
CONVERGENCE OF BS∆ES DRIVEN BY RANDOM WALKS TO BSDES:

THE CASE OF (IN)FINITE ACTIVITY JUMPS WITH GENERAL DRIVER

DILIP MADAN, MARTIJN PISTORIUS, AND MITJA STADJE

Abstract. In this paper we present a weak approximation scheme for BSDEs driven by a Wiener process and

an (in)finite activity Poisson random measure with drivers that are general Lipschitz functionals of the solution

of the BSDE. The approximating backward stochastic difference equations (BS∆Es) are driven by random

walks that weakly approximate the given Wiener process and Poisson random measure. We establish the weak

convergence to the solution of the BSDE and the numerical stability of the sequence of solutions of the BS∆Es.

By way of illustration we analyse explicitly a scheme with discrete step-size distributions.

1. Introduction

Backward stochastic differential equations (BSDEs) have turned up in a range of different setting, notably in

many applications in mathematical finance such as portfolio optimization and utility indifference pricing, and

also as non-linear expectations—see El Karoui et al. (1997) for an overview of applications of BSDEs in finance

and Delong (2013) for a recent treatment of the case of BSDEs with jumps. Unlike in the case of BSDEs without

jumps, exact sampling methods from the probability distribution of the increments of the driving Poisson random

measures are in general not readily available, which is an issue in the practical implementation of approximation

schemes. Motivated by this observation, we develop in this paper a weak approximation scheme for BSDEs

driven by a Wiener process and independent Poisson random measure, allowing the approximating processes to

be defined on filtrations that are different from the one the BSDE lives on. We also allow the drivers to take a

general Lipschitz-continuous functional form (see (1.2) below), which is encountered in many applications.

Setting. Let T > 0 be a given horizon and let (Ω,F ,P) be a probability space endowed with a filtration

F = (Ft)t∈[0,T ] generated by a d1-dimensional Wiener process W and an independent d2-dimensional Lévy

process X (i.e., a càdlàg stochastic process with X0 = 0 and stationary independent increments—refer to

e.g. Sato (1999) for background on Lévy processes). We assume that X is a zero-mean square-integrable

process without Gaussian component, in which case X is a pure-jump martingale given by

(1.1) Xt =

∫
[0,t]×Rd2\{0}

x(N(ds× dx)− ν(dx)ds) =

∫
[0,t]×Rd2\{0}

xÑ(ds× dx), t ∈ [0, T ],

where ν denotes the Lévy measure of X, N is the Poisson random measure associated to the Poisson point

process (∆Xt, t ∈ [0, T ]) of jumps of X and Ñ(ds×dx) = N(ds×dx)−ν(dx)ds is the corresponding compensated

Poisson random measure. We consider in this paper BSDEs of the form

Yt = F +

∫ T

t

f(s, Ys, Zs, Z̃s)ds−
∫ T

t

ZsdWs −
∫

(t,T ]×Rd2\{0}
Z̃s(x)Ñ(ds× dx), t ∈ [0, T ],(1.2)

with driver function f : [0, T ]× R× Rd1 × L2(ν(dx),B(Rd2\{0}))→ R,
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for FT -measurable terminal conditions F ∈ L2(P). A triplet (Y,Z, Z̃) is called a solution of this BSDE if (1.2)

holds for all t ∈ [0, T ] and the triplet takes values in the product of the spaces S2, H2 and H̃2 of square-

integrable F-adapted semi-martingales Y , predictable processes Z and P ⊗ B(Rd2 \ {0})-measurable processes

Z̃, respectively.∗ Under the standard setup, which we assume to be in force throughout, the driver f is assumed

to be such that (i) f is continuous as function of t ∈ [0, T ] at any (y, z, z̃), and (ii) f is Lipschitz continuous in

(y, z, z̃) uniformly for all t ∈ [0, T ], that is, there exists a positive K satisfying

(1.3) |f(t, y1, z1, z̃1)− f(t, y0, z0, z̃0)| ≤ K
(
|y1 − y0|+ |z1 − z0|+

√∫
Rd2\{0}

|z̃1(x)− z̃0(x)|2ν(dx)

)
,

for any y0, y1 ∈ R, z0, z1 ∈ Rd1 and z̃0, z̃1 ∈ L2(ν(dx),B(Rd2\{0})). Under these conditions it is well-known

that the BSDE (1.2) has a unique solution (see Tang & Li (1994) and Royer (2006)).

Related literature. BSDEs with jumps of the form in (1.1) play an important role in many optimal control

problems, see for instance Tang & Li (1994), Eyraud-Loisel (2005), Lim (2006), or Jeanblanc et al. (2010).

Another main application of BSDEs arises in utility maximization, see for instance El Karoui & Rouge (2000),

Hu, Imkeller & Müller (2005), Klöppel & Schweizer (2007), and Sircar & Sturm (2011) in a Brownian filtration.

See Mania & Schweizer (2005) and Morlais (2009a) in a continuous filtration, and Becherer (2006) and Mor-

lais (2009b) in a setting with finite jump activity, and Morlais (2009b) and Pelsser & Stadje (2014) in a setting

with infinite jump acitivity. Royer (2006) studied BSDEs driven by Brownian motion and a Poisson random

measure, and their application to g-expectations. In the references quoted above the optimal solutions were

characterized in terms of solutions of BSDEs, but the problem of numerical approximation was not addressed

in the case of BSDEs with jumps.

A common way to approximate a BSDE is by discretizing time, replacing the BSDE by an appropriate discrete

time backward stochastic difference equation (BS∆E). We will consider the sequence of BS∆Es driven by d1-

dimensional and d2-dimensional random walks W (π) and X(π) converging to W and X. In a setting without

jumps, convergence results for general random walks have been obtained in Ma et al. (2002), Cheridito & Stadje

(2013), and in Briand et al. (2001, 2002) using Picard iteration arguments as well as results on convergence of

filtrations from Coquet et al. (2000). While many authors studied discrete schemes for the approximation of

solutions of BSDEs in a purely Brownian setting, in a setting with jumps there is considerably less literature

available. Lejay et al. (2007) is concerned with approximation schemes for BSDEs with one single degenerate

jump for a specific approximating process. Contrary to the references mentioned earlier in this paragraph which

took a random walk as the approximating process Bouchard & Elie (2007) considered numerical schemes in a

pure finite activity jump setting (without a Brownian component) based on a direct discretization of the Lévy

process. They showed convergence results for driver functions taking the form f(t, y,
∫
Rd2\{0} ρ(x)z̃(x)xν(dx)),

for a bounded functional ρ and that for driver functions of this form it suffices to compute (recursively backwards

in time) the integral
∫
Rd2\{0} ρ(x)z̃(x)xν(dx). Recently Aazizi (2013) has extended the convergence results of

Bouchard & Elie (2007) to the setting of a forward-backward SDE driven by an infinite activity jump-process.

