
ON CONSISTENT VALUATIONS BASED ON DISTORTED EXPECTATIONS:

FROM MULTINOMIAL RANDOM WALKS TO LÉVY PROCESSES
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Abstract. A distorted expectation is a Choquet expectation with respect to the capacity induced by a con-

cave probability distortion. Distorted expectations are encountered in various static settings, in risk theory,

mathematical finance and mathematical economics. There are a number of different ways to extend a distorted

expectation to a multi-period setting, which are not all time-consistent. One time-consistent extension is to

define the non-linear expectation by backward recursion, applying the distorted expectation stepwise, over sin-

gle periods. In a multinomial random walk model we show that this non-linear expectation is stable when the

number of intermediate periods increases to infinity: Under a suitable scaling of the probability distortions

and provided that the tick-size and time step-size converge to zero in such a way that the multinomial random

walks converge to a Lévy process, we show that values of random variables under the multi-period distorted

expectations converge to the values under a continuous-time non-linear expectation operator, which may be

identified with a certain type of Peng’s g-expectation. A coupling argument is given to show that this operator

reduces to a classical linear expectation when restricted to the set of pathwise increasing claims. Our results

also show that a certain class of g-expectations driven by a Brownian motion and a Poisson random measure

may be computed numerically by recursively defined distorted expectations.

1. Introduction

A distorted expectation is a classical example of a Choquet expectation, which is itself an instance of a

non-linear expectation. While an expectation may be seen as an integral of the survival function, i.e.,

E[X ] =

∫ 0

−∞
(SX (t)− 1)dt+

∫ ∞
0

SX (t)dt,

with SX (t) := P[X > t], a distorted expectation is computed by integrating an upwardly shifted survival

function. The upward shift for every survival probability is induced by a given concave probability distortion,

say D, which is an increasing function that is a surjective mapping from the unit square onto itself—see Figure 1

for two examples of concave distortions. The distorted expectation is then the Choquet expectation defined by

CD[X ] :=

∫ 0

−∞
(D(SX (t))− 1)dt+

∫ ∞
0

D(SX (t))dt.

Shifting the survival function upwards (resulting from D ≥ id, the identity) means increasing across the board

the probabilities that certain values will be exceeded, creating a safety buffer. Concavity ensures that the relative

shift increases the closer one gets to the left tail. There exists a good deal of literature concerning static Choquet

Date: January 17, 2013.

2000 Mathematics Subject Classification. 93E20, 91B28.

Key words and phrases. g-expectation, non-linear expectation, probability distortion, option pricing, risk measurement, conver-
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Figure 1. Depicted are three distortions. The diagonal line is equal to the graph of the linear

distortion Ψ0(p) = p, while the solid and dashed curves correspond to the graphs on the unit square of

the MINMAXVAR distortion Ψγ(p) = 1− (1− p1/(1+γ))1+γ for γ = 0.4 and the exponential distortion

Ψα(p) = 1− 1−e−αp

1−e−α for α = 0.9.

expectations and their mathematical properties—see for instance Anger [1] or Dellacherie [16]. By modifying

one axiom of von Neumann-Morgenstern’s expected utility theory, Yaari [46] gives an axiomatic foundation of

distorted expectations in order to describe choices under uncertainty. The concavity of the distortion function

is identified with uncertainty aversion. For further applications of Choquet expectations to model preferences

under uncertainty see for example Sarin & Wakker [38], Schmeidler [41] and Wakker [43] and references therein.

A distorted expectation may also be interpreted in terms of model robustness in the sense of being the largest

or smallest value among all members of a family of models that is induced by the distortion function— see Carlier

& Dana [6]. Robust approaches of this type can be found in robust statistics (Huber [24]) and in the theory

of coherent risk measures (Artzner et al. [2]). Kusuoka [29] showed that a distribution-invariant, comonotone

additive, coherent risk measure necessarily corresponds to a distorted expectation (with Average Value at Risk

being the prime example), while Dana [15] proved that any distribution-invariant risk measure that respects

second-order stochastic dominance admits a representation as a supremum of Choquet expectations.

Because of their direct link to tail probabilities, distorted expectations have also been used extensively to

calculate insurance premiums (see for example Wang et al. [44], or Wang [45]) and to model bid-ask spreads in

finance (see Cherny & Madan [10] or Madan & Schoutens [31]).

While Choquet expectations play a fundamental role in static settings, this is much less the case in dynamic

settings. The reason is that, contrary to what is the case for standard expectations, the collection of “conditional

Choquet expectations” corresponding to the collection of “updated” probability measures, that is equal to the

sequence of Choquet expectations evaluated with respect to the conditional probability measures conditioned

on the sigma-algebras in a given filtration, may lead to time-inconsistent choices. For instance, it is possible

that for two epochs s and t with s < t in every future scenario the conditional Choquet expectation of X at

time t will be greater than that of Y , while nevertheless at time s the conditional Choquet expectation of Y is

greater than that of X. This fact suggests that a dynamically consistent non-linear expectation that is based on

distorted expectations must apply the distortion over single time periods only. In a random walk setting this is

equivalent to considering a collection of models which is specified by all those measures of which the one-period

“transition probabilities” are dominated by the capacity induced by the distortion and the one-period transition

probabilities of the random walk. The resulting multi-period valuation operator that is defined as the supremum
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over all values attained under conditional expectations with respect to the filtration generated by the random

walk and with respect to probability measures in this collection, can indeed be shown to be time-consistent (see

Proposition 2 below). This valuation operator is non-linear, which is apparent from the fact that the probability

measure employed in the evaluation will be dependent on the random variable. Furthermore, this multi-period

distorted expectation operator inherits the positive homogeneity and convexity from the single-period mapping,

but is neither distribution-invariant nor co-monotontically additive. Valuation under dynamic risk measures in

discrete-time settings was also studied by, among others, Cherny [9], Cohen & Elliot [11] Jobert & Rogers [26]

and Roorda et al. [37].

It is an interesting question whether such a valuation method remains stable in a setting where data are

observed frequently, so that also frequent updates are needed. More concretely this question may be phrased

as asking if the discrete-time multi-period distorted expectations converge to a continuous-time valuation op-

erator if the number of intermediate periods increases to infinity. It turns out that in order for this question

to be answered positively it is necessary to scale the distortion function appropriately. In a Brownian setting,

Stadje [42] identified the square root scaling as the only one ensuring that the discrete-time evaluations do nei-

ther explode nor converge to a simple linear expectation (which would rule out ambiguity aversion). In Madan

& Schoutens [31], it was observed, in the case of multinomial random walks converging to a particular Lévy

process, that the limiting g-expectation was driven only by a Brownian motion when the square root scaling

was employed, suggesting that on the square root scale jumps cannot be observed in the limit. However, from a

risk management perspective jumps, in particular over a short time horizon, are inherent drivers of market risk.

Therefore, a key point in the development below is the identification of a suitable scaling of the series of distor-

tions (given in Definition 9 below) that also takes into account the jump risk. We will give sufficient conditions

for a suitable scaling, identify the limit and prove convergence results. The mathematical details of these proofs,

especially for the jump part, are delicate. The limit turns out to belong to a certain class g-expectations driven

by a Wiener process and a Poisson random measure, with driver g identified explicitly in Eqn. (4.6) below.

g-expectations, which in Markovian settings are expressed in terms of the solutions of semi-linear PDEs, were

originally proposed by Peng [33] in a Brownian setting. We will call the limiting g-expectation the expectation

under drift and jump-rate distortion. It inherits a number of the properties of Choquet expectations (convexity,

positive homogeneity, monotonicity), but is neither law-invariant nor comonotonically additive. In fact, the only

mapping that is time-consistent, convex and law-invariant is the entropic risk measure, as shown by Kupper &

Schachermayer [27]. By employing a coupling argument we also show that the limiting non-linear expectation

is additive on the set of random variables that are pathwise increasing functions of the underlying Lévy process.

There is a close connection between g-expectation and the notion of time-consistency which we will also call

filtration-consistency (following Coquet et al. [14]). We recall that in the setting of a given probability space

(Ω,F , P ), a non-linear expectation Π was defined by Coquet et al. [14] to be a real-valued map on L2(Ω,F , P )

that is strictly monotone and preserves constants, that is,

X ≥ Y P -a.s. implies Π(X ) ≥ Π(Y), with equality precisely if P (X > Y) = 0,(1.1)

Π(c) = c for all c ∈ R.(1.2)
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Furthermore, given a filtration F = {Ft}, a collection of mappings {Πt} with Πt : L2(Ω,F , P ) → L2(Ω,Ft, P )

is defined in [14] to be F-consistent if it satisfies, for all t, the equation

Π(X IH) = Π(Πt(X ) IH) X ∈ L2(Ω,F ,P), H ∈ Ft,(1.3)

where IH denotes the indicator of the set H. It is well known (see for instance Cheridito & Kupper [8]) that

for monotone and constant preserving conditional valuations which are normalized in the sense that Πt(0) = 0

time-consistency or filtration-consistency is equivalent to the condition that, for every s ≤ t and X ,Y,

Πt(X ) ≥ Πt(Y) implies Πs(X ) ≥ Πs(Y).

Filtration-consistent evaluations were developed in a discrete state-space setting in Cohen & Elliot [11, 12].

Coquet et al. [14] (in the Brownian setting) and Royer [36] (in the case of a driving Brownian and Poisson

random measure) showed that any continuous time non-linear expectation that is filtration-consistent and that

satisfies a domination property must be a g-expectation for some driver g, that is, it must solve a backward

stochastic differential equation with driver g.

The convergence results that are established in Section 5 also suggest an easy way to evaluate certain g-

expectations and the solutions of the corresponding semi-linear PDEs numerically via Choquet expectations, if

the drivers g are of the form given in Eqn. (4.6) below. As computing recursively the distorted expectations

avoids calculating the Malliavin derivative (which is typically the most demanding part) and the corresponding

functional of the jump part (which in a setting featuring jumps seems an even more challenging task), this

method is more efficient than the computational schemes that are currently available.

Contents. The remainder of the paper is organised as follows. In Section 2 preliminary results are collected

concerning Choquet integration and distortions, which will be referred to throughout the paper. Section 3 is

devoted to the multi-period valuation operator defined in a multinomial random walk setting, given a concave

probability distortion and a filtration. Section 4 is concerned with the non-linear expectation under drift

and jump-rate uncertainty. The distortion scaling and the convergence theorem (Theorem 1) are provided in

Section 5. In Section 6 the form of the non-linear expectation for pathwise increasing claims is identified, using

a coupling argument (Theorem 2). By way of illustration two examples are provided in Section 7. Sections 8,

9 and 10 contain key auxiliary results, and the proofs of the upper bound and lower bound, respectively, which

together form the proof of Theorem 1. Some proofs are deferred to the Appendix.

2. Preliminaries: Choquet integration and distortion

In this section key properties are collected of Choquet integrals. Dennenberg [19] and Föllmer & Schied

[23, Ch. 4] provide treatments on Choquet integration (induced by distortions). Unlike the treatment in [23,

Ch. 4], which is in a setting of bounded random variables on a probability space, the setting below concerns

square-integrable functions and general measures on (R,B(R)), where B(R) denotes the Borel-sigma algebra

over R.

Let µ be a given (Lévy) measure on the measurable space (R,B(R)) that integrates the function x 7→ x2 ∧ 1

(with x ∧ y = min{x, y} for x, y ∈ R), that is,

(2.1)

∫
R
[x2 ∧ 1]µ(dx) <∞,
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and denote by L2(µ) and L2
+(µ) the collections of real-valued and non-negative measurable functions that are

square-integrable with respect to µ.

Definition 1. A (measure) distortion is a continuous increasing function D : R+ → R+ with D(0) = 0. In

particular, a probability-distortion D is the restriction of a distortion to the unit interval [0, 1] with D(1) = 1.

s To a probability distortion D is associated another probability distortion D̂ given by

(2.2) D̂(x) = 1−D(1− x), x ∈ [0, 1].

Any distortion induces a capacity on the measure space (R,B(R)).

Definition 2. A measure capacity on (R,B(R)) is a monotone set function c : B(R+) → R+ with c(∅) = 0:

c(A) ≤ c(B) for all sets A,B ∈ B(R+) with A ⊂ B. A capacity is a measure capacity that is finite and

normalised to unity [c(R+) = 1].

In particular, note that any measure on (R,B(R)) is a measure capacity, and any probablity measure is a

capacity. To any measure distortion D is associated a measure capacity D ◦ µ given by

(2.3) (D ◦ µ)(A) = D(µ(A)), A ∈ B(R+).

Furthermore, if D is a probability distortion and µ is a probability measure, then both D ◦ µ and D̂ ◦ µ are

capacities.

Given a capacity, a corresponding integral can be defined called a Choquet integral. In particular, for any

measure distortion D the Choquet integral CD[X ] of a function X in L2
+(µ) corresponding to the measure

capacity D ◦ µ is given by

(2.4) CD[X ] =

∫
[0,∞)

(D ◦ µ)(X > x)dx.

In the case that µ is a probability measure and D a probability distortion the Choquet integral CD[X ] of

X ∈ L2(µ) is given by

CD[X ] =

∫
[0,∞)

(D ◦ µ)(X > x)dx−
∫

(0,∞)

(D̂ ◦ µ)(X ≤ x)dx,(2.5)

where CD[X ] is defined to take the value −∞ if the first and second integral in eqn. (2.5) are both infinite. We

will throughout we restrict our attention to the following class of distortions D:

Assumption. Assume that the (measure/probability) distortion D is concave or convex and satisfies the inte-

grability condition

KD :=



∫ ∞
0

D(y)
dy

y
√
y
<∞, if D is a measure distortion,

∫ 1

0

[D(y) + D̂(y)]
dy

y
√
y

dy <∞, if D is a probability distortion.

(2.6)

The integrability condition in Eqns. (2.6) guarantees that the Choquet integrals in Eqns. (2.4) and (2.5) are

finite if the integrand X is square-integrable:
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Lemma 1. The map CD : L2
+(µ) → R+ given by X 7→ CD[X ] is Lipschitz continuous. In particular, for any

X ∈ L2
+(µ) we have

(2.7) CD[X ] ≤ KD

√
c with c = µ(X 2) =

∫
R+

X (z)2µ(dz)

and KD given in Eqns. (2.6). If µ is a probability measure, then the estimate in Eqn. (2.7) holds true for any

X ∈ L2(µ).

Proof. For a given X ∈ L2
+(µ), measure µ and measure distortion D, Chebyshev’s inequality and a change of

variables show ∫ ∞
0

(D ◦ µ)(X > x)dx ≤
∫ ∞

0

D(c/x2)dx = KD

√
c,

with c given in Eqn. (2.7). The stated Lipschitz continuity follows by combining the representation in Proposi-

tion 1 below with the estimate in Eqn. (2.7). In the case that µ is a probability measure and D a probability

distortion, the integrability and Lipschitz continuity can be verified in a similar fashion. �

For later reference we collect a number of basic properties of the map CD : L2
+(µ)→ R+ given by X 7→ CD[X ].

Lemma 2. (i) If D is strictly increasing, CD is strictly monotone that is, for any X ,Y ∈ L2(µ) with

X ≤ Y, we have CD[X ] ≤ CD[Y], with equality if and only if µ(X > Y) = 0.

(ii) CD is continuous from below, that is, if (Xn),X ∈ L2
+(µ) and we have Xn ↗ X , then it holds 0 ≤

CD[Xn]↗ CD[X ].

(iii) CD is positively homogeneous and (positively) translation-invariant, that is, for X ∈ L2
+(µ) and c, d ∈

R+ we have CD[cX ] = c CD[X ] and CD[X + d] = CD[X ] + d.

If µ is a probability measure, the results in this lemma remain valid if CD is defined to be a real-valued map on

L2(µ) (an observation that is a direct consequence of the definition of CD[X ]).

The Choquet integral CD[X ] admits a representation as a supremum over a collection of measures (which

was establised by Carlier & Dana [6] in the case of bounded X ). Next the L2-version of this representation

is stated, which is the result that will be deployed in the subsequent analysis. Let Mac
p,µ, p ≥ 1, denote the

collection of measures m on the measurable space (R,B(R)) that are absolutely continuous with respect to the

measure µ, and have a density in Lp(µ), and denote by Bµ(R) the subset of the sets A ∈ B(R) for which µ(A) is

finite. In the sequel we will use the following relation between capacities which is a generalization of the notion

of stochastic dominance of probability measures:

Definition 3. Given two (measure) capacities c, c′ on the measure space (R,B(R)) we write c ≺ c′ and say that

c′ dominates c when it holds

c(A) ≤ c′(A) for all A ∈ Bµ(A).

Proposition 1. For any X ∈ L2
+(µ) the Choquet integral CD[X ] is finite and admits the representation

CD[X ] = sup
m∈MD

2,µ

m[X ],(2.8)

where the supremum is attained, with

MD
p,µ =

{
m ∈Mac

p,µ : m ≺ D ◦ µ
}
, p ≥ 1.(2.9)



CONSISTENT VALUATIONS & DISTORTED EXPECTATIONS 7

Remark 1. The statement in Proposition 1 holds for any X ∈ L2(µ) if µ is a probability measure. Furthermore,

by considering the complements of sets we deduce the equality

MD
p,µ =

{
m ∈Mac

p,µ : D̂ ◦ µ ≺ m ≺ D ◦ µ
}
, p ≥ 1.

