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Abstract

We obtain sharp gradient bounds for perturbed diffusion semigroups. In contrast with
existing results, the perturbation is here random and the bounds obtained are pathwise.
Our approach builds on the classical work of Kusuoka and Stroock [12, 14, 15, 16], and
extends their program developed for the heat semi-group to solutions of stochastic partial
differential equations. The work is motivated by and applied to nonlinear filtering. The
analysis allows us to derive pathwise gradient bounds for the un-normalised conditional
distribution of a partially observed signal. It uses a pathwise representation of the per-
turbed semigroup following Ocone [21]. The estimates we derive have sharp small time
asymptotics.

MSC 2010: 60H30 (60G35; 60H35; 93E11).

Keywords: Stochastic partial differential equation; Filtering; Zakai equation; Ran-
domly perturbed semigroup, gradient bounds, small time asymptotics.

1 Introduction

In the eighties, Kusuoka and Stroock [12, 14, 15, 16] analysed the smoothness properties of
the (perturbed) semigroup associated to a diffusion process. More precisely, let (Ω,F ,P) be
a probability space on which we have defined a d1-dimensional standard Brownian motion B
and Xx = {Xx

t , t ≥ 0}, x ∈ RN be the stochastic flow

Xx
t = x+

∫ t

0
V0(Xx

s )ds+

d1∑
i=1

∫ t

0
Vi(X

x
s ) ◦ dBi

s, t ≥ 0, (1)

where the vector fields {Vi, i = 0, ..., d1} are in C∞b (RN ,RN ), by which we mean that they
are smooth and bounded with bounded derivatives of all orders, and the stochastic integrals
in (1) are of Stratonovich type. The corresponding perturbed diffusion semigroup is then
given by
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(P ct ϕ)(x) = E
[
ϕ(Xx

t ) exp

(∫ t

0
c (Xx

s ) ds

)]
, t ≥ 0, x ∈ RN ,

where c ∈ C∞b (RN ) and ϕ : RN → R is an arbitrary bounded measurable function. In the
following, if c = 0 we will also write Pt in place of P ct . The vector fields {Vi, i = 0, ..., d1} are
assumed to satisfy Kusuoka’s so-called UFG condition (see Definition 1 below). This condition
essentially states that the C∞b (RN )-moduleW generated by the vector fields {Vi, i = 1, ..., d1}
within the Lie algebra generated by {Vi, i = 0, ..., d1} is finite dimensional. In particular,
the condition does not require that the vector space {W (x)|W ∈ W} is isomorphic to RN for
all x ∈ RN . Hence, in this sense, the UFG condition is weaker than the uniform Hörmander
condition.

Kusuoka and Stroock prove under the UFG condition that P ct ϕ is differentiable in the
direction of any vector fieldW belonging toW. Moreover, they deduce sharp gradient bounds
of the following form: Given vector fieldsWi ∈ W, i = 1, ...,m+n there exist constants C > 0,
l > 0 such that

‖W1 . . .WmP
c
t (Wm+1 . . .Wm+nϕ)‖p ≤ Ct−l‖ϕ‖p, (2)

holds for any ϕ ∈ C∞0
(
RN
)
, t ∈ (0, 1] and p ∈ [1,∞] (see [16], Corollary 2.19 and [12],

Theorem 2 under the UH and UFG condition respectively). The constant l depends explicitly
on the vector fields Wi, i = 1, ...,m+n and the small time asymptotics (2) are sharp. In this
paper we deduce a similar result for the randomly perturbed semigroup. More precisely, let
Y = {

(
Y i
t

)d2
i=1

, t ≥ 0} be a d2-dimensional standard Brownian motion independent of X, and
define

ρ
Y (ω)
t (ϕ)(x) = E [ϕ(Xx

t )Zxt | Yt] (ω) , t ≥ 0, x ∈ RN , (3)

where Zx = {Zxt , t ≥ 0}, x ∈ RN is the stochastic process

Zxt = exp

(
d2∑
i=1

∫ t

0
hi (Xx

s ) dY i
s −

1

2

d2∑
i=1

∫ t

0
hi (Xx

s )2 ds

)
, t ≥ 0, (4)

hi ∈ C∞b (RN ), i = 1, ..., d2 and ϕ is an arbitrary bounded measurable function on RN . In the
following, we prove that the mapping x −→ ρ

Y (ω)
t (ϕ)(x) has the property that there exists a

P-almost surely finite random variable ω → C (ω) such that

‖W1 . . .Wmρ
Y (ω)
t (Wm+1 . . .Wm+nϕ) ‖p ≤ C (ω) t−l‖ϕ‖p, (5)

for any ϕ ∈ C∞0
(
RN
)
, t ∈ (0, 1], p ∈ [1,∞] and l being that same constant as in (2)

We are interested in this particular perturbation as it provides the Feynman-Kac repre-
sentation for solutions of linear parabolic stochastic partial differential equations (SPDEs)1.

1We expect the methodology presented here can be extended to handle a wider class of random per-
turbations. We chose this particular perturbation because the corresponding randomly perturbed semigroup
provides the Feynman-Kac representation for the solution of the filtering problem. See the Kallianpur-Striebel
formula (11) below.
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To make this more precise, let ρx = {ρxt , t ≥ 0}, x ∈ RN be the measure valued process
defined on the probability space (Ω,F ,P) by the formula

(ρxt (ω)) (ϕ) = ρ
Y (ω)
t (ϕ)(x), (6)

where ϕ is an arbitrary Borel measurable function. Then ρx is the solution of the following
linear parabolic SPDE (written here in its weak form):

ρxt (ϕ) = ρx0(ϕ) +

∫ t

0
ρxs (Aϕ)ds+

d2∑
k=1

∫ t

0
ρxs (hkϕ)dY k

s (7)

where ρx0 = δx is the Dirac delta distribution centered at x ∈ RN , A = V0 + 1
2

∑d1
i=1 V

2
i is the

infinitesimal generator of X, and ϕ is a suitably chosen test function. Equation (7) is called
the Duncan-Mortensen-Zakai equation (cf. [8, 22, 23]). It plays a central rôle in nonlinear
filtering: The normalized solution of (7) gives the conditional distribution of a partially
observed stochastic process. We give details of this intrinsic connection in the second section.

As already stated, in this paper we study the mapping x −→ ρ
Y (ω)
t (ϕ)(x) for a fixed

(Brownian) path Y (ω) and a suitably chosen test function ϕ. In [3], the authors look at the
application Y (ω) −→ ρ

Y (ω)
t (ϕ)(x) for a fixed x ∈ RN and any suitably chosen test function

ϕ and show that it is a (locally) Lipschitz continuous function as defined on the space of
continuous paths2.

Note that regularity properties for the non-linear filtering problem have previously been
obtained by Kusuoka-Stroock [17] using the techniques of the partial Malliavin calculus, see
also earlier work by Bismut-Michel [2] and subsequently Nualart, Zakai [20]. Our present
approach frequently makes use of the fact that we are dealing with the uncorrelated filtering
problem. Previous work using rough paths in the context of filtering [4], also [7] considers
the setting where the noises in the signal and observation are correlated.

The paper is structured as follows: In Section 2 we introduce the filtering problem and
explain the connection with the randomly perturbed semigroup (RPS). In section 3 we state
the main results of the paper, that is, we introduce the corresponding sharp gradient bounds
of the type (5) for the RPS. In addition, we also give direct corollaries on the smoothness
properties of the solution of the filtering problem.

In Section 4, we derive an expansion of the RPS in terms of a classical perturbation se-
ries. The expansion is in terms of a series of (iterated) integrals with respect to the Brownian
motion Y and is derived by exploiting the intrinsic connection between the RPS and the mild
solution to the Zakai equation. We then proceed to prove the main theorem. The proof of the
main theorem is contingent on two non-trivial regularity estimates for the terms appearing in
the perturbation expansion of ρY (ω)

t (Propositions 9 and 10), which we prove in the remainder
of the paper.

2Here we consider the space of continuous paths defined on [0,∞) with values Rd2 endowed with the
topology of convergence in the supremum norm on compacts. The choice of the norm is important. See [4]
for further details.
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In a first step towards proving these two propositions, in Section 5 we re-write the terms
of the perturbation expansion iteratively using integration by parts to derive a pathwise
representation of the RPS. We then prove a priori regularity estimates for the terms in the
perturbation series in Subsection 5.2. For this, we state Hölder type regularity estimates for
each term in the pathwise representation of the perturbation expansion. These estimates in
turn are later proved in the appendix by carefully leveraging the gradient estimates for heat
semi-groups due to Kusuoka and Stroock. Although these a priori estimates are asymptoti-
cally sharp for the lower order terms in the expansion, they are not summable.

Finally, in Section 6 we rely on both the a prior estimates derived in Section 5.2 and
arguments underlying the Extension Theorem - a fundamental result from rough path theory
(see, e.g. [18, 19]) - to deduce factorially decaying Hölder type bounds for the terms in
the perturbation expansion. To this end, we observe that the terms of the original series
(as derived in Section 4), when regarded as bounded linear operators between suitable spaces
that encode the derivatives, are multiplicative functionals. Such multiplicative functionals are
more general than ordinary rough paths but arise similarly for example also in the context
of the work of Deya, Gubinelli, Tindel et al (see e.g. [6]) where they analyse rough heat
equations. The paper is completed with an appendix containing several useful lemmas and
the proof of the regularity estimates stated in Subsection 5.2.

Acknowledgements. We would like to thank the anonymous referee for carefully reading
the paper and providing us with insightful comments that allowed us to improve the pre-
sentation of our results significantly. The work of D. Crisan and C. Litterer was partially
supported by the EPSRC Grant No: EP/H0005500/1. The work of T. Lyons was partially
supported by the EPSRC Grant No: EP/H000100/1.

2 The non-linear filtering problem

The nonlinear filtering problem is stated on the probability space (Ω,F , P̃), where the new
probability measure P̃ is related to the probability measure P under which the triple3 (X,Y,B)
has been introduced in the previous section. More precisely, the probability measure P̃ is
absolutely continuous with respect to P and its Radon-Nikodym derivative is given by

dP̃
dP

∣∣∣∣∣
Ft

= Zt, t ≥ 0,

where Z = {Zt, t ≥ 0} is the exponential martingale defined in (4), that is,

Zt = exp

(
d2∑
i=1

∫ t

0
hi (Xs) dY

i
s −

1

2

d2∑
i=1

∫ t

0
hi (Xs)

2 ds

)
, t ≥ 0.

3Throughout this section, we will omit the dependence on the initial condition x ∈ RN for the processes
Xx. The same appllies to all other processes (Z, W,ρ etc).
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Under P̃ the law of the process X remains the same as under P. That is, under both P and
P̃, X satisfies the stochastic differential equation

dXt = V0(Xt)dt+

d1∑
i=1

Vi(Xt) ◦ dBi
t, X0 = x ∈ RN , t ≥ 0. (8)

Let C∞b (RN ) denote the space of smooth bounded functions on RN with bounded derivatives
of all orders and C∞0 (RN ) the space of compactly supported smooth functions on RN .As
in the previous section, we assume that the vector fields {Vi, i = 0, ..., d1} are smooth and
bounded with bounded derivatives, i.e. Vi = (V j

i )Nj=1, where V
j
i ∈ C∞b (RN ) for all j = 1, ..., N

and that the stochastic integrals in (8) are of Stratonovich type. We denote by π0 the initial
distribution of X and, from (8) we have that we that π0 = δx, x ∈ RN

The process Y is no longer a Brownian motion under P̃, but becomes a semi-martingale.
More precisely, Y satisfies the following evolution equation

Yt =

∫ t

0
h(Xs)ds+Wt, (9)

where W is a standard Ft-adapted d2-dimensional Brownian motion (under P̃) independent
of X. Let {Yt, t ≥ 0} be the usual filtration associated with the process Y , that is Yt =
σ(Ys, s ∈ [0, t]).

Within the filtering framework, the process X is called the signal process and the process
Y is called the observation process. The filtering problem consists in determining πt, the
conditional distribution of the signal X at time t given the information accumulated from
observing Y in the interval [0, t], that is, for any ϕ Borel bounded function, computing

πt (ϕ) = E[ϕ(Xt) | Yt]. (10)

The connection between πt, the conditional distribution of Xt, and the randomly perturbed
semigroup is given by the Kallianpur-Striebel formula. More precisely, we have

πt(ϕ) =
ρ
Y (ω)
t (ϕ)

ρ
Y (ω)
t (1)

, P− a.s., (11)

where 1 is the constant function 1 (x) = 1 for any x ∈ RN . Equivalently, the Kallianpur-
Striebel formula can be stated as

πt =
1

ct
ρt P− a.s.,

where ρt is the measure valued process which solves the Duncan-Mortensen-Zakai equation (7)
and ct = ρt(1). The Kallianpur-Striebel formula explains the usage of the term unnormalised
for ρt as the denominator ρt(1) can be viewed as the normalizing factor for ρt. For further
details of the filtering framework see, for example, [1] and the references therein.
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3 The main theorems

Let A the set of multi-indices

A = {∅, (α1, . . . , αk), k ≥ 1, aj ∈ {0, . . . , d1}, j = 1, . . . , k} .

Following Kusuoka [12] we define a multiplication/concatenation operation on A by setting

α ∗ β = (α1, . . . , αk, β1, . . . , βl)

for multi-indices α = (α1, . . . , αk), β = (β1, . . . , βl) ∈ A. Furthermore we define the degree
of the multi-index α = (α1, . . . , αk) by ‖α‖ = k + card(j : αj = 0). Let A0 = A \ {0},
A1 = A \ {∅, (0)} and A1(j) = {α ∈ A1 : ‖α‖ ≤ j}. We inductively define a family of vector
fields indexed by A by taking

V[∅] = Id, V[i] = Vi, 0 ≤ i ≤ d1

V[α∗i] = [V[α], Vi], 0 ≤ i ≤ d1, α ∈ A.