Contributions. In this paper we introduce a discrete-time scheme for the approximation of the solution of a

BSDE driven by a Wiener process and an independent Poisson random measure allowing for a general Lipschitz-

continuous driver function (where the driver may be a functional of z̃). We prove L2-stability and convergence

∗That is, these processes are square-integrable with respect to

|Y |S2 := E

[
sup

t∈[0,T ]
|Yt|2

]1/2
, |Z|H2 := E

[∫ T

0
|Zt|2dt

]1/2
|Z̃|H̃2 := E

[∫ T

0

∫
Rd2\{0}

|Z̃t(x)|2ν(dx)dt

]1/2
respectively, where | · | denotes the Euclidean norm. P denotes the predictable σ-algebra.
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results for the solutions to BS∆Es generated by approximating random walks which may not be defined on the

same filtration as the continuous-time processes. The prime examples are finite (bi-, tri- and multinomial) trees

approximating the driving Brownian motion and Lévy process.

Unlike the schemes considered in Bouchard & Elie (2007) or Aazizi (2013) the weak approximation scheme

considered in the current paper neither relies on the discrete process being a discretization of the continuous-time

process, nor on the discrete-time process being defined on the same filtration as the continuous-time process,

nor on a Markovian structure. In fact our results hold for any suitable random walk and any terminal condition

and are more in the spirit of Briand et al. (2002). Furthermore, in all of the financial mathematics papers

quoted above the BSDEs in question take the more general form given in (1.2) (with the need to compute the

whole functional z̃) of which, up to this point, the numerical implementation has received little attention in the

literature. One of the main contributions of the current paper is to analyze this case. In particular, our results

include the case of a driving Lévy process with infinite jump activity. We show that when the probability of

the random walks not moving is strictly positive our BS∆Es satisfy strong L2-regularity conditions which lead

to stable numerical schemes. Note that, in the infinite activity case, approximations schemes for Lévy processes

often exclude or use a special technique to approximate the small jumps, see for instance Asmussen & Rosiński

(2001) and the reference therein for a discussion.

The outline of the proof of convergence is as follows. We first prove convergence for terminal conditions and

drivers satisfying regularity and differentiability conditions on the underlying Hilbert space. To overcome the

difficulties arising from a non-continuous limit we apply results from Mémin (2003) concerning the extended

convergence of filtrations and use that the solutions of the BS∆Es satisfy appropriate regularity properties.

The latter is shown by an induction over the Picard sequences. General arguments on Hilbert spaces then

conclude the proof for smooth terminal conditions and drivers. For the general case we deploy the L2-regularity

properties of the solutions of BS∆Es mentioned above.

Contents. The remainder of the paper is structured as follows. First, in Section 2, we present the random

walk approximations and review the associated (extended) weak convergence results that form the basis of

the approximation schemes under consideration. In Section 3 we show numerical stability of the sequence of

approximating BS∆Es driven by these random walks, which forms an important step towards the main result,

the convergence theorem, that we present together with its proof in Section 4. By way of illustration we present

in Section 5 an example in our setting of an explicit approximating BS∆E scheme driven by a discrete random

walk. Some proofs of auxiliary results are deferred to the appendix.

2. Preliminaries

As approximation to the BSDE (1.2) we consider a sequence of discrete-time BSDEs (also referred to as

BS∆Es, backward stochastic difference equations) driven by processes with independent stationary increments

(W (π), X(π)) that are constant outside uniform time-grids π, with the collection of grids π = πN , N ∈ N given

by πN := {t0, t1, . . . , tN} with ti = iT/N , i = 0, . . . , N , with mesh denoted by ∆ = ∆N = T/N . In the sequel we

often write π = πN when no confusion is possible and identify the process (W (π), X(π)) with the random walk

(W
(π)
ti , X

(π)
ti )ti∈π. In this section we specify these approximating random walks and collect weak-convergence

results that are deployed in the sequel.

2.1. Random walk approximation. We assume that W (π) and X(π) are independent, square-intergrable

martingales defined on the probability space (Ω,F (π),P) which are piecewise constant on [ti, ti+1). More specif-

ically, let W (π) = (W (π),1, . . . ,W (π),d1)′ (where ′ denotes transpose) be a column-vector of zero-mean random
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walks that have independent stationary increments ∆W
(π)
ti := W

(π)
ti+1
−W (π)

ti with second moment matching the

corresponding second moment of a Wiener process subject to a uniform moment-condition, i.e.,

Eti
[(

∆W
(π)
ti

)(
∆W

(π)
ti

)′]
= ∆Id1 , i = 0, . . . , N − 1,(2.1)

sup
π

E[|W (π)
T |

2+ε] <∞, for some ε > 0,(2.2)

where Id1 the d1 × d1 identity matrix and Et[·] = E[·|F (π)
t ] for t ∈ π, with F(π) = (F (π)

t , t ∈ π) denoting the

standard filtration generated by (W (π), X(π)). The increments of W (π) may be for instance be taken to follow

suitably chosen multivariate Bernoulli or Gaussian distributions.

Moreover, let X(π) = (X(π),1, . . . , X(π),d2)′ be a (column-vector of) zero-mean random walk with independent

stationary increments ∆X
(π)
ti := X

(π)
ti+1
−X(π)

ti satisfying the moment conditions

∆−1/2E[|∆X(π)
ti |] −→ 0, ∆→ 0, and(2.3)

∆−1Eti
[(

∆X
(π)
ti

)(
∆X

(π)
ti

)′]
−→ (νk,l)

d2
k,l=1 , i = 0, . . . , N − 1, with(2.4)

νk,l =

∫
hk(x)hl(x)ν(dx), hk(x) = xk, k = 1, . . . , d2, and

sup
π

E[|X(π)
T |

2+ε] <∞, for some ε > 0.(2.5)

Note that (2.3) is satisfied when we take ∆X
(π)
ti equal to the increment Xti+1−Xti of X over the interval [ti, ti+1]:

since X is square-integrable by (2.5), the first absolute moment of Xt at small t satisfies E[|Xt|] = O(t) for

t→ 0 (see Ludschgy & Pagès (2008), Theorem 1).

It is also assumed that the step-size distribution G(π) satisfies∫
Rd2\{0}

g(x)ν(π)(dx) −→
∫
Rd2\{0}

g(x)ν(dx),(2.6)

as ∆→ 0, with ν(π)(dx) := ∆−1G(π)(dx),

for all continuous bounded functions g : Rd2\{0} → R that are 0 around x = 0 and have a limit as |x| → ∞.

Finally, we assume that there is a positive probability that the random walk X(π) remains at the same

location from one time-step to the next:

(2.7) lim inf
∆→0

P
(

∆X
(π)
ti = 0

)
≥ a, for some a > 0.

Under condition (2.7) we establish that the corresponding sequence of BS∆Es is numerically stable (see The-

orem 3.4). In the case that X has finite activity (2.7) is naturally satisfied by the strong scheme (Xti) taking

a = e−λ where λ = ν(Rd2\{0}) denotes the jump rate. Thus, all strong schemes based on direct discretizations

of Lévy processes with finite jump-activity that are in L2+ε satisfy all conditions specified above. While in the

complementary case of infinite jump-activity (2.7) is generally not satisfied by a strong discretisation scheme,

this condition can be incorporated in the construction of a weak scheme—see Section 5 for explicit examples of

weak schemes satisfying (2.7) and all other conditions given above.

