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Abstract

We study the shapes of the implied volatility when the underlying distribution has an atom at zero. We
show that the behaviour at small strikes is uniquely determined by the mass of the atom at least up to the
third asymptotic order, regardless of the properties of the remaining (absolutely continuous, or singular)
distribution on the positive real line. We investigate the structural difference with the no-mass-at-zero case,
showing how one can—a priori—distinguish between mass at the origin and a heavy-left-tailed distribution.
An atom at zero is found in stochastic models with absorption at the boundary, such as the CEV process,
and can be used to model default events, as in the class of jump-to-default structural models of credit risk.
We numerically test our model-free result in such examples. Note that while Lee’s moment formula [21]
tells that implied variance is at most asymptotically linear in log-strike, other celebrated results for exact
smile asymptotics such as [2, 14] do not apply in this setting—essentially due to the breakdown of Put-Call
symmetry—and we rely here on an alternative treatment of the problem.

1 Introduction

Stochastic models are used extensively to price options and calibrate market data. In practice, such data is often
quoted, not in terms of option prices, but in terms of implied volatilities. However, apart from the Black-Scholes
model where the implied volatility is constant, no closed-form formula is available for most models (with or
without continuous paths). Over the past decade or so, many authors have worked out approximations of this
implied volatility, either in a model-free setting or for some specific models; these approximations are usually
only valid in restricted regions, such as small and large maturities or extreme strikes. The latter have proved to
be useful in order to extrapolate observed (and calibrated) data in an arbitrage-free way. The celebrated Lee’s
formula [21] was a ground-breaking model-independent result in this direction; subsequent advances were made
in Benaim and Friz [2] and recently in Gulisashvili [14]. Let us quote Gulisashvili’s result: let S be a non-negative
martingale under a given risk-neutral measure P and let P (K,T ) = E(K − ST )

+ (C(K,T ) = E(ST − K)+)
denote the price of a Put (Call) option written on S, with strike K and maturity T . The behaviour of the
implied volatility IT (K) at small strikes is related to this Put price by the asymptotic formula [14, Corollary
5.12]

IT (K) =

√
| logK|
T

√

ψ
( logP (K,T )

logK
− 1
)
+O

((
log

K

P (K,T )

)−1/2

log log
K

P (K,T )

)
, as K ↓ 0, (1.1)
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demarco@cmap.polytechnique.fr

Key words and phrases: Atomic distribution, heavy-tailed distribution, Implied Volatility, smile asymptotics, absorption at zero,
CEV model.

2010 Mathematics Subject Classification: AMS 91G20, 65C50.

1

http://arxiv.org/abs/1310.1020v1
demarco@cmap.polytechnique.fr


where the continuous function ψ : [0,∞] → [0, 2] is defined by

ψ(z) ≡ 2− 4
(√

z(z + 1)− z
)
, ψ(∞) = 0. (1.2)

A similar formula, expressed in terms of the call price C(K,T ), holds as K tends to infinity. Eq. (1.1) is valid
for every Put price function P such that P (K,T ) > 0 for all K > 0 (in the notation of [14, Definition 1.5], the
corresponding call price C belongs to the class PF0), which is equivalent to P(ST < K) > 0 for all K > 0.1

As shown in [14],Eq. (1.1) (together with its counterpart for K ↑ ∞) allows to recover the moment formula of
Lee [21] and the tail-wing formula of Benaim and Friz [2]. The derivation of (1.1) is done in two steps: first an
asymptotic expansion for IT (K) as K tends to infinity is computed in terms of the call price function; then the
expression for K ↓ 0 is obtained via the Put-Call symmetry

P (KS0, T )

S0
= E

(
K − ST

S0

)+

= KEQ

(
S0

ST
− 1

K

)+

,

where Q is a probability measure absolutely continuous with respect to P, defined through its Radon-Nikodym
density dQ/dP := ST /S0. The Put-Call symmetry above holds if (as implicitly assumed in [14]) the law of the
underlying asset price does not charge zero under P, P(ST = 0) = 0. The expansion (1.1), then, is a priori not
justified when P(ST = 0) > 0.

In certain stochastic models, an asset price is modeled with a stochastic process that accumulates mass at
zero in finite time: this is the case for the Constant Elasticity of Variance (CEV) local volatility diffusions,
whose fixed-time marginal distribution has a continuous part and an atom at zero under certain parameters
configurations (the same phenomenon appearing for Sabr, the stochastic volatility counterpart of CEV). Also,
in the past few years, the financial crisis has emphasised that potential default (namely the asset price falling
to low levels) needs to be seriously taken into account by market participants. In the class of structural models,
default is defined as the first time the firm’s value hits a given threshold: in Collin-Dufresne et al. [8] and
Coculescu et al. [7], the firm’s value corresponds to the so-called solvency ratio (logarithm of assets over debt),
and is modeled via an Ornstein-Uhlenbeck process. Within this modeling framework, obtaining reliable data
to calibrate the model (asset volatility forecasts, capital structure leverage) is often difficult. An alternative
approach, proposed by Campi et al. [4], is to refer to the underlying equity process and define the default as
the first time the process hits the origin: while the equity value remains deeply related to the firm’s asset and
debt balance sheet, such a modeling choice avoids the application mishaps of structural models. In the model
proposed in [4], the equity process hits the origin either after a jump or in a diffusive way, the continuous-path
part of the equity value being modeled as a CEV diffusion with a positive probability of absorption at zero.
Along the same line, we will consider in this paper asset prices that may either jump to zero, or hit zero in a
diffusive way.

Note that P(ST = 0) > 0 implies q∗ = 0, where q∗ denotes the critical exponent of ST , q
∗ := sup{q ≥ 0 :

E[S−q
T ] <∞}. Then, Lee’s moment formula for small strike yields, in full generality

lim sup
K↓0

IT (K)√
| logK|

=

√
ψ(q∗)

T
=

√
2

T
. (1.3)

Tail-wing type refinements aim at finding conditions under which this lim sup can be strengthened into a genuine
limit, yielding the asymptotics IT (K) ∼

√
2| logK|/T asK ↓ 0: Benaim and Friz’s result [2] gives some sufficient

conditions, but is limited to the case q∗ > 0; Gulisashvili’s result (1.1), however, does apply to the case q∗ = 0
and P(ST = 0) = 0, and allows to formulate necessary and sufficient conditions, as done in [15] (see Theorem 2.2,
where we recall the result of [15]). When the P(ST = 0) > 0, the asymptotic equivalence IT (K) ∼

√
2| logK|/T

as K ↓ 0 always holds (this statement is ‘almost’ given in Lee’s original paper [21]; see Proposition 2.4 and
Remark 2.7 below for more details). More notably, we show that in the presence of a mass at zero and under
a mild assumption on the behaviour of the cumulative distribution function F (K) := P(ST ≤ K) on a right
neighbourhood of zero, namely there exists ε > 0 such that

F (K)− F (0) = O(Kε) as K ↓ 0, (1.4)

1If P(ST < K) = 0 for some 0 < K < S0, then P (K,T ) = 0 for all K ≤ K. According to the definition of the implied volatility
in [14], IT (K) is not defined for such strikes; according to our extended definition, see (1.8) below, IT (K) is identically zero for
all K ≤ K.
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the implied volatility has the form (Theorem 3.7)

IT (K) =

√
2| logK|

T
+

1√
T
N−1

(
P(ST = 0)

)
+

[
N−1

(
P(ST = 0)

)]2

2
√
2T | logK|

+Φ(K) as K ↓ 0, (1.5)

where N−1 is the inverse of the Gaussian cdf, and Φ satisfies lim supK↓0
√
2T | log(K)| |Φ(K)| ≤ 1. Note that the

asymptotic formula (1.5) contains an explicit third-order term, and an error term given by the function Φ, both
contributing to a global O(| log(K)|−1/2) estimate; the interplay between these two terms depends on the value
of the mass at zero—we refer the reader to Remark 1 after Theorem 3.7 for more details. In order to measure
the impact of Assumption (1.4), note that if the law of the stock price admits a density f in a neighbourhood
of zero, which is such that f(K) = O(K−a) as K ↓ 0 for some a < 1, then F (K) − F (0) = O(K1−a), and
Condition (1.4) is fulfilled.

In Section 2, we first show that the O term in (1.1) is a constant (which we compute explicitly) when the
stock price has a positive mass at the origin. The comparison with the first two terms of (1.5) therefore shows
that the asymptotic formula (1.1) is actually still valid in this setting. We refine this result by providing the
third-order term and the error estimate appearing in (1.5) in Section 3, and test the resulting formula on several
examples in Section 4. Finally, in Section 5 we study the implication of the presence of a mass at zero on the
Put-Call symmetry and on volatility derivatives.

Notations: We assume that for any T > 0, ST is a non-negative integrable random variable on some
probability space (Ω,F ,P), with E[ST ] = S0 > 0. Risk-free interest rates are considered null, and option
prices are given by expectations under the measure P. C(K,T ) := E(ST −K)+ and P (K,T ) := E(K − ST )

+

represent respectively the price of European Call and Put options with strike K ≥ 0 and maturity T ≥ 0, and
CBS(K,T ;S0, σ) and PBS(K,T ;S0, σ) the corresponding Call and Put prices in the Black-Scholes model with
volatility parameter σ:

CBS(K,T ;S0, σ) :=

{
S0N(d1(K,T, S0, σ)) −KN(d2(K,T, S0, σ)), if σ > 0,
(S0 −K)+, if σ = 0,

(1.6)

PBS(K,T ;S0, σ) :=

{
KN(−d2(K,T, S0, σ))− S0N(−d1(K,T, S0, σ)), if σ > 0,
(K − S0)

+, if σ = 0,
(1.7)

where d1,2(K,T, S0, σ) := log(S0/K)/(σ
√
T ) ± 1

2σ
√
T , and N is the standard normal cumulative distribution:

N(d) =
∫ d

−∞ φ(z)dz, φ(z) = e−z2/2/
√
2π. When the spot price S0 is fixed, it should not generate any confusion

to use the same notation CBS and PBS for the (normalised) price with log-moneyness x = log(K/S0):

S0CBS(x, T ;σ) := CBS(Kx, T ;S0, σ) and S0PBS(x, T ;σ) := PBS(Kx, T ;S0, σ),

where Kx := S0e
x. The definitions (1.6) of CBS and (1.7) of PBS are useful when both S0 and K vary, as in

Section 5. The implied volatility IT (x) is defined as the unique solution in [0,∞) to the equation

C(Kx, T ) = S0CBS(x, T ; IT (x)). (1.8)

Note that IT (x) is a strictly positive real number when C satisfies the strict arbitrage bounds (S0 − Kx)
+ <