The following condition was introduced by Kusuoka and is weaker than the usual (uni-
form) Hörmander condition imposed on the vector fields defining the signal diffusion (see
Kusuoka [12] ).

Definition 1 The family of vector fields Vi, i = 0, . . . , d1 is said to satisfy the UFG condition
if there exists a positive integer k such that for all α ∈ A1 there exist uα,β ∈ C∞b (RN ) satisfying

V[α] =
∑

β∈A1(k)

uα,βV[β]. (12)

In essence, the UFG conditions states that, eventually, all higher order Lie brackets can be
expressed as a linear combination Lie brackets of order k or lower. The uniform Hörmander
condition implies the UFG condition, but not vice versa as we can see from the following
example due to Kusuoka [12]:

Example 2 Assume d = 1 and N = 2. Let V0, V1 be given by

V0(x1, x2) = sinx1
∂

∂x1
V1(x1, x2) = sinx1

∂

∂x2
.

Then {V0, V1} do not satisfy the Hörmander condition. However the UFG condition is satis-
fied with k = 4.

From now on, we assume that the family of vector fields Vi, i = 0, . . . , d1 satisfies the
UFG condition. We will assume, in the following that k̄ denote the minimal integer k for
which condition (12) holds. We are ready to formulate the main theorem.
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Theorem 3 Suppose the family of vector fields Vi, i = 0, . . . , d1 satisfies the UFG condition.
Let m ≥ j ≥ 0, α1, . . . , αj , . . . , αm ∈ A1

(
k̄
)
and h ∈ C∞b (RN ). Then there exists a random

variable C (ω) almost surely finite such that the randomly perturbed semigroup ρY (ω)
t satisfies∥∥∥(V[α1] · · ·V[αj ]ρ

Y (ω)
t

(
V[αj+1] · · ·V[αm]ϕ

))
(x)
∥∥∥
∞
≤ C (ω) t−l ‖ϕ‖∞

for any ϕ ∈ C∞b (RN ), t ∈ (0, 1], where l = (‖α1‖+ · · ·+ ‖αm‖) /2. If in addition h ∈
C∞0

(
RN
)
then there exists a random variable C (ω) almost surely finite such that∥∥∥(V[α1] · · ·V[αj ]ρ

Y (ω)
t

(
V[αj+1] · · ·V[αm]ϕ

))
(x)
∥∥∥
p
≤ C (ω) t−l ‖ϕ‖p (13)

for all ϕ ∈ C∞0
(
RN
)
, t ∈ (0, 1] and p ∈ [1,∞], where l = (‖α1‖+ · · ·+ ‖αm‖) /2.

Remark 4 The dependence of the constant C (ω) on the observation path Y (ω) in Theorem
3 can be made explicit in terms of a rough Hölder norm of Y . More precisely, let γ ∈ (2, 3)
then for all M > 0 there exists CM such that∥∥∥(V[α1] · · ·V[αj ]ρ

Y (ω)
t

(
V[αj+1] · · ·V[αm]ϕ

))
(x)
∥∥∥
∞
≤ CM t−l ‖ϕ‖∞

for all ϕ ∈ C∞b (RN ), t ∈ (0, 1] and

ω ∈
{
ω : ‖Y (ω)‖RP (γ) < M

}
,

where

‖Y (ω)‖RP (γ) := sup
0≤s≤t≤1

|Yt (ω)− Ys (ω)|
|t− s|γ + max

i,j∈{1,...d2}
sup

0≤s≤t≤1

∣∣∣∫ ts ∫ t2s dY i
t1 (ω) dY j

t2
(ω)
∣∣∣

|t− s|2γ
.

An analogous estimate holds for the bound in (13) .

Before we begin the proof of our main theorem we explore some immediate consequences
of the result. We first observe that we can obtain similar estimates for the conditional
distribution.

Corollary 5 Under the assumptions of Theorem 3, there exists a random variable C̄ (ω)
almost surely finite such that the conditional distribution πt satisfies∥∥∥(V[α1] · · ·V[αj ]πt

(
V[αj+1] · · ·V[αm]ϕ

))
(x)
∥∥∥
∞
≤ C̄ (ω) t−l ‖ϕ‖∞

for any ϕ ∈ C∞b (RN ), t ∈ (0, 1], where l = (‖α1‖+ · · ·+ ‖αm‖) /2.

Proof. We show the results for j = 1, and m = 2, the general case being done by using the
Leibniz rule for the n-th derivative. We have

V[α1]πt
(
V[α2]ϕ

)
(x) = V[α1]

[
ρ
Y (ω)
t

(
V[α2]ϕ

)
/ρ

Y (ω)
t (1)

]
(x) (14)

= V[α1]ρ
Y (ω)
t

(
V[α2]ϕ

)
(ρ
Y (ω)
t (1))−1 (x) + ρ

Y (ω)
t

(
V[α2]ϕ

)
V[α1]((ρ

Y (ω)
t (1))−1) (x) .
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Since, almost surely, (see the Appendix for a proof)

sup
x∈RN

(
1/ρ

Y (ω)
t (1)

)
<∞, (15)

we deduce that, for any x ∈ RN , we have∣∣V[α1]πt
(
V[α2]ϕ

)
(x)
∣∣ ≤ C̄ (ω) t−(‖α1‖+‖α2‖)/2 ‖ϕ‖∞ ,

where C̄ (ω) = C (ω) ((ρ
Y (ω)
t (1))−1 + (ρ

Y (ω)
t (1))−2).

Note that if the vector fields Vi, i = 0, ..., d1 satisfy the UFG condition, we can in general
not guarantee the existence of a density of the unnormalised conditional distribution of the
signal with respect to the Lebesgue measure given any starting point. However, just as for
the unperturbed diffusion semigroup, ρY (ω)

t will have a density y → ρ̄
x,Y (ω)
t (y) with respect

to the Lebesgue measure provided we assume that there exists a positive integer k such that
for any vector field V with coeffi cients in C∞b (RN ), there exist uV,β ∈ C∞b (RN ) satisfying

V =
∑

β∈A1(k)

uα,βV[β]. (16)

The above assumption is equivalent to the existence of a positive integer k such that for
i = 1, ..., N, there exist ui,β ∈ C∞b (RN ) satisfying

∂i =
∑

β∈A1(k)

ui,βV[β]. (17)

In particular this means that

Span{V[α](x) : α ∈ A1(k)} = RN

holds for all x ∈ RN . Following from [5], under condition (16), the law of the signal Xx
t has

a smooth density y → pxt (y) with respect to the Lebesgue measure for all t > 0.4 Under this
assumption, we can deduce also deduce gradient estimates for the density y → ρ̄

x,Y (ω)
t (y):

Corollary 6 Assume that the vector fields Vi, i = 0, ..., d1 satisfy condition (16) and that
π0 = δx is the Dirac measure at x and h ∈ C∞b (RN ) Then, for all t > 0, the unnormalised

conditional distribution of the signal ρY (ω)
t has a smooth density y → ρ̄

x,Y (ω)
t (y) with respect

to the Lebesgue measure. Moreover for any multi-index ι = (i1, ..., in) ∈ {1, . . . , N}n there
exists a random variable C̄ι (ω) almost surely finite such that∥∥∥∂i1 ...∂in ρ̄x,Y (ω)

t

∥∥∥
1
≤ C̄ι (ω) t−

kn
2 , t ∈ (0, 1]. (18)

If in addition h ∈ C∞0
(
RN
)
then for any multi-index ι = (i1, ..., in) ∈ {1, . . . , N}n and any

p ∈ [1,∞] , there exists a random variable C̄ι (ω) almost surely finite such that∥∥∥∂i1 ...∂in ρ̄x,Y (ω)
t

∥∥∥
p
≤ C̄ι (ω) t−

kn
2 , t ∈ (0, 1]. (19)

4See [5] for the connection between condition (16) and the uniform Hörmander condition and the corre-
sponding extensions for the smoothness results.
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Proof. As already stated, following from [5], under condition (16), the law of the signal Xx
t

has a density y → pxt (y) with respect to the Lebesgue measure for all t > 0. Moreover from
the definition (6) of the measure ρY (ω)

t in terms of the randomly perturbed semigroup (3) it

follows that ρY (ω)
t is absolutely continuous with respect to the law of the signal Xx

t and its
density is given by the function y → Ψx

t (y) defined as

Ψx
t (y) = Ẽ[Zxt |Xt = y,Yt]

and called the likelihood function in the context of stochastic filtering. Therefore, the unnor-
malised conditional distribution of the signal ρY (ω)

t has, indeed, a density y → ρ̄
x,Y (ω)
t (y) with

respect to the Lebesgue measure and ρ̄x,Y (ω)
t (y) = Ψx

t (y)pxt (y) for all y ∈ RN . In particular,

ρ
Y (ω)
t (ϕ) =

∫
RN

ϕ(y)Ψx
t (y)pxt (y) dy,

for any bounded measurable test function ϕ. From Theorem 3 we then deduce that for any
multi-index ι = (i1, ..., in) ∈ A, there exists a random variable Cι (ω) almost surely finite such
that ∣∣∣(ρY (ω)

t (∂i1 ...∂inϕ)
)∣∣∣ ≤ Cι (ω) t−

km
2 ‖ϕ‖∞ (20)

for any ϕ ∈ C∞b (RN ). The smoothness of ρ̄Y (ω)
t follows immediately as in [5] by classical

results. The inequality (18) follows from (20) and the bound (19) follows in a similar manner.

4 Proof of the main theorem

As a first step in the proof of our main theorem we expand the unnormalised conditional
distribution of the signal using its representation as the mild solution of the Zakai equation.
This is a standard result, see for example [21] and [11]. For completeness we include it in
Lemma 7 below. We define the set of operators Rt̄,̄ı, where t̄ = (t1, t2, . . . , tk) is a non-empty
multi-index with entries t0, t1, . . . , tk ∈ [0,∞) that have increasing values t0 < t1 < ... < tk
and ı̄ = (i1, ..., ik−1) is a multi-index with entries i1, ..., ik−1 ∈ {1, 2, ..., d2} as follows

R(t0,t1),∅(ϕ) = Pt1−t0 (ϕ)

and, inductively, for k > 1,

R(t0,t1,t2,...,tk),(i1,...,ik−1) (ϕ) = R(t0,t1,...,tk−1),(i1,...,ik−2)

(
hik−1Ptk−tk−1(ϕ)

)
= Pt1−t0

(
hi1Pt2−t1 . . .

(
hik−1Ptk−tk−1(ϕ)

))
= Pt1−t0

(
hi1R(t1,t2,...,tk),(i2,...,ik−1)(ϕ)

)
.

Note that the length of the multi-index t̄ is always two units more than ı̄. Also let S (m) to
denote the set of all multi-indices

S (m) = {(i1, ..., im) | 1 ≤ ij ≤ d2 , 1 ≤ j ≤ m} .

and let S =
⋃∞
m=1 S (m).
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Lemma 7 Let ρt be the unnormalised conditional density defined in (3) and ϕ ∈ C∞b (RN ).
Then we have in L2 and almost surely that

ρ
Y (ω)
t (ϕ) = Pt(ϕ) +

∞∑
m=1

∑
ı̄∈S(m)

Rm,̄ı0,t (ϕ) (21)

where, for ı̄ = (i1, ..., im),

Rm,̄ı0,t (ϕ) =

∫ t

0

∫ tm

0
. . .

∫ t2

0︸ ︷︷ ︸
m times

R(0,t1,...,tm,t),̄ı(ϕ)dY i1
t1
. . . dY im

tm .

Proof. The measure ρY (ω)
t admits the following (mild) representation:

ρ
Y (ω)
t (ϕ) = Pt(ϕ) +

d2∑
i=1

∫ t

0
ρY (ω)
s (hiPt−s(ϕ))dY i

s .

Arguing by induction it is easy to see that

ρ
Y (ω)
t (ϕ) (x) = Pt(ϕ)(x) +

k∑
m=1

∑
ı̄∈S(m)

Rm,̄ı0,t (ϕ) +
∑

ı̄∈S(k+1)

Remk+1,̄ı
0,t (ϕ) ,

where

Remk+1,̄ı
0,t (ϕ) =

∫ t

0

∫ tk+1

0
. . .

∫ t2

0︸ ︷︷ ︸
k+1 times

ρ
Y (ω)
t1

(hi1Pt2−t1hi2 · · ·hik+1Pt−tk+1(ϕ)) (x) dY i1
t1
· · · dY ik+1

tk+1
.

Using iteratively Jensen’s inequality and the Itô isometry we see that

E
[
Remk+1,̄ı

0,1 (ϕ)2
]

≤
∫ 1

0

∫ tk+1

0
. . .

∫ t2

0
E
[
ρ
Y (ω)
t1

(hi1Pt2−t1hi2 · · ·hik+1Pt−tk+1(ϕ))2
]
dt1 · · · dtk+1

≤ et||h||∞ ||h||
2(k+1)
∞

(k + 1)!
‖ϕ‖2∞ ,

since, by Jensen’s inequality

E
[
ρ
Y (ω)
t1

(hi1Pt2−t1hi2 · · ·hik+1Pt−tk+1(ϕ))2
]
≤ ||h||2k+2

∞ E
[
(Zxt )2

]
≤ et||h||∞ ||h||2(k+1)

∞ .

hence Remk+1,̄ı
0,t (ϕ) converges to 0 as k tends to ∞. As the convergence is factorially fast a.s.

convergence holds and the claim follows.
Before we can prove the main theorem we require three non-trivial estimates for the regu-

larity of the terms appearing in the expansion (21) of ρY (ω)
t (ϕ). The first is the aforementioned

gradient estimate due Kusuoka and Stroock for the heat semi-group. The following theorem
is due to Kusuoka-Stroock [16] (Corollary 2.19) under the uniform Hörmander condition and
Kusuoka [12] (Theorem 2) under the UFG assumption.