The conditions given in (2.1), (2.4) and (2.6) are sufficient to guarantee functional weak convergence of the

processes (W (π), X(π)) to the Lévy process (W,X) as the mesh size ∆ tends to zero. More precisely, as ∆→ 0

we have

(2.8) (W (π), X(π))
L−→ (W,X),

where
L−→ denotes weak-convergence in the Skorokhod J1-topology. This assertion follows as a direct conse-

quence of classical weak convergence theory (see Thm. VII.3.7 in Jacod & Shiryaev (2003)), given the conditions
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in (2.1), (2.4) and (2.6), the independent increments property of (W (π), X(π)) and the independence of W (π)

and X(π) on the one hand and that of X and W on the other hand.

In the sequel we assume that the random variables (W (π), X(π))π have been defined such that the convergence

in (2.8) holds in probability:

(2.9) (W (π), X(π))
P−→ (W,X),

where
P−→ denotes convergence in probability in the Skorokhod J1-topology†. In the next results we collect for

later reference a number of ramifications of the convergence in (2.9).

Lemma 2.1. (i) Let g : [0, T ]× Rd2 → R be a continuous function that is 0 in a neighbourhood of 0. Then we

have ∑
ti∈π\{T}∩[0, · ]

g(ti,∆X
(π)
ti )

P−→
∫

[0, · ]×Rd2\{0}
g(s, x)N(ds× dx),

∑
ti∈π\{T}∩[0, · ]

{g(ti,∆X
(π)
ti )− Eti−1 [g(ti,∆X

(π)
ti )]} P−→

∫
[0, · ]×Rd2\{0}

g(s, x)Ñ(ds× dx), as ∆→ 0.

The following limit holds in L1:

(2.10) lim
ε↓0

lim sup
∆→0

T/∆∑
j=1

|∆X(π)
tj |

2I{|∆X(π)
tj
|≤ε} = 0.

(ii) Let Z̄ : [0, T ]×Rd2 \{0} → R be a bounded function that is jointly continuous, and zero in a neighbourhood

of zero, and let the function g
(π)
s (x) be piecewise constant (i.e. g

(π)
s = g

(π)
ti for s ∈ [ti, ti+1)), (F (π)

s ⊗B(Rd2\{0}))-
measurable for any s ∈ [0, T ], and uniformly Lipschitz continuous as function of x (i.e., for some constant K̂ > 0

it holds supN∈N,s∈[0,T ] |g
(πN )
s (x)| ≤ K̂|x| a.s.). Then we have as ∆→ 0

E

 sup
i∈{1,...,N}

∣∣∣∣∣∣
i−1∑
j=0

∫
Rd2\{0}

g
(π)
tj (x)2ν(π)(dx)∆−

∫
[0,ti]×Rd2\{0}

g(π)
s (x)2ν(dx)ds

∣∣∣∣∣∣
→ 0,(2.11)

E

 sup
i∈{1,...,N}

∣∣∣∣∣∣
i−1∑
j=0

∫
Rd2\{0}

(Z̄tjg
(π)
tj )(x)ν(π)(dx)∆−

∫
[0,ti]×Rd2\{0}

(Z̄sg
(π)
s )(x)ν(dx)ds

∣∣∣∣∣∣
→ 0.(2.12)

Proof. (i) The first relation is a direct consequence of the convergence in (2.8) and the fact that the map

ω 7→ (ω,
∑
s≤· g(s,∆ωs)) (with ∆ωs = ωs − ωs−) is continuous in the Skorokhod J1-topology (see [18, Cor.

VI.2.8]). The second relation follows from the first and the convergence in (2.6). Finally, we turn to (2.10).

Note that by (2.4)

(2.13) lim sup
∆→0

E

T/∆∑
j=1

|∆X(π)
tj |

2

 = lim sup
∆→0

E[|X(π)
T |

2] = E[|XT |2].

Furthermore, for any collection of continuous functions (hε)ε satisfying I{|x|>2ε} ≤ |hε(x)| < I{|x|>ε} the inte-

grability conditions imply

(2.14) lim
ε↓0

lim inf
∆→0

E
[ T/∆∑
j=1

|∆X(π)
tj |

2I{|∆X(π)
tj

)|>ε}

]
≥ lim

ε↓0
E
[ ∑
t:∆Xt 6=0

|∆Xt|2hε(∆Xt)
]

= E[|XT |2].

The combination of (2.13) and (2.14) yields (2.10).

†Such random variables can be constructed by the Skorokhod embedding theorem
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(ii) For any s ∈ [0, T ] and ε > 0, the triangle inequality implies∣∣∣∣∣
∫
Rd2\{0}

g(π)
s (x)2ν(π)(dx)−

∫
Rd2\{0}

g(π)
s (x)2ν(dx)

∣∣∣∣∣ ≤ ∣∣∣I(π)(g(π)
s )

∣∣∣+ J (π)
ε , with(2.15)

J (π)
ε =

∫
{|x|≤ε}

g(π)
s (x)2ν(π)(dx) +

∫
{|x|≤ε}

g(π)
s (x)2ν(dx),

where, for any Borel-function f ∈ L2(ν(dx),B(Rd2\{0})) ∩ L2(ν(π)(dx),B(Rd2\{0})), we denote

I(π)(f) =

∫
{|x|>ε}

f(x)2ν(π)(dx)−
∫
{|x|>ε}

f(x)2ν(dx).(2.16)

Fix δ > 0 arbitrary and choose an ε > 0 from the set {a ∈ R(d2\{0} : ν({x : |x| = |a|}) = 0} that satisfies

(2.17) K̂

(∫
{|x|≤ε}

|x|2ν(π)(dx) +

∫
{|x|≤ε}

|x|2ν(dx)

)
< δ,

uniformly over partitions π [which is possible in view of (2.10)]. Let us first show that I(π)(g
(π)
s ) converges to

zero in L1 for any s ∈ [0, T ]. Let X
(π)
ε and Xε be the pure-jump processes induced by X(π) and X by excluding

all jumps smaller than ε. Then X
(π)
ε converges to Xε in the Skorokhod J1-topology in probability as δ → 0. Since

the position at the epoch of firt exit from a ball is a continuous path-functional in the Skorokhod J1-topology

(see [18, Prop. VI.2.12], it follows in view of the integrability condtion (2.5) that X
(π)
ε (τ

(π)
ε ) converges to Xε(τε)

in L2, where τ
(π)
ε = inf{t ≥ 0 : |X(π)

ε,t | > ε} and τε = inf{t ≥ 0 : |Xε,t| > ε} are equal to the first-passage

times into the complement of the ball with radius ε. The observation that τ
(π)
ε and τε are equal to the first

time that X
(π)
ε and Xε jump in conjunction with the uniform Lipschitz-continuity of g(π), (2.5) and the fact

ν(π)(|x| > ε)→ ν(|x| > ε) then imply

lim
∆→0

|I(π)(g(π))| = lim
∆→0

ν(|x| > ε)

∣∣∣∣∣
∫
{|x|>ε}

g(π)(x)2 ν(π)(dx)

ν(π)(|x| > ε)
−
∫
{|x|>ε}

g(π)(x)2 ν(dx)

ν(|x| > ε)

∣∣∣∣∣
= lim

∆→0
ν(|x| > ε)

∣∣∣∣E[∣∣g(π)(X(π)
ε (τ (π)

ε ))
∣∣2 − ∣∣g(π)(Xε(τε))

∣∣2]∣∣∣∣ = 0.

