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TWO EXAMPLES OF NON STRICTLY CONVEX LARGE DEVIATIONS

STEFANO DE MARCO, ANTOINE JACQUIER, AND PATRICK ROOME

Abstract. We present here two examples of a large deviations principle where the rate function is not strictly

convex. This is motivated by an example from mathematical finance, and adds a new item to the zoology of

non strictly convex large deviations. For one of these examples, we also show that the rate function of the

Cràmer-type of large deviations coincides with that of the Freidlin-Wentzell when contraction principles are

applied.

1. Introduction

The Gärtner-Ellis theorem is a key result in the theory of (finite-dimensional) large deviations. Extending the

results of Cràmer [9] for sequences of random variables not necessarily independent and identically distributed

(iid), it provides a large deviations framework solely based on the knowledge of the cumulant generating function

(cgf) of the sequence. The key assumptions are that the pointwise (rescaled) limit of these cgf satisfies some

convexity property and becomes steep at the boundaries of its effective domain; this in turns implies that the

rate function governing the large deviations, defined as the topological dual, is also convex. When convexity

breaks down, no general result is known, and large deviations may or may not hold; the classical example

is that of the iid sequence (Xi)i∈N where P(X1 = 1) = P(X1 = −1) = 1/2. Let Yn :=
∑n

i=1Xi. Then

Λ(u) := limn↑∞ n−1 logE(enuYn) = |u| for all u ∈ R. The dual is given by Λ∗(x) := supu(ux − Λ(u)) = 0 if

|x| ≤ 1 and infinity otherwise. These certainly violate the assumptions of the Gärtner-Ellis theorem, which we

recall in Appendix A, but it is immediate to check that the sequence (Yn)n≥1 actually satisfies a large deviations

principle with rate function equal to zero on {−1, 1} and infinite otherwise, which does not correspond to Λ∗.

More recently, O’Brien [25] and Comman [7] have strengthened this theorem, by partially relaxing the steepness

and convexity assumptions. In the setting of topological vector spaces, Bryc’s Theorem [6] (see also [10, Chapter

4.4]), or ‘Inverse Varadhan’s lemma’, allows for large deviations of sequences of measures, with non strictly

convex rate function, albeit with some exponential tightness requirement. However, several examples have been

dug out which do not fall into this framework, such as in the setting of random walks with interface [14],

occupation measures of Markov chains [21], the on/off Weibull sojourn process [13], or m-variate von Mises

statistics [15].

Motivated by recent developments on large deviations in mathematical finance (see in particular [11], [18], [8]

and the excellent review paper [26]), we study the small-time behaviour of the solution of the Feller stochastic

differential equation (and an integral version of it) when the starting point is null. The absence of Lipschitz

continuity of the diffusion coefficient and the degenerate starting condition make it not amenable to the classical

Freidlin-Wentzell framework, and the absence of strict convexity of the limiting moment generating function
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AJ acknowledges financial support from the EPSRC First Grant EP/M008436/1.

1

http://arxiv.org/abs/1411.7256v1


2 STEFANO DE MARCO, ANTOINE JACQUIER, AND PATRICK ROOME

violates the Gärtner-Ellis assumptions. It turns out that a large deviations principle however holds, and one

can furthermore reconcile the pathwise large deviations to the marginal (Gärtner-Ellis one) by contraction. We

believe this provides a nice example of non-strictly-convex large deviations principle in the context of continuous-

time stochastic processes. It also sheds light on the importance of the starting point of the SDE being null,

as opposed to the non-zero case where the Gärtner-Ellis theorem applies directly (see [16]). In Section 2, we

present the model and state the large deviations results as time tends to zero; we also establish the connection

with the Freidlin-Wentzell analysis via contraction principles. The proofs of the main results are gathered in

Section 3.

Notations: For a set G in some topological vector space T , we shall denote by Go and G the respective interior

and closure of G in T .