10



Theorem 8 Suppose the family of vector fields Vi, i = 0, . . . , d1 satisfies the UFG condition.
Let m ≥ j ≥ 0, α1, . . . , αj , . . . , αm ∈ A1

(
k̄
)
then there exists a constant C such that∥∥∥V[α1] · · ·V[αj ]Pt

(
V[αj+1] · · ·V[αm]ϕ

)∥∥∥
p
≤ Ct−(‖α1‖+···+‖αm‖)/2 ‖ϕ‖p

for any ϕ ∈ C∞0
(
RN
)
, t ∈ (0, 1] and p ∈ [1,∞] .

The second ingredient for the proof of the main theorem are the following regularity
estimates for the terms Rm,̄ı0,t .

Proposition 9 Under the assumptions of Theorem 3, let l ≥ j ≥ 0, α1, . . . , αj , . . . , αl ∈
A1

(
k̄
)
and γ ∈ (1/3, 1/2) . Then, for any m ∈ N there exist a random variable C =

C (ω,m, l, γ) > 0 almost surely finite such that∥∥∥V[α1] · · ·V[αj ]R
m,̄ı
0,t (V[αj+1] · · ·V[αl]ϕ)

∥∥∥
∞
≤ Ct−(‖α1‖+···+‖αl‖)/2+mγ ‖ϕ‖∞

for all ı̄ ∈ S (m) , ϕ ∈ C∞b (RN ) and t ∈ (0, 1].

The preceding proposition suggests that the short term asymptotics of the regularity of
ρt are determined by the leading term of the expansion - the heat semi-group Ptf itself. The
estimate is unfortunately not summable in m and will therefore only be used to control the
regularity of Rm,̄ı0,t for small m. Before we proceed we state a second set of a priori estimates
that capture the regularity of the Rm,̄ı0,t in terms of operator norms on some carefully chosen
spaces. These estimate do not lead to sharp short small time asymptotics and will therefore
only be used to estimate the regularity of Rm,̄ı0,t for suffi ciently large values of m.

To derive the second set of factorially decaying estimates we regard the Rm,̄ı0,t as linear
operators acting on smooth functions endowed with suitable norms. Since both the heat
kernels and the multiplication operators defined by the sensor functions hi map C∞b (RN )
functions to C∞b (RN ) functions we see that Rm,̄ı0,t maps C

∞
b (RN ) to C∞b (RN ). We first define

a distribution space appropriate for our problem. For ϕ ∈ C∞b (RN ) let

‖ϕ‖H−1 := inf


∑

α∈A0(k̄)

‖ϕα‖∞ : ϕ =
∑

α∈A0(k̄)

V[α]ϕα, ϕa ∈ C∞b (RN )

 .

Then ‖·‖H−1 defines a norm on C∞b (RN ) that is bounded above by ‖ϕ‖∞ , but potentially
smaller. Similarly we may define a Sobolev type norm on C∞b (RN ) by letting

‖ϕ‖H1 :=
∑

α∈A0(k̄)

∥∥V[α]ϕ
∥∥
∞ .

Recall in this context that the index set A0

(
k̄
)
contains the empty set and we have set

V[∅] = Id.
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Proposition 10 Under the assumptions of Theorem 3 there exist constants θ > 0, γ′ ∈
(1/3, 1/2), m0 = m0 (γ′) ∈ N and a random variable c(γ′, ω), almost surely finite, such that

∥∥∥Rm,̄ı0,t

∥∥∥
H−1→H1

≤ (c (γ′, ω) t)mγ
′

θ (mγ′)!

for all m ≥ m0, ı̄ ∈ S (m) and t ∈ (0, 1].

The proofs of Proposition 9 and 10 are non-trivial and will be given in Section 5.2 and 6
respectively. Combining the previous estimates we are ready to prove our main theorem.

Proof of Theorem 3. We prove the result for j = 1, and m = 2, the general case being
done by using the corresponding estimates for the higher order derivatives of the integral
kernels and the higher order Sobolev and distribution spaces corresponding to H1 and H−1

to accommodate higher order derivatives. For the first part of the theorem, we are going to
show that there exists a positive random variable C almost surely finite such that∥∥∥V[α]ρ

Y (ω)
t (V[β]ϕ)

∥∥∥
∞
≤ C (ω) t−(‖α‖+‖β‖)/2 ||ϕ||∞

for any t ∈ (0, 1] and ϕ ∈ C∞b (RN ). Fix γ ∈ (1/3, 1/2) and let γ′, θ and m0 as in Proposition
10. We have by Lemma 7∥∥∥V[α]ρ

Y (ω)
t (V[β]ϕ)

∥∥∥
∞
≤
∥∥V[α]Pt(V[β]ϕ)

∥∥
∞

+

m0∑
k=1

∑
ı̄∈S(k)

∥∥∥V[α]R
k,̄ı
0,t

(
V[β]ϕ

)∥∥∥
∞

+

∞∑
k=m0+1

∑
ı̄∈S(k)

∥∥∥V[α]R
k,̄ı
0,t

(
V[β]ϕ

)∥∥∥
∞
.

(22)

Now ∥∥∥V[α]R
k,̄ı
0,t

(
V[β]ϕ

) ∥∥∥
∞
≤
∥∥∥Rk,̄ı0,t

(
V[β]ϕ

) ∥∥∥
H1

≤
∥∥∥Rk,̄ı0,t

∥∥∥
H−1→H1

∥∥V[β]ϕ
∥∥
H−1

≤
∥∥∥Rk,̄ı0,t

∥∥∥
H−1→H1

‖ϕ‖∞ .

Therefore using Theorem 8 for the first, Proposition 9 for the second and Proposition 10 for
the third term in the sum on the right hand side of (22) we see that∥∥∥V[α]ρ

Y (ω)
t (V[β]ϕ)

∥∥∥
∞
≤ t−(‖α‖+‖β‖)/2 ||ϕ||∞ +

m0∑
k=1

ckt
−(‖α‖+‖β‖)/2+kγ ||ϕ||∞

+

∞∑
k=m0+1

tkγ
′ c (γ′, ω, d2)k

θ (kγ′)!
||ϕ||∞

≤ c (ω) t−(‖α‖+‖β‖)/2 ||ϕ||∞
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where

c (ω) = 1 +

m0∑
k=1

ck +
∞∑

k=m0+1

c (γ′, ω, d2)k

θ (kγ′)!
.

Clearly, the constants and the parameter m0 in equation (22) will depend on the number of
derivatives required.

For the proof of the second part of the theorem, the general Lp estimate, we follow
Kusuoka [12]. First observe that

‖ϕ‖1 = sup
{g∈C∞0 (RN ), ‖g‖∞≤1}

∣∣∣∣∫
RN

ϕ (x) g (x) dx

∣∣∣∣ . (23)

Let P ∗t be the (formal) adjoint operator of Pt, that is, let P
∗
t be defined as

P ∗t ϕ (x) := E

(
exp

(∫ t

0
c̃
(
X̃x
s

)
ds

)
ϕ
(
X̃x
t

))
, x ∈ RN ,

where

c̃ = div (V0) +
1

2

d∑
j=1

Vj (div (Vj)) +
1

2

d∑
j=1

(div (Vj))
2

and X̃t be the diffusion associated to the vector fields
(
Ṽ0, V1, . . . , Vd

)
and

Ṽ0 = −V0 +
1

2

d∑
j=1

Vj (div (Vj)) .

Then P ∗t satisfies ∫
Ptϕ (x) g (x) dx =

∫
ϕ (x)P ∗t g (x) dx, (24)

for any ϕ, g ∈ C∞0 (RN ) (see Kusuoka, Stroock [16] for a more general result).
By Lemma 7 we may write

ρ
Y (ω)
t = Pt +

∞∑
m=1

∑
ı̄∈S(m)

∫
∆m
0,t

Pt1Hi1Pt2−t1Hi2 · · ·HimPt−tmdY
i1
t1
· · · dY im

tm ,

where Hi are the (self-adjoint) multiplication operators corresponding the (compactly sup-
ported) hi. Iteratively applying identity (24) to the expansion of ρ

Y (ω)
t to identify its formal

adjoint ρ∗t as

ρ∗t = P ∗t +
∞∑
m=1

∑
ı̄∈S(m)

∫
∆m
0,t

P ∗t−tmHimP
∗
tm−tm−1Him−1 · · ·Hi1P

∗
t1dY

i1
t1
· · · dY im

tm . (25)

13



Using (23) and (25) we see that∥∥V[α]ρ
x
t

(
V[β]ϕ

)
(Y )
∥∥

1
= sup
{g∈C∞0 (RN ), ‖g‖∞≤1}

∣∣∣∣∫ g (x)V[α]ρ
Y (ω)
t

(
V[β]ϕ (x)

)
dx

∣∣∣∣
= sup
{g∈C∞0 (RN ), ‖g‖∞≤1}

∣∣∣∣∫ V ∗[β]ρ
∗
t

(
V ∗[α]g (x)

)
ϕ (x) dx

∣∣∣∣
≤ sup
{g∈C∞0 (RN ), ‖g‖∞≤1}

∥∥∥V ∗[β]ρ
∗
t

(
V ∗[α]g (x)

)∥∥∥
∞
‖ϕ‖1 ,

where the formal adjoint of a vector field V[α] is given by

V ∗[α] = −V[α] −
N∑
i=1

∂

∂xi
V i

[α].

The arguments in the proof of Proposition 9 can be easily extended to allow us to deduce the
relevant estimates for the terms in the expansion (25). Extending the proof of Proposition
10 requires some small modifications that are discussed in Remark 20. Going through the
steps in the proof of the first part of the proof with ρ∗t in place of ρt we deduce that∥∥∥V ∗[β]ρ

∗
t

(
V ∗[α]g

)∥∥∥
∞
≤ c (ω) t−(‖α‖+‖β‖)/2 ||g||∞ ,

and the case of general p ∈ [1,∞] is a now consequence of classical Riesz-Thorin interpolation.

The proof of the main result is now complete. The remainder of the paper is dedicated
to the proof of Propositions 9 and 10.

5 Pathwise representation of the perturbation expansion and
some preliminary estimates

5.1 A pathwise perturbation expansion

For the first step towards a proof of Proposition 9 we derive the pathwise representation
for the multiple stochastic integrals Rm,̄ı0,t (ϕ) as a sum of Riemann integrals with integrands
depending on the Brownian motion Y . We will require the following notation. For k ∈ N
let ∆k

s,t denote the simplex defined by the relation s < t1 < · · · < tk < t and let dtk :=

dt1 · · · dtk.For ı̄ = (i1, ..., ik) ∈ S (k) we set dY ı̄
t = dY i1

t1
...dY ik

tk
and define iterated integrals

qı̄s,t (Y ) by setting

qı̄s,t (Y ) :=

∫
∆k
s,t

dY ı̄
t =

∫ t

s

∫ tk

s
. . .

∫ t2

s︸ ︷︷ ︸
k times

dY i1
t1
...dY ik

tk
.

Let qk̄1,...,k̄r
s,t̄

(Y ), k̄1, ..., k̄r ∈ S, t̄ = (t1, ...tr) be the products of iterated integrals

qk̄1,...,k̄r
s,t̄

(Y ) =
r∏
i=1

qk̄is,ti (Y ) .
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Next define the sets Θ (k)

Θ (k) = sp

{
qk̄1,...,k̄r
s,t̄

(Y ) , k̄1, ..., k̄r ∈ S, t̄ = (t1, ...tr) ,
r∑
i=1

∣∣k̄i∣∣ = k

}

and let Θ :=
⋃
k∈N Θ (k) . For q ∈ Θ we define its formal degree by setting deg (q) := r, where

r is the unique number such that q ∈ Θ (r) . For ı̄ = (i1, ..., ik) ∈ S (k) define Φı̄, Ψı̄, be the
following operators

Φı̄ϕ = hi1 ...hikϕ

Ψı̄ϕ = [Φı̄, A] (ϕ) = A(hi1 ...hik)ϕ+
d∑
i=1

Vi(hi1 ...hik)Viϕ.

and Γı̄ be the set of operators Γı̄ = {Φı̄,Ψı̄,Ψı̄Φı̄} . In the following proposition we obtain
a pathwise representation of the terms in our expansion of the un-normalised conditional
density. The proof will exploit integration by parts formulas of the form∫ t

0
q

(i1,...,ik)
0,s (Y )

(∫ s

0
Zrdr

)
dY

ik+1
s = q

(i1,...,ik+1)
0,t (Y )

∫ t

0
Zsds−

∫ t

0
q

(i1,...,ik+1)
0,s (Y )Zsds,

where Z is a suitably chosen process.

Proposition 11 Let ı̄ = (i1, .., im) ∈ S (m). Then we have, almost surely, that

Rm,̄ıs,t (ϕ) = Pt−s(hi1 ...himϕ)(x)qı̄s,t (Y )

+
m−1∑
k=1

∑
j̄1,...,j̄k; ı̄=j̄1∗...∗j̄k

am,j̄1,...,j̄k(s,t) (Y )

∫
∆k
s,t

bm,j̄1,...,j̄k(s,t1,...,tk) (Y ) R̄m,j̄1,...,j̄k(s,t1,...,tk,t)
(ϕ)(x)dtk

+
m∑
k=1

∑
j̄1,...,j̄k; ı̄=j̄1∗...∗j̄k

∫
∆k
s,t

cm,j̄1,...,j̄k(s,t1,...,tk) (Y ) R̂m,j̄1,...,j̄k(s,t1,...,tk,t)
(ϕ)(x)dtk, (26)

and am,j̄1,...,j̄k(s,t) (Y ) , bm,j̄1,...,j̄k(s,t1,...,tk) (Y ), cm,j̄1,...,j̄k(s,t1,...,tk) (Y ) ∈ Θ are linear combinations of (products of)

iterated integrals of Y and R̄m,j̄1,...,j̄k(s,t1,...,tk,t)
(ϕ), respectively R̂m,j̄1,...,j̄k(s,t1,...,tk,t)

(ϕ) are of the form

Pt1−s
(
Φ̄1Pt2−t1 . . .

