫ τπ

0

qe−qsDπ
s ds+ e−qτ

π

Dπ
τπ

]

≤ Ex

[∫ τπ

0

qe−qsXsds+ e−qτ
π

Xτπ−

]
≤ Ex

[∫ ∞

0

qe−qsXsds

]
= x+

1

Φ(q)
,

where we used Xη(q) ∼ Exp(Φ(q)). In the case K > 0, then the above bound remains valid since the value v∗(x)

decreases if the transaction cost K increases. The lower bound for the value-function in (ii) follows from Eqn. 9.1

in Lem. 9.1 (with x = 0). The uniform integrability of V π follows by virtue of the fact that V π is dominated by an

integrable random variable, in view of Eqn. (9.5) and the bounds in Lem. 9.3(ii). �

9.2. Controlled representation of the value function. The proof of the dual representation in Thm. 3.4 is

based on an alternative representation of v∗ as the point-wise minimum of a class of “controlled” supersolutions of

the stochastic control problem.

Def. 9.4. For any y ∈ R+ and z ∈ R+ ∪ {∞} with y < z, a Borel-measurable function H : R → R is called a

controlled supersolution on the interval [y, z] (in the case z <∞) or on [y,∞) (in the case z =∞) for the stochastic

control problem in Eqn. (2.4) if we have

e−q(τ
π
y,z∧t)H(Uπτπ

y,z∧t
) +

∫ τπ
y,z∧t

0

e−qsµπK(ds) is a UI Px-super martingale, for any x ∈ [y, z), π ∈ Π,

where τπy,z = inf{t ≥ 0 : Uπt /∈ [y, z]}, with boundary condition



H(x) ≥ v∗(x) for x ∈ (−∞, y), and for x = z in the case z <∞,

H(y) ≥ v∗(y) in the case σ2 > 0 or ν1 =∞.

The family of such functions will be denoted by Hy,z.

Prop. 9.5. For any y ∈ R+ and z ∈ R+ ∪ {∞} with y < z the value-function v∗ restricted to [y, z] (in the case

z <∞) or to [y,∞) (in the case z =∞) admits the following representation:

v∗(x) = min
H∈Hy,z

H(x) for all x ∈ [y, z).

The proof of the representation of the value function v∗ in Prop. 9.5 rests on the fact that for any admissible

policy π ∈ Π and any “uncontrolled” supermartingale there exists a corresponding “controlled” supermartingale.

Lem. 9.6 (Shifting lemma). (i) Let g ∈ G+. If

M
g
=
{
M

g

t = e−q(t∧T
−

0 )g
(
Xt∧T−

0

)
, t ∈ R+

}
is a UI Px-supermartingale for all x ∈ R+,(9.8)

then, for any π ∈ Π and x ∈ R+, M̃
g,π = {M̃g,π

t , t ∈ R+} is a UI Px-supermartingale, where

(9.9) M̃g,π
t = e−q(t∧τ

π)g(Uπt∧τπ) +

∫ τπ∧t

0

e−qsµπK(ds).
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(ii) Let g ∈ G+a,b for some a, b ∈ R+, a < b. If the stopped process

M
g,Ta,b

=
{
M

g

t∧Ta,b
, t ∈ R+

}
is a UI Px-supermartingale,

then, for any π ∈ Π and x ∈ R+

M̃g,π,τπ
a,b =

{
M̃g,π
t∧τπ

a,b
, t ∈ R+

}
is a UI Px-supermartingale,

where τπa,b = inf{t ≥ 0 : Uπt /∈ [a, b]}.

(iii) Let g ∈ G+ ∩ G−. If the process M
g
given in Eqn. (9.8) is a UI Px-martingale for all x ∈ R+, then the

process M̃g,π∗ with π∗ = π(g∗) is a UI Px-martingale for all x ∈ R+.

Proof of Prop. 9.5. Fix x, y ∈ R+ and z ∈ R+ ∪ {∞}, and let H be any element of Hy,z, and π ∈ Π any admissible

policy. The supermartingale property with boundary condition in Def. 9.4, and the uniform integrability yield the

following:

H(x) ≥ lim
t→∞

Ex

[
e−q(τ

π
y,z∧t)H(Uπτπ

y,z∧t
) +

∫ τπ
y,z∧t

0

e−qsµπK(ds)

]

≥ Ex

[
e−qτ

π
y,zv∗(U

π
τπ
y,z

) +

∫ τπ
y,z

0

e−qsµπK(ds)

]
.

Taking the supremum over π ∈ Π and using the dynamic programming equation (Prop 3.1) show that H(x) ≥ v∗(x).

Since H ∈ Hy,z was arbitrary, it holds thus

inf
H∈Hy,z

H(x) ≥ v∗(x).

The inequality in the display is in fact an equality since v∗ is a member of Hy,z, by virtue of the fact that V π is a

UI supermartingale in view of Prop. 3.1, Lem. 9.3 and Doob’s optional stopping theorem. �

9.3. Proof of the shifting lemma 9.6. The proof of the shifting lemma is based on the following auxiliary result:

Lem. 9.7. Let a > 0 and x ∈ [0, a] be given and suppose that the function g : R → R is such that g|R−
∈ P, g|R+

is continuous and g is right-differentiable at a > 0. If M = {Mt, t ∈ R+} with

Mt = e−q(t∧T0,a)g(Xt∧T0,a)

is a Px-martingale, then Z = {Zt, t ∈ R+} with

Zt = e−q(t∧τ0)g
(
Y at∧τ0

)
− g(Y a0 )− g

′
+(a)

∫ t∧τ0

0

e−qsdX
a

s

is a Px-martingale, where g′+(a) denotes the right-derivative of g at a, X
a
= sups≤t(Xs−a)∨0, and Y a = X

a
−X.

The proof of this result rests on an application of Itô’s lemma and a density argument. Details are omitted since

these follow straightforwardly from [39, Prop. 1].

Proof of Lem. 9.6, part (i). Fix arbitrary X0 = x ∈ R+ and π ∈ Π and s, t ∈ R+ with s < t, and denote

M̃g,π
t = At +Bt =

(
e−qtg(Uπt )1{t<τπ}

)
+

(
e−qτ

π

w(Uπτπ)1{τπ≤t} +

∫ τπ∧t

0

e−qsµπK(ds)

)
.(9.10)

Since g is continuous, M̃g,π
t is Ft-measurable. Also, the collection of random variables {At, t ∈ R+} is bounded

below by a finite constant (since g is bounded, in view of the inequality in Eqn. (3.7)) and is locally bounded

above with localisation denoted by (T̃m) (since Uπt has no positive jumps and g is continuous), and the collection

{Bt, t ∈ R+} is dominated by an integrable random variable (by Lemma 9.3).
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Consider the sequence (πn)n∈N of strategies defined by πn = {Dπn

t , t ∈ R+} with

Dπn
u =




sup{Dπ

v : v ≤ u, v ∈ Tn}, u < τπ ,

Dπn

τπ−, u ≥ τπ ,
Tn :=

({
tk := t− (t− s)

k

2n
, k ∈ N ∪ {0}

}
∪ {0}

)
∩ R+.

Note that the dividend process Dπn satisfies Dπn ≤ Dπ and is constant on the interval [τπ ,∞). The remainder of

the proof rests on the following martingale property:

Lem. 9.8. For every n ∈ N, M (n) = {M̃g,πn

u∧τπ : u ∈ Tn} is a Px-supermartingale.

Given this result we have the following inequalities:

E

[
M̃g,π
t

∣∣∣∣Fs∧τπ

]
(a)

≤ lim inf
n→∞

E

[
M̃g,πn

t

∣∣∣∣Fs∧τπ

]
(b)

≤ lim inf
n→∞

M̃g,πn

s∧τπ

(c)
= M̃g,π

s∧τπ

(d)
= M̃g,π

s .

This series of (in)equalities can be seen to hold for the following reasons: (a) On account of the form of πn, it

follows Dπn ր Dπ as n tends to infinity, which, combined with the Monotone Convergence Theorem (MCT)

and an integration-by-parts, implies
∫ τπ∧t

0 e−qsdDπn
s ր

∫ τπ∧t

0 e−qsdDπ
s . Also, we have in the case K > 0,∫ τπ∧t

0 e−qsdNπn
s ր

∫ τπ∧t

0 e−qsdNπ
s . Thus, by continuity of the function g we have

(9.11) M̃g,πn

t∧τπ −→ M̃g,π
t∧τπ as n→∞.

Since, in Eqn. (9.10), At is bounded below and Bt is dominated, Lebesgue’s dominated convergence theorem and

Fatou’s lemma imply that the inequality (a) holds true. Inequality (b) follows by the supermartingale property in

Lem. 9.8 and the fact that the grid Tn contains both s and t for each n ∈ N. Equality (c) is a consequence of

the pointwise convergence in Eqn. (9.11) (which also holds with t replaced by s) while (d) follows since we have

M̃g,π
s = M̃g,π

s∧τπ (by definition of the process M̃g,π in Eqn. (9.9)). Since s and t are arbitrary, it follows that M̃g,π

is a Px-supermartingale. �

Next we turn to the proof of the Lemma 9.8.

Proof of Lem. 9.8. Denoting Ti := T̃m∧τπ∧ti (where T̃m is the localization used in part (i) of the proof of Lem. 9.6)

and M =M (n)(· ∧ T̃m), D = Dπn(· ∧ T̃m), we can write

Mt −Ms =

2n∑

i=1

Yi +

2n∑

i=1

Zi,

where Zi = e−qTi(g(XTi
−DTi

)− g(XTi
−DTi−1) + ∆DTi

−K)1{∆Di>0} with ∆Di = DTi
−DTi−1 and

Yi = e−qTig
(
XTi
−DTi−1

)
− e−qTi−1g

(
XTi−1 −DTi−1

)
.