C(Kx, T ) < S0, and it is zero whenever C(Kx, T ) = (S0 − Kx)
+. With a slight abuse of notation, we might

also denote IT (K) = IT (log(K/S0)) the implied volatility as a function of strike. Finally, let us write

d1,2(x, T, σ) := d1,2(Kx, T, S0, σ) =
−x
σ
√
T

± σ
√
T

2
; (1.9)

moreover, we denote d1,2(x, T ) := d1,2(x, T, IT (x)) whenever IT (x) 6= 0.
Function asymptotics. Following usual notation, by f(x) ∼ g(x) (resp. f(x) = O(g(x)), f(x) = o(g(x))) as

x→ x0 ∈ R = [−∞,∞] when g is non null in a punctured neighbourhood of x0, we mean that the ratio f(x)/g(x)
tends to one as x → x0 (resp. lim supx→x0

|f(x)/g(x)| < ∞, resp. f(x)/g(x) tends to zero). If g can be null
around x0, f = o(g) (resp. f = O(g)) is understood in the sense f(x) = g(x)φ(x) in a neighbourhood of x0, for
some φ such that φ(x) → 0 as x→ x0 (resp. for some φ bounded around x0). Finally, by f(x) = g(x)+O(h(x))
as x→ x0 we mean that f(x)− g(x) is O(h(x)) as x→ x0.
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2 Detecting the mass of the atom: the second-order behaviour

In this section we show that the existence of a positive mass at zero can be detected from the behaviour of
the implied volatility at the second order. The moment formula (1.3) guarantees that lim supx↓−∞ IT (x)

2T/|x|
is strictly smaller than 2 when q∗ > 0. The two situations where the lim sup reaches its maximum level 2,
then, are the case q∗ = 0 but P(ST = 0) = 0 (heavy left tail, but no mass at zero), and P(ST = 0) > 0. The
former is considered by Gulisashvili [15], as we recall below; we focus on the latter, which appears to be new,
in Section 2.1.

Example 2.1. In the Hull-White stochastic volatility model, the stock price process satisfies the stochastic
differential equation dSt = St|Zt|dWt, with S0 > 0, and Z is a lognormal process satisfying dZt = νZtdt +
ξZtdBt, with W and B two correlated Brownian motions d〈W,B〉t = ρdt. For all T ≥ 0, ST is strictly positive
almost surely and (as shown in [16]) has extreme moment explosions: q∗ = 0 = p∗ = sup{p ≥ 0 : E(S1+p

T ) <∞}.

In the spirit of the tail-wing formula/statements in [2], Gulisashvili’s result (1.1) allows to turn the moment

formula into an asymptotic statement. This requires to study the behaviour of ψ
( logP (K,T )

logK − 1
)
as K ↓ 0. The

identities

lim inf
K↓0

logP (K,T )

logK
= 1 + q∗ (2.1)

and
1 + q∗ = sup{u ≥ 1 : P (K,T ) = O(Ku) as K ↓ 0}, (2.2)

are given in [14, Lemma 4.5] and [14, Lemma 4.6] respectively2. For general Put price functions, the quantity

lim supK↓0
log P (K,T )

logK can take any value greater than 1 + q∗. In Gulisashvili [15], conditions on the Put price

function equivalent to lim supK↓0
log P (K,T )

logK = 1 are given:

Theorem 2.2 ([15], Theorem 3.6). If q∗ = 0 and P(ST = 0) = 0, then the following statements are equivalent

(i) lim supK↓0[logP (K,T )/ logK] = 1.

(ii) IT (x) ∼
√
2|x|/T , as x ↓ −∞.

(iii) There exist K1 > 0 and a regular varying3 function h of order −1 such that h(1/K) ≤ P (K,T ), for
K ∈ (0,K1).

In light of the expansion (1.1), (ii) is equivalent to limK↓0 ψ
( log P (K,T )

logK − 1
)
= 2, or limK↓0

logP (K,T )
logK = 1

by the continuity of ψ−1. Taking into account (2.1), the latter condition is equivalent to (i). In [15, Theorem
3.6], the equivalence between (ii) and (iii) is proven: the approach is first to show, when p∗ = 0, the equivalence
between the asymptotics IT (x) ∼

√
2x/T , x ↑ ∞, and a condition on the Call price function analogous to (iii)

(see [15, Theorem 3.2]), and second to apply the Put-Call symmetry in order to transfer the result from the
right to the left wing of the smile. Because of the lack of Put-Call symmetry when the law of the stock price
has a mass at zero, this approach is not possible when q∗ = 0 and P(ST = 0) > 0—just as it happens for the
asymptotic formula (1.1). We shall get back to this point in Remark 2.6.

2Let us give a quick proof of (2.1) using (2.2). Assume that lim infK↓0
logP (K,T )

logK
= l: then, for any l2 > l, there exists a

sequence (Kn)n ↓ 0 such that logP (Kn,T )
logKn

< l2, hence P (Kn, T ) > K
l2
n , for n large enough. This entails l ≥ 1 + q∗, otherwise one

would have P (Kn, T ) > K
l2
n for some l2 ∈ (l, 1 + q∗), contradicting (2.2). On the other hand, l > 1 + q∗ implies logP (K,T )

logK
> l1,

therefore P (K) < Kl1 , for some l1 ∈ (1 + q∗, l) and every K in some neighbourhood of zero, again contradicting (2.1). Then one

must have l = lim infK↓0
logP (K,T )

logK
= 1+ q∗.

3 f is regularly varying of order α ∈ R if f is defined on some neighbourhood of infinity, measurable, and such that for every

λ > 0,
f(λx)
f(x)

→ λα as x → ∞.
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2.1 First-order behaviour

Here we confirm the asymptotic behaviour IT (x) ∼
√
2|x|/T as x ↓ −∞ when P(ST = 0) > 0 (under no

additional assumption on the law of ST ). Lemma 2.3 contains some preliminary results on the behaviour of Put
and Call prices at zero; the main result of this section is Proposition 2.4.

For every T , C(·, T ) and P (·, T ) are convex functions on [0,∞), hence their right derivatives ∂+KC(·, T ) and
∂+KP (·, T ) and their left derivatives ∂−KC(·, T ) and ∂−KP (·, T ) exist everywhere on [0,∞) and on (0,∞); finally
the derivatives ∂KC(·, T ) and ∂KP (·, T ) are themselves well-defined everywhere on (0,∞) except for a countable
set of points.

Lemma 2.3. For every K > 0, one has

∂+KP (K,T ) = P(ST ≤ K), ∂−KP (K,T ) = P(ST < K),

∂+KC(K,T ) = −P(ST > K), ∂−KC(K,T ) = −P(ST ≥ K).

In particular,

lim
K↓0

P (K,T )

K
= P(ST = 0). (2.3)

Proof. The first part of the lemma is standard [11, Chapter 7]. The second line follows from the first by

Call-Put parity. Using the equality P (K,T ) =
∫ K

0
∂+KP (L, T )dL (by convexity of the Put option price) and

limK↓0 ∂
+
KP (K,T ) = P(ST = 0), the identity (2.3) then follows from lim

K↓0
1
K

∫K

0
∂+KP (L, T )dL = P(ST = 0).

Proposition 2.4. If pT := P(ST = 0) > 0, then IT (x) ∼
√
2|x|/T as x ↓ −∞.

Proposition 2.4 is a consequence of a more general statement that we prove in Theorem 2.9 below; we give
here an independent proof of the proposition, essentially relying on Lemma 2.3, that goes through the analysis
of a parameterisation of the implied volatility.4

Proof. Let P (K,T ) be a Put price associated to an underlying distribution with no atom at zero. It follows
from (2.3) that

lim
K↓0

P (K,T )

P (K,T )
= 0, (2.4)

and hence P (K,T ) < P (K,T ) for K small enough. Set σγ(x) :=
√
γ|x|/T for x < 0 and some γ > 0, and define

P γ(K,T ) := S0PBS(x, T ;σγ(x)), x = ln(K/S0).

Fix now some x∗ < 0. It is not clear a priori that σγ is the restriction to some interval (−∞, x∗) of an implied
volatility function, so that x 7→ P γ(Kx, T ) is a true Put price (restricted to (−∞, x∗)). Necessary and sufficient
conditions for a twice differentiable function to be an implied volatility are known from [28, Theorems 2.9 and
2.15]: in our context here, σγ is (the restriction to (−∞, x∗) of) a true implied volatility if and only if [28,
Condition (IV.3) in Theorem 2.9]:

(
1− x∂xω

ω

)2

− 1

4
ω2(∂xω)

2 + ω∂2xxω ≥ 0, (2.5)

for all x ≤ x∗, where ω(x) ≡
√
Tσγ(x). Simple calculations yield the equivalent condition

γ2|x|+ 4γ − 4|x| < 0. (2.6)

The positive root of (2.6), γ+(x) ≡ 2(
√
1 + 1/x2 − 1/|x|), is a strictly decreasing function of x and takes values

between limx↓−∞ γ+(x) = 2 and limx↑0 γ+(x) = 0. The inequality (2.6) is satisfied when γ ≤ γ+(x): it follows

4Also note that the asymptotic equivalence in Proposition 2.4 is not explicitly stated in Lee [21], but is actually a consequence
of an argument used in the proof of [21, Theorem 4.3]. Lee’s argument is recalled in Remark 2.7 for completeness.
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that for any γ < 2, σγ(x) is a true implied volatility for all x < x∗, where x∗ is the unique solution in (−∞, 0)
to the equation γ+(x

∗) = γ. Now

∂KP γ(Kx, T ) = (S0e
x)−1∂xP γ(Kx, T ) = ∂xPBS(x, t;σγ(x)) + ∂σPBS(x, T ;σγ(x)) ∂xσγ(x)

= N (−d2(x, T, σγ(x))) −
√
γ

2
√
|x|
φ (d2(x, T, σγ(x)))

= N
(
−2− γ

2
√
γ

√
|x|
)
−

√
γ

2
√
|x|
φ(d2(x, T, σγ(x))).

Since φ is bounded, for any γ < 2, µγ({0}) = limx↓−∞ ∂KP γ(Kx, T ) = 0, where µγ is the underlying distribution
associated with P γ . Therefore, P γ is a Put price without mass at zero: it follows from (2.4) that P γ(K,T ) <
P (K,T ) for K in a neighborhood of the origin. Thus by strict monotonicity of PBS with respect to the volatility
parameter, σγ(x) < IT (x) for Kx in that same neighborhood, which implies

lim inf
K↓0

TIT (x)
2

|x| > γ (2.7)

for any γ ∈ (0, 2), and the proposition follows applying (1.3).