In the case of bounded X and a probability measure µ the proof of Proposition 1 can be found in Schied

[40, Thm. 1.51], Föllmer & Schied [23, Thm. 4.79, 4.94]. The proof of the remaining cases is provided in

the Appendix. The proof rests on a lemma concerning integrability of the Radon-Nikodym derivatives of the

measures in the set MD
1 , which we give below as it will be used in the sequel:

Lemma 3. The collection R = {Z = dm
dµ : m ∈MD

1 } is contained in a ball in L2(µ).

Proof. Let Z ∈ R and define, for any M > 0, mM ∈ R to be the measure with Radon-Nikodym derivative given

by ZM where ZM (x) = (Z(x) ∧M)I{|x|>1/M}. Then the estimate in Eqn. (2.7) and the fact Z ∈ L2(µ) imply

µ(Z2
M ) = mM (ZM ) ≤ KDµ(Z2

M )1/2,

so that µ(Z2
M ) ≤ K2

D, where KD is given in Eqn. (2.6). Since we have ZM ↗ Z as M ↗ ∞, the Monotone

Convergence Theorem implies µ(Z2) ≤ K2
D. �

3. Multi-period valuation by distortion of transition probabilities

Let be given a probability distortion Ψ and a filterred probability space (A,G,G, P ) where G = {Gi}ni=0

denotes a filtration of sigma-algebras G0, . . . ,Gn. In this section we set out to identify a non-linear expectation

that is G-consistent in the sense of Eqn. (1.3) and that, over a single period, reduces to a distorted expectation

with respect to the distortion Ψ. The description of this operator that we give below is based on a number

of related notions that we describe next. For any sub-sigma algebra H ⊂ G denote by L0(H) the collection of

real-valued functions on A that are measurable with respect to H.

Definition 4. Let H′ and H be two sigma algebras with H ⊂ H′ ⊂ G.

(i) A random set function C : H′ → L0(H) is called absolutely continuous with respect to P if we have

C(A) = 0 P -a.s. for all sets A ∈ H′ with P (A) = 0.

(ii) We call a random set function C : H′ → L0(H) an H-measurable capacity on (A,H′, P ) when C is

absolutely continuous with respect to P and we have

(a) C(∅) = 0 P -a.s.,

(b) [normalisation] C(A) = 1 P -a.s., and

(b) [monotonicity] C(A) ≤ C(B) P -a.s., for any A,B ∈ H′ with A ⊂ B.

(iii) For H-measurable capacities C,C ′ on (A,H′, P ) we write C ≺′ C ′ and say that C ′ dominates C P -a.s.,

if it holds

C(A) ≤ C ′(A) P -a.s., for any A ∈ H′.

The distortion Ψ induces two Gi-measurable capacities. Denoting by Pi the Gi-conditional expectations

defined on (A,Gi+1) by Pi(A) = E[IA|Gi], for A ∈ Gi+1 and i = 0, . . . , n− 1, where IA denotes the indicator of
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the set A and E is the expectation under P , define the random set functions Ψ ◦Pi and Ψ̂ ◦Pi : Gi+1 → L∞(Gi)
by

(Ψ ◦ Pi)(A) = Ψ(Pi(A)) (Ψ̂ ◦ Pi)(A) = Ψ(Pi(A)), A ∈ Gi+1.

Furthermore, any pair of a distortion Ψ and a filtration G gives rise to a capacity. Define the set-function

cΨ,G : G → [0, 1] by

cΨ,G(A) = sup
Q∈DΨ(G)

Q(A) A ∈ G,

where DΨ(G) denotes the subset of Pac2,P = {m ∈Mac
2,P : m(A) = 1} given by

(3.1) DΨ(G) =
{
Q ∈ Pac2,P : Ψ̂ ◦ Pi ≺′ Qi ≺′ Ψ(Pi), for all i = 0, 1, . . . , n− 1

}
,

where Qi denotes the Gi-conditional expectations defined on (A,Gi+1) by Qi(A) = EQ[IA|Gi] for A ∈ Gi+1,

where EQ denotes the expectation under Q.

By direct verification of the relevant definitions it follows that these three maps are indeed (measurable)

capacities.

Lemma 4. (i) The random set functions Ψ ◦ Pi and Ψ̂ ◦ Pi are Gi-measurable capacities on (A,Gi+1).

(ii) The set-function cΨ,G is a capacity.

The capacity cΨ,G gives in turn rise to a non-linear expectation operator, that we will call the Ψ-distorted

(conditional) expectation with respect to the filtration G.

Definition 5. (i) The Ψ-distorted-expectation with respect to the filtration G is the map CΨ,G : L2(G, P )→ R

given by

(3.2) CΨ,G(X ) = sup
Q∈DΨ(G)

EQ[X ], X ∈ L2(G, P ).

(ii) For i = 0, . . . , n − 1, the Ψ-distorted Gi-conditional expectation with respect to the filtration G is

CΨ,G( · |Gi) : L2(G, P )→ L2(Gi, P ) given by

(3.3) CΨ,G(X|Gi) = ess. sup
Q∈DΨ(G)

EQ(X|Gi), X ∈ L2(G, P ).

The finiteness of the non-linear expectation CΨ,G[X ] for X ∈ L2(G, P ) is confirmed in the next result, where

it is furthermore shown that the collection of maps CΨ( · |Gi) for i = 0, 1, . . . , n−1, is G-consistent, and reduces,

in a single period setting to a (conditional) Choquet integral:

Proposition 2. (i) We have supQ∈DΨ(G)E
Q[Z2

Q] <∞, where ZQ denotes the Radon-Nikodym derivative of Q

with respect to P on Gn.

(ii) The collection Π = {Πm,m = 0, 1, . . . , n} with Πm = CΨ( · |Gm) is G-consistent and, for X ∈ L2(G, P ),

Πm(X ), m = 0, . . . , n, satisfies the backward recursion

(3.4)

Πm(X ) = CΨ (Πm+1(X )|Gm) , m < n,

Πn(X ) = X .

(iii) For X ∈ L2(Gi+1, P ) the random variable CΨ,G(X|Gi) satisfies

CΨ,G(X|Gi) =

∫
[0,∞)

Ψ(Pi(X > x))dx+

∫
(−∞,0)

[Ψ(Pi(X > x))− 1]dx.(3.5)
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The proof of Proposition 2(i) is a straightforward adaptation of that of Lemma 2.7, while the proof of

Proposition 2(ii) is well known (e.g., a version for bounded random variables is provided in [23, Thm. 11.22 ]).

Proof of Proposition 2(iii). The proof consists of two steps. The first step is to observe that the left-hand side

of Eqn. (3.5) is equal to

C̃Ψ,G(X|Gi) := ess. sup
Q∈Mi

EQ[X|Gi]

where Mi is equal to the set of probability measures given by Mi = {Q ∈ Pac2,P : Ψ̂ ◦ Pi ≺′ Qi ≺′ Ψ ◦ Pi}. This

observation follows by noting that the measure that attains the supremum in the definition of CΨ,G[X ] in fact

also attains the supremum in the definition of C̃Ψ,G(X|Gi). The second step is to note that the right-hand side

of Eqn. (3.5) is equal to C̃Ψ,G(X|Gi), which is a fact that follows by a line of reasoning that is analogous to the

one that was used in the proof of Proposition 1. �

4. A continuous-time non-linear expectation

4.1. Continuous-time setting. Let X = (Xt)t∈[0,T ] be a Lévy process, that is, a stochastic process with

independent and stationary increments that has right-continuous paths with left-limits and starts at zero,

X0 = 0. Let X be defined as the coordinate process on the filtered probability space (Ω,F , {Ft}t∈[0,T ],P), i.e.

Xt(ω) = ω(t) for t ∈ R+ and ω ∈ Ω. Here Ω = D([0, T ],R) is the Skorokhod space endowed with the Skorokhod

metric, F denotes the Borel sigma algebra, and {Ft}t∈[0,T ] the right-continuous filtration generated by X. We

denote by E the expectation under the measure P.

The law of the Lévy process X is determined by its characteristic exponent ψ : R→ C that is for any t ∈ R+

given by E[eiθXt ] = exp(−tψ(θ)) and that is by the Lévy-Khintchine formula of the form

ψ(θ) =
σ2

2
θ2 − idθ +

∫
R

(1− exp{iθx}+ iθx)Λ(dx), θ ∈ R,

where d = E[Xt]/t, d ∈ R, is the drift of X, σ2 = Var[Xc
t ]/t, σ2 ≥ 0 is the instantaneous variance of the

continuous martingale part Xc of X, and Λ is the Lévy measure of X, which is in turn characterised by the

property that for any Borel set A ⊂ R0 = R\{0}, Λ(A)t is equal to the expected number of jumps ∆Xs, s ∈ [0, t]

of X with ∆Xs ∈ A. The measure Λ is defined on the measure space (R,B(R)) with Λ({0}) = 0 and satisfies

the integrability condition in Eqn. (2.1).

In order to ensure a finite second moment in an exponential Lévy model, we restrict ourselves to Lévy

processes X that admit some finite exponential moment, by assuming that there exist a q ≥ 1 such that we

have

(4.1) E[exp(2qXt)] <∞, ∀t ∈ [0, T ].

These moment conditions are equivalent to the condition (see e.g. [39] for a proof)

(4.2)

∫
R\[−1,1]

[exp(2qx)]Λ(dx) <∞.
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4.2. Notation. Before proceeding we fix some notation that will be used in the sequel. We denote by P the

predictable sigma-algebra, write P̃ = P ⊗ B(R+), and use the following notation:

Pac2,P: the set of probability measures on (Ω,F) that are absolutely continuous w.r.t. P

with Radon-Nikodym derivative in L2(Ω,F ,P),

A2: the set of predictable processes A satisfying E
[(∫ T

0
Asds

)2
]
<∞,

L2: the set of predictable processes H satisfying E
[∫ T

0
H2
sds
]
<∞,

L̃p: the set of P̃-measurable processes U satisfying E
[∫ T

0

∫
R |U(t, x)|pΛ(dx)dt

]
<∞, p > 0.

4.3. Lévy-Itô processes. Under an arbitrary probability measure Q that is absolutely continuous with respect

to P the process X is in general not a Lévy process, but will be a Lévy-Itô process. A square-integrable Lévy-Itô

process Y on (Ω,F ,P) is a stochastic process Y = {Y (t), t ∈ [0, T ]} of the form

(4.3) Y (t) =

∫ t

0

A(s)ds+

∫ t

0

H(s)dXc
s +

∫
[0,t]×R

U(s, x)µ̃X(ds× dx),

where A ∈ A2, H ∈ L2 and U ∈ L̃2, and µ̃X = µX − νX is the compensated Poisson random measure with

compensator νX(dx× dt) = Λ(dx)dt. A Lévy-Itô process Y is called a pure-jump Lévy-Itô subordinator in the

case that U ∈ L̃1 ∩ L̃2 is non-negative and the representation in Eqn. (4.3) can be simplified to

Y (t) =

∫
[0,t]×R+

U(s, y)µX(ds× dx).

The compensator of the jumps of a Lévy-Itô process Y is equal to the random measure ΛY on (R,B(R)) given

by ΛYt (dy) = (Λ ◦ U−1
t )(dy) where U−1

t (A) = {z : U(t, z) ∈ A} for any set A ∈ B(R), and will be referred to

as the Lévy-Itô measure of Y . The triplet (A, σ2H2,ΛY ) will be called the characteristic triplet of Y . Refer to

Jacod & Shiryaev [25] for further background concerning Lévy-Itô processes.

By virtue of Kunita & Watanabe [28]’s martingale representation theorem any square-integrable F-martingale

is a Lévy-Itô process, that is, any square-integrable F-martingale M on (Ω,F ,P) admits the representation

Mt =

∫ t

0

H(s)dXc
s +

∫
[0,t]×R

U(s, x)µ̃(ds× dx), t ∈ [0, T ],(4.4)

with H ∈ L2 and U ∈ L̃2. We will refer to (H,U) as the representing pair of the martingale M .

Furthermore, the process X under absolutely continuous probability measures Q has the same law as a Lévy-

Itô process. In particular, if the stochastic logarithm MQ of the Radon-Nikodym derivative of Q with respect

to P is a square-integrable F-martingale MQ with representing pair (HQ, UQ− 1) Girsanov’s theorem (e.g. [25,

Thms. III.3.24, III.5.19]) states that (X,Q) (X underthe measure Q) has the same law as a Lévy-Itô process

with representing triplet (cQ, (σQ)2,ΛQ) under P given by
cQ(t) = dQ(t) +

∫
R
(UQ(t, x)− 1)xΛ(dx) with dQ(t) = d +HQ(t)σ2,

(σQ)2(t) ≡ σ2,

ΛQt (dx) = UQ(t, x)Λ(dx).

(4.5)

Note that dQ(t) is equal to the instantaneous drift at t ∈ [0, T ] of the linear Brownian motion with drift Xc
t +dt

under the measure Q.
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4.4. Expectation under drift and jump-rate distortion. We next define a real-valued operator on L2(Ω,F ,P)

that in the next section is shown to arise as the limit of multi-period distorted expectation operators that were

defined in Section 3.

Definition 6. A drift-shift is a pair of constants ∆ = (∆+,∆−) ∈ R2
+ and a jump-rate distortion is a pair

Γ = (Γ+,Γ−) of increasing maps Γ+,Γ− : R+ → R+ such that Γ+ − id and id− Γ− are (measure) distortions,

where id denotes the identity map given by id : R+ → R+, id(x) = x.

In the sequel we also use the notion of measurable measure capacities, which are defined by extending

Definition 4 to measure capacities.

Definition 7. Let H,H′ be two sigma algebras with H ⊂ H′ ⊂ B(R).

(i) We call a random set function γ : H′ → L0(H) an H-measurable measure capacity on (R,B(R),Λ) if γ is

absolutely continuous with respect to the measure Λ (cf. Definition 4(i)), and we have γ(∅) = 0 Λ-a.s., and

γ(A) ≤ γ(B) Λ-a.s. for any A,B ∈ H′ with A ⊂ B and γ(A) <∞.

(ii) For H-measurable measure capacities γ, γ′ on (R,B(R),Λ) we write γ ≺′ γ′ and say that γ′ dominates γ

Λ-a.s., if we have

γ(A) ≤ γ′(A) Λ-a.s., for any A ∈ Ḩ′ with γ(A) <∞ .

Given a drift-shift ∆ and a jump-distortion Γ we will consider the collection of probability measures Q under

which the drift dQ and jump-measure ΛQ are shifted away from of the drift d and the Lévy measure Λ of X

under P by a certain amount that is expressed in terms of ∆ and Γ as follows:

D∆,Γ =

Q ∈ P
ac
2,P :

(X,Q) satisfies for a.e. (t, ω) ∈ [0, T ]× Ω,

d− σ2∆− ≤ dQ(t) ≤ d + σ2∆+

Γ− ◦ Λ ≺′ ΛQt ≺′ Γ+ ◦ Λ

 .

The set D∆,Γ is contained in a ball in L2:

Lemma 5. We have supt∈[0,T ] supQ∈D∆,Γ
E[(ZQt )2] <∞.

The proof of Lemma 5 is given at the end of this section. In terms of the set D∆,Γ we define a non-linear

expectation as follows:

Definition 8. Let ∆ be a drift-shift and Γ a jump-rate distortion.

(i) The expectation under drift and jump-rate distortion E∆,Γ : L2(Ω,F , P )→ R is given by

E∆,Γ(X ) = sup
{
EQ[X ] : Q ∈ D∆,Γ

}
.

(ii) The Ft–conditional expectation under drift and jump-rate distortion E∆,Γ( · |Ft) : L2(Ω,F , P )→ L2(Ω,Ft, P )

is given by

E∆,Γ(X|Ft) = ess.sup
{
EQ[X|Ft] : Q ∈ D∆,Γ

}
, t ∈ [0, T ].
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Remark 2. It can be verified directly from the definition that the collection {E∆,Γ(X|Ft), t ∈ [0, T ]} is F-

consistent, which is a property that also follows from the fact (as shown in Appendix D) that E∆,Γ is equal to

a g-expectation with driver function gD,G : R× L2(Λ)→ R given by

(4.6) g∆,Γ(h, u) = h+∆+σ
2 + h−∆−σ

2 + CΓ+−id(u+) + Cid−Γ−(u−),

where, for any x ∈ R, x+ = max{x, 0} and x− = max{−x, 0}.