The strong Markov property of X and the definition of U imply

E[Yi|FTi−1 ] = e−qTi−1E

[
e−q(Ti−Ti−1)g

(
UTi−1 +XTi

−XTi−1

)
− g

(
UTi−1

) ∣∣FTi−1

]
(9.12)

= e−qTi−1EUTi−1

[
e−qτig (Xτi)− g(X0)

]
,

where we denoted τi = Ti ◦ θTi−1 with θ the translation-operator. The right-hand side of Eqn. (9.12) is non-positive

as a consequence of the supermartingale property in Eqn. (9.8) and the discrete time version of Doob’s stopping

theorem. Furthermore, in view of Eqn. (3.7) it follows that all the Zi are non-positive (in the case Ti = τπ the

positivity can be seen to hold since we have, by construction, ∆Dπn(τ+n ) = 0 where τ+n = sup{v ≤ τπ : v ∈ Tn}).

Hence, the tower-property of conditional expectation yields

E[Mt −Ms|Fs] ≤
2n∑

i=1

1{Ti−1>s}E
[
E[Yi|FTi−1 ]|Fs

]
≤ 0,
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and we deduce that M =M (n)(· ∧ T̃m) is a supermartingale. Letting m→∞ and applying Fatou’s lemma and the

Lebesgue’s Dominated Convergence Theorem (in view of the decomposition in Eqn. (9.10)), we may remove the

localisation T̃m, and conclude that M (n) is a supermartingale. �

Proof of Lem. 9.6, part (ii). Apply the reasoning of part (i) to the process M̃g,π,τa,b . �

Proof of Lem. 9.6, part (iii). The proof is a modification of the proof of part (i). Note that the set of different

epochs T̃ at which lump-sum dividend payments occur is countable:

T̃ = {T̃i : ∆DT̃i
> 0} with T̃i = inf{t > T̃i−1 : X

π(g)
t −D

π(g)
t− ∈ Dg}, i ∈ N with T̃0 = 0

and inf ∅ = ∞. Indeed, in the case K > 0, ruin will occur if more than C(k, l)/K dividend payments are made

in any time-interval [k, l], where C(k, l) := supt∈[k,l] Ut is finite Px-a.s. for any x, u, v ∈ R+, u < v. Hence, as no

dividend payments take place at or after the moment of ruin, it follows that the sequence T̃ is in fact discrete. In

the case K = 0, the form of the strategy π(g) implies that the sequence (UT̃i
)i is decreasing with UT̃i

− UT̃i−1
> 0

on the set {T̃i <∞}. In particular, it follows that that T̃ is countable.

Write D = Dπ(g) and M = M̃g,π, fix t ∈ R+ and denote Ti = T̃i ∧ t. We have

Mt =
∑

i≥1

Yi +
∑

i≥0

Zi,

where we denoted Zi = e−qTi(g(XTi
−DTi

)− g(XTi
−DTi−) + ∆Di −K)1{∆Di>0} and

(9.13) Yi = e−qTig(XTi
−DTi−

)− e−qTi−1g(XTi−1 −DTi−1)−

∫

(Ti−1,Ti)

e−qsdDs,

with ∆Di = DTi
−DTi−1 . By definition of the strategy π(g) we have Zi = 0 for all i.

In the case K > 0 the integral term in Eqn. (9.13) vanishes and we have DTi−1 = DTi− for i ≥ 0. By reasoning

as in part (i) we find that the equality in Eqn. (9.12) holds. By combining Eqn. (9.12) with the fact that g is a

stochastic subsolution, with Doob’s optional stopping theorem and with the definition of Ti we have

E[Yi|FTi−1 ] = e−qTi−1EUTi−1

[
e−qτig (Xτi)− g(X0)

]
= 0,

where we denoted τi = Ti ◦ θTi−1 . The tower-property hence yields E[Mt −Ms|Fs] = 0 for any s ≤ t, so that M is

a martingale.

In the case K = 0, the definition of π(g) implies that the process {UTi−1+t, t < Ti − Ti−1} conditional on FTi−1

has the same law as the process {Y bt , t < τb(a)} with X0 = b = UTi−1 and τb(a) = inf{t ≥ 0 : Y b < a}, conditional

on UTi−1 , where Y
b is independent of UTi−1 . The strong Markov property of Y a implies

E[Yi|FTi−1 ] = e−qTi−1EUTi−1

[
e−qτb(a)g(Y bτb(a))− g(Y0)−

∫

(0,τb(a))

e−qsdX
b

s

]
.

This expectation is zero in view of Lem. 9.7 and the fact that g′+(a) = 1. Again, an application of the tower-property

yields E[Mt −Ms|Fs] = 0 for any s ≤ t, so that M is a martingale. �

Proof of the dual representation (Thm. 3.4). The identity in Eqn. (3.11) follows from Prop. 9.5 in view of the ob-

servations that

(a) G+ is contained in H0,∞ and

(b) v∗ is an element of the set G+.

Observation (a) follows on account of Lem. 9.6(i), while observation (b) is a direct consequence of Prop. 3.1 (taking

π equal to the waiting strategy πw of not paying any dividends) and Lemmas 9.1 and 9.2. The proof of part (i)
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follows by a line of reasoning that is analogous to that of part (ii), using the facts G+a,b ⊂ Ha,b (Lem. 9.6(ii)) and

v∗ ∈ G
+
a,b. �

Proof of existence and uniqueness (Thm. 3.8). That v∗ is a stochastic supersolution follows from Thm. 3.4. To

complete the proof we will next show that we have

(a) v∗ is a stochastic subsolution of the HJB in Eqn. (3.3),

(b) v∗ is the unique stochastic solution of the HJB in Eqn. (3.3), and

(c) v∗ = vπ∗
.

(a) Proof that v∗ is a stochastic subsolution: We give a proof by contradiction. Note first that Lemmas 9.1

and 9.2 imply that v∗ is continuous on R+ (K > 0) and is continuous on R+, right-differentiable with right-

continuous derivative v′∗,+ (K = 0). Also it is clear that v∗ satisfies the boundary condition in Eqn. (3.5) (in view of

its definition). Denote M =M
v∗

and M =Mv∗ with M
v∗

and Mv∗ defined in Eqns (3.9) and (3.10), respectively,

and recall that v∗ is a stochastic supersolution (by Thm. 3.4). To show that v∗ is a stochastic subsolution it

remains to verify that v∗ satisfies the requirement in Eqn. (3.10) in the definition of stochastic subsolution, which

we establish by a proof by contradiction.

Assume hence that, for some open interval Õ = (a, b) ⊂ C, we have that the process M = {M t, t ∈ R+}, with

M t =M t∧T and T = Ta,b, is a Pz-supermartingale for all z ∈ (a, b) that is not a Pz0-martingale for some z0 ∈ (a, b).

Consider the function g̃a,b : R+ → R given by

g̃a,b(x) = Ex

[
MT (a,b)

]
= v∗(b)Ex

[
e−qT

+
b 1{T+

b
<T−

a }

]
+ Ex

[
e−qT

−
a v∗(XT−

a
)1{T+

b
>T−

a }

]
.(9.14)

Since M is a zero-mean strict Pz0-supermartingale, it follows

v∗(z0) > g̃a,b(z0).(9.15)

By definition of the set C and right-continuity it follows that, for any pair (a′, b′) with a < a′, b′ < b, we have

ǫ(a′, b′) = infx∈(a′,b′) dv∗(x)− 1 > 0. In particular, since we have g̃a′,b′(a
′) = v∗(a

′), g̃a′,b′(a
′) = v∗(b

′) it follows

g̃a′,b′(b
′) > g̃a′,b′(a

′) + (b′ − a′)(1 + ǫ(a′, b′))−K.(9.16)

Denote e1(x) = Ex

[
e−qT

+

b′ 1{T+

b′
<T−

a′}

]
and

e2(x) = Ex

[
e−qT

−

a′ g̃a′,b′(XT−

a′
)1{T+

b′
>T−

a′}

]
, e3(x) = g̃a′,b′(a

′)
(
1− Ex

[
e−qT

+

b′ 1{T+

b′
>T−

a′}

])
.

Since we have e1(x) ր 1, e2(x) ց 0 and e3(x) ց 0 as x ր b′, and ǫ(a′, b′) > 0, there exist a′ = a0, b
′ = b0 and

η > 0 with

(9.17)




z0 ∈ (b0 − η, b0), b0 − η > a0 > a and b0 < b and

(b0 − a0)(1 + ǫ(a0, b0))e1(x) + e2(x)− e3(x) ≥ x− a0 for all x ∈ (b0 − η, b0).

Denoting g̃ = g̃a0,b0 and ǫ0 = ǫ(a0, b0) and combining Eqns. (9.14), (9.16) and (9.17) yields

g̃(x) > (g̃(a0) + (b0 − a0)(1 + ǫ0)−K)Ex[e
−qT+

b01{T+
b0
<T−

a0
}] + Ex[e

−qT−
a0 g̃(XT−

a0
)1{T+

b0
>T−

a0
}]

= g̃(a0) + (b0 − a0)(1 + ǫ0)−K)e1(x) + e2(x)− e3(x)

≥ g̃(a0) + x− a0 −K,(9.18)

for all x ∈ (b0− η, b0). Hence, g̃ is a local supersolution for the HJB in Eqn. (3.3) with the property g̃(z0) < v∗(z0).

But this yields a contradiction with Thm. 3.4. Thus, it follows that v∗ is a stochastic subsolution.