Remark 2.5. As a by-product of the previous proof, we have shown that for every γ ∈ [0, 2) the map σγ :

(x, T ) 7→
√
γ|x|/T is a true implied volatility function for any T > 0 on the interval (−∞, 4γ/(γ2− 4)]. Indeed,

the operator in (2.5) simplifies to Φγ(x) ≡ − 1
16x

(
(γ2 − 4)x− 4γ

)
. For any γ > 0, Φγ is strictly decreasing on

(−∞, 0) with limx↓−∞Φγ(x) = (4−γ2)/16 and limx↑0Φγ(x) = −∞. For any γ ∈ (0, 2), the equation Φγ(x) = 0
on (−∞, 0) has x∗ := 4γ/(γ2−4) as unique solution, hence σγ is a genuine implied volatility smile on (−∞, x∗],
but not on (x∗, 0]. When γ = 0, Φ0 is constantly equal to 1/4, and the resulting null implied volatility on (−∞, 0)
corresponds to the trivial case ST = S0 a.s. Finally, whenever γ ≥ 2, Φγ(x) < 0 for all x < 0, and arbitrage
occurs (the corresponding Put price is not convex any longer). Note that the limiting case γ = 2 (compatible with
Lee’s moment formula (1.3)), is associated to the Put price P (K,T ) = K/2− S0N(−

√
2| logK/S0|), K < S0,

whose second derivative with respect to the strike is strictly negative. The total variance map T 7→ Tσ2
γ(x, T )

is increasing (actually constant), thus ensuring that the corresponding underlying distributions are increasing
in the convex order, precluding calendar spread arbitrage.

Remark 2.6. The function h1(K) := pT /K, pT > 0, is regularly varying of index −1. Since P (K,T ) ≥ pTK
for every K ≥ 0, Condition (iii) in Theorem 2.2 is satisfied with the function h1 when pT > 0. Moreover, using
the asymptotics (2.3) in Lemma 2.3, it is immediate to see that logP (K,T ) = logK + O(1) as K ↓ 0, hence
logP (K,T )/ logK → 1 = 1 + q∗ as K ↓ 0. Then, in view of Proposition 2.4, the statement of Theorem 2.2
turns out to be true also in the case pT = P(ST = 0) > 0 (the Conditions (i), (ii), and (iii) of Theorem 2.2
being all satisfied in this case).

Remark 2.7. We recall here the argument in the proof of [21, Theorem 4.3] that allows to prove Proposition 2.4.
Assume P(ST = 0) > 0. Then, for any γ < 2 there exists x∗ < 0 such that for all x < x∗

P (Kx, T ) ≥ KxP(ST = 0) > Kx

[
N(−d2(x, T, σγ(x)) − e−xN(−d1(x, T, σγ(x)))

]
= S0PBS(x, T ;σγ(x)), (2.8)

which proves (2.7). Indeed N(−d2(x, T, σγ(x)) = N
(
− 2−γ

2
√
γ

√
|x|
)
tends to zero as x ↓ −∞, and l’Hôpital’s rule

implies that limx↓−∞ e−xN(−d1(x, T, σγ(x))) = limx↓−∞
e−x

√
2π

exp
(
− (2+γ)2

8γ |x|
)

2+γ
4
√
γ

1√
|x|

= 0. Note that we do

not prove here that PBS(x, T ;σγ(x)) is a true Put price for x in some interval, as in our proof above.

2.2 Second-order behaviour

Once established that the implied volatility is asymptotic to
√
2|x|/T as x ↓ −∞ if and only if q∗ = 0 and

Condition (iii) in Theorem 2.2 is fulfilled (always true when pT > 0, see Remark 2.6), it remains to understand
how the difference IT (x) −

√
2|x|/T behaves. The behaviour of the right wing (x ↑ +∞) has been studied by
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Lee [21, Lemma 3.1], who showed that IT (x) −
√
2|x|/T < 0 for x large enough, and subsequently refined by

Rogers and Tehranchi [27, Theorem 5.3], who proved that limx↑+∞(IT (x) −
√
2x/T ) = −∞ for every T > 0.

For the left wing, the situation is different, and the qualitative behaviour of the second-order term depends on
the presence of a mass at zero.

Ohsaki et al. [25] study the asymptotic behaviour of d2(x, T ) as x ↓ −∞. Lemma 2.8 below refines their
Theorem 1: on the one hand, no assumption on the differentiability of IT is made, on the other hand, we do
not assume that the derivative of IT has a limit at −∞ (as opposed to [25, Assumption 1]).

Lemma 2.8. The following limits hold:

limx↓−∞ d2(x, T ) = +∞, if pT = 0;
limx↓−∞ d2(x, T ) = −N−1(pT ), if pT > 0.

(2.9)

Based on Lemma 2.8, we prove the following

Theorem 2.9. If the distribution of the stock price ST does not charge zero (pT = P(ST = 0) = 0), then

lim
x↓−∞

(
IT (x) −

√
2|x|/T

)
= −∞. (2.10)

On the contrary, if pT > 0, then

lim
x↓−∞

(
IT (x)−

√
2|x|/T

)
=

1√
T
N−1(pT ). (2.11)

Remark 2.10. Some comments are in order.

(i) Lemma 3.3 in [21] asserts that there exists x∗ such that IT (x)−
√
2|x|/T < 0 for all x < x∗ if and only if

0 ≤ pT < 1/2. In light of the new estimate (2.11), the difference IT (x)−
√
2|x|/T converges to a negative

constant when 0 < pT < 1/2, to a positive constant when pT > 1/2, and to zero when pT = 1/2.

(ii) Differently put, when the left asymptotic slope of the smile is maximal (limx↓−∞ TIT (x)
2/|x| = 2), the

difference between an underlying distribution that charges the origin and one that does not is seen at the
second-order in implied volatilities.

(iii) When pT > 0, formally plugging the limit (2.3) into (1.1), the error term in Gulisashvili’s asymptotic (1.1)

is a constant: O
((

log K
P (K,T )

)−1/2

log log K
P (K,T )

)
= O(1) as K ↓ 0, and the main term satisfies

√
| logK|
T

√
ψ

(
logP (K,T )

logK
− 1

)
∼
√

| logK|
T

√
ψ(0) =

√
2| logK|

T
, as K ↓ 0.

Therefore, comparing with (2.11), the expansion (1.1) turns out to be true also when there is a positive
mass at zero. Theorem 2.9 makes the constant term precise, while Theorem 3.7 below provides an
additional third-order term and an error estimate.

Proof5 of Lemma 2.8 and Theorem 2.9. The identity

CBS(−x, T ; IT (x)) = E

(
1− e−xST

S0

)+

follows from equations (A.3) and (A.4) in the Appendix. Now, since E(1− ST

S0
e−x)+ = P(ST = 0)

+E

[
(1 − ST

S0
e−x)+11{ST>0}

]
, CBS(−x, T, IT (x)) tends to P(ST = 0) as x ↑ −∞ by dominated convergence.

Therefore, for every x < 0

N(d1(−x, T, IT (x))) = CBS(−x, T, IT (x)) + e−xN(d2(−x, T, IT (x)))
≤ CBS(−x, T, IT (x)) + e−xN(−

√
2|x|) → P(ST = 0), as x→ −∞,

(2.12)

5We are grateful to Mike Tehranchi for sharing this neat proof with us.
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where we have used the arithmetic-geometric inequality d2(−x, T, IT (x)) = − |x|
IT (x)

√
T
− IT (x)

√
T

2 ≤ −
√
2|x| and

the limit ez
2/2N(−z) → 0 as z → ∞ in the last step. Noting that d1(−x, T, IT (x)) = −d2(x, T, IT (x)), (2.12)

proves Lemma 2.8.
Let p := N−1(P(ST = 0)). Assume first that p = −∞. Estimate (2.12) implies that for every M > 0 we

have d1(−x, T, IT (x)) = x
IT (x)

√
T
+ IT (x)

√
T

2 < −M for x small enough, or yet IT (x)
√
T < −M +

√
M2 + 2|x|.

Therefore,

lim sup
x↓−∞

(
IT (x)

√
T −

√
2|x|

)
< −M + lim sup

x↓−∞
(
√
M2 + 2|x| −

√
2|x|) = −M

for every M > 0, which proves (2.10).
Now assume p > −∞. Then for fixed ε > 0, we have p − ε < d1(−x, T, IT (x)) < p + ε for x small enough.

It follows that:

p− ε+
√
2|x| < IT (x)

√
T = d1(−x, T, IT (x))− d2(−x, T, IT (x)) < p+ ε+

√
(p + ε)2 + 2|x|.

The lower bound again follows from the arithmetic-geometric inequality for d2, and the upper bound from the
identity d2(−x, T, σ)2 = d1(−x, T, σ)2 +2|x|. Therefore, limx↓−∞(IT (x)

√
T −

√
2|x|) = p, and (2.11) is proved.

3 An asymptotic formula for the implied volatility

Theorem 2.9 establishes that the expansion

IT (x) =
√
2|x|/T +N−1(pT )/

√
T + o(1), x ↓ −∞ (3.1)

holds if pT = P(ST = 0) > 0. In this section we refine the crude o(1) term (to a O(|x|−1/2) term), providing an
explicit third-order term and an error estimate.

We start with a lemma (proved in Appendix A.1), which (a) recalls the existence of the side derivatives
D±IT (nicely illustrated by Rogers and Tehranchi [27, Theorem 5.1]), and (b) provides a new estimate (3.5) on
the derivatives under Condition (1.4).

Lemma 3.1. Let [xT , xT ] be the smallest interval containing the support of log(ST /S0) (with the convention
log 0 = −∞). The right derivative D+IT (x) exists for all x 6= xT and the left derivative D−

x IT (x) exists for all
x 6= xT . The two derivatives satisfy, for all x ∈ (xT , xT ),

D+IT (x) =
N(d2(x, T ))− P(ST > Kx)√

Tφ(d2(x, T ))
(3.2)

D−IT (x) =
N(d2(x, T ))− P(ST ≥ Kx)√

Tφ(d2(x, T ))
, (3.3)

and D+IT (x) (resp. D−IT (x)) is null on (−∞, xT ) ∪ [xT ,+∞) (resp. (−∞, xT ] ∪ (xT ,+∞)). In particular,
D−IT (x) ≤ D+IT (x) wherever both sides exist.

If P(ST < Kx) > 0 for all x < 0, then xT = −∞ and

D−IT (x) ≥ − 1√
2T |x|

(3.4)

for all x < 0. Moreover, if q∗ = 0 and condition (1.4) holds, then for every ε′ < ε there exists x∗ε′ < 0 and a
constant c > 0 such that, for all x < x∗ε′ ,

D+IT (x) ≤ c eε
′x = c e−ε′|x|. (3.5)

Remark 3.2. If there exists x∗ < 0 such that D+IT (x) ≤ 0 for x < x∗, the upper bound in (3.5) can trivially
be updated to zero.
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Remark 3.3. Identity (3.2) can be rewritten as

N(d2(x, T )) = P(ST > Kx) +
√
Tφ(d2(x, T ))D

+IT (x).