2. Main results

We consider here the following system of stochastic differential equations:

(2.1)

dXt = −1

2
Vtdt+

√
VtdWt, X0 = 0,

dVt = (a+ bVt)dt+ ξ
√
VtdZt, V0 = 0,

d 〈W,Z〉t = ρdt,

where a, ξ > 0, b < 0, |ρ| < 1 and (Wt)t≥0 and (Zt)t≥0 are two standard Brownian motions. We stress the

importance of the parameter a to be strictly positive; otherwise, the process V , starting from zero, would just

remain null, and the unique solution of (2.1) would simply be the two-dimensional zero process. We shall often

make use of the notations ρ̄ :=
√
1− ρ2 and µ := 2a/ξ2. The Feller SDE for the variance process has a unique

strong solution by the Yamada-Watanabe conditions [22, Proposition 2.13, page 291]). The Feller condition,

µ ≥ 1, ensures that the origin is unattainable. Otherwise the origin is regular (hence attainable) and strongly

reflecting [23, Chapter 15]. Define now the following functions:

Λ∗
X(x) =

(
u−11{x<0} + u+11{x≥0}

)
x,(2.2)

Λ∗
V (x) =

{
2x/ξ2, if x ≥ 0,

+∞, if x < 0.
(2.3)

for all x ∈ R, where the two real numbers u− and u+ read

(2.4)
u− :=

2

ξρ̄
arctan

(
ρ̄

ρ

)
11{ρ<0} −

π

ξ
11{ρ=0} +

2

ξρ̄

(
arctan

(
ρ̄

ρ

)
− π

)
11{ρ>0},

u+ :=
2

ξρ̄
arctan

(
ρ̄

ρ

)
11{ρ>0} +

π

ξ
11{ρ=0} +

2

ξρ̄

(
arctan

(
ρ̄

ρ

)
+ π

)
11{ρ<0}.

Note that u− (resp. u+) is a decreasing (resp. decreasing) function of ρ and maps the interval (−1, 1) to

(−∞,−2/ξ) (resp. (2/ξ,+∞)). We shall use the subscript/superscript M to represent the quantities related to

X or to V . For instance Λ∗
M represent Λ∗

X or Λ∗
V . We also denote KX := R \ {0} and KV := (0,∞).

2.1. Large deviations results. The main result of this paper is the following theorem, which provides an

example of a sequence of random variables for which the limiting logarithmic cumulant generating function

is zero (on its effective domain) but a large deviations principle still holds. This is to be compared to the

Gärtner-Ellis theorem [10, Theorem 2.3.6] which requires this limiting function to be steep at the boundaries of

its effective domain. As highlighted in the proof, understanding the pointwise limit of the (rescaled) cumulant

generating function does not suffice any longer, and its higher-order behaviour is needed to prove large deviations.
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Theorem 2.1. For M ∈ {X,V }, the family (Mt)t≥0 satisfies a LDP with speed t and rate function Λ∗
M as t ↓ 0.

Remark 2.2. A more in-depth analysis reveals a more precise behaviour of the small-time probabilities, which

take the following form as t tends to zero:

P(Mt ≥ x) =






1− C(x)t1−µ exp

(
−Λ∗

M(x)

t

)
(1 +O(t)) , if x < 0,

C(x)t1−µ exp

(
−Λ∗

M(x)

t

)
(1 +O(t)) , if x > 0,

for all x ∈ KM, for some (smooth) strictly positive function C. This analysis is based on the so-called theory of

sharp large deviations, developed in [4, 5], and used in [3, 18, 19] for diffusion processes and statistical estimators

thereof. Note that the power 1− µ here is pathological and not in line with the classical 1/2 power common in

the heat kernel literature. To our knowledge, there is no general result covering this special case.

2.2. Intuitions from Freidlin-Wentzell analysis. We now illustrate how piecewise linear rate functions such

as (2.3) can arise from sample-path large deviations. In order to simplify the framework, consider the solution V

of the equation obtained from (2.1) by setting V0 = v0 > 0 and a = b = 0. Setting V ε
t := Vε2t for ε > 0, the

process (V ε
t )t≥0 is the (weak) solution of the stochastic differential equation

(2.5) dV ε
t = εξ

√
V ε
t dZt, V ε

0 = v0 > 0.

Pathwise large deviations (as ε tends to zero) for the solution of this SDE fall outside the scope of the classical

Friedlin-Wentzell framework since the diffusion coefficient lacks the required global Lipschitz continuity property

(see [10, Chapter 5.6]). Donati-Martin et al. in [12] proved that, for every T > 0, the process (V ε
t )t∈[0,T ] satisfies

a large deviations principle on the path space CT = C([0, T ];R+) of non-negative continuous functions, with

speed ε2 and rate function IT given by

(2.6) IT (ϕ) =






1

2

∫ T

0

ϕ̇2
t

ξϕt
11{ϕt>0}dt, if ϕ ∈ CT is absolutely continuous and ϕ0 = v0,

+∞, otherwise,

where one sets y−111{y>0} = 0 when y = 0. More precisely, this means that the estimates

(2.7) − inf
ϕ∈Go

IT (ϕ) ≤ lim inf
ε↓0

ε2 logP(V ε ∈ G) ≤ lim sup
ε↓0

ε2 logP(V ε ∈ G) ≤ − inf
ϕ∈G

IT (ϕ)

hold for every set G ⊂ CT . By the contraction principle [10, Theorem 4.2.1], the path estimates (2.7) induce a

LDP on R for the random variable V ε
1

∆
=Vt|t=ε2 , where the rate function is now given by

(2.8) Λ(x) := inf {I1(ϕ) : ϕ ∈ C1, ϕ0 = v0, ϕ1 = x} .