Furthermore, by the uniform Lipschitz-continuity of the function g
(π)
s we also have that (a) the sequence

I(π)(g
(π)
s ) is uniformly bounded and (b) J

(π)
ε is bounded by the left-hand side of (2.17). As a consequence,

the bounded convergence theorem and the bounds (2.15) and (2.17) imply that the limit as ∆ → 0 of the

left-hand side of (2.11) is smaller than Tδ. Since δ is arbitrary the convergence stated in (2.11) follows.

The proof of convergence in (2.12) is analogous, and is omitted. �

2.2. Extended weak convergence. In order to establish the convergence of BSDEs we also need to deploy

the notions of extended weak convergence and weak convergence of filtrations, the definitions of which, we recall

from Coquet et al. (2004) and Mémin (2003), are given as follows:

Definition 2.2. Given stochastic processes Z = (Zt)t∈[0,T ] and (Zn)n∈N with Zn = (Znt )t∈[0,T ] defined on

filtered probability spaces (Ω,G, (Gt),P) and (Ω,Gn, (Gnt ),P) respectively, we say (i) Gn weakly converges to

G [denoted Gn w→ G] if for every A ∈ G the sequence of processes (E[IA|Gnt ])t∈[0,T ] converges to the process

(E[IA|Ft])t∈[0,T ] and (ii) (Zn,Gn) weakly converges to (Z,G) [denoted (Zn,Gn)
w→ (Z,G)] if for every A ∈ G

the sequence of processes (Znt ,E[IA|Gnt ])t∈[0,T ] converges to the process (Zt,E[IA|Ft])t∈[0,T ]. In both cases the

convergence is in probability under the Skorokhod J1-topology (on the space D of càdlàg functions).
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Remark 2.3. It is clear that the notion of extended weak convergence in general is stronger than the notion

of weak convergence of filtration (see for instance Coquet et al. (2004) and Mémin (2003) for a discussion).

However, in the notation of the previous definition, if Fni converges to Fi in L1 for i = 1, . . . ,m and Gn w→ G,

it may be shown by an application of Doob’s maximal inequality (see Coquet et al. (2004), Remark 1) that

we have the convergence (E[Fn1 |Gn· ], . . . ,E[Fnm|Gn· ]) → (E[F1|G·], . . . ,E[Fm|G·]) in probability in the Skorokhod

J1-topology. In particularly, if Gn converges to G weakly, Ln is a Gn-martingale and L is a G-martingale then

LnT → LT in L1 implies that (Ln,Gn)
w→ (L,G) in the extended sense, see also Proposition 7 in Coquet et

al. (2004) or Proposition 1 in Mémin (2003).

We recall (from Proposition 2 in Mémin (2003)) that (W (π), X(π)) converges to the Lévy process (W,X) in

the sense of extended convergence, due to the independence of the increments of the two-coordinate processes

W (π) and X(π), in conjunction with the fact that the filtration F (π) is generated by the process (W (π), X(π)):

Proposition 2.4 (Proposition 2, Mémin (2003)). We have ((W (π), X(π)),F (π))
w→ ((W,X),F) as ∆ → 0. In

particular, F (π) w→ F .

If a sequence of square-integrable martingales converges to a limit in the sense of extended convergence that

is given above, the convergence of the corresponding quadratic variation and predictable compensator processes

also holds true, which is a fact that is deployed in the proof of convergence of BSDEs.

Theorem 2.5 (Corollary 12, Mémin (2003)). Let (L(π)) be a sequence of square integrable G(π)-measurable

martingales, and let L be a square integrable quasi-left continuous (Gt)-martingale. If L
(π)
T → LT in L2 and

(L(π),G(π))
w→ (L,G), then we have(

L(π), [L(π), L(π)], 〈L(π), L(π)〉
)
→
(
L, [L,L], 〈L,L〉

)
in probability under the Skorokhod J1-topology, where, for any square integrable martingale M , [M,M ] and

〈M,M〉 denote the associated quadratic variation and predictable compensator, respectively.

We record some results concerning the convergence of cross-variations which follow as implications of Theo-

rem 2.5 and are deployed later in the paper.

Corollary 2.6. Under the assumptions on the processes (L(π)) and L in Theorem 2.5, the following hold true:

(i) As ∆→ 0, 〈W (π), L(π)〉 → 〈W,L〉, in probability in the Skorokhod J1-topology.

(ii) Assume that Z̄ : [0, T ] × Rd2 → R is bounded, jointly continuous, and zero in an environment around

zero, and consider the stochastic processes U (π) = (U
(π)
t )t∈[0,T ] and U = (Ut)t∈[0,T ] given by

U
(π)
t :=

∑
ti∈π∩[0,t]

{Z̄ti(∆X
(π)
ti )− Eti−1 [Z̄ti(∆X

(π)
ti )]}, Ut :=

∫
[0,t]×Rd2\{0}

Z̄s(x)Ñ(ds× dx).

As ∆→ 0, 〈U (π), L(π)〉 → 〈U,L〉, in probability in the Skorokhod J1-topology.

Proof. (i) Since W (π) (L(π)) converges to W (L, respectively) in probability in the Skorokhod J1-topology and

W is continuous, this entails that joint processes (W (π) + L(π),W (π) − L(π)) converge in probability in J1 to

(W + L,W − L). By Remark 2.3 and Proposition 2.4 this convergence holds true in the extended sense with

the filtrations F (π) and F . Since (W
(π)
T + L

(π)
T ,W

(π)
T − L

(π)
T ) actually converges in L2 to (W + L,W − L)

(by assumption for L and by conditions (2.1) and (2.2) for W ), we deduce from Theorem 2.5 that (〈W (π) +

L(π)〉, 〈W (π) − L(π)〉) converges to (〈W + L〉, 〈W − L〉) in probability in the Skorokhod J1-topology. As a

consequence, we have

(2.18) 〈W (π), L(π)〉 =
1

4

(
〈W (π) + L(π)〉 − 〈W (π) − L(π)〉

)
→ 1

4

(
〈W + L〉 − 〈W − L〉

)
= 〈W,L〉
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in probability in the Skorokhod J1-topology, as stated.

(ii) We start by noting (from Lemma 2.1) that as ∆→ 0 U (π) converges to U in probability in the Skorokhod

J1-topology. As Z̄ is bounded and zero in a neighbourhood of zero, it follows from (2.5) that the collection

(U (π))π is bounded in L2+ε, so that in particular U
(π)
T → UT in L2. Since the filtration satisfy F (π) w→ F we

have (by Proposition 2.4 and Remark 2.3)

(U
(π)
· , L

(π)
· ) = (E[U

(π)
T |F

(π)
· ],E[L

(π)
T |F

(π)
· ])

∆→0→ (E[UT |F·],E[LT |F·]) = (U·, L·).

By similar arguments as in part (i) it then follows that we have the convergence of 〈U (π), L(π)〉 to 〈U,L〉 in

probability in the Skorokhod J1-topology. �

3. BS∆Es

We turn next to the formulation of the approximating BS∆Es, the construction of their solutions and

numerical stability.