Taking the limit as x ↓ −∞ and using −N−1(pT ) = N−1(1 − pT ) = N−1(P(ST > 0)), Lemma 2.8 entails that
if pT > 0, then D+IT (x) tends to zero as x→ −∞.

We shall from now on make the standing assumption that P(ST < Kx) > 0 for all x < 0. Proposition 3.5
below refines Lemma 2.8 providing an error term for d2(x, T ) under Condition (1.4); it is based on the following
lemma.

Lemma 3.4. Assume pT > 0. Then the following estimate holds as x→ −∞:

d2(x, T ) = −N−1(pT )− φ(N−1(pT ))
−1
[
F (Kx)− F (0)

]
+
√
TD+IT (x)

+O(F (Kx)− F (0))2 + o(D+IT (x)). (3.6)

Proof. Write d2(x, T ) = −N−1(pT ) + R(x), where R(x) tends to zero as x ↓ −∞. Then the identity φ′(d) =
−dφ(d) yields

φ(d2(x, T )) = φ(N−1(pT )) +N−1(pT )φ(N
−1(pT ))R(x) +O

(
R(x)2

)
.

Plugging this estimate into the identity d2(x, T ) = N−1
(
P(ST > Kx) +

√
Tφ(d2(x, T ))D

+IT (x)
)
from (3.2),

we obtain

d2(x, T ) = N−1
(
1− pT − [F (Kx)− F (0)] +

√
Tφ(N−1(pT ))D

+IT (x)

+
√
TN−1(pT )φ(−N−1(pT ))D

+IT (x)R(x) +O
(
R(x)2D+IT (x)

))

= N−1(1 − pT ) + φ(N−1(pT ))
−1
(
−[F (Kx)− F (0)] +

√
Tφ(N−1(pT ))D

+IT (x)
)

+
√
TN−1(pT )D

+IT (x)R(x) +O(F (Kx)− F (0))2 +O(D+IT (x))
2

= −N−1(pT )− φ(N−1(pT ))
−1[F (Kx)− F (0)] +

√
TD+IT (x)

+ o(D+IT (x)) +O(F (Kx)− F (0))2,

and (3.6) is proven.

Proposition 3.5. If pT > 0 and Condition (1.4) holds, then there exists a function ϕ : (−∞, 0) → R with
lim supx↓−∞ |ϕ(x)|

√
2|x| ≤ 1 such that

d2(x, T ) = −N−1(pT ) + ϕ(x) as x ↓ −∞. (3.7)

Proof. Recall that pT > 0 implies q∗ = 0. Therefore, under condition (1.4), the bounds (3.4) and (3.5) imply

|D+IT (x)| ≤
1√
2T |x|

, (3.8)

for x small enough. Condition (1.4) further implies F (Kx) − F (0) = O(e−ε|x|) = o(1/
√
|x|), and (3.7) follows

from (3.8) and (3.6).

Remark 3.6. If one knows that the smile is decreasing at minus infinity, that is there exists x∗ such that
D+IT (x) ≤ 0 for x < x∗, then (3.8) is an immediate consequence of (3.4), without any further assump-
tion. If moreover pT > 0, according to Lemma 3.4 the estimate (3.7) holds with ϕ(x) replaced by ϕ̃(x) −
φ(N−1(pT ))

−1
[
F (Kx)− F (0)

]
+O(F (Kx)− F (0))2, where ϕ̃(x) ≤ 1√

2|x|
for x small enough.

The following theorem contains the main result of this section.

Theorem 3.7. Assume pT > 0.
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(i) Under (1.4), there exists a function Φ : (−∞, 0) → R satisfying lim supx↓−∞
√
2|x|T |Φ(x)| ≤ 1 such that

IT (x) =

√
2|x|
T

+
1√
T
N−1(pT ) +

[
N−1(pT )

]2

2
√
2T |x|

+Φ(x) as x ↓ −∞. (3.9)

(ii) If D+IT (x) ≤ 0 for x small enough, there exists Φ̃ : (−∞, 0) → R satisfying lim supx↓−∞
√
2|x|T |Φ̃(x)| ≤ 1

such that, as x ↓ −∞,

IT (x) =

√
2|x|
T

+
1√
T
N−1(pT ) +

[N−1(pT )]
2

2
√
2T |x|

+Φ(x) +O(F (Kx)− F (0))2, (3.10)

where

Φ(x) ≡ Φ̃(x) +

√
2π

T
exp

(
N−1(pT )

2

2

)
[F (Kx)− F (0)] .

The following comments emphasise the practical importance of this theorem.

1. The asymptotic (3.9) contains a global O(|x|−1/2) term, given by 1√
2T |x|

(
N−1(pT )2

2 +
√
2T |x|Φ(x)

)
. Since

N−1(pT )
2 becomes large as pT tends to zero or one, and lim supx↓−∞

√
2|x|T |Φ(x)| ≤ 1, the contribution

of the function Φ becomes negligible in front of the N−1(pT )
2 term when pT is close to zero or one. In

this regime, the latter is an explicit third-order term, and the function Φ is an error term. When pT has
intermediate values (close to 1/2), the sum of the two terms can be seen as a global O(|x|−1/2) estimate.

2. The inspection of (3.9) reveals a ‘phase transition’ in the behaviour of the implied volatility at the second-
order, too: when pT = 1/2, both the constant and the third-order term cancel, and (3.9) reduces to
IT (x) =

√
2|x|/T +Φ(x). In this case, the ‘normalised’ implied volatility IT (x)

√
T/
√
|x| converges much

faster to its limit
√
2.

3. Assume that the underlying stock price is distributed according to the measure

µ(dK) = pT δ0(dK) + (1− pT )f(K)dK, (3.11)

where pT ∈ [0, 1) and f is a probability density function on (0,∞). If f(K) = O(K−a) as K ↓ 0, for some
a < 1, it is immediate that F (K)− F (0) = O(K1−a), and Condition (1.4) is fulfilled. Note that as soon
as f(K) ∼ K−a as K ↓ 0, the restriction a < 1 is necessary to ensure integrability. Nearly all financial
models used in practice satisfy (3.11) and the condition on f ; in particular, we refer the reader to the
Merton model with jump-to-default in Section 4.2.2 (whose density f tends to zero at the origin), and the
CEV model in Section 4.3.1 (where the density f explodes at the origin).

4. The role played by the cumulative distribution function F in the error term Φ in (3.10) highlights a radical
difference with the no-mass-at-zero case. In the classical left tail-wing formula [2],

IT (x) ∼
√
|x|
√

ψ

(− logF (Kx)

|x|

)
, as x ↓ −∞, (3.12)

where ψ is defined in (1.2). Note that the logarithm of the cdf F (Kx) appears in the formula, instead
of the distribution function itself as in (3.10). In many stochastic volatility models, such as Heston and
Stein-Stein, the cdf of the stock price satisfies, see [17, 12],

F (Kx) = A e−α1|x|+α2

√
|x| |x|γ(1 +O(|x|−1/2)) as x ↓ −∞, (3.13)

for some constants A,α1, α2 > 0 and γ ∈ R. Therefore, − logF (Kx)/|x| = α1 + O(|x|−1/2), and (3.12)
returns—as expected—the leading-order square root behaviour IT (x) ∼

√
ψ(α1)|x| (subsequent refine-

ments, in analogy with (3.9), are of course possible using the precise asymptotics (3.13), as done in [12, 13];
see Remark 3.8 below for more details). For any distribution such that F (Kx)−F (0) behaves as the right-
hand side of (3.13), the term proportional to F (Kx) − F (0) = O(e−α1|x|) in (3.10) goes to zero much
faster than any of the other O(|x|−1/2) terms in (3.9).
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Proof of Theorem 3.7. We first prove Theorem 3.7(i). Let us write d2(x) instead of d2(x, T ). According to
the definition of d2 in (1.9), IT (x) satisfies

IT (x) =
1√
T

(
−d2(x) +

√
d22(x) − 2x

)
=

2|x|√
2|x|T + Td2(x)2 +

√
Td2(x)

,

hence

√
TIT (x)−

√
2|x| = 2|x| −

√
4x2 + 2|x|d2(x)2√

2|x|+ d2(x)2 + d2(x)
−

√
2|x|d2(x)√

2|x|+ d2(x)2 + d2(x)
=: A(x)−B(x). (3.14)

The equivalence
√
f(x) −

√
f(x) + g(x) ∼ −g(x)/(2

√
f(x)) when f(x) ↑ ∞ and g = o(f) allows to see that

A(x) satisfies

A(x) ∼ −2|x|d2(x, T )2
4|x|

√
2|x|

∼ − [N−1(pT )]
2

2
√
2|x|

as x ↓ −∞. (3.15)

On the other hand, limx↓−∞B(x) = limx↓−∞ d2(x, T ) = −N−1(pT ); then consider B(x) +N−1(pT ) = B1(x) +
B2(x), where

B1(x) :=
N−1(pT )d2(x, T )√

2|x|+ d2(x, T )2 + d2(x, T )
; B2(x) := h(x)

(
d2(x, T ) +N−1(pT )

√

1 +
d2(x, T )2

2|x|

)
,

and h(x) :=

√
2|x|√

2|x|+d2(x,T )2+d2(x,T )
. B1(x) is asymptotic to −[N−1(pT )]

2/
√
2|x| as x ↓ −∞. It is clear that h(x)

tends to one as x ↓ −∞ Using the elementary identity
√
a−

√
b = a−b√

a+
√
b
and taking into account Proposition 3.5,

one can see that B2(x) satisfies

√
2|x| |B2(x)| = |h(x)|

(√
2|x| |ϕ(x)| + |N−1(pT )|d2(x)2

√
2|x|

(
1 +

√
1 + d2(x,T )2

2|x|

)
)

≤ |h(x)|
(
√
2|x| |ϕ(x)| + |N−1(pT )|d2(x)2√

2|x|

)
,

therefore lim supx↓−∞
√
2|x| |B2(x)| ≤ 1. Taking into account (3.15), the estimate on B1(x) and this final

estimate on B2(x), it follows from (3.14) that

√
TIT (x)−

√
2|x| −N−1(pT ) = A(x) − (B1(x) +B2(x)) =

N−1(pT )
2

2
√
2|x|

+ r(x),

as x ↓ −∞, for some function r such that lim supx↓−∞
√
2|x| |r(x)| ≤ 1. The function Φ in (3.9) is given by

Φ(·) = r(·)/
√
T . Now consider Theorem 3.7(ii). When D+IT (x) ≤ 0 for x small enough, the additional term

1√
T
φ(N−1(pT ))

−1 [F (Kx)− F (0)] +O(F (Kx) − F (0))2 comes from the second part of Lemma 3.4, arguing as

in Remark 3.6.