This means that the sequence (Vt)t≥0 satisfies a LDP with speed t as t tends to zero, namely for every A ⊂ R,

− inf
x∈Ao

Λ(x) ≤ lim inf
t↓0

t logP(Vt ∈ Ao) ≤ lim sup
t↓0

t logP(Vt ∈ A) ≤ − inf
x∈A

Λ(x).

Proposition 2.3. The rate function Λ in (2.8) reads

Λ(x) =





2

ξ2
(√
x−√

v0
)2
, if x ≥ 0,

+∞, if x < 0.

In particular, as v0 tends to zero, the function Λ converges pointwise to Λ∗
V given in (2.3).



4 STEFANO DE MARCO, ANTOINE JACQUIER, AND PATRICK ROOME

Proof. Let AC+([0, 1]) denote the set of absolutely continuous functions on [0, 1]. If x < 0, then by definition

of I1, one has I1(ϕ) = +∞ for any ϕ such that ϕ1 = x. Then assume x ≥ 0, and consider ϕ ∈ C1 such

that ϕ1 = x and I(ϕ) < +∞. By the superposition principle (or the chain rule for absolutely continuous

functions, see [24, Theorem 3.68]), the function ψ ≡ √
ϕ is absolutely continuous on every interval contained

in the open set {ϕ > 0}, with derivative almost surely equal to ϕ̇t

2
√
ϕt

∈ L2([0, 1]). On {ϕ = 0} one has ψ ≡ 0,

therefore ψ̇t = 0 for every accumulation point of {ϕ = 0} (the isolated points form a finite subset of [0, 1]). In

summary, it follows from [24, Corollary 3.26] that ψ ∈ AC+([0, 1]), and that

∫ 1

0

(ϕ̇t)
2

ϕt
11{ϕt>0}dt = 4

∫

{ϕ>0}
(ψ̇t)

2dt = 4

∫ 1

0

(ψ̇t)
2dt.

Conversely, let ψ ∈ AC+([0, 1]) be such that ψ̇ ∈ L2([0, 1]), and set ϕ ≡ ψ2; as the composition of a C1 function

and an absolutely continuous one, ϕ also belongs to AC+([0, 1]) and ϕ̇t = 2ψtψ̇t = 2
√
ϕtψ̇t a.s. Therefore,

(2.9)

Λ(x) = inf

{
1

2ξ2

∫ 1

0

ϕ̇2
t

ϕt
11{ϕt>0}dt : ϕ ∈ AC+([0, 1]) and ϕ0 = v0, ϕ1 = x

}

= inf

{
2

ξ2

∫ 1

0

ψ̇2
t dt : ψ ∈ AC+([0, 1]) and ψ0 =

√
v0, ψ1 =

√
x

}
.

It is well known that the last problem is solved by the straight line ψ∗
t ≡ √

v0 + t(
√
x − √

v0). Substitution

into (2.9) yields Λ(x) = 2
ξ2

∫ 1

0 (ψ̇
∗
t )

2 = 2
ξ2 (

√
x−√

v0)
2, and the proposition follows. �

We are not claiming here that Λ∗
V is the rate function for V ε

1 in (2.5) when v0 = 0: in this case, the unique

solution to (2.5) is the identically null process V ε ≡ 0, so that the family V ε
1 satisfies a trivial LDP with rate

function I(ϕ) = 0 if ϕ ≡ 0, and I(ϕ) = +∞ otherwise.

Returning to the small-time problem for the solution Vt to (2.1), set V ε
t := Vε2t, which satisfies

(2.10) dV ε
t = ε2(a+ bV ε

t )dt+ εξ
√
V ε
t dZt, V ε

0 = 0.

To our knowledge, large deviations for the solution to (2.10) are not covered by the existing literature (in [12],

the authors considered the situation where the drift a+ bV is independent of ε). We leave it to future research

to prove that a pathwise LDP holds for the solution to (2.10) with a rate function similar to (2.6).