(b) Proof of uniqueness: Let h be a stochastic solution. As v∗ is the pointwise smallest supersolution (Thm. 3.4),

it follows v∗ ≤ h. We will now verify that also the opposite inequality, h ≤ v∗, holds true. Denote by π(h) the policy
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corresponding to h given in Def. 3.6. Since the processes M̃v∗,π(h) and M̃h,π(h), which were defined in Eqn. (9.9), are

a UI supermartingale and a UI martingale (by Lem. 9.6, parts (i) and (iii), respectively), Doob’s optional stopping

theorem implies

v∗(x)− h(x) ≥ lim
t→∞

Ex

[
M̃

v∗,π(h)

t∧τπ(h) − M̃
h,π(h)

t∧τπ(h)

]
= 0, x ∈ R+,

where we used Px(τ
π(h) <∞) = 1 for all x ∈ R+ together with the boundary condition

M̃
v∗,π(h)

τπ(h) = M̃
h,π(h)

τπ(h) = e−qτ
π(h)

w(U
π(h)

τπ(h)).

This completes the proof of (b).

(c) Proof of identity: Since v∗ is a stochastic solution, the shifting lemma, Lem. 9.6(iii), implies that the process

e−q(t∧τπ∗)v∗(U
π∗

t∧τπ∗
) +

∫
[0,t∧τπ∗)

e−qsµπ∗

K (ds) is a UI Px-martingale for all x ∈ R+. In particular, the uniform

integrability and the boundary condition imply the identity

v∗(x) = Ex

[
e−qτ

π∗

w(Uπ∗

τπ∗
) +

∫

[0,τπ∗)

e−qtµπ∗

K (dt)

]
= vπ∗

(x), x ∈ R+.

�

9.4. Proof of the dividend-penalty decomposition. Cor. 3.9 is a direct consequence the following result:

Lem. 9.9. Let S∗ = {S∗
t , t ∈ R+} be the stochastic process with S∗

t = e−q(t∧T
−
0 )v∗(Xt∧T−

0
) and let Do∗ be the

interior of the set D∗ defined in Eqn. (3.12). The Doob-Meyer decomposition of S∗ is given by S∗ =M∗−A∗ where

A∗ = {A∗
t , t ∈ R+} is an increasing and locally natural process given by

A∗
t =

∫ t∧T−

0

0

1{u∈R+:X
u−∈Do

∗}
(s)J∗(Xs−)ds, t ∈ R+

and M∗ is a martingale.

The proof is based on an auxiliary result concerning the form of v∗ restricted to the set Do∗. Recall that, since

the set Do∗ ⊂ R+ is open, it is of the form Do∗ = ∪n(an, bn) for some an, bn ∈ R+ that are such that an < bn and

(an, bn) are disjoint intervals.

Lem. 9.10. The value function v∗ satisfies

v∗(x) = x− an + v∗(an) for all x ∈ [an, bn),(9.19)

where an, bn ∈ R+, an < bn, are such that we have Do∗ = ∪n(an, bn).

Proof. In the case K = 0 the statement holds since by definition of the set Do∗, we have v′∗,+(x) = 1 for all

x ∈ (an, bn) and v∗ is continuous at an (where v′∗,+(x) denotes the right-derivative of v∗ at x).

In the case K > 0 the stated linearity follows by combining the following two facts: (a) for any x ∈ (an, bn)

it is optimal to immediately make a lump-sum payment of size y∗(x) > 0 (Thm. 3.8) and (b) we then have

v∗(z) = z − (x − y∗(x)) + v∗(x − y∗(x)) − K for all z ∈ [an, x]. We next establish point (b): On the one hand,

Lem. 9.1(i) implies that v∗ satisfies the inequality v∗(z) ≥ z − (x − y∗(x)) + v∗(x − y∗(x)) −K for all z ∈ [an, x].

On the other hand, the definition of y∗(x) and again Lem. 9.1(i) imply

y∗(x)−K + v(x− y∗(x)) = v∗(x)

≥ x− z1 + y(z1)−K + v(z1 − y
∗(z1)) = x− z + v∗(z1)

⇔ v∗(z1) ≤ z − (x− y∗(x)) + v∗(x− y
∗(x)) −K

Combination of the two inequalities yields the statement in point (b), and completes the proof. �
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Proof of Lem. 9.9. Let x ∈ R+ be given and recall that S∗ is a UI Px-supermartingale by Thm. 3.4, and denote

by S∗ = M∗ − A∗ the Doob-Meyer decomposition of S∗. We identify the Doob-Meyer decompositions of an

approximating sequence (S̃ǫn)n of processes and find the form of A∗ by passing to the limit.

For given ǫ > 0 denote by Dǫ the strict subset of Do∗ given by Dǫ = ∪n(an + ǫδn, bn − ǫδn) where δn = bn − an

(recall that Do∗ = ∪n(an, bn) where an < bn and the intervals (an, bn) are disjoint). Consider the sequence of

stopping times (T ǫi )i∈N given by

T ǫ1 = 0, T ǫ2i = inf{t ≥ T ǫ2i−1 : Xt ∈ D
ǫ} ∧ T−

0 , T ǫ2i+1 = inf{t ≥ T ǫ2i : Xt /∈ D
o
∗} ∧ T

−
0 .

By right-continuity of the paths of X , we have T ǫ2i < T ǫ2i+1 on the set {T ǫ2i < T−
0 }. By Doob’s optional stopping

theorem, the process S̃ǫ = {S̃ǫt , t ∈ R+} given by

S̃ǫt =
∑

i∈N

(
S∗
t∧T ǫ

2i+1
− S∗

t∧T ǫ
2i

)
(9.20)

is a UI Px-supermartingale, with increasing process in the Doob-Meyer decomposition denoted by Ãǫ. The difference

S∗ − S̃ǫ = {S∗
t − S̃

ǫ
t , t ∈ R+} is a UI Px-super-martingale that can be represented by

(9.21) S∗
t − S̃

ǫ
t =

∑

i∈N

(
S∗
t∧T ǫ

2i
− S∗

t∧T ǫ
2i−1

)
.

By a line of reasoning analogous to the one used in Lem. 10.2 it follows

(9.22) Ex[S
∗
t − S̃

ǫ
t ] −→ 0 as ǫց 0, for any t ∈ R+

We claim that the process S̃ǫ + Ãǫ is a UI Px-martingale and Ãǫ is an increasing locally natural process, where the

process Ãǫ =
{
Ãǫt , t ∈ R+

}
is given by

Ãǫt :=
∑

i

∫ t∧T ǫ
2i

t∧T ǫ
2i−1

e−qs[−J∗(Xs−)]ds(9.23)

Proof of claim: An application of Itô’s lemma to the processes M
(i)

=
{
M

(i)

t , t ∈ R+

}
, i ∈ N, given by

M
(i)

t = (S∗
t∧T ǫ

2i+1
− S∗

t∧T ǫ
2i
)−

∫ t∧T ǫ
2i+1

t∧T ǫ
2i

e−qsJ∗(Xs−)ds, t ∈ R+,

(which is justified since v∗|(an,bn) is a C
2-function by Lem. 9.10) yields that M

(i)
is a Px-martingale for all x ∈ R+

and i ∈ N. The process Ãǫ is increasing (as S̃ǫ is a supermartingale) and is locally natural since Ãǫ
T−

0

is integrable

(as S̃ǫ is a uniformly integrable) and t 7→ Ãǫt is continuous.

Since Dǫ increases to Do∗ and we have

∫ T−

0 ∧t

0

e−qs1{u∈R+:X
u−∈Dǫ}(s)[−J

∗(Xs−)]ds ≤ Ã
ǫ
t ≤

∫ T−

0 ∧t

0

e−qs1{u∈R+:X
u−∈Do

∗}
(s)[−J∗(Xs−)]ds,(9.24)

the monotone convergence theorem implies that the LHS of Eqn. (9.24) tends to the RHS if ǫ ց 0, so that Ãǫt
converges to the RHS of Eqn. (9.24) as ǫց 0. Since the process S∗− S̃ǫ in Eqn. (9.21) is a UI Px-super-martingale

and the increasing process in its Doob-Meyer decomposition is given by A∗ − Ãǫ, it follows that A∗
t − Ã

ǫ
t is non-

negative, so that in view of Eqn. (9.22) and the fact Ex[A
∗
t − Ã

ǫ
t ] = Ex[S

∗
t − S̃

ǫ
t ], the difference A∗

t − Ã
ǫ
t tends to

zero Px-a.s. as ǫ tends to zero. Thus we deduce that A∗
t is equal to the RHS of Eqn. (9.24) for any t ∈ R+ �
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10. Proofs of optimality of single and multi dividend-band strategies

10.1. Martingale pasting. The optimality of the value-function g of a candidate-optimal policy satisfying the

bound in Eqn. (3.7) will follow from Thm. 3.4 once the supermartingale property and uniform integrablity of the

process

S =
{
e−q(t∧T

−

0 )g
(
Xt∧T−

0

)
, t ∈ R+

}
(10.1)

are established. In the following result it is shown that, provided that the function g is sufficiently regular, the

verification of the supermartingale property can be carried out locally:

Lem. 10.1 (Pasting lemma). Let (Ci)
n−1
i=0 be a finite partition of R+ (that is, C0 := 0, Cn := +∞ and Ci−1 < Ci

for all i = 0, . . . , n), and let (τi)i be the sequence of stopping times

τi = inf{t ∈ R+ : Xt /∈ [Ci−1, Ci)}, i = 1, . . . , n.

Let g : R → R be a Borel-measurable function such that g|R+\{0} is continuous if X has bounded variation, and is

C1 if X has unbounded variation. If

Sτi = {St∧τi, t ∈ R+} are Px-UI supermartingales, for any x ∈ [Ci−1, Ci) and i = 1, . . . , n,(10.2)

then the process S given in Eqn. (10.1) is a Px-supermartingale for any x ∈ R+.