Remark 3.8 (Comparison with stochastic volatility models). The asymptotic form “leading-order
√
|x|

term + constant + vanishing term” is typical in stochastic volatility models. Yet, the phenomenon has a
different nature: when the stock price follows an exponential (hence strictly positive) diffusion process with
stochastic volatility, the functional form of the implied volatility is determined by the asymptotic properties
of the density of the stock close to zero. In Theorem 3.7, the same parametric form specifically relates to the
presence of an atom at zero, but is rather independent of the shape of the remaining distribution on (0,∞).

1. In the (uncorrelated) Stein-Stein model, the stock price process satisfies the SDE dSt = St|Zt|dWt with
S0 > 0, dZt = κ(θ − Zt)dt + ξdBt, and W,B are independent Brownian motions. Then, St is strictly
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positive almost surely for all t ≥ 0; Gulisashvili and Stein [17, Theorem 3.1] prove the following expansion
for the implied volatility:

IT (x) =
1√
T

(
γ1
√
x+ γ2 +O

(
1√
x

))
, as x ↑ +∞,

where γ1 ∈ (0,
√
2) and γ2 > 0 depend on model parameters (note that this expansion is given in [17] with

an error term of the form O(χ(x)/
√
x), where χ is any positive increasing function on (0,∞) such that

limx↑∞ χ(x) = ∞. Such an asymptotic formula is actually equivalent to the same formula with χ(x) ≡ 1,
see [12, Remark 17]). In uncorrelated volatility models the smile is symmetric, see [26], and therefore the
same expansion holds for the implied volatility when x tends to −∞.

2. In the Heston model, the stock price is the unique strong solution to dSt = St

√
VtdWt with S0 > 0,

dVt = κ(θ − Vt)dt + ξ
√
VtdBt, and d 〈W,B〉t = ρdt. Again, St is strictly positive almost surely for any

t ≥ 0; in [12, Eq. (4.11)], Friz et al. prove the following expansion in the Heston model as x ↓ −∞:

IT (x) =
1√
T

(
ρ1
√
|x|+ ρ2 + ρ3

log(|x|)√
|x|

+O
(

1√
|x|

))
,

where the coefficients ρ1 ∈ (0,
√
2), ρ2, ρ3 are related to the model parameters. Note that although the

first two terms in the formula for Heston implied volatility are of the same order than the corresponding
terms in (3.9), the third-order term is different, because of the presence of the function log |x|, and tends
to zero more slowly.

3. In the uncorrelated Hull-White model (Example 2.1), Gulisashvili and Stein [16, Corollary 3.1] prove

IT (x) =
1√
T

(√
2|x| − log |x|+ log log |x|

2Tξ
+O(1)

)
, as x ↓ −∞.

Note that the constant second-order term appearing in the expansions for the Stein-Stein and the Heston
models is replaced here by a term diverging to minus infinity, in agreement with Theorem 2.9.

4 Examples with mass at zero

A distribution µ with a mass pT ∈ (0, 1) at zero can be written in terms of its Jordan decomposition:

µ(ds) = pT δ0(ds) + (1− pT )µp(ds), (4.1)

where µp is a probability measure on (0,∞). The martingale condition E[ST ] =
∫
[0,∞)

sµ(ds) = S0 imposes

pT 6= 1 together with the constraint
∫
(0,∞)

sµp(ds) = S0/(1−pT ). In order to numerically illustrate Theorem 3.7,

we compute and plot the function JT (x) ≡ IT (x)
√
T/|x|, which must tend to

√
2 as x ↓ −∞. We compare JT

to its second- and third-order expansions given by Theorem 2.9 and Theorem 3.7:

J
(2)
T (x) ≡

√
T

|x|

(√
2|x|
T

+
1

T
N−1(pT )

)
and J

(3)
T (x) ≡ J

(2)
T (x) +

√
T

|x|
N−1(pT )

2

2
√
2T |x|

. (4.2)

4.1 A toy example

We define a piecewise affine Call price on R+ by setting

C̃(K) = (S0 − (1− pT )K)+, K ≥ 0. (4.3)

The corresponding asset price distribution has the form (4.1), with µp(ds) = δS0/(1−pT )(ds). The cumulative
distribution of µ, F (K) = µ([0,K]) = pT + (1 − pT )11{K≥S0/(1−pT )}, is constant for K < S0/(1 − pT ), hence
condition (1.4) is trivially satisfied. Figure 1 shows some numerical results for T = 1.
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(c) Normalised smile from affine Call price, pT = 0.5
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Figure 1: Implied volatilities generated by the affine Call price in Example 4.1, T = 1. Figures (a), (b), (c):

“normalised smile” JT versus its approximations J
(2)
T J

(3)
T , see (4.2). Figure (d): the corresponding implied

volatility smiles. Note that D−IT diverges at the upper bound xT of the support of the law.

4.2 Jump-to-default models

Let (S̃t)t≥0 be a strictly positive process defined on (Ω,F ,P), and τ a random time, independent of S̃. Set

St = S̃t1t<τ . (4.4)

The process S jumps to zero at time τ . The fixed-time law of ST has the form (4.1), where pT = P(τ ≤ T ),
and µp is the law of S̃T .

4.2.1 Merton’s model with jump-to-default

In the Merton model [24], the process S̃ is a geometric Brownian motion with drift λ > 0, dS̃t = S̃t(λdt+σdWt)
with S̃0 > 0, and τ is exponentially distributed with parameter λ, so that pT = P(τ ≤ T ) = 1 − e−λT . Note
that E[ST ] = E[S̃T 11τ>T ] = E[S̃T ]P(τ > T ) = S0e

λT e−λT = S0. The continuous part of the distribution of S is
µp(ds) = fBS(s, T ;S0/(1−pT ), σ)ds, where fBS(·, T ;S, σ) is the density of a Black-Scholes stock price with mean
S and volatility σ > 0. The Put price written on S reads P (K,T ) = pTK + (1− pT )PBS(K,T ;S0/(1− pT ), σ),
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(a) Merton’s model with mass pT at zero, pT = 0.1
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(b) Merton’s model with mass pT at zero, different pT ’s

Figure 2: Implied volatility smiles in the Merton’s model, or Black-Scholes distribution with mass pT at zero,
with S0 = 1, T = 1. Figure (a): pT = 0.1, different values of σ. Figure (b): σ = 0.2, different values of pT .
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(a) Normalised smile, pT = 0.1
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(b) Normalised smile, pT = 0.5
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(c) Normalised smile, pT = 0.9

Figure 3: Normalised implied volatility smiles in the Merton’s model with σ = 0.2, T = 1 and mass pT at zero.

Comparison of the function JT with J
(2)
T and J

(3)
T , see (4.2).

and the cumulative distribution

F (Kx) = pT + (1− pT )N

(
−d2

(
Kx, T,

S0

1− pT
, σ

))
=: pT + (1− pT )N(d2,pT

(x, T, σ)).

Since d2,pT
(x, T, σ) ∼ x

σ
√
T

as x ↓ −∞ and F (Kx)− F (0) = (1 − pT )N(d2,pT
(x, T, σ)), the bound (A.1) yields

F (Kx)− F (0) ≤ 1− pT
d2,pT

(x, T, σ)
φ(d2,pT

(x, T, σ)) ≤ 1− pT√
2π

exp

(
−1

2
d2,pT

(x, T, σ)2
)

= O
(
exp

(
− x2

2σ2T

))
,

and hence condition (1.4) is satisfied. We illustrate the validity of the expansion (3.9) in Figures 2 and 3.

Let us briefly comment on Figures 1-3 related to the toy example 4.1 and the Black-Scholes example above:

(i) Interestingly, a log-normal distribution with a constant volatility parameter σ and a mass pT at zero
produces a very pronounced skew, even for small values of pT , see Figure 2. In analogy with displacement
(see [5, Example 6.7]), this is a way of generating an implied volatility smile using only two parameters.

(ii) The different behaviours of the implied volatility foreseen by Theorem 3.7 for pT ≈ 0 or pT ≈ 1 and for
pT = 1/2 are confirmed in these examples (see also the CEV model in section 4.3.1). When pT = 1/2,
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the convergence of the normalised smile IT (x)
√
T/|x| to its limit

√
2 has a considerably smaller bias than

the case where pT is close to 1 or zero, for which the limiting value
√
2 is still far in the left tail (see

Figures 1(a)-1(b) and 3(a)-3(c)).

(iii) The graphics 1(a), 1(c), 1(b) and 3(a), 3(b) and 3(c) in Figures 1 and 3 are almost identical. This provides
evidence of the fact that the behaviour of the implied volatility for small strike is essentially determined
by the mass of the atom at zero, while the remainder of the distribution on (0,∞) has little impact.

4.2.2 Default probabilities from implied volatilities

We consider here the same model as in the previous subsection 4.2.2. Ohsaki et al. [25] study the possibility of
measuring default probabilities from observed implied volatilities. Considering a firm’s asset following Merton’s
or CreditGrades [10] model, they estimate the survival probability at time T based on the asymptotic formula
limx↓−∞ d2(x, T ) = −N−1(pT ), and compute d2(x, T ) from simulated smile data. They give evidence of the
difficulty of achieving a good estimate, due to the slow speed of convergence of d2 to its limit. For example, for
a survival probability around 90%, the estimated value under the Merton model [25, Table 5] is affected by a
relative error around 10%, even at very low strikes.

In Proposition 3.5, we account for the error term affecting this estimate, which is roughly O(|x|−1/2).
Note however that Theorem 3.7 provides an alternative way of estimating default probabilities, which can
be compared to the methodology in Ohsaki et al. [25]. Inverting the third-order formula (3.9) with respect to
−N−1(pT ) =: n yields the equation a(x)n2−n−c(x) = 0, with a(x) ≡ 1/(2

√
2|x|) and c(x) ≡

√
TIT (x)−

√
2|x|.