3.1. Formulation. Since by switching from the Wiener process W to the process W (π) we lose the predictable

representation property, it is well known that we need to include in the formulation of the BS∆E an additional

orthogonal martingale term (M (π)), which thus leads us to the following BS∆E on the grid π:

Y
(π)
ti = F (π) +

N−1∑
j=i

f (π)(tj , Y
(π)
tj , Z

(π)
tj , Z̃

(π)
tj )∆−

N−1∑
j=i

Z
(π)
tj ∆W

(π)
tj

−
N−1∑
j=i

{
Z̃

(π)
tj (∆X

(π)
tj )I{∆X(π)

tj
6=0} − Etj

[
Z̃

(π)
tj (∆X

(π)
tj )I{∆X(π)

tj
6=0}

]}
−
(
M

(π)
T −M (π)

ti

)
,(3.1)

where the random variable F (π) ∈ L2(F (π)
T ) is the final condition, and the driver f (π) : [0, T ] × R × Rd1 ×

L2(ν(π),B(Rd2\{0})) → R is a function that is piecewise constant (i.e., f (π)(s, ·) = f (π)(ti, ·) for s ∈ [ti, ti+1))

and is uniformly Lipschitz-continuous in (y, z, z̃), i.e., for some K > 0 we have for all t ∈ [0, T ]

(3.2) |f (π)(t, y1, z1, z̃1)− f (π)(t, y0, z0, z̃0)| ≤ K
(
|y1 − y0|+ |z1 − z0|+

√
Eν(π) [(z̃1(ξ)− z̃0(ξ))2]

)
,

where, for any Borel-function f , Eν(π) [f(ξ)2] :=
∫
f(z)2ν(π)(dz).

A quadruple (Y (π), Z(π), Z̃(π),M (π)) is a solution of the BS∆E (3.1) if it satisfies (3.1) for all ti ∈ π where Y
(π)
ti

and (the components of the row-vector) Z
(π)
ti are in L2(dP,F (π)

ti ), Z̃
(π)
ti lies in L2(G(π)(dx)× dP,B(Rd2\{0})⊗

F (π)
ti ) and M (π) = (M

(π)
ti ) is a zero-mean square-integrable F(π)-martingale on π that is orthogonal to (W

(π)
ti )

and to the martingales (Mk
ti) with increments ∆Mk

ti = kti(∆X
(π)
ti ) − Eti

[
kti(∆X

(π)
ti )

]
for any function (kti)ti

with kti ∈ L2(G(π)(dx)× dP,B(Rd2)⊗F (π)
ti ).

The BS∆E can be equivalently expressed in differential notation as

∆Y
(π)
ti = −f (π)(ti, Y

(π)
ti , Z

(π)
ti , Z̃

(π)
ti )∆ + Z

(π)
ti ∆W

(π)
ti

+

{
Z̃

(π)
ti (∆X

(π)
ti )I{∆X(π)

ti
6=0} − Eti

[
Z̃

(π)
ti (∆X

(π)
ti )I{∆X(π)

ti
6=0}

]}
+ ∆M

(π)
ti ,(3.3)

Y
(π)
T = F (π),(3.4)

where i = 0, . . . , N − 1. We have the following result:
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Proposition 3.1. For ∆ < 1/K the BS∆E (3.1) has a unique solution (Y (π), Z(π), Z̃(π),M (π)), which satisfies

the relations: for ti ∈ π,

Y
(π)
ti = f (π)(ti, Y

(π)
ti , Z

(π)
ti , Z̃

(π)
ti )∆ + Eti [Y

(π)
ti+1

](3.5)

= Eti

F (π) +

N−1∑
j=i

f (π)(tj , Y
(π)
tj , Z

(π)
tj , Z̃

(π)
tj )∆

 ,(3.6)

Z
(π)
ti = ∆−1 Eti

[
Y

(π)
ti+1

∆W
(π)
ti

]
,(3.7)

Z̃
(π)
ti (x) = Eti

[
Y

(π)
ti+1
|∆X(π)

ti = x
]
− Eti

[
Y

(π)
ti+1
|∆X(π)

ti = 0
]
,(3.8)

∆M
(π)
ti = Y

(π)
ti+1
− Eti

[
Y

(π)
ti+1

]
− Z(π)

ti ∆W
(π)
ti

−
{
Z̃

(π)
ti (∆X

(π)
ti )I{∆X(π)

ti
6=0} − Eti

[
Z̃

(π)
ti (∆X

(π)
ti )I{∆X(π)

ti
6=0}

]}
.(3.9)

Proof. First of all we verify that a given solution (Y (π), Z(π), Z̃(π),M (π)) of the BS∆E (3.3) satisfies the stated

relations. By taking conditional expectations with respect to F (π)
ti in (3.1) and (3.3) and using that the mar-

tingale increments ∆W
(π)
ti , Z̃

(π)
ti (∆X

(π)
ti ) − Eti

[
Z̃

(π)
ti (∆X

(π)
ti )

]
and ∆M

(π)
ti are orthogonal and have zero mean

we find (3.5) and (3.6). Similarly, multiplying the left- and right-hand sides of (3.3) with the coordinates of

the vector ∆W
(π)
ti and subsequently taking the F (π)

ti -conditional expectations yields (3.7) in view of the mo-

ment condition in (2.1). Multiplying with an arbitrary function g ∈ L∞(F (π)
ti ⊗B(Rd2)) and taking conditional

expectations and using (3.5) shows denoting A = {∆X(π)
ti 6= 0}

(3.10) Eti
[{
Y

(π)
ti+1
− Eti [Y

(π)
ti+1

]
}
g(∆X

(π)
ti )

]
= Eti

[{
Z̃

(π)
ti (∆X

(π)
ti )IA − Eti [Z̃

(π)
ti (∆X

(π)
ti )IA]

}
g(∆X

(π)
ti )

]
,

which implies IAZ̃
(π)
ti (∆X

(π)
ti ) = C +Eti [Yti+1

|∆X(π)
ti ] for some C ∈ L2(F (π)

ti ). By inserting this expression into

(3.10) and taking g(x) = I{0}(x) we find with Ac = {∆X(π)
ti = 0}

−
(
C + Eti [Y

(π)
ti+1

]
)
Eti [IAc ] = Eti [Y

(π)
ti+1

IAc ]− Eti [Y
(π)
ti+1

]Eti [IAc ]⇒ C = −Eti
[
Y

(π)
ti+1

∣∣∣∣Ac] ,
which implies that we have (3.8). The relation (3.9) directly follows by combining (3.3) and (3.5).

Next we verify existence. Define the quadruple (Y (π), Z(π), Z̃(π),M (π)) by the right-hand sides of (3.5),

(3.7), (3.8) and (3.9). Note that Y (π) is determined uniquely by the implicit equation (3.5) (since the map

Ψ : L2(dP,F (π)
ti ) → L2(dP,F (π)

ti ) given by Ψ(Y ) = f (π)(ti, Y, Z
(π)
ti , Z̃

(π)
ti )∆ + Eti [Y

(π)
ti+1

] is a contraction in case

K∆ < 1 as a consequence of the Lipschitz condition (3.2)). Furthermore, it is straightforward to verify that

the measurability and integrability requirements are satisfied, as well as (3.3).