Proof of Lemma 5. Let Q ∈ D∆,Γ and denote by MQ the square-integrable martingale that is such that its

stochastic exponential, denoted by ZQ, is equal to the Radon-Nikodym derivative of Q w.r.t. P. Denoting by

(HQ, UQ − 1) the representing pair of MQ, it follows in view of Girsanov’s theorem and the definition of D∆,Γ

that we have HQ ∈ [σ∆−, σ∆+], P × dt-a.e. Furthermore, by an analogous reasoning as used in the proof of

Lemma 3 it follows∫
R

(UQs (x)− 1)2I{UQs (x)>1}Λ(dx) ≤ C2
+,

∫
R

(UQs (x)− 1)2I{UQs (x)<1}Λ(dx) ≤ C2
−,

for P×dt-a.e. (ω, s) ∈ Ω× [0, T ], where C+ = (KΓ+−id +K̃Γ+−id) and C− = (Kid−Γ−+K̃id−Γ−) (the definitions

of these constants were given in Eqns. (2.6)). As a consequence, the Radon-Nikodym derivative with respect to

the Lebesgue measure dt of the angle-bracket process of MQ is bounded: for P × dt-a.e. (ω, t) ∈ Ω × [0, T ], it

holds
d

dt
〈MQ〉t =

(
HQ
t

)2

+

∫
R
(UQt (x)− 1)2Λ(dx) ≤ σ2∆2

− + σ2∆2
+ + C2

+ + C2
−.

This estimate implies that also 〈ZQ〉T is bounded: we have for P× dt-a.e. (ω, t) ∈ Ω× [0, T ]

〈ZQ〉t =

∫ t

0

(ZQs )2d〈MQ〉s ≤ ((σ∆)2 + C2
+ + C2

−)

∫ t

0

(ZQs )2ds.

By taking expectations and applying Gronwall’s lemma, it follows E[(ZQt )2] ≤ exp(t((σ∆)2 +C2
−+C2

+)). Thus,

the collection of random variables {ZQt , t ∈ [0, T ], Q ∈ D∆,Γ}, is contained in a ball in L2. �

5. Scaling and limit

In this section it is shown that the multi-period distorted expectations converge to the instantaneously

distorted expectations if the number of time-steps increases to infinity and the state-space Z and the transition

probabilities are chosen appropriately and the distortion Ψ are scaled in a suitable manner.

5.1. Random walk setting. Let R = (Rn)n∈N be a random walk with R0 = 0 and Rn =
∑n
i=1 Zi, with IID

increments Zi that take values in the integers Z. The process R is a time- and space-homogeneous Markov

process, with transition probabilities determined by the probability mass function of the increment Z1 = R1−R0

P (Rn = y|Rn−1 = x) = P (Z1 = x− y) = px−y, x, y ∈ Z, n ∈ N,

where (pn)n∈Z is a probability distribution, that is,
∑
n∈Z pn = 1, pn ≥ 0. Denote by (A,G,G, P ) a filtered

probability space that carries the random walk R where A = ZN = {(ωi)i∈N : ωi ∈ Z} denotes the sample space

of paths, G = {Gn}n∈N∪{0} the filtration generated by the random walk R, with G0 = {∅,Ω} the trivial sigma

algebra, and G is the sigma-algebra given by the power-set 2Ω. The random walk R is defined by the coordinate

process Rn(α) = αn for n ∈ N with R0 = 0.



CONSISTENT VALUATIONS & DISTORTED EXPECTATIONS 13

5.2. Scaled price processes. For a given a time-step δ > 0 and tick-size h ∈ (0, 1) consider the time-space

grid given by Gδ,hd = {(ti, xk) : ti = iδ, xk = dti + hk, i ∈ N∗, k ∈ Z}, where d = E[Xt]/t denote the mean of the

Lévy process X.

For a non-zero value of d the grid Gδ,hd is obtained from the normalised grid G := G1,1
0 = N∗×Z by changing

the slope of any horizontal line to d and changing the horizontal and vertical stepsizes to δ and h respectively.

The problem to find a random walk Rδ,h approximating X on the grid Gδ,hd is equivalent to the problem to

construct a random walk R approximating the martingale h−1(Xtδ − dtδ) on the standard grid G. In fact, Rδ,h

can be obtained from R via the transformation Rδ,ht = hRt/δ + dt, t ∈ δN∗. When the choice of h is clear from

the context, we will supress h and write Rδ for Rδ,h.

We next turn to the definition of the approximating random walk R = {Rn, n ∈ N∗}, by specifying how the

probability distribution of an increment of R is obtained from the characteristic triplet of X. The probability

of a “large” jump of the random walk of size J ∈ Z is set to be equal to the Lévy measure Λ integrated over

a neightbourhood of J · h while its transition probabilities of “small” jumps is chosen such that the mean and

variance of an increment of the random walk R matches those of an increment of hX over a time interval of

length δ. Here a jump sizes is called large if its absolute value is larger than a cut-off value a > 0. The common

probability distribution (pk)k∈Z of the step-sizes Zi of R under the probability measure P is given in terms of

the characteristics of X by

pk = P (Zi = k) =

δΛ([kh, (k + 1)h)) for k ∈ Z, k ≥ a,

δΛ(((k − 1)h), kh]) for k ∈ Z, k ≤ −a,
(5.1)

for some integer a ∈ N with a ≥ 2, where the probabilities pk, k = −a+1, . . . , a−1, are specified so as to match

the mean and variance of Xδ, i.e.

h · E[Zi] = E[Xδ]− δ d = 0,(5.2)

h2 ·Var[Zi] = Var[Xδ] = δ (σ2 + Σ2(R)),(5.3)

where E[Zi] and Var[Zi] denote the expectation and the variance of the random variable Zi under the probability

measure P , and where we denote Σ2(I) =
∫
I
x2Λ(dx) for any interval I. Under suitable conditions on the step-

size h and time-step δ and the integer a existence can be established of a probability distribution satisfying

Eqns. (5.1)–(5.2)–(5.3).

Lemma 6. (i) For any triplet (h, δ, a) of positive real numbers satisfying the conditions

h2 = 3 δ Σ̃2(a) Σ̃2(a) :=

σ
2 + a−1 Σ2(R) in the case σ > 0,

Σ2(R) in the case σ = 0,
(5.4)

a−1Σ2(R)− σ2 ≤ Σ2((−ah, ah)) ≤ 2σ2 + Σ2(R)(I{σ2=0}3(1− a−1) + a−1 − 2a−2),(5.5)

there exists a probability distribution (pk)k∈Z that solves the system in Eqns. (5.1), (5.2) and (5.3) and satisfies

pk = 0 for all k ∈ N with |k| ≥ 2 and |k| ≤ a− 1.(5.6)
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(ii) Let (pk(h))k∈Z satisfy Eqns. (5.1), (5.2), (5.3) and (5.6). Let (h, δ, a) be a collection of triplets satisfying

Eqns. (5.4)–(5.5) such that a · h ≤ 1 and, when h↘ 0, a→∞ and a · h→ 0. When h↘ 0, we have p−1(h)→ pBM−1 :=
1

6
, p0(h)→ pBM0 :=

2

3
, p1(h)→ pBM1 :=

1

6
, if σ2 > 0,

p−1(h)→ 0, p0(h)→ 1, p1(h)→ 0, if σ2 = 0.
(5.7)

(iii) If, in addition to the assumptions in (ii), the triplets (h, δ, a) satisfy a2 · h→∞, then it holds

p−1(h) ∧ p1(h) ≥ I{σ2>0}

[
1

6
− 1

2
c∗a,h
√
h

]
σ2

Σ̃2(a)
,(5.8)

p−1(h) + p0(h) + p1(h) ≥ 1− c∗∗a,hh,(5.9)

when h↘ 0, where c∗a,h = (a2h)−1/2 · cσ and c∗∗a,h = (a2h)−1 · cσ with

cσ = I{σ2=0} ·
1

3
+ I{σ2>0} ·

Σ2(R)

3σ2
.

It follows from Lemma 6 that, for each given δ > 0, there exists a random walk on some grid that matches

the first two moments of increments of X over a time-step. From now on it is assumed that for each given

δ > 0 the transition probabilities of a random walk have been fixed as in Lemma 6. We will also consider two

related stochastic processes, namely the skip-free random walk R(c) = {R(c)
n }n∈N that starts at zero, and has

increments Zi1{Zi=±1}, and the compensated counting process N
A

which is for any Borel set A ⊂ R\ given by

N
A

0 = 0, N
A

n =

n∑
k=1

∑
i:i∈A

[Iki − pi], n ∈ N,(5.10)

where Iki = I{Zk=i}. For each δ > 0 continuous time stochastic processes Y δ = {Y δt , t ∈ [0, T ]}, Y δ(c) =

{Y δ(c)t , t ∈ [0, T ]} and Zδ,A = {Zδ,At , t ∈ [0, T ]} on Ω can be constructed from the discrete time processes by

piecewise constant extension of the paths, defining Y δt = hRbt/δc + dt, Y
δ(c)
t = hR

(c)
bt/δc and Zδ,At = N

A

bt/δc for

any t ≥ 0, where bsc is the largest integer that is smaller than s ∈ R. Standard convergence arguments, which

are presented in Section 8, yield weak convergence as the time-step δ tends to zero.

Lemma 7. For any positive sequence (δn)n with δn → 0 and any set A ⊂ R\{0} with boundary ∂A = A\Ao

satisfying Λ(∂A) = 0 we have

Y δn ⇒ X, Y δn(c) ⇒ X(c), Zδ,A ⇒ µ̃(A× ·),

where ⇒ denotes weak convergence in the Skorokhod J1-topology on Ω.

5.3. Scaled distortions. To ensure that the discrete time valuations converge to a non-degenerate limit the

distortions need to be scaled suitably:

Definition 9. For given maps ξ : [0, 1] → R+ and Γ+, and Γ− : R+ → R such that (Γ+,Γ−) is a jump-rate

distortion, the (ξ,Γ+,Γ−)-scaling family of distortions {Ψ(·, δ), δ > 0} is defined as follows:

(i) For any δ > 0, the map Ψ(·, δ) is a continuous concave probability distortion.

(ii) With σ∗ = σ/(2
√

3), we have the uniform limit

lim
δ↘0

sup
p∈[0,1]

(
Ψ(p, δ)− p√

δ
− ξ(p)σ∗

)
= 0,(5.11)
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(iii) With Ψ̂(p, δ) = 1−Ψ(1− p, δ), it holds

lim
δ↘0

sup
0<λ≤1/δ

{
Ψ(δλ,δ)

δ − Γ+(λ)

Γ+(λ)− λ

}
= 0, lim

δ↘0
sup

0<λ≤1/δ

{
Ψ̂(δλ,δ)

δ − Γ−(λ)

λ− Γ−(λ)

}
= 0,(5.12)

where the denominators are taken equal to 1 in the cases Γ+ = id or Γ− = id.

Remark 3. Since the concavity and monotonicity of the distortions p 7→ Ψ(p, δ) are preserved under the point-

wise limit of δ tending to zero, it follows that ξ and Γ+ are concave, while Γ− is convex, and Γ+ and Γ− are

increasing. Moreover, the fact Ψ ≥ id yields Γ+ ≥ id ≥ Γ−.

Example 1. Let Ψ1,Ψ2,Ψ3 be arbitrary concave probability distortions that are such that the right-derivatives

Ψ′1(0+) and Ψ′3(0+) at zero are finite, while we have Ψ′3(0+) < Ψ′2(0+) ∈ (1,∞]. let Ψ0 denote the linear

distortion, Ψ0(p) = p for p ∈ [0, 1]. For some δ0 > 0 to be specified shortly, consider the collection {Ψ(·, δ ∧
δ0), δ > 0} given by

Ψ(p, δ) = C0(δ)Ψ0(p) +
√
δ{Ψ1(p)− p}σ + δΨ2

(
1− e−p/δ

)
+ δ

{
Ψ3

(
1− e−(1−p)/δ

)
−Ψ3

(
1− e−1/δ

)}
,

for δ ∈ (0, δ0), where C0(δ) = 1− δΨ2

(
1− e−1/δ

)
+ δΨ3

(
1− e−1/δ

)
and where δ0 ∈ (0, 1) is chosen sufficiently

small to guarantee that C0(δ) is positive for all δ ∈ (0, δ0).

It is straightforward to verify that, for any δ ∈ (0, δ0), the function p 7→ Ψ(p, δ) is a concave probability

distortion, and that, moreover, the family {Ψ(·, δ∧ δ0), δ > 0} is a (ξ,Γ+,Γ−)-distortion scaling family with the

functions Γ+ and Γ− given by

ξ(p) = 2
√

3(Ψ1(p)− p), Γ+(λ) = λ+ Ψ2

(
1− e−λ

)
, Γ−(λ) = λ−Ψ3

(
1− e−λ

)
.(5.13)

In the absence of jumps (that is, in the case Λ = 0), the forms of Γ+ and Γ− will not affect the limit. Thus,

in that case, one arrives at the same scaling limit by simply taking Γ+ = Γ− = id and replacing the family

{Ψ(·, δ ∧ δ0), δ > 0} by the family {Ψ̃(·, δ), δ > 0} given by Ψ̃(p, δ) = p + σ
√
δ(Ψ1(p) − p). This choice is in

agreement with the square-root scaling identified in Stadje [42] in the study of convergence of approximations

of BSDE by BS∆Es in a Brownian setting.

5.4. Convergence theorem. In the setting described earlier in this section we will show the convergence of

the multi-period distorted expectations of a class of path-functionals of the random walk Rδ,h, as the time-step

δ and spatial mesh size h converge to zero, to the instantaneously distorted expectation of the corresponding

path-functional of X.

The class in question is given by the collection of functionals F : Ω→ R that are continous in the Skorokhod

J1-topology and satisfy the bound

|F (x)| ≤ C exp(q‖x‖∞) for all x ∈ Ω(5.14)

with ‖x‖∞ = sup0≤s≤T |xs| and some C > 0, where q > 0 was given in Eqn. (4.1). The corresponding path-

functionals F δ of the random walk Rδ are obtained by embedding paths from the space (hZ)n into Ω by piecewise

constant extension, as follows:

Fδ : (ω1, . . . , ωn) 7→ F (ω) ωt = ωbt/δc, δ = T/n, t ∈ [0, T ].

The bound in Eqn. (5.14) suffices to guarantee square-integrability of the random variables F (X) and Fδ(R
δ):
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Lemma 8. Assume F : Ω → R is continuous, that the conditions in Eqn. (5.14) are satisfied and that X

satisfies (4.1). Then it holds

sup
δ>0

E[exp(2q‖Y δ‖∞)] <∞.

Proof of Lemma 8. Denote by X ′ the Lévy process X ′t = Xt + d−t where d− = max{−d, 0} and note that X ′

is a sub-martingale. In view of the fact that exp(qX ′) are sub-martingales, Doob’s maximal inequality implies

that there exists a constant C such that we have

E[exp(2q‖X ′‖∞)] ≤ CE[exp(2q|X ′T |)],

which is finite by the assumption in Eqn. (4.1). Since we have |‖X‖ − ‖X ′‖| ≤ d−T , the assertion follows.

The second bound follows by an analogous argument applied to the embedded random walk Y δ. �

Denoting by Gδ the filtration generated by the scaled random walk Rδ, the announced result is phrased as

follows:

Theorem 1. Let {Ψ(p, δ), δ > 0} be a (ξ,Γ+,Γ−)-scaling family of distortions and let F : Ω → R be a

continuous map satisfying the bound in Eqn. (5.14). For any sequence δn ↘ 0, we have

CΨδn ,Gδn
(
Fδn

(
Rδn

))
−→ E∆,Γ(F (X)), as n→∞,

with Ψδn = Ψ(·, δn) and Γ = (Γ+,Γ−), and with ∆ = (∆+,∆−) given by ∆+ = ξ( 1
6 ) and ∆− = ξ( 5

6 ).

The proof of Theorem 1 is given in Sections 8–10

6. Valuation of pathwise increasing claims

While the map E∆,Γ : L2(Ω,F ,P) → R is not additive, it will be shown below that, when restricted to

the set of random variables that are a pathwise increasing function of the Lévy process X, the map E∆,Γ is

additive. Similarly, it holds that the restriction of the map E∆,Γ to the set of random variables that are pathwise

decreasing is additive. As the derivations in the two cases are similar we will restrict ourselves below to the

case of pathwise increasing functionals.

Definition 10. The random variable X ∈ L0(Ω,F) is pathwise increasing if X (ω) ≥ X (ω′) whenever ω(t) ≥ ω′(t)
for all t ∈ [0, T ].

Assume a drift-shift ∆ = (∆+,∆−) and a jump-distortion Γ = (Γ+,Γ−) have been fixed. Denote by Q# the

probability measure on (Ω,F) under which X is a Lévy process with characteristic triplet given by (γ#, σ
2
#,Λ#),

where

γ# = d + ∆+σ +

∫
R

(Z#(x)− 1)xΛ(dx), σ2
# = σ2,(6.1)

with Z# denoting the Radon-Nikodym derivative of the Lévy measure Λ# with respect to Λ. The tail-functions

Λ# and Λ# of Λ#, given by Λ
#

(x) = Λ#((x,∞)) and Λ#(−x) = Λ#((−∞,−x)) for x > 0, are expressed in

terms of the tail functions Λ and Λ of Λ by

Λ#(x) = Γ+

(
Λ(x)

)
, Λ#(−x) = Γ− (Λ(−x)) , x > 0.(6.2)
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Lemma 9. The measure Q# is element of the set DD,G, and we have

(6.3) max
Q∈D∆,Γ

Λ
Q

(x) = Γ+

(
Λ(x)

)
, Γ− (Λ(−x)) = min

Q∈D∆,Γ

ΛQ(−x), x > 0.