Proof. For the ease of presentation we will restrict ourselves to the case of a partition of the form [0, a)∪ [a,∞) for

some a > 0. The general case follows by a similar line of reasoning.

Fix t > 0 and x ∈ R+. Suppose first that X has bounded variation. Then a is irregular for (−∞, a) for X , so

that the following set of stopping times forms a discrete set:

T0 = 0, T2i = (T+
a ∧ T

−
0 ) ◦ θT2i−1 , T2i−1 = T−

a ◦ θT2i−2 , i ∈ N,(10.3)

where θ denotes the translation operator. The strong Markov property of X implies that on the event {s ≤

Ti−1, Ti−1 <∞}, i ∈ N, we have:

E
[
St∧Ti

− St∧Ti−1 |Fs
]
= E

[
E[St∧Ti

− St∧Ti−1 |FTi−1 ]|Fs
]

= E

[
1{t>Ti−1}e

−qTi−1EXTi−1

[
e−qRvg(XRv

)− g(X0)
]∣∣
v=Ti−1

∣∣∣Fs
]
,

where Rv = (τ ′ ∧ t) ◦ θv where τ ′ is set equal to T0,a if X0 = x ∈ [0, a) and to T−
a if X0 = x ≥ a. The expectation

on the right-hand side is non-positive and finite in view of Doob’s optional stopping theorem and the assumption

in Eqn. (10.2).

The stated supermartingale property then follows by virtue of the fact that the terms in the following sum have

non-positive finite conditional expectations under E[·|Fs]:

St − Ss =
∑

j

1{Tj−1<s≤Tj}



(STj∧t − STj∧s) +

∑

i>j

(St∧Ti
− St∧Ti−1)



 , s < t.

Suppose next that X has unbounded variation. Denote by (Ti)i∈N∪{0} the sequence of subsequent passage times

into the sets [a− ǫ, a+ ǫ] and R\[a− 2ǫ, a+ 2ǫ]:

T0 = 0, T2i−1 = H[a−ǫ,a+ǫ] ◦ θT2i−2 , T2i = Ta−2ǫ,a+2ǫ ◦ θT2i−1 i ∈ N,

where, for any Borel set A, HA = inf{t ∈ R+ : Xt ∈ A} (see Figure 2). Decompose S as S − S0 = S(1) + S(2) with

S
(1)
t =

∑

i≥1

[
St∧T2i − St∧T2i−1

]
, S

(2)
t =

∑

i≥1

[
St∧T2i−1 − St∧T2i−2

]
.
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Figure 2. The martingale increments commence when X enters the inner band (dashed) and stop when

X leaves the outer band (dotted).

The sum S(1) of increments of S during the periods that X spends in the band [a−2ǫ, a+2ǫ] vanishes in expectation

as ǫց 0, as shown in the following result the proof of which is given in the below:

Lem. 10.2. For any t and x ∈ R+, Ex

[∣∣∣S(1)
t

∣∣∣
]
→ 0 as ǫց 0.

By the line of the reasoning given in the first part of the proof it follows that S(2) is a supermartingale for every

ǫ > 0, so that also S is a supermartingale in view of Lem. 10.2. �

Proof of Lem. 10.2. Write S(1) = Σ(1) +Σ(2) where

Σ
(1)
t =

∑

i≥1

e−q(t∧T2i−1)[g(Xt∧T2i)− g(Xt∧T2i−1)], Σ
(2)
t =

∑

i≥1

g(Xt∧T2i)[e
−q(t∧T2i) − e−q(t∧T2i−1)].

In view of the fact that g(x) ≤ ax + b for some constants a, b > 0 it follows that the following estimate holds for

fixed t > 0: ∣∣∣Σ(2)
t

∣∣∣ ≤ (aXt∧τπ + b)

∫ t∧τπ

0

e−qs1{Xs∈(a−2ǫ,a+2ǫ)}ds.

On account of the fact that the potential measure of X is absolutely continuous, the left-hand side tends to zero

as ǫ ց 0 Px-a.s. for any x ∈ R+. The dominated convergence theorem implies that this convergence also holds in

Px-expectation. For the term Σ(1) the strong Markov property applied at T2i−1 and Def. 4.1(i) imply that following

identity holds true:

Ex

[
Σ

(1)
t

]
= Ex


∑

i≥1

e−q(t∧T2i−1)L(Xt∧T2i−1 − a− 2ǫ)


 ,(10.4)

with

L(x) = F (x)− g̃(x) +
W (q)(x)

W (q)(4ǫ)
(g̃(4ǫ)− F (4ǫ)),

where F = Fg̃ denotes the Gerber-Shiu function corresponding to payoff g̃ := a−2ǫg. The triangle inequality,

continuous differentiability of g̃ and F and the fact that W (q) is increasing yield the following estimate:

|L(x)| ≤ 4ǫ× 2C(ǫ) for all x ∈ [0, 4ǫ], with C(ǫ) = max
x∈[0,4ǫ]

|F ′(x) − g̃′(x)|.(10.5)
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Observe that the number of terms in the sum Σ(1) is bounded by 1+D−
t (ǫ)+U

+
t (ǫ) where D−

t (ǫ) and U
+
t (ǫ) denote

the numbers of down-crossings of the band (a − 2ǫ, a − ǫ) and up-crossings of (a + ǫ, a + 2ǫ) by X before time t.

Thus the expectation of |Σ
(1)
t | can be bounded as follows:

Ex

[∣∣∣Σ(1)
t

∣∣∣
]
≤ 8ǫEx[1 +D−

t (ǫ) + U+(ǫ)]C(ǫ).(10.6)

Since X is a submartingale, the up-crossing lemma implies that the expected number of up-crossings U+
t (ǫ) of the

band (c, d) = (a+ ǫ, a+ 2ǫ) by time t does not grow faster than ǫ−1:

ǫ · Ex[U
+
t (ǫ)] ≤ Ex[(Xt − d)

+]− Ex[(X0 − c)
+].

Thus, it follows that ǫ · Ex[U
+
t (ǫ)] remains bounded as ǫ→ 0. As the number of down-crossings D−

t (ǫ) is bounded

by two added to the number of up-crossings U−
t (ǫ) of the band (a− 2ǫ, a− ǫ), ǫ · Ex[D

−
t (ǫ)] also remains bounded.

Since C(ǫ) tends to zero as ǫ→ 0, on account the facts that F and g̃ are C1(R+) and F
′(0) = g̃′(0) (cf. Eqn. (B.6),

recalling that X is assumed to have unbounded variation), it thus follows from Eqn. (10.6) that Ex[|Σ
(1)
t |] tends to

0 as ǫ tends to zero, and the proof is complete. �

10.2. Single band and two-bands policies. The following auxiliary result provides a key-step for obtaining

necessary and sufficient optimality conditions for single barrier policies:

Lem. 10.3. (i) For θ > Φ(q), the Laplace transform g∗(θ) :=
∫∞

0 e−θxg(x)dx of the function

g : R+\{0} → R x 7→ g(x) := b+(L
wvb − q vb)(x)(10.7)

is equal to −Ξ(θ) where

Ξ(θ) = −
eθb+

θ

∫

(b+,∞)

e−θzZ(q,θ)′(z)Gb−(dz),

where Gb−(x) := G(b−, x).

(ii) The function g is non-positive if and only if the function θ 7→ Ξ(θ +Φ(q)) is completely monotone.

Proof of Theorem 7.3, part (i). We claim that the strategy πb∗ is an optimal policy for the stochastic control prob-

lem in Eqn. (2.4) if and only if the following condition for vb∗ is satisfied:

b∗+
Lw∞vb∗(x)− qvb∗(x) ≤ 0, for all x > b∗+ and with w = vb∗ ,(10.8)

where the operator b∗+L
w
∞ is defined in (4.12). Given this claim the assertion in (i) directly follows on account of

Lem. 10.3.

Proof of claim: To verify that the condition in Eqn. (10.8) is sufficient we show that vb∗ is a stochastic super-

solution. Then the (local) verification theorem in Cor. 3.5 implies that vb∗ is equal to the value-function v∗. The

supersolution property of vb∗ follows from the pasting lemma (Lem. 10.1) and the facts

(a) exp{−q(t ∧ T−
b∗+
)}vb∗

(
X(t ∧ T−

b∗+
)
)
is a Px-supermartingale for all x ≥ b∗+ (by Prop. 7.12 and Thm. 5.3),

(b) exp{−q(t ∧ T−
0 )}vb∗

(
X(t ∧ T−

0 )
)
is a Px-martingale for all x ∈ [0, b∗+] (by the form of vb∗ in Eqn. 5.10 and

the martingale properties of W (q) and F in Eqns.(4.9) and (4.10)) and

(c) vb∗ is continuous at b∗+ (if X has bounded variation) and C1 at b∗+ (if X has unbounded variation) in view

of the form of vb∗ in Eqn. 5.10.

To see that the condition (10.8) is also necessary, suppose that the condition in Eqn. (10.8) is not satisfied. Since

x 7→ (b∗+L
w
∞vb∗−qvb∗)(x) is right-continuous for x ≥ b

∗
+, it follows that there exists an open interval (α, β) contained

in (b∗+,∞) such that (b∗+L
w
∞vb∗ − qvb∗)(x) > 0. Define a strategy π̃ as follows: whenever Ut does not take a value

in the interval (α, β) operate according to πb∗ , and while the reserve process Ut takes a value in the interval (α, β),
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do not pay any dividends. Then St := e−q(t∧Tα,β)[vπ̃(Xt∧Tα,β
) − vb∗(Xt∧Tα,β

)) is a Px-supermartingale for any

x ∈ (α, β), and the following holds true (cf. Eqn. (7.5)):

Ex[St − S0] = −Ex

[∫ t∧Tα,β

0

e−qs(b∗+L
w
∞vb∗ − qvb∗)(Xs)ds

]
< 0 for any x ∈ (α, β).