Finally, we verifty the orthogonality of the martingale M (π). To see that M (π) and W (π) are orthogonal, we

note that since
{
Z̃

(π)
· (∆X

(π)
· )I{∆X(π)

· 6=0} − E·
[
Z̃

(π)
· (∆X

(π)
· )I{∆X(π)

· 6=0}

]}
and ∆W

(π)
· are orthogonal, we have

by definition of Z
(π)
ti and ∆W

(π)
ti

Eti [∆M
(π)
ti ∆W

(π)
ti ] = Eti [Y

(π)
ti+1

∆W
(π)
ti ]− Eti [(Z

(π)
ti ∆W

(π)
ti )∆W

(π)
ti ] = 0.

Furthermore, for any function kti ∈ L∞(F (π)
ti ⊗ B(Rd2)) it holds

Eti [∆M
(π)
ti {kti(∆X

(π)
ti )− Eti [kti(∆X

(π)
ti )]}]

= Eti [Y
(π)
ti+1

kti(∆X
(π)
ti )]− Eti [Y

(π)
ti+1

]Eti [kti(∆X
(π)
ti )]

−Eti [Z̃
(π)
ti (∆X

(π)
ti )kti(∆X

(π)
ti )] + Eti [Z̃

(π)
ti (∆X

(π)
ti )]Eti [kti(∆X

(π)
ti )] = 0,
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where we used that Z̃
(π)
ti (0) = 0, inserted the form (3.8) and used the tower-property of conditional expectation.

Hence, M (π) is orthogonal to the martingales with increments kti(∆X
(π)
ti ) − Eti [kti(∆X

(π)
ti )], and the proof is

complete. �

In the case that the final value F (π) is independent of W (π) the orthogonal martingale M (π) vanishes.

Proposition 3.2. If F (π) is independent of W (π) then M (π) ≡ 0.

In particular, it follows that in the pure jump case, the martingale M (π) is zero and the representation

property holds true.

Proof. The assertion follows directly from (3.9) once we have shown that in the case that F (π) ∈ L2(F (π)
ti+1

) is

independent of W (π) then Z
(π)
ti and Z̃

(π)
ti defined in (3.7) and (3.8) are such that Z

(π)
ti = 0 and

(3.11) F (π) = Eti [F (π)] +
{
Z̃

(π)
ti (∆X

(π)
ti )− Eti

[
Z̃

(π)
ti (∆X

(π)
ti )

]}
.

That Z
(π)
ti = 0 follows directly from (3.7) [with [Y

(π)
ti+1

= F (π)], since W
(π)
ti has zero mean and is independent of

F . To see that the identity (3.11) holds we first note that, as F (π) ∈ L2(dP,F (π)
ti+1

) and F (π) is independent of

W (π) there exists a function f in L2(G(π)(dx)× dP,B(Rd2)⊗ F (π)
ti ) satisfying F (π) = f(∆X

(π)
ti ). Inserting the

forms of F (π) and Z̃
(π)
ti in the rhs of (3.11) and performing straightforward manipulations (similar to those in

the proof of Proposition 3.1) shows that the rhs and lhs in (3.11) coincide. �

3.2. Numerical stability. In this section we turn to the numerical stability of the BS∆Es in L2 sense. We

start by specifying uniform conditions for the collection of drivers (f (π)) of the BS∆Es.

Assumption 1. (i) For some K > 0, the drivers f (π) are uniformly K-Lipschitz continuous (i.e., f (π) satisfies

(3.2)).

(ii) f (π)(t, 0, 0, 0) is bounded uniformly over all t ∈ π and partitions π.

(iii) For every (t, y, z) ∈ [0, T ] × R × Rd1 and uniformly Lipschitz continuous function z̃ (i.e., z̃ for which

|z̃(x)|/|x| is bounded over all x ∈ Rd2\{0}), we have

(3.12) lim
∆→0

f (π)(t, y, z, z̃) = f(t, y, z, z̃).

Remarks 3.3. (i) Note that the functions f (π)(t, y, z, z̃) in (3.12) are well-defined since every Lipschitz contin-

uous function z̃ is square-integrable with respect to the measures ν(π) and ν.

(ii) In Assumption 1 (iii) it suffices to require the convergence of the drivers only for uniformly Lipschitz

continuous functions z̃ as these functions form a dense subset in L2(ν(π),B(Rd2\{0})).
(iii) When the driver f(t, y, z, ·) is distribution-invariant under the measure ν(dx), i.e., there exists a function

f̂ such that f(t, y, z, z̃) = f̂(t, y, z, ν ◦ z̃−1), a natural first candidate for f (π) would be to set f (π)(t, y, z, z̃) :=

f̂(t, y, z, ν(π) ◦ z̃−1).

We have the following estimate for BS∆Es as in (3.1) with drivers f (π),0, f (π),1 and terminal conditions

F (π),0, F (π),1 and corresponding solution quadruples denoted by (Y (π),k, Z(π),k, Z̃(π),k,M (π),k), k = 0, 1, respec-

tively.

Theorem 3.4. There exists an n0 ∈ N and a constant C̄ such that for all π = πN with N ≥ n0, all drivers

f (π),0, f (π),1 satisfying Assumption 1(i)-(ii), and square integrable terminal conditions F (π),0, F (π),1, and ti ∈ π,
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we have

(3.13) E

 max
tj≤ti,tj∈π

|δY (π)
tj |

2 +

i−1∑
j=0

{
|δZ(π)

tj |
2∆ + |δM (π)

tj |
2 + |δZ̃(π)

tj (∆X
(π)
tj )− Etj [δZ̃

(π)
tj (∆X

(π)
tj )]|2

}
≤ C̄E

|δY (π)
ti |

2 +

i−1∑
j=0

|δf (π)(tj , Y
(π),0
tj , Z

(π),0
tj , Z̃

(π),0
tj )|2∆

 ,
with δY (π) = Y (π),0 − Y (π),1, etc.

Remark 3.5. In continuous-time the following analogous estimate holds true for some constant c̄ > 0:

E

[
sup

0≤t≤t′
|δYt|2 +

∫ t′

0

|δZs|2ds+

∫
[0,t′]×Rd2\{0}

|δZ̃s(x)|2ν(dx)ds

]
(3.14)

≤ c̄E
[
|δYt′ |2 +

∫ t′

0

|δf(s, Y 0
s , Z

0
s , Z̃

0
s )|2ds

]
, t′ ∈ [0, T ].

For a proof of (3.14), see for instance to Proposition 3.3 in Becherer (2006) or Lemma 3.1.1 in Delong (2013).