Remark 2.4. It follows from [8, Theorem 1.1] that for any v0 > 0, a pathwise LDP with rate function

ĨT (ϕ) =






1

2

∫ T

0

ϕ̇2
t

ξϕt
11{ϕt>0}dt, if ϕ ∈ CT is absolutely continuous and ϕ0 = 0,

+∞, otherwise,

holds for the solution of the stochastic differential equation

dṼ ε
t = ε2adt+ εξ

√
Ṽ ε
t dZt, Ṽ ε

0 = ε2v0.

Comparing with (2.10), note that the initial condition is strictly positive, but tends to zero as ε tends to zero.

The rate function ĨT is the same as the rate function in (2.6), except that the path ϕ is to be started at zero

instead of v0 > 0. Following analogous arguments to the proof of Proposition 2.3, the contraction principle

applied to ĨT yields the rate function (2.3), in line with Theorem 2.1.
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3. Proof of Theorem 2.1

The standard method to prove large deviations [10] is to first prove an upper bound for the lim sup, and

then prove a lower bound for the lim inf, for the logarithmic probability on all Borel subsets of the real line.

We prove here directly that the limit holds for all open intervals of the form (x,∞) for x ∈ R, which is clearly

sufficient. For any t ≥ 0 and M ∈ {X,V }, define the rescaled cumulant generating function (cgf) ΛM(·, t) of the
random variable Mt and its effective domain DM

t by

(3.1) ΛM(u, t) := t logE
(
euMt/t|F0

)
, for all u ∈ DM

t := {u ∈ R : |ΛM(u, t)| <∞} ,

Define further DM := ∩t>0DM
t . From [20], we know that

(3.2)
ΛM (u, t) = −µt

2

[
gMt (u) + 2 log fM

t (u)
]
, fX

t (u) ≡ cosh

(
d(ut )t

2

)
− gXt (u)

td(ut )
sinh

(
d(ut )t

2

)
,

fV
t (u) ≡ 1 +

uξ2

2bt

(
1− ebt

)
, gXt (u) ≡ bt+ ρξu, gVt (u) ≡ 0,

where d(u) ≡ [(b+ ρξu)2 + u(1− u)ξ2]1/2, so that the functions ΛX(·, t) and ΛV (·, t) are explicitly well defined

on DX
t and DV

t . The pointwise limit functions ΛM(u) := limt↓0 ΛM(u, t), for M ∈ {X,V }, read as follows:

Lemma 3.1. The function ΛM is null on DM and infinite outside, with DX = (u−, u+) and DV = (−∞, 2/ξ2).

Proof. The lemma follows from a simple yet careful analysis of the functions ΛX(·, t) and ΛV (·, t) together with
their effective domains. Clearly here DV

t = (−∞, uV (t)), where uV (t) ≡ 2bt/[ξ2(ebt − 1)] converges from above

to 2/ξ2 as t tends to zero. In [16], the authors showed that u+(t) (resp. u−(t)) converges from above (resp.

from below) to u+ (resp. u−) as t tends to zero, so that the limiting domain ∩t>0DX
t is equal to (u−, u+). The

pointwise limits are then straightforward to prove. �

Define now the following functions on Do
M:

(3.3)






fX0 (u) := cos(ρ̄ξu/2)− ρ

ρ̄
sin(ρ̄ξu/2), fV0 (u) := 1− uξ2

2
, fV1 (u) := −buξ

2

4
,

fX1 (u) :=





ρ(ξ + 2bρ)

4ρ̄2
cos(ρ̄ξu/2) +

(
ξ + 2bρ

4ρ̄
− ξρ+ 2b

2uξρ̄3

)
sin(ρ̄ξu/2), if u 6= 0,

−b/2, if u = 0,

,

gX0 (u) := ρξu, gV0 (u) ≡ 0.

Lemma 3.2. For M ∈ {X,V }, the expansions fM
t (u) = fM0 (u) + fM1 (u)t + O(t2) and gMt (u) = gM0 (u) +O(t)

hold for all u ∈ Do
M as t tends to zero. They further hold uniformly on compacts.

Proof. Let M = X , and define the quantities d0 := ρ̄ξsgn(u), d1 := i(2κρ−ξ)sgn(u)
2ρ̄ , where sgn(u) = 1 if u ≥ 0,

and −1 otherwise; then for any u ∈ Do
X\{0}, d(u/t) = iud0/t+ d1 +O(t), as t tends to zero, and hence

(3.4)

gXt (u)

td(u/t)
=

ρξu

iud0
+
d1ξρ− ibd0

d20u
t+O(t2),

cosh

(
d(u/t)t

2

)
= cos

(
d0u

2

)
+

id1
2

sin

(
d0u

2

)
t+O(t2),

sinh

(
d(u/t)t

2

)
= i sin

(
d0u

2

)
+
d1
2

cos

(
d0u

2

)
t+O(t2).