This identity implies that vπ̃(x) is strictly larger than vb∗(x) for any x ∈ (α, β). �

Proof of Theorem 7.3, part (ii). The statement follows by combining Thm. 5.3(ii) with the following observation.

�

Lem. 10.4. If x 7→ G∗(x) is decreasing on (b∗+,∞), then Ξ(θ) is completely monotone on (Φ(q),∞).

Lem. 10.4 will be proved in Sect. C.1.

Proof of Lem. 10.3. (i) Taking the Laplace transform in c in Eqn. (C.1) and using the form of the Laplace transform

of W (q) yields that, for θ > Φ(q),

g∗(θ) ·
θ

ψ(θ)− q
=

∫

[0,∞)

e−θcW (q)′(b+ + c)[G∗(b+ + c)−G∗(b+)]dc

=

∫

[0,∞)

∫

[z,∞)

e−θcW (q)′(b+ + c)dcG∗(b+ + dz)

= eθb+
∫

[b+,∞)

∫

[z,∞)

e−θcW (q)′(c)dcG∗(dz) =
eθb+

ψ(θ)− q

∫

[b+,∞)

e−θzZ(q,θ)′(z)G∗(dz),

by a change of the order of integration, which is justified by Fubini’s theorem, and the form (B.10) of Z(q,θ)′(z).

Comparison with Ξ defined in (C.1) shows that g∗(θ) = −Ξ(θ) for θ > Φ(q). Here the last three (outer) integrals

are Stieltjes integrals with respect to G∗.

(ii) The second assertion follows since a function f : (c,∞)→ R with c > 0 is completely monotone if and only

if it is the Laplace transform of a non-negative measure supported on R+ . �

Proof of Thm. 7.10. (i) In this case it can be shown as in the proof of Lem. 10.3 that the complete monotonicity

of the function Ξα∗
f
,β∗

f,−
,β∗

f,+
(f) is equivalent to the condition

0L
w
∞V

f
α∗,β∗

f
(x) − qV fα∗,β∗

f
(x) ≤ 0 for all x > β∗

f,+.

That this is a necessary and sufficient condition for V fα∗,β∗
to be identically equal to V f∗ follows by a line of reasoning

analogous to the one employed in the proof of Thm. 7.3(i).

(ii) The proof is analogous to that of part (i), and is omitted. �

Proof of Lem. 6.3. (i) Consider the function G : R+ → R defined by G(a) = supb≥0G
(a)
f,#(b). The fact α∗

f > 0 is a

consequence of the intermediate value theorem and the following three assertions concerning G:

(a) G(0) < 0,

(b) there exists an a0 > 0 such that G(a0) > 0 and

(c) the function a 7→ G(a) is continuous at a ∈ [0, a0].

Assertion (a) follows from the definitions of β∗
f,−(0) and β∗

f,+(0), and the form of V fa,b−,b+ (Prop. 6.2), and the

facts F (0) = f(0) = c with c given in Eqn. (6.3) and F ′(0+) = f ′(0−) = 1 in conjunction with the condition in

Eqn. (6.6).
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To verify assertion (b) we show that for some a0 and b with a0 < b, G
(a0)
f,# (b) is strictly positive. In view of the

form of G
(a0)
f,# we thus need to show the existence of a pair a0, b satisfying F

(a0)′(b− a0) < 1.

The condition in Eqn. (6.5) and the right-continuity of the map J : R+\{0} → R defined by

J(y) := 0L
w̄
∞f(y) = ψ′(0)− q(y + w̄(0)) +

∫

(y,∞)

[w̄(y − z)− w̄(0) + z − y]ν(dz), y ∈ R+,

imply that the following statement holds true:

There exists an interval I = [u−, u+], with 0 < u− < u+, such that J(y) > 0 for all y ∈ I.(10.9)

For the choice a0 = inf{y ≥ 0 : J(y) > 0}, it follows in view of the representation F (a0)′(b − a0) = 1−
∫ b−a0
0

J(b −

z)W (q)(dz) (see Lem. B.2(iv), Eqn. (B.5)) that we have F (a0)′(b− a0) > 1 for some b sufficiently small.

To see assertion (c) fix a ≥ 0, and note that V fa,β∗(a)(x) = W (q)(x)G(a) + F (a)(x − a) for x ∈ [a, β∗
+(a)].

Analogously as in Thm. 5.3 it can be shown that we have

V fa,β∗(a)(x) = sup
π∈Π

Ex

[∫ τπ
a

0

e−qtdDπ
t + e−qτ

π
a f(Uπτπ

a
)

]
.

Let a1, a2 be such that a2 < a1 < min{β∗(a1), β
∗(a2)} and fix x0 ∈ (a1,min{β∗(a1), β

∗(a2)}). To show the

continuity of G(a) we will show that V fa1,β∗(a1)
(x0)− V

f
a2,β∗(a2)

(x0)→ 0 when a2 − a1 → 0.

The triangle inequality implies that we have

∣∣∣V fa1,β∗(a1)
(x0)− V

f
a2,β∗(a2)

(x0)
∣∣∣ ≤ sup

π∈Π
Ex0

[∫ τπ
a2

τπ
a1

e−qtdDπ
t + |e−qτ

π
a2 f(Uπτπ

a2
)− e−qτ

π
a1f(Uπτπ

a1
)|

]
.(10.10)

Since Px0(Uτπ
a1
∈ [a2, a1)) = Px0(τ

π
a1 < τπa2) converges to zero if a1−a2 ց 0, it follows that also the random variable

under the expectation tends to zero if a1−a2 ց 0. Since this random variable is dominated uniformly for all π ∈ Π,

Lebesgue’s dominated convergence theorem implies that the right-hand side of Eqn. (10.10) tends to zero when

a1 − a2 ց 0. To see that the random variable is dominated recall that f is affine and and note that we have

e−qτ
π
a1Dπ

τπ
a1
∨ e−qτ

π
a2Dπ

τπ
a2
∨

∫

[τπ
a1
,τπ

a2
]

e−qtdDπ
t ≤

∫

[0,∞)

e−qtdDπ
t ≤

∫ ∞

0

qe−qtDtdt ≤

∫ ∞

0

qe−qtXtdt

which has Px0-expectation x0 +Φ(q)−1, and

∣∣∣e−qτ
π
a Xτπ

a

∣∣∣ ≤ e−qτ
π
a (Xτπ

a
−Xτπ

a
),

where Xt = inf0≤s≤tXs, which has Px0-expectation that is bounded by the finite number 2x0 + E[Xη(q) −Xη(q)]

where η(q) denotes an independent exponential random time.

Finally, note that the finiteness of β∗
f,+(α

∗
f ) follows by a line of reasoning that is analogous to the one that was

used in the proof of Thm. 5.3, while we have β∗
f,+(α

∗
f ) > α∗

f by definition of β∗
f,+(α

∗
f ).

(ii) Observe that in the case α∗
f <∞ we have α∗

f ≤ β
∗
f,− < β∗

f,+ <∞, where the first strict inequality is a direct

consequence of the fact that it will never be optimal to pay a lump-sum dividend smaller than the transaction cost

K > 0. The proof of the rest of the assertions in (ii) is analogous to that of part (i), and is omitted.

(iii) In the cases K > 0 or {K = 0 and σ2 > 0 or ν0,1 = ∞} the equality α∗ = β∗
+(α

∗) would imply that

Vα∗,β∗ ≡ f— however, if there exists a u such that 0L
f
∞(u) > 0, there exist α, β such that Vα,β(x) > f(x) for

x ∈ (α, β), which would yield a contradiction. �
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10.3. Optimality of multi-dividend-bands policies. Denote by v∗ = (vi,j)(i,j), a
∗ = (a∗i,j)(i,j) and b∗ =

(b∗i,j)(i,j) the sequence of value-functions and band levels generated by the algorithm in Sect. 7, where the in-

dex (i, j) refers to the ith iteration of the algorithm in the jth run of the algorithm (i.e. it has been restarted j − 1

times, cf. Rem. 7.14). In particular, we have that vi,j is given by

vi,j(x) =




Va∗,b∗(x) x ∈ [0, b∗i,j,+],

x− b∗i,j,+ + vi,j(b
∗
i,j,+) x > b∗i,j,+.

(10.11)

The following result concerns the optimality of multi-dividend bands strategies and implies in particular Thm. 7.15:

Prop. 10.5. (i) For a given pair (i, j) of iteration and run, vi,j is equal to the value-function vai,j ,bi,j of the

multi-dividend-bands strategy πai,j ,bi,j at levels a∗i,j = (0, a∗1,1, . . . , a
∗
i−1,j ,∞) and b∗i,j = (b∗1,1, . . . , b

∗
i,j).

(ii) For each pair (i, j), v(i,j)(x) = v∗(x) for all x ≤ b∗i,j,+.

(iii) The optimal value function v∗ is equal to the value function Va∗,b∗ of the strategy πa∗,b∗ .

Proof. (i) The strong Markov property of the process U = Uπai,j ,bi,j applied at the stopping time τ− = τπa∗i−1,j

implies

vi,j(x) = Ex

[∫ τ−

0

e−qtµπK(dt) + vi−1,j (Uτ−)

]
,(10.12)

where π = πai,j ,bi,j
. The form of vi,j follows by induction, starting from the expression for a single dividend

band strategy and using the form of the value-function of the auxiliary stochastic control problem in Eqn. (3.15)

(subsequently applied with pay-off functions f(x) = vπa∗
k,l

,b∗
k,l

(b∗k,l,++x) for all pairs (k, l) such that (l, k) is smaller

than (j, i− 1) (in the lexico-graphical order).