(
Φ̄kPt−tk(ϕ)

))
,

where Φ̄p ∈ Γj̄p , p = 1, .., k. Moreover we have

deg
(
am,j̄1,...,j̄k(s,t) (Y )

)
+ deg

(
bm,j̄1,...,j̄k(s,t1,...,tk) (Y )

)
= deg

(
cm,j̄1,...,j̄k(s,t1,...,tk) (Y )

)
= m. (27)

Before we begin the proof note that R̄m,j̄1,...,j̄k(s,t1,...,tk,t)
(ϕ) and R̂m,j̄1,...,j̄k(s,t1,...,tk,t)

(ϕ) are in general
different, but have the same structure as they both can be written as iterated compositions
of the heat semi-group and operators drawn from the sets Γj̄p .
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Proof. The proof follows by induction. For m = 1 observe that

R1
s,t (ϕ) =

∫ t

s
Pt1−s(hi1Pt−t1(ϕ))(x)dY i1

t1

= Pt−s(hi1ϕ)(x)

∫ t

s
dY i1

r −
∫ t

s

(∫ t1

s
dY i1

r

)
d

dt1
Pt1−s(hi1Pt−t1(ϕ))(x)dt1,

where

d

dt1
Pt1−s(hi1Pt−t1(ϕ))(x) = Pt1−s(A(hi1Pt−t1(ϕ)))(x)− Pt1−s(hi1APt−t1(ϕ))(x)

= Pt1−s(Ψ(i1)Pt−t1(ϕ)))(x).

so (26) holds true with

c
1,(i1)
(s,t1) (Y ) =

∫ t1

s
dY i1

r

and, obviously, (27) is satisfied. For the induction step, observe that for ı̄ ∗ im+1

R
m+1,̄ı∗im+1
s,t (ϕ) =

∫ t

s
Rm,̄ıs,tm+1

(him+1Pt−tm+1(ϕ)) (x) dY
im+1
tm+1

.

Hence, assuming that Rm,̄ıs,tm+1
has an expansion of as in (26), it follows that

R
m+1,̄ı∗im+1
s,t (ϕ) = R

1,m+1,̄ı∗im+1
s,t (ϕ) +R

2,m+1,̄ı∗im+1
s,t (ϕ) +R

3,m+1,̄ı∗im+1
s,t (ϕ) , (28)

where

R
1,m+1,̄ı∗im+1
s,t (ϕ) =

∫ t

s
Ptm+1−s(hi1 ...him+1Pt−tm+1(ϕ))(x)

∫
∆m
s,tm+1

dY ı̄
t dY

im+1
tm+1

R
2,m+1,̄ı∗im+1
s,t (ϕ) =

m−1∑
k=1

∑
j̄1,...,j̄k; ı̄=j̄1∗...∗j̄k

∫ t

s
am,j̄1,...,j̄k(s,tm+1) (Y )

∫
∆k
s,tm+1

bm,j̄1,...,j̄k(s,t1,...,tk) (Y ) R̄k,j̄1,...,j̄k(s,t1,...,tk,tm+1)(him+1Pt−tm+1(ϕ))(x)dtkdY
im+1
tm+1

R
3,m+1,̄ı∗im+1
s,t (ϕ) =

m∑
k=1

∑
j̄1,...,j̄k; ı̄=j̄1∗...∗j̄k

∫ t

s

∫
∆k
s,tm+1

cm,j̄1,...,j̄k(s,t1,...,tk) (Y ) R̂k,j̄1,...,j̄k(s,t1,...,tk,tm+1)(him+1Pt−tm+1(ϕ))(x)dtkdY
im+1
tm+1

.
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We expand each of the three terms in (28). For the first term we have

R
1,m+1,̄ı∗im+1
s,t (ϕ) = Pt−s(hi1 ...him+1ϕ)(x)

∫
∆m+1
s,t

dY
ı̄∗im+1
t

−
∫ t

s

(∫ tm+1

s

∫
∆m
s,r

dY ı̄
t dY

im+1
r

)
d

dtm+1
Ptm+1−s(hi1 ...him+1Pt−tm+1(ϕ))(x)dtm+1

= Pt−s(hi1 ...him+1ϕ)(x)

∫
∆m+1
s,t

dY
ı̄∗im+1
t

−
∫ t

s

(∫ tm+1

s

∫
∆m
s,r

dY ı̄
t dY

im+1
r

)
Ptm+1−s(Ψı̄∗im+1Pt−tm+1(ϕ))(x)dtm+1. (29)

so the first term in the expansion of R1,m+1,̄ı∗im+1
s,t (ϕ) gives us the first term in the expansion

of (28) and the second term in the expansion of R1,m+1,̄ı∗im+1
s,t (ϕ) can be incorporated in the

last term in the expansion of (28). Obviously,

deg

(∫
∆m+1
s,t

dY
ı̄∗im+1
t

)
= m+ 1

so (27) is satisfied. For the second term we have

R
2,m+1,̄ı∗im+1
s,t (ϕ) =

m−1∑
k=1

∑
j̄1,...,j̄k; ı̄=j̄1∗...∗j̄k

∫ t

s
am,j̄1,...,j̄k(s,tm+1) (Y )

∫ tm+1

s

∫
∆k−1
s,tk

bm,j̄1,...,j̄k(s,t1,...,tk) (Y ) R̄m,j̄1,...,j̄k(s,t1,...,tk,tm+1)(him+1Pt−tm+1(ϕ))(x)dt̄k−1dY
im+1
tm+1

=
m−1∑
k=1

∑
j̄1,...,j̄k; ı̄=j̄1∗...∗j̄k

∫ t

s
am,j̄1,...,j̄k(s,tm+1) (Y ) dY

im+1
tm+1

∫ t

s
S

2,m+1,j̄1,...,j̄k,im+1
s,tm+1

(ϕ)dtm+1

−
m−1∑
k=1

∑
j̄1,...,j̄k; ı̄=j̄1∗...∗j̄k

∫ t

s

(∫ tm+1

s
am,j̄1,...,j̄k(s,r) (Y ) dY im+1

r

)
S

2,m+1,j̄1,...,j̄k,im+1
s,tm+1

(ϕ)dtm+1 (30)

where

S
2,m+1,j̄1,...,j̄k,im+1
s,tm+1

(ϕ)

=
d

dtm+1

∫
∆k
s,tm+1

bm,j̄1,...,j̄k(s,t1,...,tk) (Y ) R̄m,j̄1,...,j̄k(s,t1,...,tk,tm+1)(him+1Pt−tm+1(ϕ))(x)dt̄k
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=

∫
∆k−1
s,tm+1

bm,j̄1,...,j̄k(s,t1,...,tk) (Y ) R̄m,j̄1,...,j̄k(s,t1,...,tm+1,tm+1)(him+1Pt−tm+1(ϕ))(x)dt̄k−1

+

∫
∆k
s,tm+1

bm,j̄1,...,j̄k(s,t1,...,tk) (Y ) R̄m,j̄1,...,j̄k(s,t1,...,tk,tm+1)(A
(
him+1Pt−tm+1(ϕ)

)
−him+1A

(
Pt−tm+1(ϕ)

)
)(x)dt̄k

=

∫
∆k−1
s,tm+1

bm,j̄1,...,j̄k(s,t1,...,tk) (Y ) R̄m,j̄1,...,j̄k(s,t1,...,tm+1,tm+1)(Φ(im+1)Pt−tm+1(ϕ))(x)dt̄k−1

+

∫
∆k
s,tm+1

bm,j̄1,...,j̄k(s,t1,...,tk) (Y ) R̄m,j̄1,...,j̄k(s,t1,...,tk,tm+1)(Ψ(im+1)Pt−tm+1(ϕ))(x)dt̄k (31)

The first term in the expansion of R2,m+1,̄ı∗im+1
s,t (ϕ) contributes to the second term in the

expansion of (28). The identity (27) is also satisfied as each of the terms am,j̄1,...,j̄k(s,tm+1) (Y ) is
replaced by ∫ t

s
ak,m,̄ı(s,tm+1) (Y ) dY im+1

r

so the degree for each term increases by 1. Similarly, the second term in the expansion of
R

2,m+1,̄ı∗im+1
s,t (ϕ) contributes to the third term in the expansion of (28), whilst the identity

(27) is also satisfied as each of the terms am,j̄1,...,j̄k(s,r) (Y ) is replaced by∫ tm+1

s
am,j̄1,...,j̄k(s,r) (Y ) dY im+1

r

so, again, the degree for each term increases by 1. Similarly,

R
3,m+1,̄ı∗im+1
s,t (ϕ)

=

m∑
k=1

∑
j̄1,...,j̄k; ı̄=j̄1∗...∗j̄k

∫ t

s

∫
∆k
s,tm+1

cm,j̄1,...,j̄k(s,t1,...,tk) (Y ) R̂m,j̄1,...,j̄k(s,t1,...,tk,tm+1)(him+1Pt−tm+1(ϕ))(x)dt̄kdY
im+1
tm+1

(32)

=
m∑
k=1

∑
j̄1,...,j̄k; ı̄=j̄1∗...∗j̄k

∫ t

s
dY

im+1
tm+1

∫ t

s
S

3,m,j̄1,...,j̄k,im+1
s,tm+1

(ϕ) dtm+1

−
∫ t

s

∫ tm+1

s
dY im+1

r S
3,m,j̄1,...,j̄k,im+1
s,tm+1

(ϕ) dtm+1
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where

S
3,m,j̄1,...,j̄k,im+1
s,tm+1

(ϕ) =
d

dtm+1

∫
∆k
s,tm+1

cm,j̄1,...,j̄k(s,t1,...,tk) (Y ) R̂m,j̄1,...,j̄k(s,t1,...,tk,tm+1)(him+1Pt−tm+1(ϕ))(x)dt̄k

=

∫
∆k−1
s,tm+1

cm,j̄1,...,j̄k(s,t1,...,tk) (Y ) R̂m,j̄1,...,j̄k(s,t1,...,tm+1,tm+1)(Φ(im+1)Pt−tm+1(ϕ))(x)dt̄k−1

+

∫
∆k
s,tm+1

cm,j̄1,...,j̄k(s,t1,...,tk) (Y ) R̂m,j̄1,...,j̄k(s,t1,...,tk,tm+1)(Ψ(im+1)Pt−tm+1(ϕ))(x)dt̄k (33)

The first term in the expansion of R3,m+1,̄ı∗im+1
s,t (ϕ) contributes to the second term in the ex-

pansion of (28). Identity (27) is again satisfied as we add
∫ t
s dY

im+1
tm+1

to each of the terms so the

total degree increases by 1. Similarly, the second term in the expansion of R3,m+1,̄ı∗im+1
s,t (ϕ)

contributes to the third term in the expansion of (28), whilst the identity (27) is again satisfied
as we add

∫ t
s dY

im+1
tm+1

to each term.
The result now follows from (29), (30), (31), (32) and (33).

We will require a pathwise control of the iterated (Itô) integrals qı̄s,t (Y ) of the Brownian
motion Y. It is well known that the Itô lift of Brownian motion is a Hölder controlled rough
path (see e.g. [19] or [9]), which immediately implies the following lemma.

Lemma 12 For any 1/3 < γ < 1/2 there exists a positive random variable c = c (ω, γ) and
some constant θ > 0 such that, almost surely,

∣∣qı̄s,t (Y )
∣∣ ≤ (c (ω, γ) |s− t|)kγ

θ (kγ)!

for all 0 ≤ s ≤ t ≤ 1, ı̄ ∈ S (k) .

It is important to note that the operators Φ that arise when we recursively apply the
integration by parts in the Proposition 11 only involve the vector fields Vi, i = 1, . . . , d1

(but not the vector field V0) and these vector fields do not change if we consider the Itô or
Stratonovich versions of the SDE defining the signal.

We have already seen that the Rm,̄ıs,t may be regarded as bounded linear operators. The
following two lemmas show us how to deduce regularity estimates on Rm,̄ıs,t from regularity

estimates on the integral kernels R̄ and R̂, provided these operators make sense as bounded
linear operators over suitable function spaces. More specifically, let W and W̃ denote two

function spaces and let
(
L
(
W, W̃

)
, ‖·‖

)
be the space of bounded linear operators from W

to W̃ . In the following the function spaces W and W̃ will be taken to be either H1 or H−1

and we will (later) see that the Rm,̄ıs,t are indeed bounded linear operators on these spaces and
thus satisfy the hypothesis of Lemma 13.
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Lemma 13 With the notation of Lemma 11. Let
(
L
(
W, W̃

)
, ‖·‖

)
be the space of bounded

linear operators discussed above, ı̄ ∈ S (m) and suppose that Pt, R
m,̄ı
s,t , R̄

m,j̄1,...,j̄k·
(s,t1,...,tk,t)

, R̂m,j̄1,...,j̄k(s,t1,...,tk,t)
∈

L
(
W, W̃

)
for all 0 ≤ s < t ≤ 1. Then for any 1/3 < γ < 1/2 there exist random variables

c(γ, ω,m) such that, almost surely∥∥Rm,̄ıs,t

∥∥ ≤ (c (γ, ω,m) |t− s|)mγ (‖Pt−s (hi1 · · ·him ·)‖ (34)

+

m∑
k=1

∑
j̄1,...,j̄k; ı̄=j̄1∗...∗j̄k

∫
∆k
s,t

∥∥∥R̄m,j̄1,...,j̄k(s,t1,...,tk,t)

∥∥∥+
∥∥∥R̂m,j̄1,...,j̄k(s,t1,...,tk,t)

∥∥∥ dtk
 .

Proof. It follows immediately from combining the Hölder estimates for the iterated integrals
qı̄s,t (Y ) obtained in Lemma 12 and Proposition 11 that∥∥Rm,̄ıs,t

∥∥ ≤ (c (γ, ω,m) |t− s|)mγ (‖Pt−s (hi1 · · ·him ·)‖

+
m∑
k=1

∑
j̄1,...,j̄k; ı̄=j̄1∗...∗j̄k

∥∥∥∥∥
∫

∆k
s,t

R̄m,j̄1,...,j̄k(s,t1,...,tk,t)
dtk

∥∥∥∥∥+

∥∥∥∥∥
∫

∆k
s,t

R̂m,j̄1,...,j̄k(s,t1,...,tk,t)
dtk

∥∥∥∥∥
 .