The expansion for fX
t in (3.2) for u ∈ Do

X\{0} follows after using the asymptotics in (3.4) and some simplifica-

tion. When u = 0, straightforward computations reveal that fX
t (u) = 1− bt/2+O(t2), in agreement with (3.2).

Note that fX
1 is continuous at the origin. The expansions for fV

t and gMt follow analogous arguments and the
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lemma follows. Uniform convergence of the sequences (gMt )t and (fV
t )t are trivial. Uniform convergence of

compacts of the sequence (fX
t )t holds as soon as supu∈Do

X

∣∣fM
t (u)− fM

0 (u)− fM
1 (u)t

∣∣ converges to zero when t

tends to zero, which is tedious but straightforward to prove. �

Consider now the (time-dependent) saddlepoint equation:

(3.5) ∂uΛM (u, t) = x, x ∈ KM, t > 0.

The following lemma proves existence and uniqueness of the solution to this equation, as well as a small-time

expansion. Let us first define the following functions on KM:

(3.6) αX
0 (x) := u−11{x<0} + u+11{x>0}, αV

0 (x) :=
2

ξ2
11{x≥0},

Lemma 3.3. For any x ∈ KM, t > 0, Equation (3.5) admits a unique solution u∗M(x, t) ∈ DM
t , and the

expansion u∗M(x, t) = αM
0 (x) + O(t) holds uniformly on compacts. For x = 0, Equation (3.5) also admits a

unique solution u∗M(0, t), which converges to zero as t approaches zero.

Proof. We first prove existence and uniqueness of the solution of the saddlepoint equation (3.5). Consider first

the case M = V . Clearly, for any t > 0, the map ∂uΛV (·, t) : DV
t → R is strictly increasing and the image of

DV
t by ∂uΛV (·, t) is R∗

+. Thus, for any x > 0, (3.5) admits a unique solution u∗V (x, t) =
2t
ξ2

(
b

ebt−1
− a

x

)
, which

converges to αV
0 (x). Consider now the case M = X . We first start with the following claims, which can be

proved using the convexity of the moment generating function and tedious computations.

(i) For any t > 0, the function ∂uΛX(·, t) : DX
t → R is strictly increasing and maps DX

t to R;

(ii) For any t > 0, u∗X(0, t) > 0 and limt↓0 u∗X(0, t) = 0, i.e. the unique minimum of ΛX(·, t) converges to zero;

(iii) For each u ∈ Do
X , ∂uΛX(u, t) converges to zero as t tends to zero.

Now, choose x > 0 (analogous arguments hold for x < 0). It is clear from (i) that (3.5) admits a unique solution.

Note further that (i) and (ii) imply u∗X(x, t) > 0. Next we introduce the following condition.

Condition A : There exists t1 > 0 such that u∗X(x, t) ∈ Do
X for all t < t1.

Suppose condition A is not true and further assume that the sequence (u∗X(x, t))t>0 does not converge to uX+

as t ↓ 0. Then there exists t∗1 > 0 and ε > 0 such that for all t < t∗1 we have u∗X(x, t) 6∈ B(uX+ , ε) := {y ∈
R : |y − uX+ | < ε}. But since limt↓0 DX

t = DX , this implies that our sequence must then satisfy condition A,

which is a contradiction. Therefore u∗X(x, t) converges to uX+ . Next suppose that condition A is true. Again

note that (i) and (ii) imply u∗X(x, t) > 0. From (iii) there exists t2 > 0 such that the sequence (u∗X(x, t))t>0

is strictly increasing as t goes to zero for t < t2. Now let t∗ = min(t1, t2) and consider t < t∗. Then u∗X(x, t)

is bounded above by u+ (because u∗X(x, t) ∈ Do
X) and therefore converges to a limit L ∈ [0, u+]. Suppose that

L 6= u+. Since s 7→ u∗X(x, s) is strictly increasing as s tends to zero (and s < t∗), and ∂uΛX(·, t) is strictly

increasing we have ∂uΛX(u∗X(x, t), t) ≤ ∂uΛX(L, t); Combining this and (iii) yields limt↓0 ∂uΛX(u∗X(x, t), t) ≤
limt↓0 ∂uΛX(L, t) = 0 6= x, which contradicts the assumption x > 0. Therefore L = u+ and the first part of the

lemma follows.