Proof. We show in three steps that the measure Q# satisfies the conditions stated in the definition of the

set D∆,Γ. Firstly, we note that the Radon-Nikodym derivative Z# is square integrable, in view of Lemma 3.

Secondly, we observe that Girsanov’s theorem implies dQ#
(t) = d + ∆+σ. Finally, reasoning as in the proof of

Lemma 18(ii) it follows

Γ−(Λ(A)) ≤
∫
A

Z#(y)Λ(dy) ≤ Γ+(Λ(A)), A ∈ BΛ(R).

Hence, we deduce Q# ∈ DD,G, and it follows that the two identities in Eqn. (6.3) both hold with inequality (≥)

instead of equality. That we have in fact equalities in Eqn. (6.3) follows from the explicit forms of Λ#(x) and

Λ#(−x) in Eqn. (6.2). �

Theorem 2. If Υ : Ω→ R is F-measurable and pathwise increasing and Υ(X) ∈ L2(Ω,F ,P), then it holds

E∆,Γ(Υ(X)|Ft) = EQ
#

[Υ(X)|Ft], t ∈ [0, T ].(6.4)

Theorem 2 implies that for any increasing B(R)-measurable map H : R → R satisfying H(XT ) ∈ L2(Ω,F ,P)

we have

E∆,Γ(H(XT )|Ft) = EQ
#

[H(XT )|Ft], t ∈ [0, T ].

6.1. Proof by coupling. The proof is based on the following auxiliary coupling result:

Lemma 10. For any Q ∈ DD,G there exists a probability space (Ω(Q),F (Q),P(Q)) supporting a stochastic process

(Y Q, Y #) = {(Y Qt , Y
#
t ), t ∈ [0, T ]} that satisfies

(Y Q,P(Q))
L
= (X,Q), (Y #,P(Q))

L
= (X,Q#), and

Y Q(t, ω) ≤ Y #(t, ω) for P(Q)-a.e. ω ∈ Ω(Q) and all t ∈ [0, T ],

where
L
= denotes equality in law.

The proof of Lemma 10 in turn relies on a coupling of Lévy-Itô subordinators.

Lemma 11. Let Y 1 = (Y 1
t )t∈[0,T ] and Y 2 = (Y 2

t )t∈[0,T ] be two pure jump Lévy-Itô subordinators with Lévy-Itô

measures ν1 and ν2 satisfying the domination condition

(6.5) ν1
t,ω(x) ≥ ν2

t,ω(x) for all x > 0, and all t ∈ [0, T ], and P-a.e. ω ∈ Ω.

Then there exists a probability space (Ω∗,F∗,P∗) that supports a stochastic process (Z1, Z2) = {(Z1
t , Z

2
t ), t ∈

[0, T ]} satisfying

Z1 L= Y 1, Z2 L= Y 2, Z1(t, ω) ≥ Z2(t, ω) for P∗-a.e. ω ∈ Ω∗ and all t× [0, T ].

Proof of Theorem 2. In view of Girsanov’s theorem and the definition of the non-linear expectation ED,G it

follows

ED,G(Υ(X)|Ft) = ess. sup
Q∈DD,G

EQ[Υ(X)|Ft], t ∈ [0, T ].(6.6)
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Lemma 10 and the fact that Υ is pathwise increasing imply EQ[Υ(X)|Ft] ≤ EQ# [Υ(X)|Ft] for any t ∈ [0, T ].

The statement hence follows from the fact that Q# is element of DD,G. �

We next turn to the proofs of the Lemmas 10 and 11.

Proof of Lemma 11. We present an explicit contruction of processes Z1 and Z2 with the required properties

first assuming that ν1 and ν2 have finite mass. Let (Ω∗,F∗,P∗) denote a probability space that supports the

processes Y 1 and Y 2, a counting process N and a collection of IID U(0, 1) random variables U = {Ui, i ∈ N}.
Denoting by H the filtration generated by the processes Y 1 and Y 2, assume that, conditional on the curve

C = {Ct, t ∈ [0, T ]} with Ct = ν1
t (R+) ∨ ν2

t (R+), the process N is a time-inhomogeneous Poisson process with

time-dependent rates Ct that is independent of H. Also assume that U is independent of N and of H. Define

the processes Zi = {Zit , t ∈ [0, T ]} for i = 1, 2 by

(6.7) Zi(t) =

Nt∑
j=1

(
F

(i)
t

)−1

(Uj), t ∈ [0, T ],

where
(
F

(i)
t

)−1

, i = 1, 2, denote the right-inverses of the maps F
(i)
t : R+ → [0, 1] given by

(6.8) F
(i)
t (x) =

c
i
t/Ct, x = 0,

[νit((0, x]) + cit]/Ct, x > 0,

where cit = Ct − νit(R+). Since any jump size (F
(i)
t )−1(Uj) is non-negative and, conditional on H, follows

the distribution F
(i)
t , it follows that Z1 and Z2 are Lévy-Itô subordinators with Lévy-Itô measures given by

I(0,∞)(x)CtF
(i)
t (dx) = νit(dx), i = 1, 2. Furthermore, in view of the implications{

∀x > 0 ν1
t (x) ≥ ν2

t (x)
}
⇔
{
∀x > 0 F

(1)
t (x) ≤ F (2)

t (x)
}
⇔
{
∀x > 0

(
F

(1)
t

)−1

(x) ≥
(
F

(2)
t

)−1

(x)

}
for any t ∈ [0, T ], it follows from Eqn. (6.7) that we have Z1 ≥ Z2.

Next we remove the assumption of boundedness. Let ν1, ν2 be as stated and fix ε > 0 arbitrary. Applying

the first part of the proof to the truncated measures νiε(dx) = I(ε,∞)(x)νi(dx) for i = 1, 2, shows

(6.9) Z1,ε(t, ω) ≥ Z2,ε(t, ω) for any ε > 0, t ∈ [0, T ], ω ∈ Ω∗.

The sequence (Z1,ε, Z2,ε)ε of two-dimensional Lévy-Ito processes converges weakly in the Skorokhod topology as

ε↘ 0 (see [25]). The limit (Z1
∗ , Z

2
∗) is a Lévy-Itô process of which the components Zi∗ are Lévy-Itô subordinators

with Lévy-Itô measures νi, i = 1, 2. In particular, passing to a suitable subsequence (ε′), it follows Zi,ε(t) →
Zi∗(t) P∗-a.s., for any t ∈ [0, T ]. Taking in Eqn. (6.9) the limit of ε′ ↘ 0 along the sequence (ε′) shows

Z1
∗(t, ω) ≥ Z2

∗(t, ω) for P∗-a.e. ω ∈ Ω∗ and any t ∈ [0, T ]. �

Proof of Lemma 10. According to Girsanov’s theorem, the process X under the measure Q ∈ DD,G has the

same law as a Lévy-Itô process XQ with characteristics given in Eqn. (4.5). Denote by (Ω(Q),F (Q),P(Q))

a probability space that supports a Wiener process W and a random measure µQ with compensator given

by νQt (dx) = (UQ(t, x) ∨ 1)νt(dx). Let JQ = {JQt , t ∈ [0, T ]} be the compensated jump-process given by

JQt =
∫

[0,t]×R x(µQ(ds,dx) − νQs (dx)ds). From the random measure µQ can be constructed by thinning the

compensated jump processes AQ and BQ with compensators νt(dx)dt and UQ(t, x)νt(dx)dt respectively, and
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the Lévy-Itô subordinators Y Q,+, ZQ,+ and negatives of Lévy-Itô subordinators Y Q,−, ZQ,− with compensators

Y
Q,±

, Z
Q,±

given by

Y
Q,±
t =

∫
[0,t]×R±

(UQ(s, y)− 1)+Λ(dy)ds and Z
Q,±
t =

∫
[0,t]×R±

(UQ(s, z)− 1)−Λ(dz)ds.

Observe that JQ admits the decompositions

JQ = BQ + ZQ,+ + ZQ,− − ZQ,+ − ZQ,−(6.10)

= AQ + Y Q,+ + Y Q,− − Y Q,+ − Y Q,−.(6.11)

Hence, by comparing the characteristics of X to those of XQ given in Eqn. (4.5) and by combining this with

Eqns. (6.10)—(6.11), it follows that the process XQ can be constructed on (Ω(Q),F (Q),P(Q)) by

XQ = X ′ +DQ + Y Q,+ + Y Q,− − (ZQ,+ + ZQ,−),(6.12)

where X ′ has the same law as X and DQ = {DQ
t , t ∈ [0, T ]} is given by DQ

t =
∫ t

0
HQ
s σ

2ds. The definition of

the set DD,G implies DQ
t ≤ ∆+σ

2t. Moreover, in combination with Lemma 11 this definition also yields the

inequalities

Y Q,+ ≤ Y Q#,+, Y Q,− ≤ 0 = Y Q#,−, ZQ,+ ≥ 0 = ZQ#,+ and ZQ,− ≥ ZQ#,−.

Thus, from Eqn. (6.12) it follows XQ ≤ XQ# for each Q ∈ DD,G. Since (XQ# ,P(Q#)) has the same law as

(X,Q#), the proof is complete. �

7. Examples

7.1. Geometric Brownian motion. Under Samuelson’s model the price process of a risky stock S = {St, t ∈
[0, T ]} is modelled by a geometric Brownian motion given by

(7.1) St = S0 exp(Xt), t ∈ [0, T ],

where the log-price process X is a linear Brownian motion given by Xt = ct + σBt where c = µ − σ2

2 , B is a

standard Brownian motion and µ, σ ∈ R denote the drift and volatility of S.

We consider the distortion valuation with respect to the family of distortions {Ψ(·, δ ∧ 1), δ > 0} given by

Ψ(p, δ) = p+
√
δ (Ψα(p)− p) , Ψα(p) =

1− e−αp

1− e−α
, p ∈ [0, 1], α, δ > 0.

Note that the extreme cases of δ = 0 and δ = 1 correspond to a linear distortion Ψ0(p) = p and the exponential

distortion Ψα, respectively. It is straightforward that this collection is a (ξα,Γ−,Γ+)-scaling family of distortions

with Γ− = Γ+ = 0 and ξ given by ξα(p) = Ψα(p) − p. We refer to Cherny & Madan [10] and Wang [45] for

different examples of distortions which can be deployed analogously to construct scaling families of distortions.

Let R = (Rn, n ∈ N ∪ {0}) denote the trinomial random walk given by R0 = 0 and Rn =
∑n
k=1 Uk with

Uk ∈ {±1, 0} and transition probabilities given by

(7.2) p1 = p−1 =
1

6
, p0 =

2

3
.

Then the sequence of scaled processes Y δ = {Y δt , t ∈ [0, T ]} defined by Y δt = ct + hRdt/δe, where δ and h are

linked via the classical relation 3δ = σ2h2, converges weakly to X in the Skorokhod topology as δ → 0.
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The multi-period distortion expectation values of a given claim X ∈ L2(FT ) satisfy the recursion

Πδ
m(X ) = α1P

m+1
1 + α0P

m+1
0 + α−1P

m+1
−1 , m = 0, . . . , n− 1,

with Πn(X ) = X and δ = T/n, where we denoted Pm+1
i = Πm+1(X|Gm)I{∆Rm=ih}, i ∈ {−1, 0, 1}. If X is a

claim of the form as stated in Theorem 1 then according to Theorem 1 we have Πδ
0(X )→ E∆,Γ(X ) as δ ↘ 0.

In the case that X is pathwise increasing, Theorem 2 states that E∆,Γ(X ) is equal to the (classical linear)

expectation EQ# [X ] under the measure Q# under which the process X is given by

Xt = σB#
t +

(
c# −

σ2

2

)
t, c# = ∆+σ

2 + µ, ∆+ = ξγ

(
5

6

)
,

where B# is a standard Brownian motion under the measure Q#. In particular, in the cases of a call-option

pay-off, X = (ST −K)+, and a up-and-in digital pay-off Y = I{sups∈[0,T ] Ss≥H}, we find

E∆,Γ(X ) = S0ec#TΦ(d+)−KΦ(d−), E∆,Γ(Y) =

(
H

S0

)2a

Φ(e+) + Φ(e−),(7.3)

d+ =
log(S0/K) + aT

σ
√
T

, d− = d+ − σ
√
T , a = c# +

σ2

2
,(7.4)

e+ =
log(H/S0) + aT

σ
√
T

, e− = e+ − 2a
√
T/σ,(7.5)

where Φ and Φ denote the the standard normal distribution function and complementary distribution function.

7.2. Tail-CGMY model. Assume that the price process of a stock S = {St, t ∈ [0, T ]} follows an exponential

Lévy model given by Eqn. (7.1) with

(7.6) Xt = (µ− κ)t+ Yt, κ =

∫
R

(ex − 1− x)ν(dx),

where Y is a pure-jump martingale Lévy process with Lévy measure Λ(dx) = k(x)dx that has density

k(x) = C

(
Y +Mx

x1+Y
e−MxI(0,∞)(x) +

Y +G|x|
|x|1+Y

e−G|x|I(−∞,0)(x)

)
, x ∈ R.

with M > 1, C > 0, G ≥ 0 and Y ∈ (0, 1]. The Lévy density k(x) decays exponentially fast when |x| tends

to infinity and has a power-type singularity at the origin, and is a mixture of classical CGMY/KoBoL Lévy

densities (see [13] for the definition of a CGMY/KoBoL process). In fact, the process Y falls into the class

of regular Lévy processes of exponential type (RLPE) introduced in Boyarchenko and Levendorskii [5, Def.

3.3]. By integrating the expression in the previous display it follows that the corresponding right- and left-tails

functions Λ(x) and Λ(−x) of the measure Λ are given by

Λ(x) = C
e−Mx

xY
, Λ(−x) = C

e−G|x|

|x|Y
, x > 0.

We will consider the distorted valuations that are based a distortion family constructed from the MINMAXVAR

distortion Ψγ , with γ ∈ R+, that was introduced in Cherny & Madan [10] and is given by

Ψγ(p) = 1− (1− p1/(1+γ))1+γ .

A corresponding scaling family of distortions {Ψ( · , δ∧ 1), δ > 0} is constructed by taking convex combinations,

Ψ(p, δ) = Ψ0(p)(1− Cγ(δ)) + Ψγ(p)Cγ(δ), δ ∈ (0, 1)
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where Cγ(δ) = γ
1+γ δ

γ
1+γ . Note that for any δ ∈ (0, 1), p 7→ Ψ(p, δ) is concave and increasing on [0, 1]. It is

straightforward to check that {Ψ( · , δ ∧ 1), δ > 0} is a (ξ,Γ+,Γ−)-scaling family. In particular, we note that
∂Ψ(0+,δ)

∂p = +∞, and ∂Ψ(1−,δ)
∂p = 1− Cγ(δ). Furthermore, we see that, as δ ↘ 0,

Ψ(p, δ)−Ψ(p, 0)√
δ

→ 0 = ξ(p),
Ψ(λδ, δ)

δ
→ λ+ γλ1/(1+γ) := Γ+(λ),

Ψ̂(λδ, δ)

δ
→ λ := Γ−(λ).

To construct a sequence of multinomial processes approximating X, we consider the multinomial random

walk R with step-probabillities

(7.7)

pk = δΛ(kh), p−k = δΛ(−kh) k ∈ Z, |k| ≥ a,

pk = 0 2 ≤ |k| < a− 1,

where p1, p−1 and p0 are the solution of the system in Eqns. (5.2)—(5.3) which arises from matching moments.

The spatial mesh size h and the step-size δ are related via h2 = 3δΣ2(R) with

Σ2(R) = 2CΓ(2− Y )[MY−2 +GY−2],

where Γ denotes the Gamma function, and the parameter a is specified by

(7.8) a = a(h) =

{(
Σ2(2− Y )

2CY

)1/(3−Y )

h(Y−2)/(3−Y )

}
∨ h−1/2| log h|.

For this choice of a the conditions stated in Lemma 6 are satisfied, as we verify next. Note that the form of

a implies that we have ah → 0 and a2h → ∞ when h tends to zero. Furthermore, for any a ≥ 2, it holds

Σ2(−ah, , ah) is bounded above by Σ2(R)(3 − 2a−1 − 2a−2) (as this factor is larger than 1 for all a ≥ 2) and,

for a as specified in Eqn. (7.8), we have

(7.9) Σ2(−ah, , ah) ≥ 2CY

∫ ah

0

x2

x1+Y
dy =

2CY

2− Y
(ah)2−Y ≥ Σ2(R)

a
.

The multi-period distortion expectation values of a given claim X ∈ L2(FT ) satisfy a recursion given by

Πδ
m(X ) =

∑
k∈Z

αkP
m+1
k , m = 0, . . . , n− 1,

with Πn(X ) = X and δ = T/n, where we denoted Pm+1
i = Πm+1(X|Gm)I{∆Rm=kh}, k ∈ Z. If X is a claim of

the form as stated in Thm 1 then according to Theorem 1 we have Πδ
0(X )→ ED,G(X ) as δ ↘ 0.