In the following lemma we assume that the integral kernels R̄ and R̂ have bounds with
integrable singularities. The control of the constants in the lemma is actually stronger than
we will later require.

Lemma 14 Under the assumptions of Lemma 13. Let ı̄ ∈ S (m) , m ≥ 1. Suppose there
exists a constant c such that for all j̄1, . . . , j̄k ∈ S satisfying ı̄ = j̄1 ∗ ... ∗ j̄k., t0 = 0 < t1 <
· · · < tk < t we have both∥∥∥R̄m,j̄1,...,j̄k(0,t1,...,tk,t)

∥∥∥ ≤ ctk0 1√
t1 − t0

· · · 1√
tk − tk−1

(35)

and ∥∥∥R̂m,j̄1,...,j̄k(0,t1,...,tk,t)

∥∥∥ ≤ ctk0 1√
t1 − t0

· · · 1√
tk − tk−1

for some k0 ∈ R. Then∫
∆k
s,t

∥∥∥R̄m,j̄1,...,j̄k(s,t1,...,tk,t)

∥∥∥+
∥∥∥R̂m,j̄1,...,j̄k(s,t1,...,tk,t)

∥∥∥ dtk ≤ ak |t− s|k/2+k0 (36)

where

ak =
4 (2
√
π)
k
c

kΓ
(
k
2

) .

Proof. First observe that∫ t

s

∫ tk

s
. . .

∫ t2

s︸ ︷︷ ︸
k times

R̄m,j̄1,...,j̄k(s,t1,...,tk,t)
(ϕ)dt1...dtk =

∫ t−s

0

∫ tk

0
. . .

∫ t2

0︸ ︷︷ ︸
k times

R̄m,j̄1,...,j̄k(0,t1,...,tk,t−s)(ϕ)dt1...dtk.
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Hence, it is suffi cient to prove the result for s = 0. Writing t− s = u let Λu be the simplex

Λu =

{
(a1, ..., ak) ∈ Rk+|

k∑
i=1

ai ≤ u
}
.

We have ∥∥∥Pa1 (Φ̄1Pa2 . . . Φ̄k−1Pak

(
Φ̄kPu−(

∑k
j=1 aj)

))∥∥∥ ≤ ckuk0 1
√
a1

1
√
a2
· · · 1
√
ak

and introduce the change of variable ai = uz2
i , i = 1, ..., k with the determinant of its

Jacobian being 2kukz1z2...zk. Then∫
Λk+1t

∥∥∥Pa1 (Φ̄1Pa2 . . . Φ̄k−1Pak

(
Φ̄kPu−(

∑k
j=1 aj)

))∥∥∥ da ≤ ck2ku k2+k0 l
(

Λk+1
1

)
,

where

Λk+1
1 ⊂

{
(z1, ..., zk) ∈ Rk+|

k∑
i=1

z2
i ≤ 1

}
.

In other words Λk+1
1 is a subset of the unit hypersphere hence its volume less the volume of

the sphere so

l
(

Λk+1
1

)
≤ 2π

k
2

kΓ
(
k
2

) .
A similar argument using R̂m,j̄1,...,j̄k(s,t1,...,tk,t)

in place of R̄m,j̄1,...,j̄k(s,t1,...,tk,t)
completes the proof.

5.2 Kusuoka-Stroock regularity estimates for the integral kernels and the

proof of Proposition 9

In this subsection we state regularity estimates for the integral kernels R̂ and R̄ that arise
in the pathwise representation of the expansion of the unnormalised conditional density.
The results are subsequently proved in Appendix 7.2. The use of these bounds is twofold.
Firstly, they will allow us to control directly the lower order terms in the expansion derived
in Section 5 (as in Proposition 9) and, secondly, they provide us via Lemma 13 with bounds
on the operator norms of the operators Rm,̄ı acting on the spaces H1 and H−1 respectively.

Proposition 15 Let α, β ∈ A1

(
k̄
)
and R̄m,j̄1,...,j̄k(s,t1,...,tk,t)

(ϕ) and R̂m,j̄1,...,j̄k(s,t1,...,tk,t)
(ϕ) as in Proposition

11. Then, for any m ∈ N there exist a constant cm such that for all ı̄ ∈ S (m) , j̄1, . . . , j̄k ∈ S
satisfying ı̄ = j̄1 ∗ ... ∗ j̄k. and t0 = 0 < t1 < · · · < tk < t ≤ 1 we have both∥∥∥V[α]R̄

m,j̄1,...,j̄k
(0,t1,...,tk,t)

V[β]ϕ
∥∥∥
∞
≤ cmt−(‖α‖+‖β‖)/2 1√

t1 − t0
· · · 1√

tk − tk−1
‖ϕ‖∞ (37)

and ∥∥∥V[α]R̂
m,j̄1,...,j̄k
(0,t1,...,tk,t)

V[β]ϕ
∥∥∥
∞
≤ cmt−(‖α‖+‖β‖)/2 1√

t1 − t0
· · · 1√

tk − tk−1
‖ϕ‖∞ .

for all ϕ ∈ C∞b (RN ).
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The proof of the proposition is non-trivial, but closely follows the ideas and techniques of
Kusuoka [12]. We therefore defer the proof of Proposition 15 and all the lemmas required on
the way to Appendix 7.2. Finally, we record that the proof of Proposition 9 is an immediate
consequence.
Proof of Proposition 9. Proposition 15 provides regularity estimates for the kernels R̄ and
R̂. Theorem 8 may be used to estimate the regularity of Pt−s (hi1 · · ·him ·) . The corresponding
bounds for Rm,̄ı0,t in Proposition 9 follow by arguing exactly as in the proof of Lemma 14.

6 Proof of Proposition 10: Factorial decay of the integral sum-
mands via rough path techniques

6.1 Some preliminary estimates

Before we can proceed with the proof of Proposition 10 we explore some of the consequences
of the estimates derived in Proposition 15, which were already used in the proof of Proposition
9. It turns out the same estimate can be used to control various operator norms of the terms
in the perturbation expansion. Recall that the constant k̄ was defined to be the minimal
number of Lie brackets required to satisfy the UFG condition.

Lemma 16 With the notation of Lemma 7 for any 0 < γ < 1/2, m > 0 there exist random
variables c(γ,m, ω) such that, almost surely∥∥Rm,̄ıs,t

∥∥
H−1→H−1 ≤ c (γ,m, ω) |t− s|mγ . (38)∥∥Rm,̄ıs,t

∥∥
H1→H1 ≤ c (γ,m, ω) |t− s|mγ . (39)

and finally ∥∥Rm,̄ıs,t

∥∥
H−1→H1 ≤ c (γ,m, ω) |t− s|mγ−k̄ . (40)

for all ı̄ ∈ S (m) , 0 < s < t < 1.

The proof of Lemma 16 is once again deferred to the appendix (Section 7.3), as it relies
on the same Malliavin calculus techniques employed in the proof of Proposition 15.

So far, we have established a priori Hölder type estimates for Rm,̄ıs,t (ϕ) , but the estimates
in their current form are not yet summable. The following proof of Proposition 10 relies on
a fundamental rough path technique to improve on these bounds and demonstrate that the
operator norms of Rm,̄ıs,t decay in fact factorially in m.

6.2 Proof of Proposition 10

To make the presentation more transparent we introduce some additional notations for the
following arguments. Recall that ∆k

s,t denotes the simplex defined by the relation s < t1 <
· · · < tk < t and the Hi are the operators corresponding to multiplication by the sensor
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function hi. For any 0 ≤ s < t ≤ 1 define R∅s,t := 1 and recall the linear operators Rn,̄ıs,t may
be written as

Rn,̄ıs,t =

∫
∆k
s,t

Pt1−sHi1Pt2−t1Hi2 · · ·HinPt−tndY
i1
t1
· · · dY in

tn

for all ı̄ = (i1, . . . , in) ∈ S, n ≥ 1.

Let W := Rd2 and ε1, . . . , εd2 be a basis for W. For ı̄ = (i1, . . . ij) ∈ S (j) let εı̄ =
εi1 ⊗ · · · ⊗ εij and note that the εı̄ are a basis for the space W⊗j . Finally, let V be a Banach
algebra (i.e. a Banach space with a multiplication and a submultiplicative norm). We define
Pd2,k (V ) the space of non-commutative polynomials in d2 variables of degree at most k over
V by letting

Pd2,k (V ) :=


k∑
j=0

∑
ı̄∈S(j)

cı̄εı̄ : cı̄ ∈ V

 .

Define a multiplication for a =
∑k

j=0 aj , aj =
∑

ı̄∈S(j) aı̄εı̄ and b =
∑k

j=0 bj , bj =
∑

ı̄∈S(j) bı̄εı̄
by setting

ab :=
k∑
v=0

v∑
j=0

ajbv−j :=
k∑
v=0

v∑
j=0

∑
ı̄∈S(j)

∑
l̄∈S(v−j)

aı̄bl̄εı̄∗l̄. (41)

Further note that
v∑
j=0

∑
ı̄∈S(j)

∑
l̄∈S(v−j)

aı̄bl̄εı̄∗l̄ =
∑
ı̄∈S(v)

∑
m̄∗l̄=ı̄

am̄bl̄εm̄∗l̄ (42)

and define for k ≥ i ≥ 1 the projection πi by setting πi (a) = ai. We impose a norm on
Pd2,k (V ) by setting∥∥∥∥∥∥

k∑
j=0

∑
ı̄∈S(j)

cı̄εı̄

∥∥∥∥∥∥ = sup {‖cı̄‖ : j ∈ {0, . . . , k} , ı̄ ∈ S (j)}

Let Q0
s,t = 1 and Qjs,t for j ∈ N be given by

Qjs,t =
∑
ı̄∈S(j)

Rj,̄ıs,tεı̄.

Finally, we may set

Q
[n]
s,t =

n∑
i=0

Qis,t.

Observe that for any s < u < t and k ∈ N and ı̄ = (i1, . . . ik) ∈ S (k) , we have partitioning

23



the simplex ∆k
s,t

Rk,̄ıs,t =

∫
∆k
s,u

Pt1−sHi1Pt2−t1Hi2 · · ·HikPt−tkdY
i1
t1
· · · dY ik

tk

+

∫
∆k
u,t

Pt1−sHi1Pt2−t1Hi2 · · ·HikPt−tkdY
i1
t1
· · · dY ik

tk

+
k−1∑
j=1

∫
∆k
s,u

Pt1−sHi1 · · ·Ptj−tj−1HijPu−tjdY
i1
t1
· · · dY ij

tj∫
∆k−j
u,t

Ptj+1−uHij+1Ptj+2−tj+1 · · ·HikPt−tkdY
ij+1
tj+1
· · · dY ik

tk

=

k∑
j=0

R
j,(i1,...ij)
s,u R

k−j,(ij+1,...ik)
u,t

=
∑
m̄∗l̄=ı̄

R|m̄|,m̄s,u R
|l̄|,l̄
u,t (43)

and therefore using (42)

Q
[k]
s,t =

k∑
v=0

∑
ı̄∈S(v)

Rv,̄ıs,tεı̄

=
k∑
v=0

∑
ı̄∈S(v)

∑
m̄∗l̄=ı̄

R|m̄|,m̄s,u R
|l̄|,l̄
u,t εm̄εl̄

=
k∑
v=0

v∑
j=0

∑
ı̄∈S(j)

∑
l̄∈S(v−j)

Rj,̄ıs,uR
v−j,l̄
u,t εı̄∗l̄

=
k∑
v=0

v∑
j=0

Qjs,uQ
v−j
u,t

or equivalently
Q

[k]
s,t = Q[k]

s,uQ
[k]
u,t. (44)

Analogous to the corresponding rough path concept we will refer to (44) as the multiplicative
property. We recall that by Lemma 7

ρt = Pt +

∞∑
n=1

∑
ı̄∈S(n)

Rn,̄ı0,t . (45)

The following proposition demonstrates that it suffi ces to obtain Holder type controls on
finitely many of the Qns,t to control the infinite series in (45) . The proof utilizes techniques of
the classical extension theorem for rough paths due to Lyons (see e.g. [19] p.45f) and exploits
the multiplicative structure of the operator valued integrands.
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Lemma 17 Let q ≥ 1 and let bqc denote the integer part of q and V be a Banach algebra
with norm ‖·‖ . Suppose Q[bqc] =

∑bqc
j=0Q

j ∈ Pd2,bqc (V ) satisfies the multiplicative property
(44). Suppose there exists a constant C > 0 such that for all (s, t) ∈ ∆[0,1], j = 1, · · · bqc,

∥∥∥Qjs,t∥∥∥ ≤ (C |t− s|)j/q

θ (j/q)!
, (46)

where θ =

(
q2 +

∑∞
r=3

(
2
r−2

) bqc+1
q

)
.Then for all m > bqc there exists a multiplicative ex-

tension 1+ Q1
s,t + · · ·+Q

bqc
s,t + Q̃

bqc+1
s,t + · · ·+ Q̃ms,t on Pd2,m (V ) such that (46) holds for all

j ∈ {1, . . . ,m} , (s, t) ∈ ∆2
[0,1]. Moreover if Q

j
s,t is another multiplicative extension such that∥∥∥Qjs,t∥∥∥ ≤ C (j) (|t− s|)j/q for all (s, t) ∈ ∆2

[0,1], then Q
j
s,t = Q̃js,t for all j ∈ {1, . . . ,m}.

Before we begin the proof of the lemma we recall the neo-classical inequality due to
[18] (Lemma 2.2.2). The slightly stronger form of the inequality we state below is due to
Hara-Hino [10].