Given existence and uniqueness of the solution to the saddlepoint equation, we now prove the expansion

stated in the lemma. In light of (3.2), the saddlepoint equation (3.5) can be written explicitly as

−µt
2

[
∂ug

M
t (u∗M(x, t))fM

t (u∗M(x, t)) + 2∂uf
M
t (u∗M(x, t))

]
= fM

t (u∗M(x, t))x.

Using Lemma 3.2 in this equation and solving at each order yields the desired expansion. �
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For M ∈ {X,V } and t > 0, introduce now a time-dependent change of measure by

(3.7)
dQM

x,t

dP
:= exp

(
u∗M(x, t)Mt

t
− ΛM(u∗M(x, t), t)

t

)
.

By Lemma 3.3, u∗M(x, t) belongs to the interior of DM
t , and so |ΛM(u∗M(x, t))| is finite. Also dQM

x,t/dP is almost

surely strictly positive and E[dQM
x,t/dP] = 1. Therefore (3.7) is a valid measure change for all t > 0 and x ∈ KM.

Define now the random variable ZM
x,t := (Mt−x), and denote its characteristic function in the QM

x,t-measure (3.7)

by ΦM
x,t(u) := EQM

x,t(eiuZ
M

x,t). Its asympotic behaviour reads as follows:

Lemma 3.4. For any x ∈ KM, the expansion ΦM
x,t(u) = e−iux

(
1− iux

µ

)−µ

(1 +O(t)) holds for all u ∈ R.

Remark 3.5. Lévy’s Convergence Theorem [28, Page 185, Theorem 18.1] implies that ZM
x,t converges weakly

to the zero mean random variable Zx := −x + Ξ, where Ξ is a Gamma random variable with shape µ and

scale ν := |x|/µ. When x > 0 the support of the Gamma density is R∗
+, and for M = X and x < 0 the support

is R∗
−. For x > 0 the density of ZM

x,t is h(y) ≡ 11{y+x>0}e
−(y+x)/ν(y+ x)µ−1ν−µΓ(µ)−1, so that h ∈ L2(R) when

µ > 1/2. A similar result holds for M = X and x < 0 where the density is given by h(−y).

Proof. From the change of measure (3.7) and the re-scaled cgf given in (3.1) we can compute

logΦM
x,t(u) = logEP

(
dQM

x,t

dP
eiuZ

M

x,t

)
= −iux+

1

t

[
ΛM(iut+ u∗M(x, t), t) − ΛM(u∗M(x, t), t)

]
.

Using the definition of ΛM in (3.2) then yields

(3.8) ΦM
x,t(u) =

(
fM
t (iut+ u∗M(x, t))

fM
t (u∗M(x, t))

)−µ

exp

(
−iux− 2

µ

[
gMt (u∗M(x, t) + iut)− gMt (u∗M(x, t))

])
,

and the lemma follows from careful manipulations of Lemma 3.2. �

Lemma 3.6. For any x ∈ KM, there exists a constant C > 0 such that the expansion

exp

[
−xu

∗
M(x, t)

t
+

ΛM(u∗M(x, t), t)

t

]
= C exp

(
−Λ∗

M(x)

t

)
t−µ (1 +O(t))

holds as t tends to zero, with Λ∗
M in (2.2),(2.3).

Remark 3.7. The constant C above can be computed explicitly as

C =

(
−µ∂uf

M
0 (αM

0 (x))

x

)−µ

exp
(
−xαM

1 (x)− µ

2
gM0 (αM

0 (x))
)
.

Proof. From Lemma 3.3 and the characterisation of Λ∗ in (2.2),(2.3), there exists C > 0, such that for small t,

(3.9) exp

(
−xu

∗
M(x, t)

t

)
= C exp

(
−xα

M
0 (x)

t

)
(1 +O(t)) = C exp

(
−Λ∗

M(x)

t

)
(1 +O(t)).

The definition of ΛM in (3.2) and Lemma 3.3 yield eΛM(u∗

M
(x,t),t)/t = O (t−µ), and the lemma follows. �

We now use the expansion of the characteristic function expansion in Lemma 3.4 and Fourier inversion

methods to derive the tail probabilities of ZM
x,t under the measure (3.7).