Theorem 2 implies that the distorted expectation value of any pathwise increasing claim X ∈ L2(FT ) is given

by E∆,Γ(X ) = EQ# [X ] where under the measure Q# the process Y is a Lévy process with characteristic triplet

(c#, 0,Λ#) given by

Λ#(x) = Λ(x) + γC1/(1+γ) e−Mx/(1+γ)

xY/(1+γ)
, Λ#(−x) = Λ(−x), x > 0,(7.10)

c# = γ

∫ ∞
0

e−Mx/(1+γ)x−Y/(1+γ)dx = Γ (uγ)

(
M

1 + γ

)−uγ
, uγ =

1 + γ − Y
1 + γ

.(7.11)

Thus, the asymmetric nature of the MINMAXVAR distortion Ψγ carries over in the limit, with the Lévy

measure Λ# having larger mass than Λ in the right-tail and the same left-tail as Λ. For the claims X and Y
given in the previous example, we note that the Fourier transform of E∆,Γ(X ) in the log-strike k = logK and a

Fourier-Laplace transform of ED,G(Y) in the variables h = logH and T can be explicitly expressed in terms of

the characteristic exponent of X (see e.g. [7] and [5, Sect. 7.2], respectively).
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8. Proof of convergence

The proof of Theorem 1 is based on the representation of the multi-period distorted expectation as supremum

of expectations of Fδ
(
Rδ
)

under probability measures contained in the set

CΨδ,Gδ
(
Fδ
(
Rδ
))

= sup
Q∈Dδ

EQ[Fδ
(
Rδ
)
], with(8.1)

Dδ = DΨδ(Gδ) =
{
Q ∈Mδ : Ψ̂δ ◦ P δi ≺′ Qi ≺′ Ψδ ◦ P δi for all i = 0, . . . , n− 1

}
.(8.2)

Throughout Sections 8–10 we fix a (ξ,Γ+,Γ−)-scaling family of distortions {Ψ(·, δ), δ > 0} and we will write

Ψ(·) = Ψ(·, δ) and Ψ̂(·) = Ψ̂(·, δ) to simplify the notation. We denote the corresponding jump-distortion and

drift-shift by Γ = (Γ+,Γ−), and ∆ = (∆+,∆−) with ∆+ = ξ( 1
6 ) and ∆− = ξ( 5

6 ). We denote by F : Ω → R a

continuous map satisfying the bound in Eqn. (5.14). Theorem 1 follows from the following convergence result:

Proposition 3. For any sequence δn ↘ 0 we have

lim sup
n→∞

sup
Q∈Dδn

EQ[Fδn
(
Rδn

)
] ≤ sup

Q∈D∆,Γ

EQ[F (X)](8.3)

lim inf
n→∞

sup
Q∈Dδn

EQ[Fδn
(
Rδn

)
] ≥ sup

Q∈D∆,Γ

EQ[F (X)].(8.4)

The proofs of the limits in Eqns. (8.3) and (8.4) in Proposition 3 is given in Sections 9 and 10, respectively.

These proofs rest on two properties of the set of Radon-Nikodym derivatives with respect to the probability

measure P of the probability measures in the sets Dδn : it is shown below that these sets are contained in a

ball in L2 (Lemma 12) and are sandwhiched by members of a certain family
{
Dδn,ε∗ , ε ∈ (−1, 1)

}
of sets of

probability measures that is defined below (Lemma 13).

8.1. Preliminaries: Radon-Nikodym derivarives. Before proceeding we first introduce some extra nota-

tion. Denote by P δ the probability measure on (Ω,G) corresponding to the random walk R, and by Mδ the

collection of all probability measures on (Ω,G) that are absolutely continuous with respect to P δ. For i ∈ N∪{0}
and any probability measure Q ∈Mδ we denote by Qi and Pi the conditional probabilities given by

Qi(A) = Q(A|Gi), Pi(A) = P δi (A|Gi) for any set A ∈ G.

For any k ∈ N, let Iki = I{Rδk−Rδk−1=dδ+ih} be a Bernoulli random variable and denote the conditional probability

that Iki is equal to one by qki ,

qki = Q(Iki = 1|Gk−1) = Q
(
Rδk −Rδk−1 = i

∣∣Gk−1

)
, i ∈ N.

From the sequence of Bernoulli random variables (Iki , i ∈ Z, k ∈ N) a number of martingales will be constructed.

Observe that the increments of the process N
A

that was defined in (5.10) are expressed as

∆N
A

k =
∑
i:i∈A

[Iki − pi], k = 1, . . . , N,

where ∆N
A

k = N
A

k − N
A

k−1 denotes the increment of ZA at time k. Since the increments ∆N
A

k have zero

conditional expectation, E[∆N
A

k |Gk−1] = 0, where E denotes the expectation under the measure P δ,h, it

follows that N
A

is a (P δ,Gδ)-martingale. Given a measure Q ∈ Mδ,h two further martingales, MQ and ZQ,

can be defined as follows. Denote by ZQ∞ = dQ
dP δ

the Radon-Nikodym derivative of the measure Q with respect
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to the measure P δ. The process ZQ = (ZQk )k∈N∪{0}, defined by ZQk = E[ZQ∞|Gk] for k ∈ N, is a G-martingale,

and takes the form

(8.5) ZQ0 = 1, ∆ZQk = ZQk−1∆MQ
k , k ∈ N,

where ∆MQ
k = MQ

k −M
Q
k−1 is an increment of the martingale MQ = (MQ

k , k ∈ N∗) given by

MQ
0 = 0, ∆MQ

k =
∏
i∈Z

(
qki
pi

)Iki
− 1 =

∑
i∈Z

(
qki
pi
− 1

)
[Iki − pi], k ∈ N.(8.6)

It follows from Eqns. (8.5) and (8.6) that ZQ is equal to the stochastic exponential of MQ, and that for any

n ∈ N, ZQn is equal to

ZQn =
∏

k≤n,k∈N

∏
i∈Z

(
qki
pi

)Iki
.

8.2. Martingales in a ball in L2. The collection of processes ZQ for Q ∈ Dδ is contained in a ball in L2:

Lemma 12. There exists a c̃ > 0 such that, for any i = 1, . . . , n and any measure Q ∈ Dδ, we have

(8.7) E

[(
ZQi − Z

Q
i−1

)2
∣∣∣∣Gi−1

]
≤ c̃δ

(
ZQi−1

)2

.

with ZQ = dQ
dP . In particular, E

[(
ZQi

)2
]
≤ 1 + T d̃, i = 1, . . . , n, with d̃ = (1− (c̃δ)n+1)/(1− c̃δ).

Proof of Lemma 12. Note that the ratio Z̄Qi = ZQi /Z
Q
i−1 can be decomposed as

(8.8) Z̄Qi − 1 = ∆MQ
i = ∆MQc

i + ∆MQd
i , i = 1, . . . , n,

where MQc and MQd
i are martingales with MQc

0 = MQd
0 = 0 and with orthogonal increments given by

∆MQc
i =

∑
j∈{±1,0}

(
qij
pj
− 1

)
[Iij − pj ], ∆MQd

i =
∑

j /∈{±1,0}

(
qij
pj
− 1

)
[Iij − pj ].

In view of the definition of Dδ, the independence of the Iij and the definition of the scaling family of distortions,

we find

E

[(
∆MQc

i

)2
∣∣∣∣Gi−1

]
=

∑
j∈{±1,0}

(
qij
pj
− 1

)2

pj [1− pj ]

≤
∑

j∈{±1,0}

(
[Ψ(pj)− pj ] ∨ [pj − Ψ̂(pj)]

pj

)2

pj [1− pj ]

≤
∑

j∈{±1,0}

(
(ξ(pj) ∨ ξ(1− pj))σ∗

√
δ + o(

√
δ)
)2 [1− pj ]

pj

= δ (σ∗)2C + o(δ), where C =

[
10

(
ξ

(
1

6

)
∨ ξ
(

5

6

))2

+
1

2

(
ξ

(
1

3

)
∨ ξ
(

2

3

))2
]
,(8.9)

where we used that p1, p−1 → 1
6 and p0 → 2

3 , by Lemma 6. We note that the o(δ) term holds uniformly over

i = 1, . . . , n and Q ∈ Dδ, in view of Eqn. (5.11) in the definition of scaling family.
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Denoting by Qd the measure with Radon-Nikodym derivatrive ZQd with respect to P δ given by the stochastic

exponential of the martingale MQd , we find

E

[(
∆MQd

i

)2
∣∣∣∣Gi−1

]
= E

[
(Z̃Qd − 1)∆MQd

i

∣∣∣∣Gi−1

]
= EQd

[
∆MQd

i

∣∣∣∣Gi−1

]
− E

[
∆MQδ

i

∣∣∣∣Gi−1

]
.

Denoting Y +
i = (∆MQd

i )+ and Y −i = (∆MQd
i )−, where, for any x ∈ R, x+ = max{x, 0} and x− = max{−x, 0},

we find, in view of the definition of Dδ,

EQd [Y +
i |Gi−1]− E[Y +

i |Gi−1] =

∫
R+

[Qd(Y
+
i > x|Gi−1)− P (Y +

i > x|Gi−1)]dx

≤
∫
R+

[Ψ(P (Y +
i > x|Gi−1))− P (Y +

i > x|Gi−1)]dx

= δ

∫
R+

[δ−1Ψ(δΛY,i(x,∞))− ΛY,i(x,∞)]dx

= δ

∫
R+

Aδ(x)[Γ(ΛY,i(x,∞))− ΛY,i(x,∞)]dx := I+
δ,i,(8.10)

where ΛY,i is the measure on (R+,B(R+)) given by ΛY,i(dx) = P (Y +
i ∈ dx|Gi−1)/δ and

Aδ(x) =
δ−1Ψ(δΛY,i(x,∞))− ΛY,i(x,∞)

Γ+(ΛY,i(x,∞))− ΛY,i(x,∞)
.

Since the measure ΛY,i has a finite second moment, m2,i = E[(Y +
i )2|Gi−1]/δ, and Γ+− id is increasing it follows

by Chebyshev’s inequality

Γ+(ΛY,i(x,∞))− ΛY,i(x,∞) ≤ (Γ+ − id)(m2,i/x
2), x > 0.

Moreover, for δ sufficiently small, supx>0Aδ(x) is bounded by some finite constant A+ > 0, in view of Eqn. (5.12)

in the definition of distortion scaling family. A change of variables yields that the integral I+
δ,i is bounded in

terms of m2,i: I
+
δ,i ≤ δ

√
m2,iA+C+, where

C+ =

∫
R+

[(Γ+ − id)(y)]
dy

2y
√
y
.

Thus, we find

EQd [Y +
i |Gi−1]− E[Y +|Gi−1] ≤ A+C+

√
δ ·
√
E[(Y +

i )2|Gi−1],

for all δ sufficiently small. By an analogous line of reasoning, we find

EQd [Y −i |Gi−1]− E[Y −i |Gi−1] ≥ A−C−
√
δ ·
√
E[(Y −i )2|Gi−1],

for δ sufficiently small, with C− =
∫
R+

[(id− Γ−)(y)] dy
2y
√
y and some finite constant A− < 0.

Since we have E[(Y +
i )2|Gi−1] ∨ E[(Y −i )2|Gi−1] ≤ E[(∆MQ

i )2|Gi−1] we find the estimate

E[(∆MQ
i )2|Gi−1] ≤ δC + C0

√
δ

√
E[(∆MQ

i )2|Gi−1] + o(δ),

as δ → 0, where C0 = A+C+ + |A−|C− and C is defined in Eqn. (8.9). Thus, by solving this inequality and

taking expectations we find

(8.11) E[(∆MQ
i )2] ≤ Cδ + o(δ), where C =

1

4

(
C0 +

√
(C0)2 + 4C

)2

,
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as δ → 0, where we recall that the o(δ) term in Eqn. (8.11) is valid uniformly across i = 1, . . . , n and Q ∈ Dδ.
In view of the relation between MQ and ZQ (in Eqn. (8.8)), we see that the bound on ZQ in Eqn. (8.7) is valid

with c̃ taken equal to C given in Eqn. (8.11). Furthermore, orthogonality of martingale increments implies

E[(ZQi )2] = E[(ZQ0 )2] +

i∑
j=1

E[(ZQj − Z
Q
j−1)2] ≤ 1 + c̃δ

i∑
j=1

E[(ZQj−1)2] i = 1, . . . , n,

with δ = T/n. Solving this recursion yields the stated bound. �

8.3. Related sets of probability measures. The collection Dδ is contained and contains sets of probability

measures that are defined in terms of the covariance between the stochastic logarithm of the martingale density

process and the martingales R(+1), R(−1) and R(0) that start at the origin, R
(+1)
0 = R

(−1)
0 = R(0) = 0, and have

increments

∆R(+1)
n = h(In1 − p1), ∆R(−1)

n = h(In−1 − p−1) and ∆R(0)
n = h(In1 + In−1 − p1 − p−1), n ∈ N.

For ε ∈ (−1, 1) and δ > 0 the collections in question are defined as follows:

Dδ,ε∗ =


Q ∈Mδ :

MQ is such that the following hold for all k ∈ N:

E

[
∆MQ

k ∆R
(i)
k

∣∣∣∣Gk−1

]
∈
[
−δ∆(i)

ε , δ∆
(i)

ε

]
for i ∈ {−1, 0, 1}

E

[
∆MQ

k ∆N
Ah
k

∣∣∣∣Gk−1

]
≤ δγε(A)

for all closed sets A ⊂ R\{0}
E

[
∆MQ

k ∆N
Ah
k

∣∣∣∣Gk−1

]
≥ δγ

ε
(A)


.

where we denote Ah = A ∩ (hZ) and Ach = hZ\Ah, and the constants ∆
(i)

ε and ∆(i)
ε , i = ±1 and γε(A) and

γ
ε
(A) are given by

∆
(i)

ε = (1 + ε)
5

12
σ2ξ

(i)
+ ε+1{ξ(i)·σ2=0}, ∆(i)

ε = (1 + ε)
5

12
σ2ξ(i) + ε+1{ξ(i)·σ2=0}, i ∈ {±1, 0},

γε(A) = (1 + ε) [Γ+(Λ(A))− Λ(A)] + ε+1{Γ+(Λ(A))=Λ(A)},

γ
ε
(A) = (1 + ε) [Γ−(Λ(A))− Λ(A)]− ε+1{Γ−(Λ(A))=Λ(A)},

for closed sets A ⊂ R\{0}, with ε+ = max{ε, 0} and

ξ
(1)

= ξ
(−1)

= ∆+, ξ
(1) = ξ(−1) = ∆−, ξ

0
= ξ

(
1

3

)
and ξ0 = ξ

(
2

3

)
.

Lemma 13. Fix ε ∈ (0, 1). Then for all δ sufficiently small, we have Dδ ⊂ Dδ,ε∗ and Dδ,−ε
∗ ⊂ Dδ.

Before turning to the proof we collect some general observations. We shall simplify the notation by writing,

for any set A ⊂ hZ, p(A) = P δi (∆Ri+1 ∈ A|Gi) and q(A) = Qi(∆Ri+1 ∈ A|Gi) . In view of the definition of MQ

in (8.6) we find the following identity for any subset A ∈ 2Z

E

[
∆MQ

k ∆N
A

k

∣∣∣∣Gk−1

]
=

∑
i:ih∈A

(
qki
pi
− 1

)
E
[
(Iki − pi)2

]
=
∑
i:ih∈A

(qki − pi)(1− pi),(8.12)
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where the last sum can be estimated by∑
i:ih∈A

(qki − pi)(1− pi)− [q(A)− p(A)] = −
∑
i:ih∈A

(qki − pi)pi ≤ p(A)2(8.13)

∑
i:ih∈A

(qki − pi)(1− pi)− [q(A)− p(A)] ≥ −[q(A+)− p(A+)] max
i:ih∈A+

pi,(8.14)

with A+ = {i : ih ∈ A, qki > pi}.
Furthermore, in view of the definitions of the martingales MQ, R(1), R(−1) we have

E[∆MQ
k ∆R

(±1)
k ] = E

[∑
i∈Z

(
qki
pi
− 1

)
[Iki − pi] (±h(I±1 − p±1))

]
= ±h(q±1 − p±1)(1− p±1)(8.15)

E[∆MQ
k ∆R

(0)
k ] = h[(q1 − p1)(1− p1) + (q−1 − p−1)(1− p−1)].(8.16)

Proof of Lemma 13. In the proof both inclusions will be considered separately.

(i) (Proof of the inclusion Dδ ⊂ Dδ,ε∗ ): Let Q ∈ Dδ. The proof of this inclusion rests on the following three

observations:

(a) In the case σ2 > 0 we have in view of Eqn. (8.15), Lemma 6(i,ii) and Definition 9

E[∆MQ
k ∆R

(1)
k ] ≤ h

(
ξ(p1)σ

2
√

3

√
δ + o(

√
δ)

)
(1− p1) =

1

2
· 5

6
ξ

(
1

6

)
δσ2 + o(δ)

≥ −h
(
ξ(1− p1)σ

2
√

3

√
δ + o(

√
δ)

)
(1− p1) = − 5

12
ξ

(
5

6

)
δσ2 + o(δ),

when δ tends to zero. By a similar line of reasoning it follows that E[∆MQ
k ∆R

(−1)
k ] satisfies the same bounds as in

above display. Furthermore, in the case σ2 = 0 Lemma 6 and Definition 9 imply that we have E
[
∆MQ

k ∆R
(j)
k

]
∈

δ[−ε, ε] for all δ sufficiently small and j = −1, 1.