Since 1 + 4a(x)c(x) =
√

2
|x|(

√
TIT (x)−

√
2|x|) tends to zero as x ↓ −∞, Equation (3.9) has the two roots

n±(x) =
√
2|x| ±

√
2|x|+ 2

√
2|x|

(√
TIT (x) −

√
2|x|

)
(4.5)

as soon as x is small enough. It is easy to see that n−(x) converges toN−1(1−pT ) while n+(x) diverges to infinity
as x ↓ −∞, and hence N(n−(x)) is a convergent estimator of the survival probability 1−pT , independent of any
parametric modelling choice. Table 1 shows some numerics in the Merton model with the following parameters:

S0 = 100, T = 0.5, σ = 0.3, λ = 0.15. (4.6)

The third row from the bottom shows the survival probability estimated from the asymptotics limx↓−∞ d2(x, T ) =
−N−1(pT ), and provides the same values given in [25, Table 5]. The second row from the bottom estimates the
survival probability from the second-order formula IT (x) =

√
2|x|/T +N−1(pT )/

√
T , while the last row, based

on the full third-order formula (3.9), gives the values of N(n−(x)) with n− defined in (4.5). The right column
contains the exact survival probability 1 − pT = e−λT . Note that, while the estimate based on second-order
implied volatilities is less precise than the one based on the coefficient d2(x, T ), the third-order formula is more
accurate (the accuracy becoming comparable with the result of Ohsaki et al. at very low strikes). Although
improved, the quality of the fit is yet unsatisfactory for the model-free formula (4.5) to be efficiently used to
estimate default probabilities within the range of strikes usually available in stock markets.

When λ = 0.85, and 1 − pT ≈ 65.37% (smaller default probabilities are more realistic in practice), the
third-order formula (4.5) is very close to the result by Ohsaki et al. [25, Table 6], and we therefore omit it. This
similarity is consistent with the fact that the derivative of the implied volatility with respect to the mass of the
atom is small (hence the implied volatility is less sensitive to it) when the latter is close to 1/2.

4.3 Diffusion processes absorbed at zero

4.3.1 The CEV process

We consider here the CEV model, namely the unique strong solution to the stochastic differential equation

dSt = σS1+β
t dWt, (4.7)

The process (St)t≥0 is a true martingale if and only if β ≤ 0, see [6, Chapter 6.4]. When β = 0, the SDE
(4.7) reduces to the Black-Scholes SDE, and the stock price remains strictly positive almost surely for all t ≥ 0.
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Moneyness 0.5 0.4 0.3 0.2 0.1 1e-10 0
Log-moneyness x -0.69 -0.91 -1.20 -1.61 -2.30 -23.02 −∞
Survival Probability (%)

Ohsaki et al. 75.59 77.77 79.72 81.59 83.59 90.35 92.77

Second-order IV 69.30 71.35 73.33 75.39 77.80 88.06 92.77

Third-order IV 76.77 78.81 80.59 82.27 84.07 90.37 92.77

Table 1: Survival probabilities in Merton’s jump-to-default model with the parameters (4.6).

Following Chesney et al. [6] we define a new process X by Xt := S−2β
t /(σ2β2) up to the first time S hits zero.

Itô formula yields dXt = δdt + 2
√
XtdWt, with X0 = S−2β

0 /(σ2β2) > 0 and δ = 2 + 1/β. The process X is a
Bessel process with δ degrees of freedom (and index ν := δ/2 − 1 = 1/(2β)). The Feller classification (see for
example Karlin et al. [20, Chapter 15, Section 6] yields the following:

• if δ ≤ 0, i.e. β ∈ [−1/2, 0), the origin is an attainable and absorbing boundary. For every t > 0, the
distribution µt of Xt on [0,∞) has a positive mass at zero and admits a density on the positive real line:

µt(dy) = P(Xt = 0)δ0(dy) + ft(X0, y)dy,

with

ft(X0, y) =
1

2t

(
y

X0

)ν/2

exp

(
−X0 + y

2t

)
I−ν

(√
X0y

t

)
, for all y > 0,

where I−ν is the modified Bessel function of the first kind. Note that
∫∞
0 ft(X0, y)dy = Γ

(
−ν, X0

2t

)
< 1,

where Γ is the normalised lower incomplete Gamma function Γ(v, z) := 1
Γ(v)

∫ z

0 u
v−1e−udu, therefore

P(Xt = 0) = 1− Γ (−ν,X0/(2t)) > 0.

• If δ ∈ (0, 2) (β < −1/2), the origin is attainable, but reflecting. If δ > 2 (β > 0), the origin is not
attainable. In both cases, P(Xt = 0) = 0 for all t.

We can recast these results in terms of the original CEV process S, which hits zero if and only if the
process X does. In the case β ∈ [−1/2, 0), the density of ST on the positive real line is given by

fST
(s) = −s

1/2
0 s−2β−3/2

σ2βT
exp

(
−s

−2β
0 + s−2β

2σ2β2T

)
I−ν

(
s−β
0 s−β

σ2β2T

)
,

for any s > 0, and we further have P(ST = 0) = 1−Γ
(
−ν, (2σ2β2Ts2β0 )−1

)
. Using the asymptotic form (see [1,

Section 9.6.7]) for the modified Bessel function Iα(z) ∼ Γ(α + 1)−1(z/2)α (as z ↓ 0) for positive α, together
with −ν = 1/(2|β|), one obtains fST

(s) ∼ const × s2|β|−1 as s ↓ 0. Therefore the density of the stock price
explodes at the origin when β ∈ (−1/2, 0), and tends to a constant when β = −1/2, in contrast to the previous
examples (where the density vanishes at the origin). As pointed out in Remark 1, the condition (1.4) on the
cumulative distribution is satisfied since 2|β| − 1 > −1. This CEV model can further be enhanced with an
additional non-predictable independent jump-to-default, as done in [4]. This would result in augmenting the
mass at zero and reducing the one on (0,∞), without affecting the shape of the density.

European Put option prices maturing at time T ≥ 0 and with strike K ≥ 0 are worth at inception

P (K,T ) = E[(K − ST )+] = KP(ST = 0) +

∫

(0,+∞)

(K − s)+fST
(s)ds. (4.8)

We compute in Figure 4(a) such option prices and the corresponding implied volatilities in the CEV model with
the following parameters:

s0 = 0.1, T = 5.2, β = −0.4, σ = 0.2.
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In this case, the mass at the origin is approximately equal to P(ST = 0) = 0.137. The prices are obtained with
Monte Carlo simulations with 50000 paths, each drawn with 100 time steps, and the second- and third-order
asymptotics are computed according to Theorem 3.7. In the Monte Carlo simulations, whenever the stock price
hits the origin, it remains there since the latter is absorbing. Note that we evaluate deep out-of-the-money
Puts with 5 × 104 paths, and get tight 5% confidence intervals. The accuracy of this Monte Carlo estimate is
due to the fact that the simulation gives a good (small-variance) estimate of the probability of the (non-rare)
event ST = 0, therefore providing a good approximation of the Put option price via (4.8). The contribution of
the integral term, typically subject to less accurate Monte Carlo estimates, is asymptotically smaller than the
linear term for small K; its precise impact on the implied volatility is quantified by Theorem 3.7.
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(a) Normalised implied volatility smile, CEV model
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Figure 4: Implied volatility smiles generated by the CEV model. Comparison of the normalised smile JT with

its second- and third-order approximations J
(2)
T and J

(3)
T , see (4.2).

4.3.2 Absorbed Ornstein-Uhlenbeck process

Another example of continuous asset price dynamics that accumulates mass at zero and allows for explicit
formulae for the fixed-time distribution can be built from Ornstein-Uhlenbeck (OU) processes, namely the
unique strong solutions to the SDEs dS̃t = −kS̃tdt + σdWt, with S̃0 = s0 > 0 and k, σ > 0. Then S̃t =
s0 exp(−kt) + σ

∫ t

0
exp(−k(t − u))dWu is a Gaussian process with mean E(S̃t) = s0 exp(−kt) and covariance

function Cov(S̃t, S̃s) =
σ2

k exp(−kt) sinh(ks). The origin is attainable, and we define S as the process S̃ stopped

at the first time it hits zero: let τ0 := inf{t ≥ 0 : S̃t = 0}, then St := S̃t11{t<τ0}. For every t > 0, the law of St

has the form µt(dy) = P(St = 0)δ0(dy) + ft(s0, y)dy; from Borodin and Salminen [3], we have

P(St = 0) = P(τ0 ≤ t) = Erfc

(
s0

σ
√

2(e2kt − 1)

)
, with Erfc(x) =

2√
π

∫ ∞

x

e−v2

dv (4.9)

and

ft(s0, y) = P

(
S̃t ∈ dy, min

0≤s≤t
S̃s > 0

)
=

2e
−y2−s20e−2kt

2σ2(1−e−2kt)

√
2πσ2(1 − e−2kt)

sinh(2ys0e
−kt), for all y > 0. (4.10)

Note that ft(s0, y) ∼ ct y as y ↓ 0, so that F (K)−F (0) ∼ ctK
2 as K ↓ 0, and Condition (1.4) is satisfied. Using

(4.9) and (4.10), the numerical evaluation of European options is straightforward from numerical integration of
µt or from Monte-Carlo simulation of OU paths; for small log-moneyness, the shape of the implied volatility
smile (close, in the limit x ↓ −∞, to the smile of CEV and the jump-to-default models above) is again described
by Theorem 3.7.

17



4.4 Some examples of smile parametrisations

It is interesting to note that most of the recent literature on implied volatility parameterisations seem to ignore
the possibility of having a mass at the origin. Consider indeed the following parameterisation, proposed in Guo
et al. [18], for the implied total variance smile w(x, T ) ≡ I2T (x)T :

w(x, T ) = θTΨ(xξ(θT )), for all (x, T ) ∈ R× [0,∞),

where

ξ(u) ≡ α
1 − e−u

u
11{u>0} + 11{u=0} and Ψ(z) ≡ |z|+ 1

2

(
1 +

√
1 + |z|

)
.

where α is a strictly positive real number, and where we let θT := σ2T for some σ > 0. Since the expansion
w(x, T ) = α|x|(1 − e−σ2T ) + 1

2σ
2T + O(|x|−1/2) holds as x tends to −∞, the asymptotic slope of the map

x 7→ w(x, t) as x ↓ −∞ is equal to 2 if and only if α(1− e−σ2T ) = 2. Note further that

lim
x↓−∞

d2

(
x,
√
w(x, T )/T

)
= −sgn (fT (α))∞ and lim

x↑+∞
d1

(
x,
√
w(x, T )/T

)
= sgn (fT (α))∞,

where fT (α) ≡ α(eσ
2T − 1) − 2eσ

2T . For any T ≥ 0, the function fT is strictly increasing and is equal

to zero at α∗ = 2/(1 − e−σ2T ). Therefore, whenever α < α∗, limx↓−∞ d2 = +∞ and there is no mass at
zero. At the same time, in order for call prices to decrease to zero when the strike tends to infinity, we need
limx↑+∞ d+(x,

√
Tw(x, T )) = −∞ (see [18]), which therefore rules out the possibility of a slope equal to 2.