Proposition 3.8. For any x ∈ KM, the following holds as t tends to zero:

EQM

x,t

[
exp

(
−
u∗M(x, t)ZM

x,t

t

)
11{ZM

x,t≥0}

]
11{x>0} + EQM

x,t

[
exp

(
−
u∗M(x, t)ZM

x,t

t

)
11{ZM

x,t≤0}

]
11{x<0} = O(t).
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Proof. We only prove the lemma in the case x > 0, the other side being completely analogous. Lemma B.2

implies that for small enough t,

(3.10) EQM

x,t

[
exp

(
−
u∗M(x, t)ZM

x,t

t

)
11{ZM

x,t≥0}

]
=

1

2π

∫ ∞

−∞

ΦM
x,t(u)du

u∗M(x, t)/t+ iu
.

Using the asymptotics of u∗M(x, t) in Lemma 3.3 yields (u∗M(x, t)/t+ iu)−1 = t/αM
0 (x)+O(t2) for small enough

t. Finally combining this with Lemma 3.4 and (3.10) we obtain

EQM

x,t

[
exp

(
−
u∗M(x, t)ZM

x,t

t

)
11{ZM

x,t≥0}

]
=

t

2παM
0 (x)

∫ ∞

−∞
e−iux

(
1− iux

µ

)−µ

(1 +O(t)) du.

Clearly

∣∣∣∣
∫∞
−∞ e−iuz

(
1− iuz

µ

)−µ

du

∣∣∣∣ <∞ for all z 6= 0, µ > 0, and the proposition thus follows. �

We now put all the pieces together. Using the time-dependent change of measure (3.7), we have for x > 0

P(Mt ≥ x) = E
[
11{Mt≥x}

]
= exp

(
ΛM(u∗M(x, t)

t

)
EQM

x,t

[
exp

(
−u

∗
M(x, t)Mt

t

)
11{Mt≥x}

]

= exp

(
−xu

∗
M(x, t)− ΛM(u∗M(x, t), t)

t

)
EQM

x,t

[
exp

(
−
u∗M(x, t)ZM

x,t

t

)
11{ZM

x,t≥0}

]
,

with ZM
x,t defined on page 7. The theorem then follows from Lemma 3.6 and Proposition 3.8. An analogous

argument holds for probabilities P(Mt ≤ x) when x < 0, and Theorem 2.1 follows.

Appendix A. The Gärtner Ellis Theorem

We provide here a brief review of large deviations and the Gärtner-Ellis theorem. For a detailed account

of these, the interested reader should consult [10]. Let (Xn)n∈N be a sequence of random variables in R, with

law µn and cumulant generating function Λn(u) ≡ logE(euXn).

Definition A.1. The sequence Xn is said to satisfy a large deviations principle with speed n and rate function I

if for each Borel mesurable set E ⊂ R,

− inf
x∈Eo

I(x) ≤ lim inf
n↑∞

1

n
logP (Xn ∈ E) ≤ lim sup

n↑∞

1

n
logP (Xn ∈ E) ≤ − inf

x∈Ē
I(x).

Before stating the main theorem, we need one more concept:

Definition A.2. Let Λ : R → (−∞,+∞] be a convex function, and DΛ := {u ∈ R : Λ(u) < ∞} its effective

domain. It is said to be essentially smooth if

• The interior Do
Λ is non-empty;

• Λ is differentiable throughout Do
Λ;

• Λ is steep: lim
n↑∞

|Λ′(un)| = ∞ whenever (un) is a sequence in Do
Λ converging to a boundary point of Do

Λ.

Assume now that the limiting cumulant generating function Λ(u) := limn↑∞ n−1Λn(nu), exists as an extended

real number for all u ∈ R, and let DΛ denote its effective domain. Let Λ∗ : R → R+ denote its (dual) Fenchel-

Legendre transform, via the variational formula Λ∗(x) ≡ supλ∈DΛ
{λx− Λ(λ)}. Then the following holds:

Theorem A.3 (Gärtner-Ellis theorem). If the origin lies in the interior of DΛ and if Λ is lower semicontinuous

and essentially smooth, then the sequence (Xn)n satisfies a large deviations principle with rate function Λ∗.
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Appendix B. Inverse Fourier Transform Representation

Let g(z) := exp (−u∗M(x, t)z/t) 11{z≥0}. The main result of this appendix is the following representaion:

Lemma B.1. There exists t∗1 > 0 such that for all t < t∗1 and all x > 0:

(B.1) EQM

x,t

[
g(ZM

x,t)
]
=

1

2π

∫ ∞

−∞

ΦM
x,t(u)du

u∗M(x, t)/t+ iu
.