Hence, for all δ sufficiently small, we have

(8.17) −∆(i)
ε ≤ E

[
∆MQ

k ∆R
(i)
k

]
≤ ∆

(i)

ε for i = ±1.

(b) Let A ⊂ R\{0} be a closed set and recall the notation Ah = A ∩ hZ. Recall from the definition of the

transition probabilities pk in Eqn. (5.1) that we have p(Ah) = δΛ(A) for all h sufficiently small. By combining

Eqns. (8.12) and (8.14) with the definition of Dδ and Definition 9 we find

E

[
∆MQ

k ∆N
Ah
k

∣∣∣∣Gk−1

]
≤ Ψ(p(Ah))− p(Ah) + p(Ah)2 ≤ δ(1 + ε/2)[Γ+(Λ(A))− Λ(A)] + δ2Λ(A)2]

for all δ sufficiently small, which is bounded above by δ(1 + ε)[Γ+(Λ(A)) − Λ(A)] for all δ sufficiently small in

the case Γ+(Λ(A)) > Λ(A), and by δε otherwise.

(c) Let A ⊂ R\{0} be a closed set. Then we have

E

[
∆MQ

k ∆N
Ah
k

∣∣∣∣Gk−1

]
≥ −[q(A+)− p(A+)] max

i:ih∈A+
pi ≥ −(Ψ(p(A+))− p(A+))p(A+) ≥ −Ψ(p(A))p(A),

where we used that Ψ is increasing. Then, similarly as above ot follows from Eqns. (8.12) and (8.13)

E

[
∆MQ

k ∆N
Ah
k

∣∣∣∣Gk−1

]
≥ Ψ̂(p(Ah))− p(Ah)(1 + Ψ(p(Ah))

≥ δ(1− ε/2)[Γ−(Λ(A))− Λ(A)]− δ2Λ(A)(1 + Γ+(Λ))
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for all δ sufficiently small, which is bounded below by δ(1 − ε)[Γ−(Λ(A)) − Λ(A)] for all δ sufficiently small in

the case Γ−(Λ(A)) < Λ(A) and by −δε otherwise.

In conclusion, for all δ sufficiently small and for arbitrary Q ∈ Dδ it follows from points (a), (b) and (c) that

the associated martingale MQ satisfies the conditions listed in the definition of Dδ,ε∗ , and we conclude Q ∈ Dδ,ε∗
for all δ sufficiently small.

(ii) (Proof of the inclusion Dδ,−ε∗ ⊂ Dδ) Let Q be an arbitrary element of Dδ,−ε2 . To prove that Q is element

of Dδ for all δ sufficiently small, it suffices to verify that, there exists a δ0 > 0 such that q(A) ≤ Ψ(p(A)) for

all sets A ⊂ hZ and all δ ∈ (0, δ0). We show this in three steps: (a) for sets A ⊂ hZ\{−h, h}, (b) for sets

A = {h}, {−h} and {−h, h} and (c) for all sets A ⊂ hZ
(a) In view of the uniform limits in Eqn. (5.12) in the definition of scaling family of distortions and

Eqns. (8.12)—(8.14) it follows that there exists a δ0 such that for all 0 < δ < δ0 the following inequalities

are valid uniformly across closed sets A ∈ R\{0} satisfying Γ+(Λ(A)) > Λ(A) and Γ−(Λ(A)) < Λ(A), respec-

tively:

q(Ah)− p(Ah) ≤ δ(1− ε/2)[Γ+(Λ(A))− Λ(A)] ≤ (Ψ(p(Ah))− p(Ah)),(8.18)

q(Ah)− p(Ah) ≥ δ(1− ε/2)[Γ−(Λ(A))− Λ(A)] ≥ (Ψ̂(p(Ah))− p(Ah)),(8.19)

where as before we denote Ah = A ∩ hZ. In the case Γ+(Λ(A)) = Λ(A) we note q(Ah) ≤ p(Ah) ≤ Ψ(p(Ah))

by concavity Ψ and the definition of the set Dδ,−ε∗ . Similarly, we find q(Ah) ≥ p(Ah) ≥ Ψ̂(p(Ah)) in the case

Γ−(Λ(A)) = Λ(A).

(b) Consider the case σ2 > 0 and when ξ
(±1)

and ξ(±1) are strictly positive. By combining Lemma 6 and

Definition 9, the definition of Dδ,−ε and Eqn. (8.15) we find the estimates for j = ±1,

qij ≤ pj + (1− ε) 1

1− pj
5ξ

(j)
σ2

12

δ

h
≤ pj + (1− ε)ξ

(j)
σ

2
√

3

√
δ · σ
√
δ
√

3

h
+ o(
√
δ) ≤ Ψ(pj)

qij ≥ pj − (1− ε)
ξ(j)σ

2
√

3

√
δ + o(

√
δ) ≥ Ψ̂(pj)

for all δ sufficiently small. By a similar line of reasoning, using instead Eqn. (8.16), it follows, in the case σ2,

ξ
(0)

and ξ(0) are strictly positive,

qi1 + qi−1 ≤ p1 + p−1 + (1− ε)ξ
(0)
σ

2
√

3

√
δ + o(

√
δ) ≤ Ψ(p({−1, 1}))

≥ Ψ̂(p({−1, 1})) = 1−Ψ(p({−1, 1}c)).

In the degenerate cases that σ2, ξ
(0)

or ξ(0) are zero we find as before q(Ah) ≤ p(Ah) ≤ Ψ(p(Ah)) and

q(Ah) ≥ p(Ah) ≥ Ψ̂(p(Ah)) for sets Ah = {h}, {−h}, {−h, h}, by concavity of Ψ.

(c) We claim that the above line of reasoning implies that q(A) ≤ Ψ(p(A)) for any subset A ⊂ hZ. That this

is the case can be seen as follows. Since Ψ is concave with Ψ(0) = 0, it follows that Ψ is sublinear, in the sense

that Ψ(x+ y)−Ψ(y) ≤ Ψ(x) for all x, y ∈ [0, 1] with x+ y ≤ 1. Analogously it follows that Ψ̂ is super-linear,
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as Ψ̂ is convex. Hence, in view of the bounds in Eqn. (8.18), it follows that we haveq(A) ≤ Ψ(p(A)) for any set A of the form A = J ∪B

q(A) ≥ Ψ̂(p(A))⇔ q(Ac) ≤ Ψ(p(Ac)) with J = ∅, {h}, {−h} or {−h, h} and B ⊂ Z\{±1, 0}.

Since any subset of hZ is such that it is either of the form J ∪ B or of the form (J ∪ B)c for sets J and B as

mentioned in the previous line, the claim follows, and the proof is complete. �

9. Proof of convergence: Upper bound

The proof of Eqn. (8.3) in Proposition 3 is based on two auxiliary results.

Lemma 14. Let (δn)n∈N be a sequence of time steps that tends to zero, and let (hn)n∈N be the corresponding

series of grid-sizes. Let (Qn)n∈N be a sequence of measures with Qn ∈ Dδn and Radon-Nikodym derivatives

ZQn , and let M (n) = MQn be such that ZQn = Exp(M (n)) is the stochastic exponential of M (n). Denote by

M̃ (n) and Z̃(n) the stochastic processes on Ω defined by M̃
(n)
t = M

(n)
bt/δnc and Z̃

(n)
t = Z

(n)
bt/δnc. Then the following

hold true:

(i) The sequence (M̃ (n), Y δn)n∈N is tight.

(ii) If we have M̃ (n) ⇒ M̃∞ then it holds Z̃(n) ⇒ Z̃∞.

Lemma 15. Let the sequences (δn, hn)n∈N and (Z(n))n∈N be as in Lemma 14. Any limit point of (Z̃(n), Y (δn))n∈N

is of the form (Z∞, X) with the measure Q∞ that has Radon-Nikodym derivatve dQ∞
dP = Z∞ satisfying Q∞ ∈

DD,G.

Proof of the identity in Eqn. (8.3) in Proposition 3. Let ε > 0. For each n ∈ N there exists an ε-optimal solution

Qn ∈ Dδn , that is,

EQ
n [
Fδn

(
Rδn

)]
≥ sup
Q∈Dδn

EQ
n [
Fδn

(
Rδn
)]
− ε.(9.1)

Let Zn denote the martingale associated to the Radon-Nikodym derivative dQn

dP given by Znk = E[dQn

dP |Gk] for

k ∈ N ∪ {0}, and denote by Z̃n = {Z̃nt , t ∈ [0, T ]} the embedding of Zn into D([0, T ]) defined by Z̃nt = Znbt/δc.

By Lemma 15 the sequence (Z̃n, Y n)n∈N is tight and any limit point is of the form (Z̃∞, X) where the

measure Q∞ with Radon-Nikodym derivative Z̃∞ belongs to DD,G. The continuity of F implies that also the

sequence (F (Y n))n∈N is tight with Y n = Y δn . For any random variable Y denote by Ym := (−m) ∨ Y ∧m the

truncation of Y by m ∈ R+. Since the collection (Z̃nT (F (Y n))m)n∈N lies in a ball in L2 in view of Lemma 12 it

follows

lim sup
n→∞

E
[
(Z̃QnT F (Y n))m

]
≤ sup
Q∈DD,G

EQ[(F (X))m].(9.2)

The triangle and Cauchy-Schwarz inequalities and the estimate |Y −Ym| ≤ |Y |I{|Y |>m} for any random variable

Y imply ∣∣∣∣∣ sup
Q∈DD,G

EQ[F (X)]− sup
Q∈DD,G

E[F (X)m]

∣∣∣∣∣ ≤ sup
Q∈DD,G

EQ[|F (X)|I{|F (X)|>m}](9.3)

≤ sup
Q∈DD,G

E[(ZQT )2]1/2 E[F (X)2I{|F (X)|>m}]
1/2,
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which tends to zero as m tends to infinity by Lebesgue’s dominated convergence theorem, since the collection

(ZQT )Q∈DD,G lies in a ball in L2 by Lemma 12 and F (X) is square-integrable by Lemma 8. Deploying Lemmas 8

and 12 it follows that the expression in Eqn. (9.3) also tends to zero as m→∞ in the case that the set DD,G
is replaced by ∪nD(δn)

1 and F (X) by Fδn(Rδn).

These observations imply that the limit of m tending to infinity and the limsup of n tending to infinity in

Eqn. (9.2) can be interchanged, yielding lim supn→∞ EQn [F (Y n)] ≤ supQ∈DD,G EQ[F (X)]. Hence, it follows

from Eqn. (9.1)

lim sup
n→∞

sup
Q∈Dδn

EQ[Fδn(Rδn)] ≤ sup
Q∈DD,G

EQ[F (X)] + ε.

Since ε > 0 was arbitrary the proof is finished. �

Proof of Lemma 14. (i) In view of Lemma 12 and the construction of Y δ, the sequence of martingales (M̃ (n), Y δn)n∈N

satisfies the following moment conditions: for any ε > 0, s, t1, t2, with t1 < t2 and s ∈ (t1, t2) and n ≥ d 1
t2−t1 e

we have

E
[∥∥∥(M̃ (n)(s), Y δn(s)

)
−
(
M̃ (n)(t1), Y δn(t1)

)∥∥∥2 ∥∥∥(M̃ (n)(t2), Y δn(t2)
)
−
(
M̃ (n)(s), Y δn(s)

)∣∣∣2]
= E

[∥∥∥(M̃ (n)(s)− M̃ (n)(t1), Y δn(s)− Y δn(t1)
)∥∥∥2

E

[∥∥∥(M̃ (n)(t2)− M̃ (n)(s), Y δn(t2)− Y δn(s)
)∥∥∥2

∣∣∣∣Fs]]
≤ C

(bnsc − bnt1c)(bnt2c − bnsc)
n2

≤ 3(C + ε)2(t2 − t1)2,

where C is some constant. The moment-criterion for processes in D[0, T ] (see [3, Thm. 13.5]) implies that the

sequence (M̃ (n))n∈N is tight, and as a consequence, also the sequence of pairs (M̃ (n), Y δn)n∈N is tight.

(ii) The expectation E
[
supt≤T |∆M̃

(n)
t |
]

is finite since we have by the Cauchy-Schwarz inequality

E

[
sup
t≤T
|∆M̃ (n)

t |
]
≤ E

[
sup
t≤T
|∆M̃ (n)

t |2
]1/2

≤

[
n∑
k=1

E[|∆M̃ (n)
k |

2]

]1/2

≤

[
n∑
k=1

δT c̃2

]1/2

= T 1/2c̃ <∞,

where in the final equality we deployed the bound in Lemma 12. Hence, in case M̃ (n) ⇒ M̃∞, the stability

of stochastic integrals (Thm. 4.4 in [21]) yields the convergence of the corresponding stochastic exponentials:

Z̃(n) ⇒ Z̃∞ as n tends to infinity, where Z̃∞ is the stochastic exponential of M̃∞. �

Proof of Lemma 15. Let ε > 0 and denote by Q(n) the measure with Radon-Nikodym derivative Z(n). For any

stochastic process U and any s, t ≥ 0 we denote the increment of U over [s, t] by ∆s,tU := Ut−Us. Also denote

Y
c(n)
t = Y

δn(c)
t and Z

A(n)
t = Zδn,A.

Consider the case σ2 > 0. Since the measure Q(n) is contained in the set Dδn which is itself contained in

Dδ,ε
∗ for all n sufficiently large (Lemma 13), it follows from the definition of Dδn,ε∗ that we have

E[∆s,tZ̃
(n)∆s,tY

c(n)|G̃s−ε] ≤ (t− s+ δn)∆[1 + ε]Z̃
(n)
s−ε,(9.4)

E[∆s,tZ̃
(n)∆s,tY

c(n)|G̃s−ε] ≥ −(t− s+ δn)∆[1 + ε]Z̃
(n)
s−ε.(9.5)

for all n sufficiently large and for all s, t ∈ [0, T ] with s ≤ t, where ∆ = 10
12σ

2∆+ and ∆ = 10
12σ

2∆− and G̃s
denotes the sigma-algebra generated by {Z̃(n)

u }u≤s.
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Let A be a closed subset of R\{0} . Then it follows by an analogous line of reasoning that we have

E[∆s,tZ̃
(n)∆s,tZ

A(n)|G̃s−ε] ≤ (t− s+ δn)γ(A)[1 + ε]Z̃
(n)
s−ε,(9.6)

E[∆s,tZ̃
(n)∆s,tZ

A(n)|G̃s−ε] ≥ −(t− s+ δn)γ(A)[1 + ε]Z̃
(n)
s−ε,(9.7)

in the cases Γ+ 6= id and Γ− 6= id respectively, with γ(A) = (Γ+ − id)(Λ(A)) and γ(A) = (Γ− − id)(Λ(A)).

Fatou’s lemma applied to Eqn. (9.4) implies that for any continuous adapted function (t, ω) 7→ H(t, ω)

mapping [0, T ]× Ω to [0, 1] we have

lim sup
n→∞

E[H(s− ε, Y (n)){∆s,tZ̃
(n)∆s,tY

c(n) − (t− s+ δn)∆[1 + ε]Z̃
(n)
s−ε}] ≤ 0.

Let M̃∞ be any limit point of the sequence of martingales (M̃ (n))n∈N. Then, by Lemma 14(ii), Z̃∞ =

Exp(M̃∞) is a limit point of the sequence of stochastic exponentials (Z̃(n))n∈N. Since this sequence is con-

tained in a ball in L2(Ω,F ,P) by Lemma 12, it follows that it is UI, and as a consequence we have that

Z̃∞ is a martingale. Recall from Lemma 7 that the sequences (Y c(n))n∈N and (ZA(n))n∈N admit limits in

the sense of weak convergence. Furthermore, since the collections {(∆s,tZ̃
(n))}n∈N, {(∆s,tY

c(n))p}n∈N, for

any p > 0, are contained in a ball in L2(Ω,F ,P) (by Lemmas 8 and 12), it follows that also the collection

{∆s,tZ̃
(n)∆s,tY

c(n), n ∈ N} is UI. Hence we have

E[H(s− ε,X){(∆s,tZ̃∞,∆s,tX
c)− Z̃∞(s− ε)∆(1 + ε)(t− s)}] ≤ 0.

Since ε > 0 was arbitrary andH(s−ε,X) is Fs-measurable for any s ∈ [0, T ], and we have E[∆s,tZ̃∞∆s,tX
c|Fs] =

E[〈Z̃∞, Xc〉t − 〈Z̃∞, Xc〉s|Fs], the dominated convergence theorem implies that

E[H(s,X)(〈Z̃∞, Xc〉t − 〈Z̃∞, Xc〉s)] ≤ E[Z̃∞(s)H(s,X)∆(t− s)].

It thus follows that

E

[∫ T

0

H(s,X)d〈Z̃∞, Xc〉s

]
≤ E

[∫ T

0

Z̃∞(s)H(s,X)∆ds

]
.

By an approximation argument it follows that the previous identity is valid for any bounded predictable function

H. As a consequence, it follows that s 7→ 〈Z̃∞, X〉s is absolutely continuous with respect to the Lebesgue

measure, and the Radon-Nikodym derivative satisfies

(9.8)
d

dt
〈Z̃∞, Xc〉t ≤ Z̃∞(t)∆, P × dt a.e.