In the proof of Theorem 3.4, which is provided in the Appendix, the following estimate is deployed which is

a consequence of the zero-jump-condition (2.7):

Lemma 3.6. There exist δ0 > 0 and C ′ > 0 such that for all ∆ ≤ δ0, for all functions (Ũtj )j with Ũtj (0) = 0

and Ũtj ∈ L2(ν(π)(dx)× dP,B(Rd2)⊗F (π)
tj ), and for any j = 0, . . . , n− 1 we have

(3.15)

n−1∑
i=j

(
Eti
[
|Ũti(∆X

(π)
ti )|2

]
−
∣∣∣Eti [Ũti(∆Xn

ti)
] ∣∣∣2) ≥ C ′ n−1∑

i=j

∣∣∣Eti [Ũti(∆X(π)
ti )

] ∣∣∣2.
Proof. Assume without loss of generality that j = 0. Using Hölder’s inequality we have

n−1∑
i=0

∣∣∣Eti [Ũti(∆X(π)
ti )

] ∣∣∣2 =

n−1∑
i=0

∣∣∣Eti [Ũti(∆X(π)
ti )I{∆X(π)

ti
6=0}

] ∣∣∣2
≤
(

max
i

P[∆X
(π)
ti 6= 0]

) n−1∑
i=0

Eti
[∣∣∣Ũti(∆X(π)

ti )
∣∣∣2] .(3.16)

Since X(π) has stationary increments the first factor in the final line is equal to P[∆X
(π)
t1 6= 0], which is bounded

above by (1 − a + δ) for all partitions with mesh ∆ ≤ δ0, where δ is some number small enough such that

a− δ > 0, and δ0 is chosen sufficiently small using (2.7). By combining the upper bound with (3.16) we obtain

(3.15) (with C ′ = a− δ). �

3.3. Solution of the BS∆E via Picard iteration. The process (Y (π), Z(π), Z̃(π)) satisfying the BS∆E can

be obtained as the limit of an recursively defined Picard sequence (Y (π,p), Z(π,p), Z̃(π,p))p∈N∗ , which is initialised

with (Y (π,0), Z(π,0), Z̃(π,0)) ≡ (0, 0, 0) and is defined for p ∈ N and ti ∈ π by the right-hand sides of formulas

(3.6), (3.7) and (3.8) respectively, with Y
(π)
tj , Z

(π)
tj and Z̃

(π)
tj replaced by Y

(π,p−1)
tj , Z

(π,p−1)
tj and Z̃

(π,p−1)
tj . We

may associate to the sequence (Y (π),p, Z(π),p, Z̃(π),p)p∈N∗ a sequence of square-integrable orthogonal martingales

(M (π),p)p∈N∗ defined by M (π),0 ≡ 0 and for p ∈ N by M (π),p = {M (π),p
ti , ti ∈ π} with

∆M
(π),p
ti = Y

(π),p
ti+1

− Eti
[
Y

(π),p
ti+1

]
− Z(π),p

ti ∆W
(π)
ti −

{
Z̃

(π),p
ti (∆X

(π)
ti )− Eti

[
Z̃

(π),p
ti (∆X

(π)
ti )

]}
.
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We also note that we have

m
(π)
ti := Eti

F (π) +
∑
tj∈π

f (π)(tj , Y
(π),p
tj , Z

(π),p
tj , Z̃

(π),p
tj )∆

(3.17)

= Y
(π),p+1
0 +

∑
tj∈π,j<i

Z
(π),p+1
tj ∆W

(π)
tj +

∑
tj∈π,j<i

{
Z̃

(π),p+1
tj (∆X

(π)
tj )− Eti

[
Z̃

(π),p+1
tj (∆X

(π)
tj )

]}
+M

(π),p+1
ti .

It is well-known that, as p tends to infinity, the Picard sequence (Y (π,p), Z(π,p), Z̃(π,p),M (π,p)) converges to

(Y (π), Z(π), Z̃(π),M (π)) . In particular, it follows from Theorem 3.4 (by reasoning analogously as in Corollary

10 in Briand et al. (2002)) that for some n0 ∈ N it holds

(3.18) sup
πN :N≥n0

E
[

sup
ti∈πN

|Y (π)
ti − Y

(π),p
ti |2 +

∑
ti∈πN

{|Z(π)
ti − Z

(π),p
ti |2∆ + ∆(M (π) −M (π),p)2

ti}

+
∑
ti∈πN

{
Z̃

(π)
ti (∆X

(π)
ti )− Z̃(π),p

ti (∆X
(π)
ti )− Eti

[
Z̃

(π)
ti (∆X

(π)
ti )− Z̃(π),p

ti (∆X
(π)
ti )

]}2
]
→ 0 as p→∞.

4. Convergence

With the results concerning the convergence of the approximating random walks and the properties of the

discrete time BSDEs in hand, we turn next to the question of weak convergence of BS∆Es to the limiting BSDE

as the mesh size tends to zero. Let Y
(π)
t = Y

(π)
ti for ti ≤ t < ti+1 and define (Z

(π)
t , Z̃

(π)
t ,M

(π)
t ) similarly.

Theorem 4.1. Let (π) be a sequence of partitions π with the mesh ∆ tending to zero. If F (π) converges to F

in L2, then Y (π) L−→ Y and in particular

Y
(π)
0 → Y0.

Moreover, with dS denoting the Skorokhod metric, we have

E[d2
S(Y (π), Y )]→ 0.

Proof. The idea, inspired by Briand et al. (2001,2002), is to reduce the question of weak convergence of the

solutions of the BS∆Es to the solution of BSDE to that of the Picard sequences by using the fact that both the

solutions of the BSDE and of the BS∆Es are equal to limits of Picard sequences.

Define the sequence (Y∞,p, Z∞,p, Z̃∞,p)p∈N∪{0} recursively by (Y∞,0, Z∞,0, Z̃∞,0) = (0, 0, 0) and

Y∞,p+1
t := F +

∫ T

t

f(s, Y∞,ps , Z∞,ps , Z̃∞,ps )ds−
∫ T

t

Z∞,p+1
s dWs −

∫
(t,T ]×Rd2\{0}

Z̃∞,p+1
s (x)Ñ(ds× dx)

for p ∈ N ∪ {0}, where (Z∞,p+1, Z̃∞,p+1) are the unique coefficients in the martingale representation of the

square-integrable martingale Np = {Np
t , t ∈ [0, T ]}:

Np
t := E

[
F +

∫ T

0

f(s, Y∞,ps− , Z∞,ps , Z̃∞,ps )ds

∣∣∣∣Ft
]
− E

[
F +

∫ T

0

f(s, Y∞,ps− , Z∞,ps , Z̃∞,ps )ds

]

=

∫ t

0

Z∞,p+1
s dWs +

∫ t

0

Z̃∞,p+1
s Ñ(ds× dx).(4.1)

Furthermore, recall that we denote by (Y (π),p, Z(π),p, Z̃(π),p,M (π),p)p∈N∪{0} the Picard sequences corresponding

to the BS∆Es defined on the grid π. In the remainder of the proof we will deploy the continuous-time extensions

of (Y (π),p, Z(π),p, Z̃(π),p,M (π),p)p∈N∪{0} defined by taking paths to be piecewise constant; we denote these

extensions also by (Y (π),p, Z(π),p, Z̃(π),p,M (π,p)p∈N∪{0}.
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In view of the decomposition

Y (π) − Y = Y (π) − Y (π),p + Y (π),p − Y∞,p + Y∞,p − Y

and the fact that Y∞,p converges to Y and Y (π),p to Y (π) in S2-norm as p → ∞ (see Tang & Li (1994) and

(3.18) above, respectively), we have that the convergence of Y (π) to Y in the Skorokhod metric in L2 will follow

once we show that Y (π),p converges to Y∞,p in the latter sense, for any fixed p:

Lemma 4.1. Let p ∈ N. Then we have

(4.2) E[d2
S(Y (π),p, Y∞,p)]→ 0, as ∆→ 0.