Theorem 18 (Neo-classical inequality, Lyons 98, Hara-Hino 2010) For any q ∈ [1,∞),
n ∈ N and s, t ≥ 0

1

q

n∑
i=0

s
i
q t

n−i
q(

i
q

)
!
(
n−i
q

)
!
≤ (s+ t)n/q

(n/q)!
.

Proof of Lemma 17 . We will inductively construct Q[n]
s,t for n > bqc , the base case of the

induction following from the assumption on the Qjs,t, j = 1, . . . , bqc. The proof closely follows
the proof of the classical extension theorem for rough paths (see [19] p.45f). To extend from
n− 1 ≥ bqc to n first let on Pd2,n (V )

Q̂s,t :=
n−1∑
j=1

Qjs,t.

Given any finite partition D of the interval [s, t] define Q[n],D
s,t by setting

Q
[n],D
s,t :=

∏
D
Q̂ti,ti+1 .

By the pigeonhole principle there exists tj such that

(tj+1 − tj−1) ≤ 2

|D| − 1
(t− s)

and we may coarsen the partition by dropping tj and write D′ := D\{tj} . Then

Q
[n],D
s,t −Q[n],D′

s,t = Q̂s,t1 · · ·
(
Q̂tj−1,tj Q̂tj ,tj+1 − Q̂tj−1,tj+1

)
· · · Q̂t|D|−1,t
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and noting that Q̂tj−1,tj Q̂tj ,tj+1 − Q̂tj−1,tj+1 is a homogeneous polynomial of degree n we see
that

Q
[n],D
s,t −Q[n],D′

s,t =
n−1∑
i=1

Qitj−1,tjQ
n−i
tj ,tj+1

.

Therefore using the submultiplicative property for the norm, the inductive hypothesis and
finally the neo-classical inequality we see that

∥∥∥πn (Q[n],D
s,t −Q[n],D′

s,t

)∥∥∥ =

∥∥∥∥∥
n−1∑
i=1

Qitj−1,tjQ
n−i
tj ,tj+1

∥∥∥∥∥ ≤
n−1∑
i=1

∥∥∥Qitj−1,tj∥∥∥∥∥∥Qn−itj ,tj+1

∥∥∥ (47)

≤
n−1∑
i=1

(
(C |tj − tj−1|)i/q

θ (i/q)!

)(
(C |tj+1 − tj |)(n−i)/q

θ ((n− i) /q)!

)

≤ q2

θ

(
2

|D| − 1

)n
q (C |t− s|)

n
q

θ (n/q)!
.

Successively dropping points from the partition until D = {s, t} we see that

∥∥∥πn (Q[n],D
s,t − Q̂s,t

)∥∥∥ ≤ q2

θ

(
1 + 2n/q

(
ζ

(
bqc+ 1

q

)
− 1

))
(C |t− s|)

n
q

θ (n/q)!
.

Thus whenever θ ≥ q2
(

1 + 2n/q
(
ζ
(
bqc+1
q

)
− 1
))

the maximal inequality implies that

∥∥∥πn (Q[n],D
s,t

)n∥∥∥ ≤ |t− s|nq
θ (n/q)!

holds for any partition of [s, t] . It remains to verify the existence of the limit lim|D|→0Q
n,D
s,t .

We proceed as in [19] and exhibit the Cauchy property for the sequence. Suppose D = (tj)

and D̃ are two partitions of mesh size less than δ. Let D̂ denote the common refinement of
the two partitions and let D̂j = [tj , tj+1] ∩ D̃ . Then

Qn,D̂s,t −Q
n,D
s,t =

∑
Qn,D̂0t0,t1

. . . Q
n,D̂j−1
tj−1,tj

(
Q
n,D̂j
tj ,tj+1

− Q̂tj ,tj+1
)
. . . Q

n,D̂j
t|D|−1,t

.

As seen before this is a sum of homogeneous polynomials of degree n and by the maximal
inequality ∥∥∥πn (Qn,D̂s,t −Qn,Ds,t )∥∥∥ ≤∑

D

|tj+1 − tj |
n
q

θ (n/q)!
≤ |t− s|
θ (n/q)!

δ
n
q
−1

as n
q − 1 > 0 we have a uniform estimate in δ independent of the choice of partition. Going

through the same argument for the partition D̃ and using the triangle inequality the Cauchy
property is established and the existence of the limit follows. The uniqueness of the limit
follows as in [19]. The difference of two multiplicative functionals that agree up to level bqc is
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additive (see Lyons [18] Lemma 2.2.3) As the difference of the extensions is also a continuous
path and by assumption∥∥∥Qbqc+1

s,t − Q̃bqc+1
s,t

∥∥∥ ≤ C (bqc+ 1) |t− s|
bqc+1
q

it follows that Q
bqc+1
s,t − Q̃bqc+1

s,t is identically zero. A simple induction now completes the
proof.

Lemma 19 For any 1/3 < γ < 1/2 there exist a constant θ > 0 and random variables
c(γ, ω), almost surely finite, such that

∥∥Rn,̄ıs,t∥∥H1→H1 ≤
(c (γ, ω) |t− s|)nγ

θ (nγ)!
. (48)

and ∥∥Rn,̄ıs,t∥∥H−1→H−1 ≤ (c (γ, ω) |t− s|)nγ

θ (nγ)!
(49)

for all ı̄ ∈ S (n) , n ∈ N, 0 < s < t ≤ 1.

Proof. We now take for V the space of bounded linear operators on (the completion of)
H1 and H−1 respectively. From the a priori estimates we know that Q[n]

s,t ∈ Pd2,n (V ) for
all n ≥ 1. First note that by Lemma 16

(
Q1
s,t, Q

2
s,t

)
satisfies the assumptions of Lemma 17

with 3 > q = 1/γ and therefore has a multiplicative extension Q̃js,t controlled in the sense
of (46) . Once again by Lemma 16 the uniqueness part of Lemma 17 applies and we deduce
that Qjs,t = Q̃js,t for j ∈ N.

Armed with these two factorially decaying a priori estimates we are finally ready proof
a regularity estimate for Qn that decays factorially in n. When considering Rn,̄ıs,t , ı̄ ∈ S (n)
as an operator from H−1 to H1 we cannot directly apply Lemma 17 as the a priori bounds
in Lemma 16 have singularities for small n. Instead we exploit that there is more than one
way to estimate the operator norm of the composition of such operators. Together with the
estimates already obtained in Lemma 19 this will be suffi cient to prove factorially decaying
bounds for n suffi ciently large. We recall Proposition 10 and restate it in the notation of the
current section.

Proposition 10: Let 1/3 < γ < 1/2 be fixed. There exists θ > 0, γ′ ∈ (1/3, γ),
m0 (γ′) ∈ N and random variables c(γ′, ω), almost surely finite, such that

∥∥Rn,̄ıs,t∥∥H−1→H1 ≤
(c (γ′, ω) |t− s|)nγ

′

θ (nγ′)!
(50)

for all n ≥ m0, ı̄ ∈ S (n) and t ∈ (0, 1].
Before we begin the proof note that by choosing γ′ < γ we have for n suffi ciently large

by Lemma 16 ∥∥Rn,̄ıs,t∥∥H−1→H1 ≤ c (γ, n, ω) |t− s|nγ−k̄ ≤ c (γ, n, ω) |t− s|nγ
′
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for all 0 < s < t < 1.
Proof of Proposition 10. Choose m0 and 0 < γ′ ≤ γ such that γn − k̄ ≥ γ′n for all
n ≥ m0. Using Corollary 19 and Lemma 16 (with γ = γ′) we can find c (γ′, ω) such that
simultaneously (50) holds for all n ∈ [m0, 2m0] and the two inequalities (48) and (49) hold
for all n ∈ N. Note that this also serves as the base case for our induction argument. For
this lemma we set V to be the space of bounded linear operators from H−1 to H1.

We argue now exactly as in the proof Lemma 17 to extend the functional from level n ≥
2m0 to n+1, with the only difference being that we have no direct control over

∥∥∥Rk,̄ıs,t∥∥∥
H−1→H1

for ı̄ ∈ S (k) , k < m0. We therefore replace inequality (47) with the following more refined
estimate that exploits that the operator norm of a composition of two operators can be
estimated in several ways, which allows us to draw on our a priori estimates in Lemma 16.
We have∥∥∥πn+1

(
QD,n+1
s,t −QD

′,n+1
s,t

)∥∥∥ ≤ n∑
i=1

∥∥∥Qitj−1,tjQn+1−i
tj ,tj+1

∥∥∥
=

n∑
i=1

∥∥∥∥∥∥
∑

m̄∈S(i)

∑
l̄∈S(n+1−i)

Ri,m̄tj−1,tjR
n+1−i,l̄
tj ,tj+1

εm̄∗l̄

∥∥∥∥∥∥
=

n∑
i=1

sup
m̄∈S(i),l̄∈S(n+1−i)

∥∥∥Ri,m̄tj−1,tjRn+1−i,l̄
tj ,tj+1

∥∥∥
H−1→H1

≤
m0−1∑
i=1

sup
m̄∈S(i)

∥∥∥Ri,m̄tj−1,tj∥∥∥H1→H1
sup

l̄∈S(n+1−i)

∥∥∥Rn+1−i,l̄
tj ,tj+1

∥∥∥
H−1→H1

+
n∑

i=m0

sup
m̄∈S(i)

∥∥∥Ri,m̄tj−1,tj∥∥∥H−1→H1
sup

l̄∈S(n+1−i)

∥∥∥Rn+1−i,l̄
tj ,tj+1

∥∥∥
H−1→H−1

≤
n∑
j=1

(C |t− s|)γ
′j

θ (jγ′)!

(C |t− s|)γ
′m+1−j

θ ((m+ 1− j) γ′)! . (51)

The bounds for
∥∥∥Ri,m̄tj−1,tj∥∥∥H1→H1

and
∥∥∥Rn+1−i,l̄

tj ,tj+1

∥∥∥
H−1→H−1

use inequalities (48) and (49) re-

spectively. The bounds for supl̄∈S(n+1−i)

∥∥∥Rn+1−i,l̄
tj ,tj+1

∥∥∥
H−1→H1

and supm̄∈S(i)

∥∥∥Ri,m̄tj−1,tj∥∥∥H−1→H
follow (for the appropriate values of i) from the inductive hypothesis.With this modification
in place arguing exactly as in the proof of Lemma 17 yields the result. Note that the extension
is only carried out for n ≥ 2m0. For m0 ≤ n < 2m0 the estimates use the a priori bounds.

Remark 20 To extend the proof of Proposition 10 to cover the terms in the expansion of ρ∗t
we make the following modifications. In place of Rn,̄ıs,t we have

Xn,̄ı
s,t =

∫
∆k
s,t

Pt−tnHinPtn−tn−1Hin−1 · · ·Hi1Pt1−sdY
i1
t1
· · · dY in

tn ,

i.e. the order of non-commutative product in the integrand is reversed. We therefore define
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P̄d2,k (V ) as Pd2,k (V ) but with the multiplication in (41) replaced by

ab :=
k∑
v=0

v∑
j=0

∑
ı̄∈S(j)

∑
l̄∈S(v−j)

bl̄aı̄εı̄∗l̄. (52)

With this modification (43) becomes

Xk,̄ı
s,t =

∫
∆k
s,u

Pt−tkHikPtk−tk−1Hik−1 · · ·Hi1Pt1−sdY
i1
t1
· · · dY ik

tk

+

∫
∆k
u,t

Pt−tkHikPtk−tk−1Hik−1 · · ·Hi1Pt1−sdY
i1
t1
· · · dY ik

tk

+
k−1∑
j=1

∫
∆k−j
u,t

Pt−tkHikPtk−tk−1 · · ·Ptj+2−tj+1Hij+1Ptj+1−udY
ij+1
tj+1
· · · dY ik

tk

+

∫
∆k
s,u

Pu−tjHijPtj−tj−1 · · ·Hi1Pt1−sdY
i1
t1
· · · dY ij

tj

=
k∑
j=0

X
k−j,(ij+1,...ik)
u,t X

j,(i1,...ij)
s,u

=
∑
m̄∗l̄=ı̄

X
|l̄|,l̄
u,t X

|m̄|,m̄
s,u .

Combining this identity with the modified multiplication (52) we see that (44) holds on
P̄d2,k (V ) , i.e. our functional Q̄[n]

s,t =
∑n

j=0

∑
ı̄∈S(j)X

j,̄ı
s,tεı̄ has the multiplicative property.

Going through the same steps as before with these modifications in place the proof of Propo-
sition 10 may now be completed.

Remark 21 The arguments in this section may easily be generalised to higher derivatives.
For example, one may define spaces H2 and H−2 analogous to H1 and H−1 by setting

‖ϕ‖H−2 := inf


∑

α∈A0(k̄),β∈A0(k̄)

‖ϕα,β‖∞ : ϕ =
∑

α∈A0(k̄),β∈A0(k̄)

V[α]V[β]ϕα,β, ϕa,β ∈ C∞b (RN )


and

‖ϕ‖H2 :=
∑

α∈A0(k̄),β∈A0(k̄)

∥∥V[α]V[β]ϕ
∥∥
∞ .

and study the operator norm between H−2 and H2. Note that in this case in the proof of
Proposition 10 we choose m0 such that γn− 2k̄ ≥ γ′n for all n ≥ m0, i.e. the cut off between
the a priori estimates and the factorially decaying estimates we use in the proof of the main
theorem depends explicitly on the number of derivatives we consider.
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7 Appendix:

7.1 Proof of the inequality (15)

As Zxt ≥ 0, we have, by Jensen’s inequality, that Ẽ [Zxt |Yx· ]−1 ≤ Ẽ
[
(Zxt )−1|Yx·

]
. Then observe

that, by integration by parts

−
d2∑
i=1

∫ t

0
hi(Xx

s ) dY x,i
s =

d2∑
i=1

−hi(Xx
t )Y x,i

t +

∫ t

0
Y x,i
s Ahi(Xx

s )ds+
d∑
j=1

∫ t

0
Y x,i
s V jhi(Xx

s ) dBj
s


≤

d2∑
i=1

sup
s∈[0,t]

∣∣Y x,i
s

∣∣ (∣∣∣∣hi∣∣∣∣∞ + t
∣∣∣∣Ahi∣∣∣∣∞)

+
d2t

2

d2∑
i=1

sup
s∈[0,t]

∣∣Y x,i
s

∣∣2 d∑
j=1

∣∣∣∣V jhi
∣∣∣∣2+ ηxt ,

where

ηxt =
d∑
j=1

∫ t

0

(
d2∑
i=1

Y x,i
s V jhi(Xx

s )

)
dBj

s −
d∑
j=1

1

2

∫ t

0

(
d2∑
i=1

Y x,i
s V jhi(Xx

s )

)2

ds.