An analogous line of reasoning, starting from the identities in Eqn. (9.5), (9.6) and (9.7) leads to the following

identities, P × dt a.e:

d

dt
〈Z̃∞, Xc〉t ≥ −Z̃∞(t)∆,(9.9)

d

dt
〈Z̃∞, µ(A, ·)〉t ≤ Z̃∞(t)[Γ+(Λ(A))− Λ(A)],(9.10)

d

dt
〈Z̃∞, µ(A, ·)〉t ≥ Z̃∞(t)[Γ−(Λ(A))− Λ(A)],(9.11)

for any closed subset A ⊂ R\{0}, where µ denotes the compensated Poisson random measure associated to the

jumps of X.

The martingale representation theorem implies that M̃∞ admits a representing pair (H∞, U∞−1). Combining

this representation with Eqns. (9.8)–(9.11) yields that σ2H∞ ∈ [σ2∆−, σ
2∆+] and

∫
A

(U∞(s, x) − 1)Λ(dx) ∈
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[Γ−(Λ(A))−Λ(A),Γ+(Λ(A))−Λ(A)], P ×dt-a.s. By the monotone convergence theorem these identities remain

valid for any Borel set A ⊂ R\{0} with Λ(A) <∞.

Thus, we have that Q∞, the measure with Radon-Nikodym derivative Z∞ with respect to P , is contained in

D∆,Γ. �

10. Proof of convergence: lower bound

To establish the limit in Eqn. (8.4) in Proposition 3 the convergence is first proved for the supremum over

the “nice” subset D̃∆,Γ of D∆,Γ given by

D̃∆,Γ =


Q ∈ D∆,Γ :

dQ
dP |FT = Exp(MQ)T where

MQ has representing pair (HQ, UQ − 1)

with HQ ∈ C([0, T ]× Ω, [−∆−,∆+]), and

UQ ∈ C([0, T ]× R∗ × Ω,R+), such that

(Γ− − id)(Λ(A)) ≤
∫
A

(UQt (x)− 1)Λ(dx) ≤ (Γ+ − id)(Λ(A))

for all A ∈ BΛ(R) (∗∗)


,(10.1)

where as before Exp(MQ) denotes the stochastic exponential of MQ and we recall that BΛ(R) = {B ∈ B(R) :

Λ(B) <∞}. For any η ∈ [0, 1) denote by D̃η∆,Γ the related set defined by the right-hand side of Eqn. (10.1) with

∆+,∆−,Γ+ − id,Γ− − id replaced by ∆+(1− η), ∆−(1− η), (Γ+ − id)(1− η), (Γ− − id)(1− η)), respectively.

A key step in the proof is the fact that D̃∆,Γ forms a dense subset of D∆,Γ:

Lemma 16. The convex hull of D̃∆,Γ is dense in D∆,Γ, in the sense of weak convergence. In particular, we

have

sup
Q∈D̃∆,Γ

EQ[F (X)] = sup
Q∈D∆,Γ

EQ[F (X)].

Lemma 16 is proved by a standard randomisation argument that is an adaptation to the current setting of

the ones that have been used in [20, 30] to derive a corresponding result in the setting of the Wiener space, and

is reported in the Appendix.

Proof of the identity in Eqn. (8.4) in Proposition 3. Note that the supremum over D̃∆,Γ on the right-hand side

of (8.4) is equal to the supremum over all D∆,Γ in view of Lemma 16. Hence, to establish the identity it suffices

to prove the inequality in Eqn. (8.4) with D∆,Γ replaced by D̃∆,Γ.

Let ε > 0 and denote by Qε ∈ D̃∆,Γ an ε-optimal solution,

sup
Q∈D̃∆,Γ

EQ[F (X)] ≤ EQε [F (X)] + ε.

Let Zε denote the martingale given by Zε(t) = E[ZQε∞ |Ft] where ZQε∞ denotes the Radon-Nikodym derivative of

Qε with respect to P. Define Hε,η := min{max{HQε ∧ (−∆−)(1− η)},∆+(1− η)} and

U ε,η := UQε − (UQε − 1)[η1{UQε>1/(1−η)} + 1{1≤UQε≤1/(1−η)}]− η(UQε − 1)1{UQε<1}.

It is straightforward to check that U ε,η is non-negative (using that UQε is nonnegative), and that we have

Hε,η ∈ L2 and U ε,η ∈ L̃2. Let Qε,η denote the probability measure wih Radon-Nikodym derivative Zε,η given
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by the stochastic exponential of the martingale M ε,η given by

M ε,η
t =

∫ t

0

Hε,η
s dXc

s +

∫
[0,t]×R

(U ε,η(s, x,X)− 1)µ̃X(ds× dy), t ∈ [0, T ].

Also consider the sequence of martingales M δ,ε,η given by M δ,ε,η
0 = 0 and

∆Mδ,η
k = Hε,η

(k−1)δ∆R
c
k +

∑
zl∈hZ

(U ε,η((k − 1)δ, zl, R)− 1)[Ikl − pl], k ∈ N,

where ∆Mδ,η
k = Mδ,η

k −M δ,η
k−1, R = Rδ and Rc = Rδ,c, and denote the embedding M̃δ,ε,η of M δ,ε,η into the

Skorokhod space D[0, T ] by M̃ δ,ε,η
t = Mδ,ε,η

bt/δc for t ∈ [0, T ].

To complete the proof we will use the following auxiliary result (the proof of which is provided at the end of

the section):

Lemma 17. Let F be as in Theorem 1. The following hold true:

(i) The measure Qε,η is element of D̃η∆,Γ, and

(10.2) EQ
ε,η

[F (X)]→ EQ
ε

[F (X)], when η ↘ 0.

(ii) The measure Qδ,ε,η with Radon-Nikodym derivative Exp(Mδ,ε,η) is element of Dδ for all δ sufficiently

small.

(iii) M̃δ,ε,η weakly converges to M ε,η in the Skorokhod topology, as δ tends to zero.

Given Lemma 17 the proof is completed as follows. By a line of reasoning that is analogous to the one used

in the proof of Lemma 3 we have, as n→∞

EQ
δn,η

[Fδn(Rδn)]→ EQ
η,ε

[F (X)],

so that

lim inf
n→∞

sup
Q∈Dδn

EQ[Fδn(Rδn)] ≥ EQ
η,ε

[F (X)].

Letting η → 0 we find in view of Eqn. (10.2)

lim inf
n→∞

sup
Q∈Dδn

EQ[Fδn(Rδn)] ≥ EQ
ε

[F (X)] ≥ sup
Q∈D̃∆,Γ

EQ[F (X)]− ε.

Since ε > 0 was arbitrary, the proof is complete. �

Proof of Lemma 17. (i) The measure Qε,η is contained in the set D̃η in view of (a) the definition of Hε,η and

(b) the observation (from the definition of U ε,η)

ΛQε,η (A)− Λ(A) ≤ (1− η)[ΛQε − Λ](A ∩ {UQε < 1}) + [ΛQε − Λ](A ∩ {UQε > 1})

≥ (1− η)[ΛQε − Λ](A ∩ {UQε > 1}) + [ΛQε − Λ](A ∩ {UQε < 1}),

for any A ∈ B(R) with Λ(A) <∞, from which we deduce

(1− η)(Γ− − id)(Λ(A)) ≤ ΛQε,η (A)− Λ(A) ≤ (1− η)(Γ+ − id)(Λ(A)).
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When η tends to zero, M ε,η converges to M ε in L2:

E
[
(M ε

T −M
ε,η
T )2

]
= E

[∫ T

0

(HQε(s,X)−Hε,η(s,X))2σ2ds+

∫
[0,T ]×R

(UQ
ε

(s, x,X)− U ε,η(s, x,X))2Λ(dx)ds

]

≤ η2σ2T (∆+ ∨∆−)2 + E

[∫
[0,T ]×R

(UQεs (x)− 1)2[η2 + 1{0≤Uεs (x)−1≤η/(1−η)}]Λ(dx)ds

]
,

which tends to zero as η tends to zero, by an application of Lebesgue’s Dominated Convergence Theorem.

Since the Radon-Nikodym derivatives Zε,ηT that are equal to the stochastic exponentials of the martingales M ε,η

converge weakly to a limit and are contained in a ball in L2 (by Lemma 5) and F (X) is square integrable (by

Lemma 8) it follows EQε,η [F (X)]→ EQε [F (X)] as η → 0.

(ii) We will show that Qδ,η ∈ Dδ,−η∗ , which establishes the assertion since Dδ,−η∗ is contained in Dδ for all δ

sufficiently small (by Lemma 13).

Let σ2 > 0. In view of the relation between h and δ, the definition of the set D̃η∆,Γ and the value of p±1 we

have for i = ±1

E[(∆M δ,ε,η
m )(∆R(i)

m )|Gm−1] = Hε,η
(m−1)δE[(∆R(i)

m )(∆Rcm)|Gm−1]

≤ (1− η)h2pi(1− pi) ·∆+

= (1− η)∆+[
5

6
· 1

6
· 3δσ2 + o(δ)] when δ ↘ 0,

which is bounded above by (1− η/2)∆+[ 5
12 · δσ

2] for all δ sufficiently small. Analogously, it follows that

E[(∆Mδ,ε,η
m )(∆R(i)

m )|Gm−1] ≥ −(1− η/2)∆−[
5

12
· δσ2 + o(δ)], when δ ↘ 0.

Let A ∈ B(R\{0}) be compact. In view of the definitions of Mδ,ε,η and ZA we find

E[∆Mδ,ε,η
m ∆ZAm|Gm−1] =

∑
zl∈A

(U ε(m−1)δ(zl)− 1)E
[
(Iml − pl)2|Gm−1

]
=

∑
zl∈A

(U ε(m−1)δ(zl)− 1)pl(1− pl)

= δ
∑

zl∈A,zl>0

(U ε(m−1)δ(zl)− 1)Λ([zl, zl+1)) + δ
∑

zl∈A,zl<0

(U ε(m−1)δ(zl)− 1)Λ((zl−1, zl]) + o(δ)

= δ

∫
A

(U ε(m−1)δ(x)− 1)Λ(dx) + o(δ),(10.3)

≤ δ(1− η)(Γ+ − id)(Λ(A)) + o(δ), when δ ↘ 0

which is bounded above by δ (1−η/2)(Γ+− id)(Λ(A)) for all δ sufficiently small. In the one but last line we used

that since x 7→ U ε(m−1)δ(x) is uniformly continuous on the compact set A, it follows that the Riemann-Stieltjes

sum converges to the integral as δ (and hence the spatial mesh h) converge to zero.

Analogously it follows that for all δ sufficiently small

E[∆M δ,ε,η
m ∆ZAm|Gm−1] ≥ δ(1− η/2)(Γ− − id)(Λ(A)).

Combining the previous displays, we see that Qε,η is contained in Dδ,−η∗ .
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(iii) The convergence follows by comparison of the semi-martingale characteristics (Bδt , C̃
δ
t ,Λ

δ) of M̃ δ,ε,η with

the characteristics (Bt, C̃t,Λ) of M ε, analogously as in Lemma 7. We have weak convergence of M̃ δn,ε,η to M ε,η

if the conditions (a)–(c) in Eqn. (C.1) hold for any t ∈ [0, T ], which are verified as follows:

(a) The first characteristics of either martingale are given by

Bt = −
∫

[0,t]×R\[−1,1]

x(UQ(s, x,X)− 1)Λ(dx)ds,

Bδnt = −
∑

k≥1:tk≤t

∑
|l|>1

zl(U
Q(tk−1, zl, Y

δn)− 1)pl,

where pl = δΛ([zl, zl+1)) if l > 1 and pl = δΛ((zl−1, zl]) if l < −1. The continuity of (s, x, ω) 7→
UQ(s, x, ω) implies that the sum Bδnt converges to Bt as n→∞, uniformly in t, that is, sups∈[0,T ] |Bs−
Bδns | → 0 if n→∞.

(b) The continuity of the functions (s, x, ω) 7→ UQ(s, x, ω) and (s, ω) 7→ HQ(s, ω) and the fact that (p1 +

p−1)h2 tends to σ2 in the case δ ↘ 0 yield that the sum C̃δnt tends to the integral C̃t as n→∞, where

C̃t =

∫ t

0

{
σ2HQ(s,X)2 +

∫
R
(UQ(s, x,X)− 1)2Λ(dx)

}
ds,

C̃δnt =
∑

k≥1:tk≤t

{
(p1 + p−1)h2HQ(tk, Y

δn)2 +
∑
zl

(UQ(tk, zl, Y
δn)− 1)2pl

}
.

(c) Finally, for any g ∈ C0(R) we have that the sum

∑
k≥1:tk≤t

∑
|l|>1

g(zl)U
Q(tk, zl, Y

δn)pl + g(x1)p1U
Q(tk, z1, Y

δn) + g(x−1)p−1U
Q(tk, z−1, Y

δn)


converges to the integral

∫
[0,t]×R g(x)(UQ(s, x,X) − 1)Λ(dx)ds as n → ∞, using again the continuity

of UQ and the fact that the final to terms tend to zero since we have x±1 → 0 and that g is zero in a

neighbourhood of zero.

The proof of (iii) is complete by an application of [25, Thm. VII.2.17]. �

Appendix A. Proof of representation of Choquet expectation

The proof of the representation rests on the identification of the absolutely continuous measure that attains

the maximum in Eqn. (2.8). For any X ∈ L2
+(µ) denote by mX the measure mX ∈Mac

1,µ with Radon-Nikodym

derivative dmX
dµ = φD(X ) where φD : R+ → R+ is given by

(A.1) φD(x) =



D(F (x))−D(F (x−))

F (x)−F (x−)
, in the case that x is such that F (x)− F (x−) > 0

and either x > 0 or F (0−) <∞ and x = 0,

D′(F (x)), in the case that x is such that F (x)− F (x−) = 0 and x > 0,

0, otherwise,

with F (x) = µ(u ∈ R : X (u) > x), F (0−) = µ(R+), F (x−) denoting the left-limit of F at x > 0 and D′ the

right-derivative of D (where D′(1) denotes the left-derivative at x = 1 in case D is a probability distortion).

We next verify that the measure mX is element of MD.
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Lemma 18. (i) The measure mX satisfies

(A.2) mX (A) = −
∫
B

dD(F (y)) for A ∈ Bµ(R), A = X−1(B), B ∈ B(R).

(ii) We have mX (A) ≤ D(µ(A)) for all A ∈ B(R). In particular, mX ∈MD
2 .

Proof of Lemma 18. (i) For any set A ∈ B(R) of the form A = X−1(B) with B ∈ B(R), the definitions of mX

and φ = φD imply

mX (A) = µ(φ(X )IA) =

∫
B

φ(x)(µ ◦ X−1)(dx) = −
∫
B

φ(x)dF (x) = −
∫
B

dD(F (x)).

(ii) The proof of the stated inequality consists of two steps. The first step is to show that the inequality holds

for all A ∈ B(R) of the form A = X−1(B) for some B ∈ B(R). If D is piecewise linear, then it is straightforward

to verify that the stated inequality holds, as a consequence of Eqn. (A.2) and the fact that the right-derivative

D′ is decreasing (as D is concave). The general case follows by first approximating D by piecewise linear concave

distortions and subsequently passing to the limit, using the Monotone Convergence Theorem.

The second step consists in first associating to any Borel set A with mX (A) > 0 the set A′ = X−1(X (A))

and the ratio θ(A) = mX (A)/mX (A′), and subsequently observing that we have

mX (A) = θ(A)mX (A′) ≤ θ(A)D(µ(A′)) ≤ D(µ(A)),

where the first inequality follows from the first step and the second equality from the concavity of D and the fact

θ(A′) ≤ 1 as we have A ⊂ A′. This completes the proof of the first line of part (ii). We conclude mX ∈MD
2 , by

noting that (a) Lemma 3 implies mX ∈ L2(µ) and (b) mX satisfies the bound stated in the first part of (ii). �

Proof of Proposition 1. Consider first the case X ∈ L2
+(µ). Finiteness of CD[X ] follows from Lemma 1. The

definitions in Eqns. (2.4), (2.5) and (2.9) of the Choquet integral CD(X ) and the set MD imply that for any

m ∈MD we have

(A.3) CD[X ] ≥
∫ ∞

0

m(X > x)dx,

so that CD[X ] ≥ supm∈MD m(X ). Equality in Eqn. (A.3) is obtained by the measure m = mX , as we show

next: The definitions of mX and φ and a change of the order of integration show

mX [X ] = µ(φ(X )X ) = −
∫

[0,∞)

xdD(F (x)) = CD[X ].