The proof of Lemma B.1 proceeds in two steps: We first prove that the integrand in the right-hand side

of Equality (B.1) belongs to L1(R) (and hence the integral is well-defined), and we then prove that this very

equality holds. The first step is contained in the following lemma.

Lemma B.2. There exists t∗0 > 0 such that
∫∞
−∞

∣∣∣ ΦM

x,t(u)

u∗

M
(x,t)/t+iu

∣∣∣ du <∞ for all t < t∗0 and x > 0.

Proof. Let M = V . Using (3.8) we see that ΦV
x,t(u) = e−iux (1 + iudt)

−µ
where dt :=

ξ2t(1−ebt)
2bt+u∗

V
(x,t)ξ2(1−ebt)

(recall

also from Lemma 3.4 that limt↓0 dt = −x/µ). The modulus is then given by |ΦV
x,t(u)| = (1 + u2d2t )

−µ/2 and

hence for small enough t we have that |ΦV
x,t(u)| ≤ D|u|−µ for some D > 0. Furthermore, we easily see that

|(u∗M(x, t)/t+ iu)−1| ≤ min(1/u, t/u∗M(x, t)) and hence we compute

∫ ∞

−∞

∣∣∣∣∣
ΦV

x,t(u)

u∗V (x, t)/t+ iu

∣∣∣∣∣ du =

∫

|u|≤1

∣∣∣∣∣
ΦV

x,t(u)

u∗V (x, t)/t+ iu

∣∣∣∣∣ du+

∫

|u|>1

∣∣∣∣∣
ΦV

x,t(u)

u∗V (x, t)/t+ iu

∣∣∣∣∣du

≤ 2t/u∗V (x, t) +D

∫

|u|>1

|u|−µ−1du.

The last inequality is finite for sufficently small t since u∗V (x, t) converges to 2/ξ2 as t tends to zero and µ > 0.

The case M = X follows from anlogous yet tedious computations. �

We now move on to the proof of Lemma B.1. We only look at the case M = V , the other cases being completely

analogous. We denote the convolution of two functions f, h ∈ L1(R) by (f ∗ h)(x) :=
∫
R
f(x − y)h(y)dy, and

recall that (f ∗h) ∈ L1(R). For such functions, we denote the Fourier transform by (Ff)(u) :=
∫∞
−∞ eiuxf(x)dx

and the inverse Fourier transform by (F−1h)(x) := 1
2π

∫∞
−∞ e−iuxh(u)du. We have that

(B.2) F (g(z)) (u) :=

∫ ∞

−∞
exp

(
−u

∗
V (x, t)z

t
+ iuz

)
11{z≥0}dz =

1

u∗V (x, t)/t− iu
,

if u∗V (x, t) > 0, which holds for t small enough since by Lemma 3.3 u∗V (x, t) converges to u
V
+ and uV+ > 0. We

write

EQV
x,t

[
g(ZV

x,t)
]
=

∫

R

q(x− y)p(y)dy = (q ∗ p)(x),

with q(z) ≡ g(−z) and p denoting the density of Vt. On the strips of regularity (x > 0) we know there exists

t0 > 0 such that q ∈ L1(R) for t < t0. Since p is a density, p ∈ L1(R), and therefore

(B.3) F(q ∗ p)(u) = Fq(u)Fp(u).

We note that Fq(u) ≡ Fg(−u) ≡ Fg(u) and hence using (B.2)

(B.4) Fq(u)Fp(u) ≡ eiux
ΦV

x,t(u)

u∗V (x, t)/t+ iu
,
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since the complex conjugate of w−1 is equal to (ℜ(w)− iℑ(w))−1, for w ∈ C. Thus by Lemma B.2 there exists

an t1 > 0 such that FqFp ∈ L1(R) for t < t1. By the inversion theorem [27, Theorem 9.11] this then implies

from (B.3) and (B.4) that for t < min(t0, t1):

EQV
x,t

[
g(ZV

x,t)
]
= (q ∗ p)(x) = F−1 (Fq(u)Fp(u)) (x)

=
1

2π

∫

R

e−iuxFq(u)Fp(u)du =
1

2π

∫

R

ΦV
x,t(u)

u∗V (x, t)/t+ iu
du.
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Birkhaüser, 1990.

[7] H. Comman. Differentiability-free conditions on the free-energy rate function implying large deviations Conuentes Mathematici,

1(2): 181-196, 2009.

[8] G. Conforti, S. De Marco and J–D. Deuschel On small-noise equations with degenerate limiting system arising from volatility

models. Large Deviations and Asymptotic Methods in Finance. Springer Proceedings in Mathematics & Statistics, 110, 2015.
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