Since, Ẽ [exp ηxt | Yxt ] = 1,we get that

(
1/ρ

Y (ω)
t (1)

)
< expC

(
d2∑
i=1

sup
s∈[0,t]

∣∣Y i
s (ω)

∣∣+ sup
s∈[0,t]

∣∣Y i
s (ω)

∣∣2) ,
where C is a constant independent of x,

C = max
i=1,...,d

(
∣∣∣∣hi∣∣∣∣∞ + t

∣∣∣∣Ahi∣∣∣∣∞ +
d2t

2

d∑
j=1

∣∣∣∣V jhi
∣∣∣∣2).

Inequality (15) follows as sups∈[0,t]

∣∣Y i
s (ω)

∣∣ is finite for almost every ω.
7.2 Proof of Proposition 15

The remainder of the paper is dedicated to the proof of Proposition 15, which requires us to
prove a number of elementary lemmas in preparation.

Recall that ∆k
s,t denotes the simplex defined by the relation s = t0 < t1 < · · · < tk < t.

In Proposition 15 we would like to obtain estimates of the form∥∥∥V[α]R̄
m,j̄1,...,j̄k
(0,t1,...,tk,t)

V[β]ϕ
∥∥∥
∞
≤ cmt−(‖α‖+‖β‖)/2 1√

t1 − t0
· · · 1√

tk − tk−1
‖ϕ‖∞

that are (essentially) uniform across the simplex∆k
0,t. The basic idea is that for any (t1, . . . , tk) ∈

∆k
0,t there exists always at least one time interval [tj,tj−1] that is of length at least t/ (k + 1).
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We then use the Kusuoka-Strock regularity estimates (Theorem 8) to deduce smoothness of
the heat semigroup over this particular interval. The proof of Theorem 8 employs the meth-
ods of Malliavin calculus. As we will in the following draw on elements of their method we
recall some basic concepts of the Malliavin calculus.

Let (Θ,H, µ) be the abstract Wiener space and let L denote the Ornstein Uhlenbeck
operator defined as in Kusuoka [13]. Denote by G (L) the set of arbitrarily often Malliavin
differentiable real valued random variables onΘ and denote byDs

p, the usual Kusuoka-Stroock
Sobolev spaces based on the Ornstein-Uhlenbeck operator (see e.g. Kusuoka [13] or [12] for
details ). The following definition is taken from Kusuoka [12], p.267.

Definition 22 Let r ∈ R and Kr denote the set of functions f : (0, 1] × RN → G (L)
satisfying the following conditions

1. f (t, x) is smooth in x and ∂νf
∂νx is continuous in (t, x) ∈ (0, 1]×RN with probability one

for any multi-index ν

2.

sup
t∈(0,1],x∈RN

t−r/2
∥∥∥∥∂νf∂νx

(t, x)

∥∥∥∥
Dsp

<∞

for any s ∈ R, p ∈ (1,∞) .

For Φ ∈ Kr , ϕ ∈ C∞b define PΦ
t ϕ = E (Φ (t, x)ϕ (Xt (x))) . An important ingredient in

the proof of Theorem 8 which we will use repeatedly is the following Lemma (see Kusuoka
[12] Corollary 9).

Lemma 23 (Kusuoka) Let r ∈ R, Φ ∈ Kr and α ∈ A1

(
k̄
)
. Then there are Φα,1 , Φα,2 ∈

Kr−‖α‖ such that
PΦ
t V[α] = P

Φα,1
t and V[α]P

Φ
t = P

Φα,2
t . (53)

Moreover there exists C such that ∥∥PΦ
t ϕ
∥∥
∞ ≤ t

r/2 ‖ϕ‖∞

for any ϕ ∈ C∞b (RN ) and t ∈ (0, 1].

Before we proceed we gather some simple properties of the spaces Kr. The following
Lemma may be found in Kusuoka [12] (Lemma 7).

Lemma 24 Let r1, r2 ∈ R. Then

1. If f1 ∈ Kr1‘ and f2 ∈ Kr2 then f1f2 ∈ Kr1+r2

2. If ϕ ∈ C∞b (RN ) then ϕ (Xt (x)) ∈ K0
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3. For any α, β ∈ A1

(
k̄
)
there exist aβα, b

β
α ∈ K(‖β‖−‖α‖∨0) such that((

X−1
t

)
∗ V[α]

)
(x) =

∑
β∈A1(k̄)

aβα (t, x)V[β] (x)

and
V[α] (x) =

∑
β∈A1(k̄)

bβα (t, x)
((
X−1
t

)
∗ V[β]

)
(x) .

Proof. The claims (2) and (3) are shown in [12] (Lemma 7). For (1) note that the space⋂
1<p<∞D

s
p (R) is an algebra (Kusuoka [13] Lemma 2.13) and ‖fg‖Dsp ≤ ‖f‖Dsr ‖g‖Dsq for

1
p = 1

r + 1
q , and any f, g ∈

⋂
1<p<∞D

s
p and

sup
t∈(0,1],x∈RN

t−(r1+r2)/2

∥∥∥∥∂ (f1f2)

∂x
(t, x)

∥∥∥∥
Dsp

≤
∑

1≤i,j≤2,i 6=j
sup

t∈(0,1],x∈RN
t−ri/2

∥∥∥∥∂fi∂x
(t, x)

∥∥∥∥
Dsr

sup
t∈(0,1],x∈RN

t−rj/2 ‖fj (t, x)‖Dsq <∞.

The generalisation to higher derivatives is clear and the claim follows.
In particular the Lemma implies that for any multi-index γ, p ∈ [1,∞)

sup
x∈RN

E

[
sup
t∈(0,1]

∣∣∣∣∣ ∂|γ|∂xγ
aβα (t, x)

∣∣∣∣∣
p]
<∞

and

sup
x∈RN

E

[
sup
t∈(0,1]

∣∣∣∣∣ ∂|γ|∂xγ
bβα (t, x)

∣∣∣∣∣
p]
<∞.

Let J ijt (x) = ∂
∂xi
Xj (t, x) and note that for any C∞b vector field W we have

((Xt)∗W )i (Xt (x)) =
N∑
j=1

J ijt (x)W j .

Suppose Φ ∈ Kr. Then

V[α]P
Φ
t ϕ (x) = E

V[α]Φϕ (Xt (x)) +

N∑
i,j=1

ΦV j
[α] (x)

(
∂

∂xj
ϕ

)
(Xt (x)) J ijt (x)

 .
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It is straightforward to see that V[α]Φ ∈ Kr and for the second term in the sum we have

E

 N∑
i,j=1

ΦV j
[α] (x)

(
∂

∂xi
ϕ

)
(Xt (x)) J ijt (x)


= E

 N∑
i,j=1

Φ
∑

β∈A1(k̄)

bβα (t, x)
((
X−1
t

)
∗ V[β]

)j
(x)

(
∂

∂xi
ϕ

)
(Xt (x)) J ijt (x)


= E

Φ
∑

β∈A1(k̄)

bβα (t, x)
N∑
i=1

(
(Xt)∗

(
X−1
t

)
∗ V[β]

)i
(Xt (x))

(
∂

∂xi
ϕ

)
(Xt (x))


= E

Φ
∑

β∈A1(k̄)

bβα (t, x)

N∑
i=1

V i
[β] (Xt (x))

(
∂

∂xi
ϕ

)
(Xt (x))


=

∑
β∈A1(k̄)

PΦbβα
(
V[β]ϕ

)
(x) .

Note that by Lemma 24 Φbβα (t, x) ∈ K(‖β‖−‖α‖∨0)+r. We have just proved the following
Lemma (see e.g. Kusuoka [12] Corollary 9).

Lemma 25 Let Φ ∈ Kr and α ∈ A1

(
k̄
)
then V[α]Φ ∈ Kr and there exist Φbβα ∈ K(‖β‖−‖α‖∨0)+r

such that we have

V[α]P
Φ
t ϕ (x) = P V[α]Φϕ (x) +

∑
β∈A1(k̄)

PΦbβα
(
V[β]ϕ

)
(x) ,

for all ϕ ∈ C∞b (RN ).

The following Lemma is an immediate consequence of Lemma 23.

Lemma 26 Let Φ ∈ Kr and α ∈ A1

(
k̄
)
then there exists C > 0 such that∥∥V[α]P

Φ
t ϕ
∥∥
∞ ≤ C

∑
β∈A0(k̄)

min
(
tr/2, t(‖β‖−‖α‖)/2+r/2

)∥∥V[β]ϕ
∥∥
∞

for all t ∈ (0, 1], ϕ ∈ C∞b (RN ). In particular, if H is of the form H = u Vi + v for some u, v
∈ C∞b , i ∈ {1, . . . , d1} and Φ ∈ K0 we have∥∥V[α1]P

Φ
t Hϕ (x)

∥∥
∞ ≤ C

∑
β∈A0(k̄)

min
(
t−1/2, t(‖β‖−‖α‖)/2−1/2

)∥∥V[β]ϕ
∥∥
∞ .
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Proof. By Lemma 25 there exist Φβ ∈ K[(‖β‖−‖α‖)∨0]+r. such that∥∥V[α]P
Φ
t ϕ (x)

∥∥
∞ ≤

∑
β∈A0(k̄)

∥∥∥PΦβ
t V[β]ϕ

∥∥∥
∞

≤ C
∑

β∈A0(k̄)

min
(
tr/2, t(‖β‖−‖α‖)/2+r/2

)∥∥V[β]ϕ
∥∥
∞ .

The last inequality is a consequence of Lemma 23 (2). To deduce the second claim from
the first of the proposition we note that by [12] Corollary 9 (2) if Φ ∈ Φa ∈ Kr there exists
Φa ∈ Kr−‖α‖ such that PΦ

t Vi = PΦa
t .

Intuitively the preceding lemma provides us with a uniform (for small times) bound when
we move derivatives through the heat kernel from the outside to the inside.

We now consider the reverse situation in which we move the vector fields from the inside
to the outside. We have the following Lemma.

Lemma 27 Let Φ ∈ Kr and α ∈ A1

(
k̄
)
then there exists Φβ ∈ Kr and Φaβα ∈ K(‖β‖−‖α‖∨0)+r

such that (
PΦ
t V[α]ϕ

)
(x) =

∑
β∈A1(k̄)

{
V[β]P

aβαΦ
t ϕ (x)− PΦβ

t ϕ
}
,

for all ϕ ∈ C∞b (RN ).

Proof. We have using Lemma 24 part 3. that(
PΦ
t V[α]ϕ

)
(x) = E

[
Φ

N∑
i=1

V i
[α] (Xt (x))

(
∂

∂xi
ϕ

)
(Xt (x))

]

= E

[
Φ

N∑
i=1

(
(Xt)∗

(
X−1
t

)
∗ V[α]

)i
(Xt (x))

(
∂

∂xi
ϕ

)
(Xt (x))

]

= E

Φ

N∑
i,j=1

((
X−1
t

)
∗ V[α] (x)

)j
J ijt (x)

(
∂

∂xi
ϕ

)
(Xt (x))


= E

Φ
∑

β∈A1(k̄)

aβα (t, x)

N∑
j=1

V j
[β] (x)

N∑
i=1

J ijt (x)

(
∂

∂xi
ϕ

)
(Xt (x))

 .
=

∑
β∈A1(k̄)

E

Φaβα (t, x)

N∑
j=1

V j
[β] (x)

∂

∂xj
ϕ (Xt (x))

 ,
where Φaβα ∈ K(‖β‖−‖α‖∨0)+r. On the other hand we have

V[β]P
aβαΦ
t ϕ (x)

= E

Φaβα (t, x)
N∑
j=1

V j
[β] (x)

∂

∂xj
ϕ (Xt (x))

+ E
[
V[β]

(
Φaβα

)
(t, x)ϕ (Xt (x))

]
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and deduce that(
PΦ
t V[α]ϕ

)
(x) =

∑
β∈A1(k̄)

{
V[β]P

aβαΦ
t ϕ (x)− E

[
V[β]

(
Φaβα

)
(t, x)ϕ (X (t, x))

]}
,

where V[β]

(
aβαΦ

)
(t, x) ∈ Kr and aβα ∈ K(‖β‖−‖α‖∨0).

The representation obtained in the previous lemma generalises to multiple heat kernels
as we observe in the following proposition.

Proposition 28 Let k ∈ N, Φk ∈ Kr, Φj ∈ K0 for 1 ≤ j < k, α ∈ A1

(
k̄
)
, and Hj =

ujVij + vj , where 1 ≤ ij ≤ d, uj , vj ∈ C∞b (RN ), j = 1, . . . , k− 1. Then there exist Φβ1 ∈ Kr1 ,
. . . ,Φβk ∈ Krk such that rk ≥ r, r1, . . . rk−1 ≥ −1/2 and

r1 + r2 + · · ·+ rk ≥
(∥∥β1

∥∥− ‖α‖) ∨ 0− (k − 1) /2 + r (54)

and

PΦ1
t1
H1P

Φ2
t2
· · ·Hk−1P

Φk
tk
V[α]ϕ (x) =

∑
β1∈A0(k̄)

· · ·
∑

βk∈A0(k̄)

V[β1]P
Φβ1
t1

P
Φβ2
t2
· · ·P

Φ
βk

tk
ϕ (x)

holds for all ϕ ∈ C∞b (RN ).