(ii) The statement follows by induction (in k). Indeed, note that, from Cor. 7.11, it follows v(2,1)(x) = v∗(x) for

all x ≤ b∗2,1,+. Furthermore, that the induction step holds is verified as follows: Assuming that v(k−1,l)(x) = v∗(x)

for all x ≤ b∗k−1,l,+ for some pair (k, l), Thm. 6.5 with f = b∗
k−1,l,+

v∗ and the relation in Eqn. (10.12) imply that the

previous line is valid with (k − 1, l) replaced by (k, l).

(iii) Since vi,j(x) = Va∗,b∗(x) for all x ≤ a∗i−1,j (from Eqn. (10.11)), it follows by virtue of part (ii) that

v∗(x) = Va∗,b∗(x) for all x ≤ a∗i−1,j . Observing that the sequence (ai,j)i,j is strictly increasing and ultimately tends

to infinity (cf. Step 1 of the algorithm and Lem. 6.3(i,ii)), we deduce v∗(x) = Va∗,b∗(x), for any fixed x ∈ R+. �

Appendix

Appendix A. Proof of Dynamic Programming Equation

Proof of Lem. 3.1 (ii). Fix arbitrary π ∈ Π, x ∈ R+ and s, t ∈ R+ with s < t. It is clear that V πt is Ft-measurable

and integrable on account of Lem. 9.3. Fix arbitrary π ∈ Π, x ∈ R+. Define by Wπ = {Wπ
s , s ∈ R+} the following

value-process:

Wπ
s = ess. sup

π̃∈Πs

J π̃s , J π̃s = E

[∫ τ π̃

0

e−quµπ̃K(du) + e−qτ
π̃

w(U π̃τ π̃)

∣∣∣∣Fs
]
,(A.1)

where Πs ⊂ Π denotes the set of strategies

Πs =
{
π̃ = (π, π) = {Dπ,π

u , u ∈ R+} : π ∈ Π
}
, Dπ,π

u =




Dπ
u , u ∈ [0, s);

Dπ
s +Dπ

u−s(U
π
s ), u ≥ s,

where Dπ(x) denote the process of cumulative dividends of the strategy π corresponding to initial capital X0 = x.

It follows that V π is a supermartingale as direct consequence of the following P-a.s. relations:
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(a) V πs =Wπ
s ,

(b) Wπ
s ≥ E[Wπ

t |Fs],

where Wπ is the process defined in Eqn. (A.1).

Proof of (b): The identity follows by classical arguments. Since the family of random variables {J π̃t , π̃ ∈ Πt}

is directed upwards, it follows from Neveu [38] that there exists a sequence πn ∈ Πt such that J π̃n

t ↑ Wπ
t . Since

Πt ⊂ Πs it follows that Wπ
s dominates Jπn

s = E[Jπn

t |Fs], so that monotone convergence implies that we have

Wπ
s ≥ lim

n
E[Jπn

t |Fs] = E[Wπ
t |Fs].

Proof of (a): The form of Dπ̃ implies that, conditional on Uπs , {D
π̃
u−D

π̃
s , u ≥ s} is independent of Fs. On account

of the Markov property of X it also follows that conditional on Uπs , {U
π̃
u − U

π̃
s , u ≥ s} is independent of Fs. As a

consequence, we have the following identity on the set {s < τπ}

E

[∫ τ π̃

0

e−quµπ̃K(du) + e−qτ
π̃

w(U π̃τ π̃)

∣∣∣∣Fs
]

= e−qsEUπ
s

[∫ τπ

0

e−quµπK(du) + e−qτ
π

w(Uπτπ )

]

+

∫ s

0

e−quµπK(du)

= e−qsvπ(U
π
s ) +

∫ s

0

e−quµπK(du).

In particular, Px-a.s. the following representation holds true:

J π̃s = e−q(s∧τ
π)vπ(U

π
s∧τπ) +

∫ s∧τπ

0

e−quµπK(du),

which yields the following Px-a.s. representation for Wπ
s :

Wπ
s =

∫ s∧τπ

0

e−quµπK(du) + e−q(s∧τ
π) ess. sup
π̃=(π,π)∈Πs

vπ(U
π
s∧τπ).(A.2)

In view of the definitions of Πs and v∗, the essential supremum in Eqn. (A.2) is P-a.s. equal to v∗(U
π
s∧τπ), which

implies that, P-a.s., Wπ
s = V πs . �

Appendix B. Properties of Gerber-Shiu functions

We collect below a number of key properties of the function Fw for pay-offs w in the set R (which was defined

in Def. 2.2).

Lem. B.1. Let w ∈ R. Then the following hold true:

(i) The function Fw can be expressed in terms of W (q) as follows:

Fw(x) =
σ2

2
w′(0−)W (q)(x) + w(0)Z(q)(x) −

∫ x

0

W (q)(x− y)wν(y)dy, x ≥ 0.(B.1)

(ii) The value of Fw at x = 0 matches w(0): Fw(0) = w(0).

(iii) The following asymptotics hold true:

Fw(x)

W (q)(x)
∼ κw, as x→∞,

where κw is defined in Eqn. (4.8).

(iv) If X has paths of bounded variation, the Laplace transform of Fw simplifies as follows:
∫ ∞

0

e−θxFw(x)dx = (ψ(θ)− q)−1[pw(0)− w̃∗
ν(θ)],

where w̃∗
ν is the Laplace transform of the function w̃ν : R+\{0} → R given by w̃ν(x) =

∫
(x,∞)

w(x − y)ν(dy).
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Note that representation (B.1) and the continuity of W (q)|R+ imply that the Laplace-transform inverse in

Eqn. (4.6) admits a continuous version on R+, which justifies Def. 4.2.

Proof. (i) The identity follows by term-wise inverting the Laplace transform (4.6), using the form (1.4) of the

Laplace transform of W (q).

(ii) This follows directly from Eqn. (B.1) and the facts that Z(q)(0) = 1 and σ2W (q)(0) = 0.

(iii) Since W (q)(x) ∼ eΦ(q)x/ψ′(Φ(q)) as x→∞, the statement follows from Eqn. (B.1).

(iv) If X has bounded variation then we have ν1 :=
∫∞

0
ν(x)dx < ∞. Hence, for any x > 0, w̃ν is finite and

satisfies wν(x) = w̃ν(x) − w(0)ν(x). �

Restricting to penalties w from the set P (which was defined in Def. 2.1) we have a number of additional

properties. Recall that we denote the right-derivative of F at x ≥ 0 by F ′(x).

Lem. B.2. Let w ∈ P.

(i) The function wν : R+\{0} → R defined in Eqn. (2.3) is increasing and right-continuous, and satisfies the

following integrability condition:
∫ x

0

|wν(y)|dy <∞ for any x > 0.(B.2)

(ii) The function Jw : R+\{0} → R given by Jw(x) = (0Lw∞pw− qpw)(x) for any x > 0, with pw(x) = w′(0−)x+

w(0) and the map 0Lw∞ defined in Eqn. (4.12), is right-continuous, and is equal to the following expression:

Jw(y) = [ψ′(0)−mν(y)]w
′(0−) + wν(y)− q(w

′(0−)y + w(0)), y > 0,(B.3)

where wν is given in (2.3) and the map mν : R+\{0} → (−∞, 0) is given by mν(x) =
∫∞

x (x− z)ν(dz).

(iii) Fw(x) is left- and right-differentiable at any x > 0 with right-derivative at x > 0 given by

F ′
w(x) =

σ2

2
w′(0−)W (q)′(x) + w(0)qW (q)(x)−

∫

[0,x)

wν(x− y)W
(q)(dy),(B.4)

where the first term is zero if σ2 = 0. In the case {σ2 > 0 or ν0,1 =∞}, then Fw|R+\{0} ∈ C
1(R+\{0}).

(iv) The following alternative representation of F ′
w,+(x) holds true:

F ′
w(x) = w′(0−)−

∫

[0,x)

Jw(x− y)W
(q)(dy), x > 0.(B.5)

In particular, x 7→ F ′
w(x) is right-continuous on (0,∞).

(v) The right-derivative at x = 0 of Fw takes the following form:

F ′
w(0) =




w′(0−), in the case {σ2 > 0 or ν0,1 =∞},

−Jw(0+)W (q)(0) = q
pw(0)−

1
pwν(0), in the case {σ2 = 0 and ν0,1 <∞},

(B.6)

where p and ν0,1 were defined in Eq. (1.7).

(vi) The map Fw : R+\{0} → R is equal to a difference of monotone functions.

Proof. (i) The integrability condition (B.2) follows from the condition (2.2) (as we have the inclusion P ⊂ R).

The right-continuity and monotonicity of wν follow on account of the dominated convergence theorem and the

monotonicity and right-continuity of w.

(ii) The representation in Eqn. (B.3) follows directly from the form of the operator 0Lw∞ given in Eqn. (4.12).

The function Jw inherits the right-continuity from wν , on account of in view of Eqn. (B.3) and the continuity of

mν .

(iii) Recall that W (q)(x) is right- and left-differentiable at any x > 0 (with finite derivatives and with right-

derivative at x denoted by W (q)′(x)). The final term on the rhs of Eqn. (B.1) is also right-differentiable with
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derivative equal to the third term on the rhs of Eqn. (B.4), on account of the dominated convergence theorem,

the monotonicity and right-continuity of wν and the right-differentiability of W (q). An analogous line of reasoning

shows that F ′
w |R+\{0} is in fact continuous in case that we have σ2 > 0 or ν1 = ∞, as it holds that W (q)|R+\{0} is

C1 in that case.