5 Put-Call and Smile Symmetries

The function

G(K,T ) =
K

S0
P

(
S2
0

K
,T

)
, K > 0, (5.1)

allows to define a Black-Scholes implied volatility function IG,T , when G is taken as a Call price with maturity T .
The identity

IC,T (K) = IG,T

(
S2
0

K

)
, (5.2)

is proven and used in [14, 15] to transfer the asymptotic results initially formulated for the right part of the
implied volatility smile (K ↑ ∞) to the left part (K ↓ 0).

Proposition 5.1. When P(ST = 0) > 0, the function K 7→ G(K,T ) defined in (5.1) is not a call price function.

Proof. Assume G(·, T ) is a call price function with maturity T , then G(K,T ) = E(X−K)+ for some integrable
random variable X . Lemma 2.3 implies

lim
K↑∞

G(K,T ) = lim
K↑∞

K

S0
P

(
S2
0

K
,T

)
= lim

K′↓0

S0

K ′P (K ′, T ) = S0P(ST = 0) > 0,

which contradicts limK↑∞G(K,T ) = limK↑∞ E(X −K)+ = 0 by dominated convergence.

The situation where G(·, T ) is a genuine Call price function, and moreover G(·, T ) ≡ C(·, T ), is related to a
symmetry of the underlying law. Denote by Q the probability measure defined by the Radon-Nikodym density
dQ/dP = ST /S0. The distribution of ST is said to be geometrically symmetric if the distribution of S0/ST

under the measure Q is the same as the distribution of ST /S0 under P (see Carr and Lee [5]). Examples include
the log-normal distribution and uncorrelated stochastic volatility models (with zero risk-free rate). It is easy
to see [5, Theorem 2.2 and Corollary 2.5] that geometric symmetry implies (and indeed is equivalent to) the
Put-Call price symmetry

C(K,T ) = G(K,T ) (5.3)
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with G defined in (5.1). Note that (5.3) can be also written in the more “symmetric” fashion P (K,T ;S0) =
C(S0, T ;K), making the spot price appear explicitly. Equation (5.2) shows that Put-Call symmetry is in turn
equivalent to the symmetry of the implied volatility smile with respect to the log-moneyness

IT (x) = IT (−x), for all x ∈ R. (5.4)

The equivalence of (5.4) and (5.3) gives the following corollary to Proposition 5.1:

Corollary 5.2. If P(ST = 0) > 0, the implied volatility at expiry T cannot be symmetric in the sense of (5.4).

Remark 5.3. Note that Q(ST > 0) = EP [(ST /S0)11ST>0] = 1, therefore S0/ST is Q-almost surely well-defined
also when the P-distribution of ST has an atom at zero. However, since Q (S0/ST > 0) = 1, the Q-distribution
of S0/ST cannot coincide with the P-distribution of ST /S0 in this case. This is another way of showing that
geometric symmetry, hence the symmetry of the smile, does not hold when the P-distribution has an atom at
zero.

Remark 5.4. In [21, Theorem 4.1], under the condition of no mass at zero, Lee proves the identity IP(x) =
IQ(−x), where IQ denotes the implied volatility of options written on S0/ST and priced under the measure Q.
Although both the functions IP and IQ are well-defined for any stock price distribution that is non-negative
under P, the same argument used in the proof of Proposition 5.1 shows that the identity IP(x) = IQ(−x) does
not hold when P(ST = 0) > 0.

5.1 Restricted symmetry

The property of geometric symmetry can hold for the distribution of the stock price restricted to (0,∞). This
property translates into the symmetry of a modified implied volatility function that takes into account the
possible mass at zero, as we now show. Recall that pT = P(ST = 0) and denote P p

BS(K,T ;S0, σ) the Put option
price generated by the Black-Scholes distribution with mass at zero, with spot price S0 and mass of the atom
pT ∈ [0, 1). The equation

P (K,T ) = pTK+E[(K−ST )
+11{ST>0}] = P p

BS

(
K,T ;S0, I

p

T (K)
)
= pTK+(1−pT )PBS

(
K,T ;

S0

1− pT
, I

p

T (K)

)

uniquely defines a function K 7→ I
p

T (K) for all positive K, since it is equivalent to

PBS

(
K,T ;

S0

1− pT
, I

p

T (K)

)
=

E[(K − ST )
+11{ST>0}]

1− pT
= E[(K − ST )

+|ST > 0],

where the right-hand side satisfies the arbitrage bounds
(
K − S0

1−pT

)+
≤ E[(K−ST )

+|ST > 0] ≤ K. Let us set

IpT (x) := I
p

T

(
S0e

x

1− pT

)
, for all x ∈ R. (5.5)

IpT is the implied volatility generated by the distribution of the stock price on the strictly positive real line,
taking into account the rescaling of the spot S0

1−pT
. Geometric symmetry translates into the symmetry of IpT :

Proposition 5.5. The following are equivalent:

• The Q-distribution of S0

(1−pT )ST
is the same as the P-distribution of (1−pT )ST

S0
conditional on {ST > 0}:

P

(
(1 − pT )ST

S0
∈ ds

∣∣∣∣ST > 0

)
= Q

(
S0

(1− pT )ST
∈ ds

)
. (5.6)

• The function IpT defined in (5.5) is symmetric.
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The proof of Proposition 5.5 is provided in Appendix A.2. It would be interesting to find an explicit mapping
(if any) relating the implied volatility IT to the function IpT . In the spirit of the symmetry-based proof of the
moment formula for small strikes in Lee [21, Theorem 4.3], such a transformation could allow to get back the
small-strike asymptotics with mass at zero of Theorem 3.7 from the asymptotics of IT for large strike, together
with the symmetry of IpT . We shall get back to this question in future work.

Symmetries in Merton’s jump-to-default model. Consider Merton’s model from Section 4.2.1. The
non-defaultable process (S̃t)t is lognormal with initial value S0 and drift coefficient λ. Itô’s formula shows
that the (driftless) power process (S̃t)

L with L = 1 − 2λ/σ2 is lognormal, hence it is geometrically symmetric
at every t ≥ 0. If L 6= 0, applying the symmetry to the payoff G(x) ≡ ϕ(x1/L), one gets E[ϕ(S̃T /S0)] =
E[(S̃T /S0)

Lϕ(S0/S̃T )] for any measurable positive ϕ, and hence

E[ϕ(ST )] = ϕ(0)pT + E

[(
ST

S0

)L

ϕ

(
S2
0

ST

)
11{ST>0}

]
. (5.7)

which is the symmetry provided for Merton’s model in [5, Theorem 7.2].
For fixed T > 0, S̃T can also be viewed as the T -value of a lognormal process with initial value S0e

λT = S0

1−pT

and no drift (equivalenty: with zero risk-free rate), and the application of the geometric symmetry of the law

of S̃T /
(

S0

1−pT

)
yields the alternative formulation

E[ϕ(ST )] = ϕ(0)pT + E

[
ST (1− pT )

S0
ϕ

(
S2
0

ST (1− pT )2

)
11{ST>0}

]
. (5.8)

It is not clear how one can exploit (5.7) or (5.8) to derive a symmetry for the implied volatility smile IT . The
function IpT is symmetric though, from Proposition 5.5; more precisely, IpT ≡ σ in Merton’s model.

5.2 A note on volatility derivatives

For a general strictly positive semimartingale S on a filtered probability space (Ω,F ,P), a variance swap with
maturity T > 0 is a forward contract paying the amount 1

T

∑n
i=1 log(Sti/Sti−1)

2, for 0 = t0 < · · · < tn = T (for
some predefined, usually daily, time partition). In the limit as the size of the mesh tends to zero, the above sum
converges in probability to the realised quadratic variation 1

T 〈logS, logS〉T . We shall not enter into the details
of this here and refer the interested reader to the very thorough paper by Jarrow et al. [19]. It has been showed
(see for instance Derman et al. [9]) that such an contract —equivalent to a so-called log-contract, namely a
European option maturing at T and paying log(ST /S0)— could be fully replicated by trading only in European
Call and Put options, meaning that the fair strike of a variance swap is given by

E

( 1

T
〈logS, logS〉T

)
=

2

T

(∫ S0

0

P (K,T )

K2
dK +

∫ ∞

S0

C(K,T )

K2
dK

)
, (5.9)

where P and C denote European Put and Call option prices with maturity T . Should the stock price have
a strictly positive mass at the origin, the right-hand side of (5.9) becomes infinite. Indeed, since Lemma 2.3
implies that Put options are linear in strike, then the first integral diverges to infinity. It is not clear who is
to blame here: the very (contractual) definition of the variance swap (one cannot take logarithms of S in the
construction of the payoff), or the replication formula. We shall leave this discussion for further work. In any
case, one should pay attention when applying equation (5.9) with Put prices that are generated by a distribution
that has a mass at zero. The arithmetic variance swap—seemingly introduced in [5] and recently studied from
a financial point of view in Martin [23]—has recently been mentioned in the literature. For some time partition

0 = t0 < · · · < tn = T , it pays the amount 1
T

∑n
i=1

(
Sti

−Sti−1

S0

)2
and can be fully replicated—in the limit as

the size of the mesh tends to zero—by the quantity

2

T

(∫ S0

0

P (K,T )dK +

∫ ∞

S0

C(K,T )dK

)
,
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namely a linear combination (with constant weight) of European Calls and Puts with the same maturity T .
The interesting thing here is that this arithmetic variance swap (called ‘simple variance swap’ in [23]) remains
of finite value when the stock price hits the origin. In Lorig et al. [22], yet another approach has been suggested,
namely to price the variance swap up to the first hitting time (excluding) of the origin.

As an alternative to variance swaps, some people advocated the use of Gamma swaps, namely contracts
paying 1

T

∑n
i=1 Sti log(Sti/Sti−1)

2 at maturity. Financially speaking, they allow the investor to have a volatility
dependence (the Vega) linear in the stock price and not independent of it as in the variance swap. These also
admit a model-free replication strategy, namely, as the partition becomes denser and denser in [0, T ]:

2

S0T

(∫ S0

0

P (K,T )

K
dK +

∫ ∞

S0

C(K,T )

K
dK

)
.

Since limK↓0 P (K,T )/K ≤ 1 (see Lemma 2.3), the first integral is always finite. The price of the Gamma
swap, then, is finite as soon as the positive critical exponent p∗ of ST defined in Example 2.1 is strictly
greater than 0, since this implies C(K,T ) = O(K−u) for every u < p∗. The case p∗ = 0 may give rise to a
logarithmic convergence of the Call price, and needs a specific treatment. For example, in the Hull-White model
in Example 2.1, one has C(K,T ) ∼ (logK)γ exp(−α log logK) as K ↑ ∞ for some (known) α > 0, see [16], and
the price of the Gamma swap is still finite.