The proof of the case X ∈ L2
+(µ) is complete noting mX ∈MD

2 by Lemma 18. �

Appendix B. Proofs of the construction of the random walk

Proof of Lemma 6: (i) The first assertion follows from the fact that under the conditions on the triplet (δ, h, a)

in Eqns. (5.4)–(5.5) there exists a solution (p−1, p0, p1) in the set S = {(p−1, p0, p1) ∈ [0, 1]3 : p−1 + p0 + p1 ≤ 1}
of the following system of three linear equations:

p0 + p−1 + p1 = α(h)(B.1)

−p−1h+ p1h = β(h)(B.2)

p−1h
2 + p1h

2 = γ(h),(B.3)



36 DILIP MADAN, MARTIJN PISTORIUS, AND MITJA STADJE

where

α(h) := 1−
∑

k:|k|≥a

pk = 1− δΛ(R\(−ah, ah))(B.4)

β(h) := −δ

∑
k≥a

khΛ([kh, (k + 1)h)) +
∑
k≤−a

khΛ((k − 1)h, kh])

(B.5)

γ(h) := δ(σ2 + Σ2(R))− δ

∑
k≥a

(kh)2Λ([kh, (k + 1)h)) +
∑
k≤−a

(kh)2Λ((k − 1)h, kh])

 ,(B.6)

where we used the form of pk for |k| ≥ a given in Eqn. (5.1) .

It is easily verified that this system admits a unique solution in R3 which is given by

p±1(h) =
1

2

(
γ(h)± β(h)h

h2

)
, p0(h) = α(h)− p1(h)− p−1(h).(B.7)

We see from Eqn. (B.7) that the vector (p−1, p0, p1) lies in the unit cube S if and only if we have the bounds

|β(h)|/h ≤ γ(h)/h2 ≤ α(h) ≤ 1. That these three inequalities are satisfied can be verified from the following

estimates:

Lemma 19. Under the assumptions of Lemma 6 the following estimates hold:

1− 1

3a2

Σ2(R)

Σ̃2(a)
≤ α(h) ≤ 1,

|β(h)|
h
≤ 1

3a

Σ2(R)

Σ̃2(a)
,(B.8)

0 ≤ γ(h)

h2
− σ2 + Σ2(−ah, ah)

3Σ̃2(a)
≤ Σ2(R)(a−2 + 2a−1)

3Σ̃2(a)
,(B.9)

where Σ̃2(a) = σ2 + Σ2(R)[a−11{σ2>0} + 1{σ2=0}]. In particular, |β(h)|/h ≤ γ(h)/h2 ≤ α(h).

Moreover, in the case σ2 > 0 we have

− Σ2(R)

3aσ2
≤ γ(h)

h2
− 1

3
≤ Σ2(−ah, ah) + 2a−1Σ2(R)

3aσ2
,

|β(h)|
h
≤ Σ2(R)

3aσ2
.(B.10)

The proof of this lemma is given at the end of this section.

(ii) To verify the second assertion, we note that, in view of Eqn. (B.7), it suffices to show that, as h→ 0+, we

have (i’) α(h) → 1, (ii’) β(h)/h → 0 and (iii’) γ(h)/h2 tends to 1/3 in the case σ2 > 0 and to zero otherwise.

These three facts are verified as follows:

(i’) Since we have a(h)→∞ as h→ 0 by assumption, Eqn. (B.8) yields limh↘0 α(h) = 1.

(ii’) Since a = a(h)→∞ as h→ 0 and Σ̃2(a) tends to a non-zero limit as h→ 0, namely,

Σ̃2(a) ≡ Σ2(R) if σ2 = 0 and Σ̃2(a)→ σ2 if σ2 > 0,(B.11)

it follows from Eqn. (B.8) that limh↘0 β(h)/h = 0.

(iii’) Observing that a tends to infinity when h tends to 0, the right-hand side of Eqn. (B.9) converges to

zero. Since by assumption ah → 0 as h → 0 it follows that Σ2(−ah, ah) → 0, and we have that the

middle fraction in Eqn. (B.9) converges to 1/3 in the case σ2 > 0 and to zero otherwise, in view of

Eqn. (B.11).
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(iii) For the third assertion we note that, in view of the bound in Eqn. (B.8), it follows α(h) ≥ 1− (3a2)−1cσ,

which yields the statement in Eqn. (5.9) by definition of α(h) given in Eqns. (B.1) and (B.4). From Eqns. (B.9)

and (B.10) in Lemma 19 we have

p1 ∧ p−1 ≥
γ(h)− |β(h)|h

2h2
≥
(

1

6
− 1

6a

Σ2(R)

σ2

)
σ2

Σ̃2(a)
.

This completes the proof. �

Proof of Lemma 19. The proof rests on the following three observations:

(a) In view of the relation in Eqn. (5.4) and the fact ah ≤ 1. it holds (with a ∈ N, a ≥ 2)

0 ≤ δΛ(R\(−ah, ah)) ≤ δ

(ah)2

∫
(−1,1)\(−ah,ah)

x2Λ(dx) + δ

∫
R\(−1,1)

x2Λ(dx)

≤ a−2Σ2((−1, 1)) + h2Σ2(R\(−1, 1))

3Σ̃2(a)
≤ 1

3a2
· Σ2(R)

Σ̃2(a)
.(B.12)

(b) Recalling ah ≤ 1 and denoting M(I) =
∫
I
xΛ(dx) for any interval I, we have

|β(h)| ≤ δM(R\(−ah, ah)) ≤ h2M(R\(−1, 1))

3Σ̃2(a)
+

δ

ah

∫
(−1,1)\(−ah,ah)

x2Λ(dx)

≤ h2 · Σ2(R\(−1, 1))

3Σ̃2(a)
+

h

3a
· Σ2((−1, 1))

Σ̃2(a)
≤ h

3a
· Σ2(R)

Σ̃2(a)
.(B.13)

(c) Since x2 is increasing, the difference

Dh :=

∫
R\(−ah,ah)

x2Λ(dx)−

∑
h≥a

((kh)2Λ([hk, h(k + 1)) +
∑
h≤−a

((kh)2Λ((h(k − 1), hk])


between integral and sum is positive and can be estimated by

|Dh| ≤
∑
k≥a

((k + 1)2 − k2)h2Λ([hk, h(k + 1)) +
∑
k≤−a

((k − 1)2 − k2)h2Λ((h(k − 1), hk])]

= h2Λ(R\(−ah, ah)) + 2h
∑
k≥a

khΛ([hk, h(k + 1)) ∪ ((−k − 1)h,−hk]).(B.14)

Deploying the bounds in Eqns. (B.12), (B.13) and (B.14) we find the upper bounds

h−2γ(h) ≤ h−2δ
(
σ2 + Σ2(−ah, ah)

)
+ δΛ (R\(−ah, ah)) + 2

|β(h)|
h

≤ σ2 + Σ2(−ah, ah) + (2a−1 + a−2)Σ2(R)

3Σ̃2(a)
(B.15)

=
1

3
+

Σ2(−ah, ah) + (a−1 + a−2)Σ2(R)

3Σ̃2(a)
.(B.16)

Moreover, we have the lower bound

γ(h) ≥ δ
{
σ2 + Σ2((−ah, ah))

}
= h2σ

2 + Σ2((−ah, ah))

3Σ̃2(a)
.(B.17)

In particular, in the case σ2 > 0, we find

γ(h) ≥ h2

3
+ h2 Σ2((−ah, ah))− a−1Σ2(R)

3(σ2 + a−1Σ2(R)
.(B.18)
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Eqn. (B.8) follows from (a) and (b), and Eqn. (B.9) from Eqns. (B.15) and (B.17) in (c). The bounds |β(h)|/h ≤
γ(h)/h2 ≤ α(h) follow by combining the condition in Eqn (5.5) with the estimate in Eqn. (B.9). The bounds

on β(h) and γ(h) in Eqn. (B.10) follow from the observation Σ̃2(a) ≥ σ2 (in the case σ2 > 0) and the esimate

in (b), and from Eqns. (B.16) and (B.17), respectively. �

Appendix C. Proof of weak convergence (Lemma 7)

As the weak convergence of each of the three sequences of processes follows by similar arguments, we shall

detail only the proof of the weak convergence of Y δ. Denote by (Bδ, C̃δ, νδ) and (B, C̃, ν) the semi-martingale

characteristics of Y δ and X respectively (see [25] for a definition). According to [25, Thm. VII.2.17], weak

convergence of Y δn to X in Skorokhod topology as n→∞ follows when the semi-martingale characteristics of

Y δn converge to those of X in the sense that the following limits hold for any t ∈ [0, T ] when n→∞:

(a) sup
s≤t
|Bδns −Bs| → 0, (b) C̃δnt → C̃t,(C.1)

(c)

∫
R
g(x)νδnt (dx)→ t

∫
R
g(x)Λ(dx) for all g ∈ C0(R),(C.2)

where we used the fact ν(dx × dt) = Λ(dx)dt and denoted νδnt (dx) =
∫

[0,t]
νδn(ds × dx), and used C0(R) to

denote the set of real-valued continuous functions on R that vanish in a neighbourhood of 0 and have a limit at

infinity. Next we show that the conditions (a)–(c) are satisfied.

(a) Observe that Bs = s(ψ′(0)− γ′) where γ′ =
∫
|x|>1

xν(dx) while by definition

Bδs = ds+
⌊s
δ

⌋
(E[Z1]− E[Z11|Z1|>1]) = ds+

⌊s
δ

⌋E[Xδ − dδ]−
∑

k:|zk|>1

ν[zk, zk+1)zk

+ cs,

tends to Bs = s(ψ′(0)− γ′) as δ ↘ 0, uniformly in s.

(b) C̃δt tends to tΣ2 = C̃t as δ ↘ 0 since we have

C̃δt =

⌊
t

δ

⌋
(E[Z2

1 ]− E[Z1]2) =

⌊
t

δ

⌋
Var[Z1] =

⌊
t

δ

⌋
Var[Xδ] =

⌊
t

δ

⌋
δ(σ2 + Σ2(R)).

(c) Observing that g(h) and g(−h) are equal to zero for h (and hence δ) sufficiently small, we have that∫
R
g(x)νδt (dx) =

⌊
t

δ

⌋ ∑
k:|zk|>ah

g(zk)δΛ[zk, zk+1) + p1g(h) + p−1g(−h)


converges to t

∫
R g(x)Λ(dx) as δ ↘ 0. �

Appendix D. Proof of the form of the driver g of the g-expectation

In the following it is verified that the function g∆,Γ satisfies the conditions of a driver function.

Lemma 20. Let D and G be a drift-shift and a jump-distortion. Then g∆,Γ is a driver function, that is, (i)

g∆,Γ(0, 0) = 0 and (ii) g∆,Γ is Lipschitz continuous: there exists a K > 0 such that we have

|g∆,Γ(z1, v1)− g∆,Γ(z2, v2)|2 ≤ K
{
|z1 − z2|2 +

∫
R
|v1(x)− v2(x)|2Λ(dx)

}
uniformly for all z1, z2 ∈ R and all v1, v2 ∈ L2(Λ).
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Proof. Item (i) follows from the fact CΓ+−id(0) = Cid−Γ−(0) = 0. Item (ii) is a consequence of the form of g∆,Γ

in Eqn. (4.6) in combination with the observation (from the representation in Proposition 1) that we have for

a measure distortion D and any v1, v2 ∈ L2(λ)

|CD(v+
1 )− CD(v+

2 )|2 ≤ CD(|v1 − v2|)2 ≤ KD

∫
R+

|v1(x)− v2(x)|2Λ(dx),(D.1)

where KD =
∫∞

0
D(y) dy

y
√
y which is finite in view of the integrability conditions in Eqn. (2.6)–(??). The first

and second inequalities in Eqn. (D.1) in turn follow from the representation in Proposition 1 and the estimate

in Eqn. (2.7). �

The existence and uniqueness theorem in [4] implies that there exists a unique triplet (Y X , ZX , V X ) with

Y X ∈ L2, ZX ∈ L2 and V X ∈ L̃2 that solves the backward stochastic differential equation given by

− dY Xt = gD,G(ZXt , V
X
t )dt− ZXt dXc

t −
∫
R
V Xt (x)µ̃X(dt× dx), t ∈ [0, T ),(D.2)

Y XT = X .(D.3)

The value Y X0 (and the random variable Y Xt ) are called the g∆,Γ-expectation (and Ft-conditional g∆,Γ-expectation)

of the random variable X .

Proposition 4. Let D and G be a drift-shift and a jump-distortion, and X ∈ L2(Ω,FT , P ). Then E∆,Γ(X ) is

a g-expectation with driver function g∆,Γ. In particular, Y X (t) = E∆,Γ(X|Ft) for t ∈ [0, T ].

Proof. Eqns. (D.2) and (D.3) imply that X admits the representation in terms of (ZX , V X )

(D.4) X = Y Xt −
∫ T

t

g∆,Γ(ZXs , V
X
s )ds+

∫ T

t

ZXs dXc
s +

∫ T

t

∫
R
V Xs (x)µ̃X(dx, ds), t ∈ [0, T ].

For any Q ∈ D∆,Γ the representation in Eqn. (D.4) can also be re-arranged as

(D.5) X = Y Xt +

∫ T

t

LQs ds+MQ
T −M

Q
t t ∈ [0, T ],

where LQs = σZXs H
Q
s +

∫
R V
X
s (x)(UQs (x)− 1)Λ(dx)− g∆,Γ(ZXs , V

X
s ) and MQ = {MQ

t , t ∈ [0, T ]} is given by

MQ
t =

∫ t

0

ZXs dXc,Q
s +

∫ t

0

∫
R
V Xs (x)µ̃X,Q(dx, ds),

which is a square-integrable F-martingale with respect to Q, by virtue of Girsanov’s theorem. Taking the

Ft-conditional expectation under Q of X using the representation in Eqn. (D.5) and subsequently taking the

essential supremum over all Q ∈ D∆,Γ shows E∆,Γ(X|Ft) = Y Xt +Kt, where

Kt = ess. supQ∈D∆,Γ
EQ
[∫ T

t

LQs

∣∣∣∣Ft
]
.

We show next in two steps that Kt = 0 for all t ∈ [0, T ], which will complete the proof of the assertion. Firstly,

in view of the definition of D∆,Γ observe

(D.6) σ

∫ T

t

ZXs H
Q
s ds ≤ σ2

∫ T

t

[(ZXs )+∆+ + (ZXs )−∆−]ds

for all Q ∈ D∆,Γ, where the inequality is attained if HQ is chosen equal to H∗ ∈ L2 given by

(D.7) H∗t = σ[∆+1{Zt≥0} + ∆−1{Zt<0}] for t ∈ [0, T ].
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Secondly, for any Q ∈ D∆,Γ we have

(D.8)

∫
R
V Xs (x)(UQs (x)− 1)Λ(dx) ≤

∫
R
V Xs (x)+ΛQ+(dx) +

∫
R
V Xs (x)−ΛQ−(dx),

where ΛQ± ∈Mac
2,Λ are the random measures on (R,B(R)) given by ΛQ±(dx) = (UQs (x)− 1)±1{±V Xs (x)>0}Λ(dx).

Note that we have equality in Eqn. (D.8) if UQ satisfies the relation UQ(s, x) − 1 = UQ(s, x)+1{V Xs (x)>0} +

UQ(s, x)−1{V Xs (x)<0} for Λ-a.e. x ∈ R. Taking the supremum in Eqn. (D.8) over all pairs of measures (ΛQ+,Λ
Q
−)

with ΛQ± ∈Mac
2,Λ satisfying the inequalities ΛQ+(A) ≤ (Γ+− id)(Λ(A)) and ΛQ−(A) ≤ (id−Γ−)(Λ(A)) for all sets

A ∈ BΛ(R) yields, in view of the representation in Proposition 1, the inequality

(D.9)

∫
R
V Xs (x)(UQs (x)− 1)Λ(dx) ≤ CΓ+−id((V Xs )+) + Cid−Γ−((V Xs )−).

Equality in Eqns. (D.8) and (D.9) is attained if we take UQ equal to U∗s (x) = φ∗s(V
X
s (x)) with

φ∗s(x) = φΓ+−id
s (x)IA+

s
(x) + φid−Γ−

s (x)IA−s (x)

with A+
s = {x : V Xs (x) > 0} and A−s = {x : V Xs (x) < 0} where φ

Γ+−id
s and φ

id−Γ−
s are given by the expression in

Eqn. (A.1) with F (x) replaced by F
+

s (x) = Λ({y ∈ A+
s : V Xs (y) > x}) and F−s (x) = Λ({y ∈ A−s : V Xs (y) < x})

respectively. It follows from Lemma 2.7 and the fact V Xs ∈ L̃2 that we have U∗ ∈ L̃2.

Finally, observe that for the probability measure Q∗ ∈ D∆,Γ that has representing pair (H∗, U∗− 1) we have

(a) LQ
∗

s = 0, which can be seen to hold true by observing that for the choice HQ∗ = H∗ and UQ
∗

= U∗ equality

is attained in Eqns. (D.9) and (D.6)] and (b) Q∗ is contained in the set D∆,Γ, which follows in view of the

definition of the set D∆,Γ which states Q ∈ D∆,Γ and since H∗ ∈ L2, U∗ ∈ L̃2 and we have

H∗ ∈ [−σ∆−, σ∆+] and

∫
A

(U∗ − 1)(x)Λ(dx) ∈ [(Γ− − id)(Λ(A)), (Γ+ − id)(Λ(A))] for all A ∈ BΛ(R)..

Hence we deduce Kt = 0 for all t ∈ [0, T ], and the proof is complete. �
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