(iv) The equality of (B.4) and (B.5) can be verified by taking Laplace transforms, using that the Laplace

transforms of W (q) and mν are given by Eqn. (1.4) and by the following expression:

m∗
ν(θ) = θ−2

∫ ∞

0

[e−θz − 1 + θz]ν(dz) = θ−2
[
ψ(θ) − θψ′(0)− σ2

2 θ
2
]
.

(v) If X has bounded variation, then wν(0+) exist and is finite. On account of the monotonicity of wν , the

continuity of W (q)|R+ and the fact W (q)(0) = p−1, the expression in Eqn. (B.6) follows by taking the limit of x

to 0 in Eqn. (B.4). If X has unbounded variation, the form of F ′
w(0+) follows by the fact that the convolution in

Eqn. (B.5) vanishes as x tends to zero. This fact is a consequence of the following two observations: (1) Let η > 0

and δ > 0 be such that, for all z ∈ (0, δ), |∆w(−z)− w′(0−)| ≤ η, where ∆w(z) = w(z)−w(0)
z . Then the form of wν

implies that the following estimate holds true:

(B.7) |wν(x)| ≤

∫

[δ,∞)

|w(−y)− w(0−)|ν(dy) + η|mν(x)|, x > 0.

(2) For any a, b ≥ 0, define the function K : R+\{0} → R by K(x) :=
∫ x
0
(a − bmν(x − y))W (q)(dy). As K is

increasing and has a Laplace transform K∗(θ) = (ψ(θ)− q)−1θ(a− bm∗
ν(θ)) that satisfies K

∗(θ) ∼ c/θ as θ tends to

infinity for some constant c, a Tauberian theorem implies that K(x) tends to zero as x tends to zero. The stated

fact now follows by combining the observations (1) and (2) with the fact W (q)(0) = 0.

(vi) The statement follows on account of the representation in Eqn. (B.4) and the facts that wν is monotone

and non-positive and that W (q)′|R+\{0} is equal to the difference of two monotone functions (which holds as W (q)

is log-concave, cf [37, Lemma 6]). �

In the case of exponential boundary condition w we record the following additional properties:

Rem. B.3. The family of functions Z(q,v) contains as member the function Z(q,0) = Z(q), which corresponds to

the case of a boundary condition equal to 1. Further, from (8.1) we read off that Z0 = Z(q), and if E[|X1|] < ∞,

that Z1(x) is given by

Z1(x) = x+ qW
(q,1)

(x) − ψ′(0)W
(q)

(x),(B.8)

where W
(q,1)

(x) =
∫ x
0
(x− y)W (q)(y)dy. More generally, if E[|X1|k] <∞, then ψ(r)(0) is finite for r = 1, . . . , k, and

the following representation holds true by an application of the Leibniz rule:

Zk(x) = xk + qW
(q,k)

(x) −
k∑

n=1

(
k

n

)
ψ(n)(0)W

(q,k−n)
(x)(B.9)

with ψ(n)(0) being the nth right-derivative of ψ at zero and

W
(q,n)

(x) =

∫ x

0

(x− y)nW (q)(y)dy.

Rem. B.4. If w is an exponential, w = ev, the function Fw reduces to the function Z(q,v) defined in Eqn. (7.2).

Indeed, the Laplace transforms F ∗
ev and (Z(q,v))∗ of Fev |R+ and Z(q,v)|R+ are both equal to

F ∗
ev (θ) = (Z(q,v))∗(θ) = (ψ(θ) − q)−1ψ(θ)− ψ(v)

θ − v
.
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Rem. B.5. (i) For v ≥ 0, the function x 7→ Z(q,v)(x) is strictly increasing on R+. In particular, for x > 0 and

v > Φ(q), Z(q,v)′(x) is equal to

Z(q,v)′(x) = (ψ(v) − q)

∫ ∞

x

ev(x−y)W (q)(dy).(B.10)

which can be derived from Eqns. (1.4) and (7.2) by integration by parts.

(ii) The map v 7→ v−1Z(q,v)′(x) is completely monotone on (Φ(q),∞), for any x > 0. This follows since

v 7→ v−1Z(q,v)(x) is the Laplace transform of some measure on R+ which we show now. From the definition of

Z(q,v) we find that the derivative Z(q,v)′(x) at x > 0 satisfies

Z(q,v)′(x) = vZ(q,v)(x) + (q − ψ(v))W (q)(x).

Inserting the forms of the Laplace transforms of W (q)|R+ and Z(q,v)|R+ (given in Eqn. (1.4) and Rem. (4.3), respec-

tively), we find

∫ ∞

0

e−θxZ(q,v)′(x)dx =
q

ψ(θ)− q
+

θv

ψ(θ)− q

[
σ2

2
+

∫

R+\{0}

e−θy − e−vy

v − θ
ν(y)dy

]
.(B.11)

Observing that we have
∫

R+\{0}

e−θy − e−vy

v − θ
ν(y)dy =

∫

R+\{0}

∫

R+\{0}

e−θs−vtν(s+ t)dtds,

and inverting the Laplace transform in Eqn. (B.11) yields the expression

v−1Z(q,v)′(x) =
q

v
W (q)(x) +

σ2

2
W (q)′(x) +

∫

R+\{0}

∫

[0,x]

e−vtν(x− y + t)W (q)(dy) dt, x > 0.

By inspection we see that, for any x > 0, the function v 7→ v−1Z(q,v)′(x) is the Laplace transform of a measure on

[0,∞), which implies the stated complete monotonicity.

(iii) If, for some v0 > 0, E[e−v0X1 ] is finite, ψ(v) and v 7→ Z(q,v)(x) can be analytically extended into a neigh-

bourhood of v = 0, and Z(q,v)(x) can be expanded in terms of Zk, k ∈ N, as follows:

Z(q,v)(x) =

∞∑

k=0

vk

k!
Zk(x).

Proof of Prop. 8.2. Note that, by changing measure and inserting form in Eqn. (4.4) of Vwa,b for w ≡ 1, the following

expression can be derived for v ≥ 0:

Ex[e
−qTa,b+v(XTa,b

−a)1{T−
a <T

+
b
}]

= e(x−a)vEx[e
−qTa,b+ψ(v)Ta,b+v(XTa,b

−x)−ψ(v)T0,a1{T−
a <T

+
b
}]

= e(x−a)vEvx[e
−(q−ψ(v))Ta,b1{T−

a <T
+
b
}]

= e(x−a)v

[
Z(q−ψ(v))
v (x− a)−

Z
(q−ψ(v))
v (b− a)

W
(q−ψ(v))
v (b− a)

W (q−ψ(v))
v (x− a)

]
,

where W
(r)
v , Z

(r)
v are the r-scale functions under P

v, the Cramér-Esscher change of measure of P with Radon-

Nikodym derivative defined by dPv

dP |Ft
= exp(vXt − ψ(v)t). Using the identity (from [7])

W (q)(x) = exvW (q−ψ(v))
v (x), v ≥ 0, q ≥ 0,

we find (8.2). The identity (8.3) follows by a similar line of reasoning. The uniqueness follows from Thm. 4.5.

� �
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Proof of Prop. 4.4. Writing V0,∞
w (x) = w(0)Ex[e

−qT−

0 ]+Ex[e
−qT−

0 (w(XT−

0
)−w(0))] and applying the compensation

formula to the Poisson point process (∆Xt, t ∈ R+) yield the following expressions for any x ∈ R+:

V0,∞
w (x)− w(0)V0,∞

e0 (x) =

∫ ∞

0

∫ ∞

y

(w(y − z)− w(0))ν(dz)U q(x, dy)(B.12)

= W (q)(x)w∗
ν (Φ(q))−

∫ x

0

W (q)(x− y)wν(y)dy,(B.13)

where U q(x, dy) is the q-potential measure of X under Px killed upon entering (−∞, 0),

U q(x, dy) = [W (q)(x)e−Φ(q)y −W (q)(x− y)]dy, y > 0,

and V0,∞
e0 (x) = Ex[e

−qT−

0 ] is expressed in terms of the scale function W (q) by

V0,∞
e0 (x) = Z(q)(x) −

q

Φ(q)
W (q)(x).

The two integrals in above display are finite in view of the integrability condition (2.2) and the fact that W (q)|R+

is continuous. Thus, Eqn. (4.7) follows from Eqn. (B.1) (since the term σ2

2 w
′(0−)W (q)(x) cancels).

The martingale property in Eqn. (4.10) follows from Eqn. (4.7) and the strong Markov property of X , and the

fact that (
e−q(t∧T

−
a )W (q)(Xt∧T−

a
− a), t ∈ R+

)
is a Px-martingale for any x ∈ R.

�

Proof of Theorem 4.5: An application of the compensation formula yields the following representation of Ua,bw (x):

Ua,bw (x)− w(0)Ua,be0,a (x) =

∫ b

a

∫ ∞

y

(w(y − z)− w(0))ν(dz)Rqa,b(x, dy),

where Ua,be0,a is given in (8.3), and q-resolvent measure Rqa,b(x, dy) of Y
b killed upon entering (−∞, a) which is given

by ([41, Thm. 1])

(B.14) Rqa,b(x, dy) =
W (q)(x− a)

W (q)′(b− a)
W (q)(b − dy)−W (q)(x− y)dy, x, y ∈ [a, b].