A Appendix

A.1 Proof of Lemma 3.1

The first partial derivatives of CBS(x, T ;σ),

∂xCBS(x, T ;σ) = −exN
(
d2(x, T, σ)

)
, ∂σCBS(x, T ;σ) = exφ

(
d2(x, T, σ)

)√
T ,

and the well-known bound on Mills’ ratio

N(d)

φ(d)
≤ 1

|d| , d < 0 (A.1)

will be used in the proof. Note that using integration by parts, one can write
∫

[0,K]

sdF (s) = sF (s)|K0 −
∫ K

0

F (s)ds = KF (K)−
∫ K

0

F (s)ds,

and hence K−(1+ε)
∫
[0,K]

sdF (s) = K−(1+ε)
∫ K

0
(F (K)− F (s))ds ; therefore Condition (1.4) implies

∫

[0,K]

sdF (s) = O(K1+ε). (A.2)

Proof of Lemma 3.1. First note that, from our definition of the implied volatility, IT (x) is identically zero
for all x ≤ xT and x ≥ xT (the Put and Call prices coincide with their payoffs in these regions), therefore the
right (resp. left) derivative is identically null for x < xT and x ≥ xT (resp. x ≤ xT and x > xT ).

Define I : {(x, c) ∈ R× [0,∞) : (1− ex)+ ≤ c < 1} → [0,∞) by

CBS(x, T ; I(x, c)) = c.

I is continuous on {(x, c) : (1 − ex)+ ≤ c < 1} and strictly positive and differentiable on {(x, c) : (1 − ex)+ <
c < 1}; the first partial derivatives are ∂xI = − ∂xCBS

∂σCBS
and ∂cI = 1

∂σCBS
. Since IT (x) = I(x,C(Kx, T )/S0),

applying Lemma 2.3 we have (omitting the arguments of CBS)

D+IT (x) = ∂xI(x,C) + ∂cI(x,C)
∂+x C(Kx, T )

S0
= −∂xCBS

∂σCBS
− ex

∂σCBS
P(ST > K)

=
N(d2(x, T ))− P(ST > K)√

Tφ(d2(x, T ))
,
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and

D−IT (x) =
N(d2(x, T ))− P(ST ≥ K)√

Tφ(d2(x, T ))

for all x < xT , where, using the notation of (1.9), d2(x, T ) = d2(x, T, IT (x)). The inequality D−IT (x) ≤
D+IT (x) is obvious from (3.2) and (3.3).

In order to prove (3.4) and (3.5), note that on the one hand,

1− e−x + e−xCBS(x, T ;σ) = CBS(−x, T ;σ) (A.3)

and on the other hand, put-call parity yields

1− e−x + e−xC(Kx, T )

S0
= e−xP (Kx, T )

S0
= E

(
1− e−xST

S0

)+
. (A.4)

Equations (A.3) and (A.4) yield the alternative representations IT (x) = I (−x,E(1 − e−xST /S0)
+) for the

implied volatility, and for the derivatives:

D+IT (x) =
∂xCBS(−x, T, IT (x)) + ∂+x E(1 − e−xST /S0)

+

∂σCBS(−x, T, IT (x))

=
−N(d̂2(−x, T )) + E[ST 11{ST≤S0ex}]√

Tφ(d̂2(−x, T ))
; (A.5)

D−IT (x) =
−N(d̂2(−x, T )) + E[ST 11{ST<S0ex}]√

Tφ(d̂2(−x, T ))
, (A.6)

where we denote d̂2(−x, T ) := d2(−x, T, IT (x)). Note that d̂2(−x, T ) < 0 for all x < 0; moreover, the arithmetic
mean-geometric mean inequality implies

−d̂2(−x, T ) =
|x|
I
√
T

+
I
√
T

2
=

2|x|
2I

√
T

+
I
√
T

2
≥
√
2|x|.

Now, the identity (A.6) yields

D−IT (x) ≥
−N(d̂2(−x, T ))√
Tφ(d̂2(−x, T ))

≥ − 1√
T |d̂2(−x, T )|

≥ − 1√
2T |x|

.

On the other hand, it follows from (A.2) that there exist α > 0 and x∗ < 0 such that, for all x < x∗,

E
[
ST 11{ST<S0ex}

]
=

∫

[0,S0ex]

sdF (s) ≤ αex(1+ε) = αe−|x|(1+ε).

From (A.5), the inequality

D+IT (x) ≤
E[ST 11{ST<S0ex}]√
Tφ(d̂2(−x, T ))

≤ α
√
2π√
T

e−|x|(1+ε) exp

(
1

2
d̂2(−x, T )2

)
, (A.7)

holds for every x < x∗. Since

1

2
d̂2(−x, T )2 =

x2

2IT (x)2T
+
IT (x)

2T

8
+

|x|
2
,

it then follows from IT (x)
2T ∼ 2|x| as x ↓ −∞ (see Section 2) that d̂2(−x, T )2/(2|x|) converges to 1 as x ↓ −∞.

Therefore, for any ε there exists x∗∗ such that 1
2d2(−x, T )2 < (1 + ε)|x| for all x < x∗∗, and applying this last

estimate with ε = ε− ε′, together with (A.7), the bound (3.5) follows.
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A.2 Proof of Proposition 5.5

Referring to the decomposition (4.1) for the P-distribution of ST , one has

E[(K − ST )
+|ST > 0] =

∫ ∞

0

(K − s)+µp(ds) = PBS

(
K,T ;

S0

1− pT
, IT

p
(K)

)
,

which is equivalent to IT
p
(K) = I

µp

T (K), since
∫∞
0
sµp(ds) = S0/(1 − pT ). The statement of Proposition 5.5

then follows from the classical smile symmetry (5.4) if one shows that (5.6) is equivalent to the geometric
symmetry of the distribution µp, which we now prove.

Note that ST has the P-distribution of S̃Z, where S̃
P∼ µp and Z is independent from S̃ with P(Z = 0) =

1− P(Z = 1) = pT . For any measurable and bounded function ϕ,

E

[
ϕ

(
ST (1− pT )

S0

)∣∣∣∣ST > 0

]
=

1

1− pT
E

[
ϕ

(
ST (1 − pT )

S0

)
11{Z>0}

]

= E

[
ϕ

(
S̃(1− pT )

S0

)]

(sym)
= E

[
S̃(1− pT )

S0
ϕ

(
S0

S̃(1− pT )

)]

= E

[
ST

S0
ϕ

(
S0

ST (1− pT )

)
11{Z>0}

]

= EQ

[
ϕ

(
S0

ST (1− pT )

)
11{Z>0}

]
= EQ

[
ϕ

(
S0

ST (1− pT )

)]
,

where the step
(sym)
= holds for any bounded function ϕ if and only if S̃ ∼ µp is geometrically symmetric, and

the last step holds since Q(Z > 0) = Q(ST > 0) = 1.
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[11] H. Föllmer and A. Schied, Stochastic Finance: An Introduction in Discrete Time, 2nd Edition, Walter
de Gruyter, Berlin, New York, 2004.

[12] P. Friz, S. Gerhold, A. Gulisashvili, and S. Sturm, On refined volatility smile expansion in the
Heston model, Quantitative Finance, 11 (2011), pp. 1151–1164.

[13] K. Gao and R. Lee, Asymptotics of implied volatility to arbitrary order. Forthcoming in Finance and
Stochastics. Available at http://ssrn.com/abstract=1768383, 2011.

[14] A. Gulisashvili, Asymptotic formulas with error estimates for call pricing functions and the implied
volatility at extreme strikes, SIAM Journal on Financial Mathematics, 1 (2010), pp. 609–641.

[15] , Asymptotic equivalence in Lee’s moment formulas for the implied volatility, asset price models with-
out moment explosions, and Piterbarg’s conjecture, International Journal of Theorical and Applied Finance,
15 (2012), pp. 1–34.

[16] A. Gulisashvili and E. M. Stein, Implied volatility in the Hull-White model, Mathematical Finance,
19 (2009), pp. 303–327.

[17] A. Gulisashvili and E. M. Stein, Asymptotic behavior of the stock price distribution density and implied
volatility in stochastic volatility models, Applied Mathematics and Optimization, 61 (2010), pp. 287–315.

[18] G. Guo, A. Jacquier, C. Martini, and L. Neufcourt, Generalised arbitrage-free SVI volatility
surfaces. Preprint arXiv:1210.7111, 2012.

[19] R. Jarrow, Y. Kchia, M. Larsson, and P. Protter, Discretely sampled variance and volatility swaps
vs their continuous approximations, Finance and Stochastics, 17 (2) (2013), pp. 305–324.

[20] S. Karlin and H. Taylor, A second course in stochastic processes, Academic Press, 1981.

[21] R. W. Lee, The moment formula for implied volatility at extreme strikes, Mathematical Finance, 14 (2004),
pp. 469–480.

[22] M. Lorig, O. Lozano-Carbasse, and R. Mendoza-Arriaga, Variance swaps on defaultable assets
and market implied time-changes. arxiv 1209.0697, 2013.

[23] I. Martin, Simple variance swaps, NBER Working Paper 16884, (2013).

[24] R. C. Merton, Option pricing when underlying stock returns are discontinuous, Journal of Financial
Economics, 3 (1976), pp. 125–144.

[25] S. Ohsaki, t. Ozeki, Y. Umezawa, and A. Yamazaki, A note on the Black–Scholes implied volatility
with default risk, Wilmott Magazine, 2 (June 2010), pp. 155–170.

[26] E. Renault and N. Touzi, Option hedging and implied volatilities in a stochastic volatility model, Math-
ematical Finance, 6 (1996), pp. 279–302.

[27] L. C. G. Rogers and M. R. Tehranchi, Can the implied volatility surface move by parallel shifts?,
Finance and Stochastics, 14 (2010), pp. 235–248.

[28] M. Roper, Arbitrage free implied volatility surfaces. Publications and preprints of the School of Mathe-
matics and Statistics, University of Sydney, 2010.

24


	1 Introduction
	2 Detecting the mass of the atom: the second-order behaviour
	2.1 First-order behaviour
	2.2 Second-order behaviour

	3 An asymptotic formula for the implied volatility
	4 Examples with mass at zero
	4.1 A toy example
	4.2 Jump-to-default models
	4.2.1 Merton's model with jump-to-default
	4.2.2 Default probabilities from implied volatilities

	4.3 Diffusion processes absorbed at zero
	4.3.1 The CEV process
	4.3.2 Absorbed Ornstein-Uhlenbeck process

	4.4 Some examples of smile parametrisations

	5 Put-Call and Smile Symmetries
	5.1 Restricted symmetry
	5.2 A note on volatility derivatives

	A Appendix
	A.1 Proof of Lemma 3.1
	A.2 Proof of Proposition 5.5