Before we begin the proof of this proposition we examine the meaning of the assumptions
on the rj . The assumptions r1, . . . , rk−1 ≥ −1/2 imply that singularities in the bounds∥∥∥PΦrj

t ϕ
∥∥∥
∞
≤ trj/2 ‖ϕ‖∞

in Lemma 23 are integrable. The inequality (54) can be interpreted as follows: The left hand
side is the total regularity of the resulting expression in the proposition. For every application
of an operator H we loose 1/2 regularity reflected in the term − (k − 1) /2. The degree of a
singularity introduced by differentiating by V[α] depends on ‖α‖ . Thus if ‖β‖ > ‖α‖ and we
replace a V[α] by V[β] we expect a compensating term, which is captured in

(∥∥β1
∥∥− ‖α‖)∨0.

Proof. As before it is by linearity suffi cient to consider the case Hj = ujVij , for some
uj ∈ C∞b (RN ) the case of the multiplication operator vj following by a similar but easier
calculation. We argue by induction, the base case being covered by Lemma 27. For the
inductive step we note that if Φk ∈ K0 then by Lemma 23 there exists Φ̄k ∈ K−1/2 such that

PΦk
t uVi = P Φ̄k

t . Combining this fact with Lemma 27 we see

PΦ1
t1
H1P

Φ2
t2
· · ·Hk−1P

Φk
tk
HPΦ

t V[α]ϕ (x) = PΦ1
t1
H1P

Φ2
t2
· · ·Hk−1P

Φk
tk
uViP

Φ
t V[α]ϕ (x)

= PΦ1
t1
H1P

Φ2
t2
· · ·Hk−1P

Φk
tk
PΦ
t V[α]ϕ (x)

=
∑

β∈A0(k̄)

PΦ1
t1
H1P

Φ2
t2
· · ·Hk−1P

Φk
tk
V[β]P

Φβ
t ϕ (x) ,
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where Φβ ∈ K[(‖β‖−‖α‖)∨0]+r and Φk ∈ K−1/2 Using the inductive hypothesis we get∑
β∈A0(k̄)

PΦ1
t1
H1P

Φ2
t2
· · ·Hk−1P

Φk
tk
V[β]P

Φβ
t ϕ (x)

=
∑

β1∈A0(k̄)

· · ·
∑

βk∈A0(k̄)

∑
β∈A0(k̄)

V[β1]P
Φβ1
t1

P
Φβ2
t2
· · ·P

Φ
βk

tk
P

Φβ
t ϕ (x) .

From the inductive hypothesis we know that Φβ1 ∈ Kr1 , . . . ,Φβk ∈ Krk such that r1, . . . ,

rk ≥ −1/2 (using that Φk ∈ K−1/2) and

r1 + r2 + · · ·+ rk ≥
(∥∥β1

∥∥− ‖β‖) ∨ 0− k/2.

Hence, as required

[(‖β‖ − ‖α‖) ∨ 0] + r + r1 + r2 + · · ·+ rk

≥ [(‖β‖ − ‖α‖) ∨ 0] + r +
(∥∥β1

∥∥− ‖β‖) ∨ 0− k/2
≥
(∥∥β1

∥∥− ‖α‖) ∨ 0− k/2 + r.

We are ready to prove Proposition 15.
Proof of Proposition 15. Note that arguing as in the proof of Lemma 14 it is suffi cient to
show ∥∥∥V[α]R̄

m,j̄1,...,j̄k
(0,t1,...,tk,t)

V[β]ϕ
∥∥∥
∞
≤ cmt−(‖α‖+‖β‖)/2 1√

t1 − t0
· · · 1√

tk − tk−1
‖ϕ‖∞

for some constant cm (the bounds on R̂
m,j̄1,...,j̄k
(0,t1,...,tk,t)

follow by using the same arguments). The

functions V[α]R̄
m,j̄1,...,j̄k
(0,t1,...,tk,t)

V[β]ϕ are linear combination of terms of the form

V[α]P
Φ
t1H1P

Φ
t2−t1 · · ·P

Φ
tk−tk−1HkP

Φ
t−tkV[β]ϕ

for some Φ ∈ K0 and Hj = uj Vij + vj with uj , vj ∈ C∞b . Recall the convention t = tk+1.
Suppose [tj−1, tj ] is the maximal subinterval, i.e. satisfies

tj − tj−1 = max
i=1,...k+1

(ti − ti+1) ≥ t

k
(55)

For notational reasons we have to treat the case j = k+ 1 separately, however it will be clear
from the proof that the same arguments apply in this case.

Suppose now that j ∈ {1, . . . , k} , then by Proposition 28 we observe that

PΦ
tj+1−tjHj+1P

Φ
tj+2−tj+1 · · ·HkP

Φ
t−tkV[β]ϕ (x) =

∑
βj+1∈A0(k̄)

· · ·
∑

βk∈A0(k̄)

Gβj+1,...,βk (x) ,

where
Gβj+1,...,βk := V[βj+1]P

Φ
βj+1

tj+1−tjP
Φ
βj+2

tj+2−tj+1 · · ·P
Φ
βk+1

t−tk ϕ,
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for some functionals Φβj+1 ∈ Kr1 , . . . ,Φβk+1 ∈ Krk with rk+1 ≥ 0, rj+1, . . . rk ≥ −1/2 and
rj+1 + r2 + · · · + rk+1 ≥

(∥∥βj+1
∥∥− ‖β‖) ∨ 0 − (k − j) /2. It follows from the maximality of

[tj , tj−1] that

(tj+1 − tj)rj+1 · · · (tk − tk−1)rk

≤ (tj+1 − tj)−1/2 · · · (tk − tk−1)−1/2 (tj − tj−1)[(‖β
j+1‖−‖β‖)∨0]/2 .

On the other hand, to pass the derivative V[α] to PΦ
tj−tj−1 we will iteratively use Lemma 26.

Once again by maximality of [tj , tj−1] it follows that

(t1 − t0)−1/2∨(‖β1‖−‖α‖)/2 · · · (tj−1 − tj−2)−1/2∨(‖βj−1‖−‖βj−2‖)/2

≤ (t1 − t0)−1/2 · · · (tj−1 − tj−2)−1/2 (tj − tj−1)[(‖β
j−1‖−‖α‖)∨0]/2 .

Using Lemma 26 iteratively we see from our preceding observations that∥∥∥V[α]P
Φ
t1H1P

Φ
t2−t1 · · ·P

Φ
tk−tk−1HkP

Φ
t−tkV[β]ϕ

∥∥∥
∞

=

∥∥∥∥∥∥∥
∑

βj+1∈A0(k̄)

· · ·
∑

βk∈A0(k̄)

V[α]P
Φ
t1H1 · · ·Hj−1P

Φ
tj−tj−1HjGβj+1,...,βk

∥∥∥∥∥∥∥
∞

≤ C̃j 1√
t1 − t0

· · · 1√
tj−1 − tj−2∑

βj−1,...,βk∈A0(k̄)

(tj − tj−1)[(‖β
j−1‖−‖α‖)∨0]/2

∥∥∥V[βj−1]P
Φ
tj−tj−1HjGβj+1,...,βk

∥∥∥
∞

≤ C̃k 1√
t1 − t0

· · · 1√
tk − tk−1

‖ϕ‖∞∑
βj−1,βj+1∈A0(k̄)

(tj − tj−1)[(‖β
j−1‖−‖α‖)∨0]/2+[(‖βj+1‖−‖β‖)∨0]/2−(‖βj−1‖+‖βj+1‖)/2

≤ Ck 1√
t1 − t0

· · · 1√
tk − tk−1

t−(‖α‖+‖β‖)/2 ‖ϕ‖∞ ,

where the penultimate inequality results by using Lemma 23.

Remark 29 It is clear that Proposition 15 may be generalised to allow for multiple deriva-
tives V[α1] · · ·V[αj ] and V[β1] · · ·V[βl]. Note that all lemmas and proofs presented in this section
may be generalised using straightforward induction arguments.

7.3 Proof of Lemma 16.

We are finally ready to prove Lemma 16 that provides a set of a priori estimates for the
operator norms of the terms in the perturbation expansion that are not yet summable though.
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The proof relies on the lemmas derived in the previous subsection. For the convenience of
the reader we begin by restating the lemma.

Lemma 16: With the notation of Lemma 7 for any 0 < γ < 1/2, m > 0 there exist
random variables c(γ,m, ω) such that, almost surely∥∥Rm,̄ıs,t

∥∥
H−1→H−1 ≤ c (γ,m, ω) |t− s|mγ .∥∥Rm,̄ıs,t

∥∥
H1→H1 ≤ c (γ,m, ω) |t− s|mγ .

and finally ∥∥Rm,̄ıs,t

∥∥
H−1→H1 ≤ c (γ,m, ω) |t− s|mγ−k̄ .

for all ı̄ ∈ S (m) , 0 < s < t < 1.
Proof. For all j̄1, . . . , j̄k ∈ S such that ı̄ = j̄1 ∗ ... ∗ j̄k we note that for any 0 < t ≤ 1 we
have by iteratively applying Lemma 26

∥∥∥R̄m,j̄1,...,j̄k(t0,t1,...,tk,t)
ϕ
∥∥∥
H1

=
∑

α∈A0(k̄)

∥∥∥V[α]

(
R̄m,j̄1,...,j̄k(t0,t1,...,tk,t)

ϕ
)∥∥∥
∞

≤ Ck 1√
t1 − t0

· · · 1√
tk − tk−1

∑
β∈A0(k̄)

∥∥V[β]ϕ
∥∥
∞ .

The bound on
∥∥Rm,̄ıs,t (ϕ)

∥∥
H1→H1 now follows by applying Lemmas 13 and 14 and noting that

by Lemma 26
‖Pt (hi1 · · ·him ·)‖H1 ≤ cm

∑
β∈A0(k̄)

∥∥V[β]ϕ
∥∥
∞ .

Finally to show inequalities (39) and (40) we let ϕ ∈ H−1. Then there exist for every ε > 0
functions ϕβ such that

ϕ =
∑

β∈A0(k̄)

V[β]ϕ
β

and
∑

β∈A0(k̄)
∥∥ϕβ∥∥∞ ≤ ‖ϕ‖H−1 + ε. First we have

∥∥∥R̄m,j̄1,...,j̄k(t0,t1,...,tk,t)
ϕ
∥∥∥
H−1

=

∥∥∥∥∥∥∥
∑

β∈A0(k̄)

R̄m,j̄1,...,j̄k(t0,t1,...,tk,t)
V[β]ϕ

β

∥∥∥∥∥∥∥
H−1

and by Proposition 28 for each β ∈ A0

(
k̄
)
there exist functionals Φβ1 ∈ Kr1 , . . . ,Φβk ∈ Krk

such that rk ≥ 0, r1, . . . rk−1 ≥ −1/2 and

R̄m,j̄1,...,j̄k(t0,t1,...,tk,t)
V[β]ϕ

β =
∑

β∈A0(k̄)

∑
β1∈A0(k̄)

· · ·
∑

βk∈A0(k̄)

V[β1]P
Φβ1
t1−t0P

Φβ2
t2−t1 · · ·P

Φ
βk

t−tkϕ.
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We deduce from Lemma 23 that∥∥∥R̄m,j̄1,...,j̄k(t0,t1,...,tk,t)
V[β]ϕ

β
∥∥∥
H−1
≤

∑
β∈A0(k̄)

∑
β1∈A0(k̄)

· · ·
∑

βk∈A0(k̄)

∥∥∥PΦβ1
t1−t0P

Φβ2
t2−t1 · · ·P

Φ
βk

t−tkϕ
β
∥∥∥
∞

≤ Ck
1√

t1 − t0
· · · 1√

tk − tk−1

∥∥∥ϕβ∥∥∥
∞

and consequently∥∥∥R̄m,j̄1,...,j̄k(t0,t1,...,tk,t)
ϕ
∥∥∥
H−1
≤ ck

1√
t1 − t0

· · · 1√
tk − tk−1

∑
β∈A0(k̄)

∥∥∥ϕβ∥∥∥
∞

≤ ck
1√

t1 − t0
· · · 1√

tk − tk−1
‖ϕ‖H−1 + ε.

A similar, but easier argument leads to

‖Pt (hi1 · · ·him ·)‖H−1 ≤ cm ‖ϕ‖H−1 .

To demonstrate the last inequality observe that arguing exactly as in the proof of Proposition
9 we have, ∥∥∥R̄m,j̄1,...,j̄k(t0,t1,...,tk,t)

ϕ
∥∥∥
H1

=
∑

α∈A0(k̄)

∥∥∥V[α]

(
R̄m,j̄1,...,j̄k(t0,t1,...,tk,t)

ϕ
)∥∥∥
∞

≤
∑

α∈A0(k̄)

∑
β∈A0(k̄)

∥∥∥V[α]

(
R̄m,j̄1,...,j̄k(t0,t1,...,tk,t)

V[β]ϕ
β
)∥∥∥
∞

≤ ck
1√

t1 − t0
· · · 1√

tk − tk−1

∑
α∈A0(k̄)

∑
β∈A0(k̄)

t−(‖α‖+‖β‖)/2
∥∥∥ϕβ∥∥∥

∞

≤ ck
1√

t1 − t0
· · · 1√

tk − tk−1
t−k̄

∑
β∈A0(k̄)

∥∥∥ϕβ∥∥∥
∞

≤ ck
1√

t1 − t0
· · · 1√

tk − tk−1
t−k̄ ‖ϕ‖H−1 + ε,

where ck are constants changing from line to line. Again, it is easy to see that

‖Pt (hi1 · · ·him ·)‖H1 ≤ cmt−k̄ ‖ϕ‖H−1 .

The claim in both cases now follows once again from Lemmas 13 and 14. As before we note
that the same estimates apply to R̂m,j̄1,...,j̄k(t0,t1,...,tk,t)

in place of R̄m,j̄1,...,j̄k(t0,t1,...,tk,t)
.
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