Combining these expressions with Lem. B.2(iii) and taking note of the fact that the term σ2

2 aw
′(0−)W (q)(x) cancels

yields that Eqn. (4.5) holds with F = F
aw. �

Appendix C. Proofs of optimality of single dividend-band strategies

C.1. Key representation. The following result provides an explicit connection between the function the boundary

influence function G and the infinitesimal generator of X :

Prop. C.1. Let c > 0 and b+ ≥ b− ≥ 0 (with b+ 6= b− in the case K > 0). (i) The following identity holds true:

W (q)′(b+ + c)[G(b−, b+ + c)−G(b−, b+)] =

∫

[0,c]

(b+L
vb
∞vb)(b+ + c− y)W (q)(dy)(C.1)

= 1 − F ′
b+
vb
(c).(C.2)

(ii) If G(b−, b+ + c) ≤ G(b−, b+), then F ′
b+
vb
(c) ≥ 1.

(iii) The functions y 7→ G(b−, y) and y 7→ G#(y) are decreasing for all y sufficiently large.

The proof of Prop. C.1 is based on the following representation which is itself a consequence of the shifting

lemma and the pasting lemma:
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Lem. C.2. For any c > 0 and any b+ ≥ b− ≥ 0, (with b+ 6= b− if K > 0) the following identity holds true for any

x ≤ b+ + c:

Ex

[
e−q(t∧τb+c)vb(U

b+c
t∧τb+c

) +

∫ t∧τb+c

0

e−qsdDb+c
s

]
− vb(x)(C.3)

= Ex

[∫ t∧τb+c

0

e−qs(b+L
w
∞vb)(U

b+c
s− )1{Ub+c

s− >b+}ds

]
.(C.4)

with w = vvb , and we denoted τb+c = τπ(b−,b++c) , Db+c = Dπ(b−,b++c) and U b+c = Uπ(b−,b++c).

Proof of Prop. C.1. First consider the case K = 0. Denoting the q-resolvent of Y b++c killed upon entering (−∞, 0)

by

Rq0,b++c(x, dy) =

∫ ∞

0

e−qtPx(Y
b++c
t ∈ dy, t < τ0)dt

and letting t→∞ in (C.3) the dominated convergence theorem implies that for x ∈ (0, b+ + c)

vb+c(x)− vb(x) = Ex

[∫ τb+c

0

e−qs[b+L
w
∞vb](U

b+c
s− )1{Ub+c

s− >b+}ds

]
(C.5)

=

∫

[b+,b++c]

[b+L
w
∞vb](y)R

q
0,b++c(x, dy),(C.6)

where w = vb. Inserting the explicit expressions (5.1) and (B.14) for vb, vb+c and R
q
0,b++c(x, dy), we find that

W (q)(x)[G#(b+ + c)−G#(b+)] =W (q)(x)

∫

[b+,b++c]

[b+L
w
∞vb](y)

W (q)(b+ + c− dy)

W (q)′(b+ + c)
, x ∈ (0, b+),

with G# defined in Eqn. (7.1) and where we used that W (q)(x) = 0 for x < 0. Changing coordinates in the integral

and using that W (q)(x) is strictly positive at any x > 0 yields the first equality in Eqn. (C.1). The second equality

in Eqn. (C.1) follows by the representation in Eqn. (B.5) and the fact v′b(b+−) = 1. The case b+ = 0 follows by

approximation, taking the limit of b+ to zero. The proof of the case K > 0 is similar and omitted.

The statement in (ii) is a direct consequence of Eqn. (C.1). The ultimate monotonicity of y 7→ G(b−, y) and

y 7→ G#(y) follows from the fact that b+L
w
∞vb(x) tends to minus infinity when x→∞. �

Proof of Lem. 10.4. If the function G∗ is decreasing, then the function Ξ is completely monotonicity in view of the

form of Ξ given in Eqn. (7.3), the complete monotonicity of θ−1eθ(b−x)Z(q,θ)′(x) (cf. Rem. B.5(ii)) and the following

facts:

(i) A function f : (c,∞) → R+, c > 0, is completely monotone if f is the Laplace transform of a measure

supported on [0,∞).

(ii) If f(θ) is the Laplace transform of the measure µ supported on [0,∞) then, for any c > 0, e−θcf(θ) is the

Laplace transform of the translated measure y 7→ 1{y≥c}µ(d(y − c)).

(iii) If θ 7→ fx(θ), x > b, b ∈ R, is a collection of Laplace transforms of measures µx on [0,∞) and m is a

measure supported on the interval [b,∞), then θ 7→
∫
[b,∞)

fx(θ)m(dx) is equal to the Laplace transform of

the measure supported on [0,∞) given by
∫
[b,∞) µx(dy)m(dx).

�

Proof of Cor. 7.9. In view of Cor. 3.5, it suffices to verify that Eqn. (10.8) is satisfied.

We need to show that J(x) ≤ 0 for all x > 0 where J : R+\{0} → R is given by J(x) := (b∗+L
w̃
∞vb∗)(b

∗
+ + x) with

w̃ = vb∗ . In view of the forms of the operator b∗+L
w
∞ and of vb∗+(x) for x > b∗+, it follows that J(x) is given by the

following expression:

J(x) = ψ′(0)− q(x+ v(b)) +

∫ ∞

0

[v(b − y)− v(b) + y]ν′(x+ y)dy, x > 0,(C.7)
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where we denoted b = b∗+ and v = vb∗ .

The assertion that J(x) ≤ 0 for any x > 0 then follows once we show that

(i) J is concave on R+\{0},

(ii) J(0+) = 0 and

(iii) J ′(0+) ≤ 0.

To show (i) note that under condition (a) the integrand in (C.7) is non-positive for all y. Indeed, for y ∈ (0, b),

[v(b − y)− v(b) + y] ≤ 0⇔ v(b)− v(b − y) ≥ y (as K = 0), and for y ≥ b we have that w(b − y)− v(0)− b+ y ≤ 0

and v(0)− v(b) + b ≤ 0 which yields that w(b − y) − v(b) ≤ y for y ≥ b. As ν′ is convex, and a mixture of convex

functions with positive weights is again convex, we deduce that J is concave on R+\{0}.

Given (ii) statement (iii) follows since if J ′(0+) were positive, (J(x)−J(0))/x = J(x)/x would be positive which

would be in contradiction with Eqn. (C.8) below.

To see that (ii) holds, note that, from (C.1) with b− = b∗− and b+ = b∗+,

0 ≥

∫

[0,c]

J(c− y)W (q)(dy) for all c > 0 sufficiently small.(C.8)

Thus, we deduce that J(0+) ≤ 0.

To complete the proof we next verify that J(0+) = 0. First consider the case that σ2 is strictly positive: The

observations that, for any b > 0, e−q(t∧T0,b)vb(Xt∧T0,b
) is a martingale and vb ∈ C

2 together with Itô’s lemma yield

that (0Lw∞vb)(x) = 0 for all x ∈ (0, b+) which in turn implies that J(0) = (0Lw∞vb)(b+) = 0 on account of the

continuity of x 7→ (0Lw∞vb∗(x) at x = 0.

Consider next the case {σ2 = 0 and ν0,1 < ∞}. It follows by taking Laplace transforms in Eqn. (4.13) that

(0Lw∞vb)(x) = 0 for Leb-a.e. x ∈ (0, b+). Let xn ∈ (0, b∗+) be a sequence tending to b satisfying (0Lw∞vb)(xn) =

0. On account of Fatou’s lemma, the convexity of ν′, the continuity of W (q)|R+ and W (q)′|R+\{0} and the fact

v(b − y)− v(b) ≤ y for all y ≤ b, we deduce J(0+) ≥ 0:

0 = lim
n
(0L

w
∞vb)(xn) ≤ ψ

′(0)− qv(b) +

∫ ∞

0

(v(b − y)− v(b) + y)ν′(y)dy = J(0+).

Hence also in the case that X has bounded variation it holds that J(0+) = 0.

The case {σ2 = 0 and ν0,1 =∞} follows by approximation: we claim that by adding a small Brownian component

with variance σ2 > 0 to X and then letting σ2 → 0, it follows that also in this case J(0+) = 0.

To verify this claim we show that J(0+) ≥ 0. If σ ց 0, the continuity theorem implies that the scale functions

W (q)(σ) and F
(σ)
w of the perturbed process X(σ) := X + σB (where B is a Brownian motion independent of X)

and the corresponding derivatives W (q)(σ)′ and F
(σ)′
w converge pointwise to the corresponding (derivatives of) scale

functions of X at any point of continuity. Denote by J (σ)(x) the expression on the rhs of (C.7) with the function

v replaced by the function v(σ) corresponding to the perturbed process X(σ). An application of Fatou’s lemma,

which is justified on account of the bounds in Lem. 9.1 and Lem. 9.3, then yields that

0 = lim
σց0

J (σ)(x) ≤ J(x), for any x > 0.

The proof is complete. �
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[13] Bertoin, J. (1996) Lévy processes, Cambridge University Press.

[14] Bertoin, J. (1997) Exponential decay and ergodicity of completely asymmetric Lévy processes in a finite interval, Ann. Appl.
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phia.

[23] Gerber H. U. and Lin X. S. and Yang H (2006) A Note on the Dividends-Penalty Identity and the Optimal Dividend Barrier.

Astin Bulletin 36(2), pp. 489-503.

[24] Gerber, H.U. and Shiu, E.S.W. (2004) Optimal dividends: analysis with Brownian motion, North American Actuarial Journal 8,

pp. 1–20.

[25] Gerber, H.U., Lin, X.S. and Yang, H. (2006) A note on the Dividends-Penalty Identity and the Optimal Dividend Barrier, Astin

Bull. 36, pp. 489-503.

[26] Grandits, P., Hubalek, F., Schachermayer, W., and Zigo, M. (2007) Optimal expected exponential utility of dividend payments

in Brownian risk model, Scandinavian Actuarial Journal 2, pp. 73–107.

[27] Hallin, M (1979) Band strategies: The random walk of reserves, Blätter der DGVFM 14, pp. 321–236.
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