To establish Lemma 4.1 we first provide a proof in the case of ‘smooth’ drivers and terminal conditions (in

Section 4.1), and use subsequently density arguments to show that the convergence carries over to the general

case (in Section 4.2). �

4.1. The smooth case. In order to show convergence we first restrict to the case that the terminal conditions

and driver functions are bounded infinitely (Fréchet-)differentiable functionals, in the following sense

Definition 4.2. LetH be a Hilbert space. (i) A function f : H → R is differentiable if it is Fréchet-differentiable

in every l ∈ H, i.e., there exists a bounded linear operator Al : H → R satisfying

lim
h→0

f(h+ l)− f(l)−Al(h)

|h|
= 0.

We set D(1)f(l) = Al.

(ii) A function f : H → R is k-times differentiable in l, k ∈ N, if there exists a bounded k-linear map

Al : Hk → R such that for every h1, . . . , hk−1 ∈ H

lim
hk→0

D(k−1)f(hk + l)(h1 . . . , hk−1)−D(k−1)f(l)(h1, . . . , hk−1)−Al(h1, . . . , hk)

|hk|
= 0.

(iii) A function f : H → R is element of C∞b (H) if all its higher derivatives are bounded, i.e., for every k ∈ N
there exists C̄k > 0 such that for all hi ∈ H

sup
l∈H
|D(k)H(l)(h1, . . . , hk)| ≤ C̄k

k∏
i=1

|hi|.

Given these definitions the formulation of the smoothness condition that is in force throughout this subsection

is as follows:

Assumption 2. (i) For some k ∈ N and H ∈ C∞b (R2k) the terminal conditions F and F (π) are given by

F (π) = H(W
(π)
s1 , . . . ,W

(π)
sk , X

(π)
s1 , . . . , X

(π)
sk ),

F = H(Ws1 , . . . ,Wsk , Xs1 , . . . , Xsk),
for some s1, . . . , sk ∈ [0, T ].

Moreover, F (π) converges to F as ∆→ 0 in L2(P).

(ii) The drivers f and f (π) satisfy f(t, ·) ∈ C∞b (R× Rd1 × L2(ν(dx),B(Rd2 \ {0}))) and f (π)(t, ·) ∈ C∞b (R×
Rd1 × L2(ν(π)(dx),B(Rd2 \ {0}))) where, for each k, the k-th derivative of f (π) is bounded uniformly in t and

∆, the mesh of π.

Under the smoothness conditions given in Assumption 2 the corresponding Picard sequences obey a number

of properties that play an important role in the proof of Proposition 4.4:
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Lemma 4.3. (i) Let p ∈ N. There exists a constant K̄p > 0 satisfying for all partitions π

(4.3) |Z̃(π),p
s (x)| ≤ K̄p|x| for all x ∈ Rd2 , s ∈ [0, T ],

where Z̃
(π),p
s denotes a continuous version (in x). Furthermore, Y (π),p and Z(π),p are uniformly bounded over

partitions π.

(ii) Z̃∞,p are uniformly Lipschitz-continuous in x, i.e., there exists a constant K ′p > 0 such that |Z̃∞,pt (x)| ≤
K ′p|x| for all x ∈ Rd2 and every t ∈ [0, T ], where Z̃∞,pt denotes again a continuous version (in x).

Given these properties, which proof is given in the Appendix, we show the convergence of Y (π) as stated in

Lemma 4.1 and in addition the convergence in mean-square of the triplet (Z(π), Z̃(π),M (π)) to (Z, Z̃, 0):

Proposition 4.4. For any p ∈ N we have as ∆↘ 0

E[d2
S(Y (π),p, Y∞,p)]→ 0,(4.4)

E

[∫ T

0

{
|Z(π),p
s − Z∞,ps |2 +

∫
Rd2\{0}

|Z̃(π),p
s (x)− Z̃∞,ps (x)|2ν(dx)

}
ds+ |M (π),p

T |2
]
→ 0.(4.5)

Proof. The proof is based on an induction with respect to p. We note that the assertions are trivially satisfied

for p = 0. Assuming that the assertion is satisfied for a certain p we show next that (4.4) and (4.5) are satisfied

for p+ 1.

Proof of (4.4) with p replaced by p + 1: In view of the uniform Lipschitz continuity of the driver functions

f (π) and since these are piecewise constant we have

lim sup
∆→0

sup
t∈[0,T ]

∣∣∣ ∑
j:tj∈π∩[0,t]

f (π)(tj , Y
(π),p
tj , Z

(π),p
tj , Z̃

(π),p
tj )∆−

∫ t

0

f(s, Y∞,ps , Z∞,ps , Z̃∞,ps )ds
∣∣∣

≤ lim sup
∆→0

∫ T

0

|f (π)(s, Y (π),p
s , Z(π),p

s , Z̃(π),p
s )− f (π)(s, Y∞,ps , Z∞,ps , Z̃∞,ps )|ds

+ lim sup
∆→0

∫ T

0

|f (π)(s, Y∞,ps , Z∞,ps , Z̃∞,ps )− f(s, Y∞,ps , Z∞,ps , Z̃∞,ps )|ds

≤ lim sup
∆→0

K
(∫ T

0

[
|Y (π),p
s − Y∞,ps |+ |Z(π),p

s − Z∞,ps |+
√
Eν(π)([Z̃

(π),p
s (ξ)− Z̃∞,ps (ξ)]2)

]
ds
)
,(4.6)

where in the third line the limsup vanishes in view of Assumption 1 and Lemma 4.3(ii). Using Lemmas 2.1

and 4.3 we find for any s ∈ [0, T ]

lim
∆→0

Eν(π)([Z̃(π),p
s (ξ)− Z̃∞,ps (ξ)]2) = lim

∆→0

∫
Rd2\{0}

|Z̃(π),p
s (x)− Z̃∞,ps (x)|2ν(dx).(4.7)

The induction assumption implies that the right-hand sides of (4.6) and (4.7) are equal to zero, where the

limits are in L2. By combining the convergence in H2-norm of the drivers and the extended convergence in

Proposition 2.4 (see also the remark after Definition 2.2) we find that as ∆↘ 0

m
(π)
t := E

F (π) +
∑
j:tj∈π

f (π)(tj , Y
(π),p
tj , Z

(π),p
tj , Z̃

(π),p
tj )∆

∣∣∣∣∣F (π)
t


−→ mt := E

[
F +

∫ T

0

f(s, Y∞,ps , Z∞,ps , Z̃∞,ps )ds

∣∣∣∣∣Ft
]
,

and as a consequence also

Y
(π),p+1
t = m

(π)
t −

∑
j:tj∈π∩[0,t]

f (π)(tj , Y
(π),p
tj , Z

(π),p
tj , Z̃

(π),p
tj )∆→ Y∞,p+1

t = mt−
∫ t

0

f(s, Y∞,ps , Z∞,ps , Z̃∞,ps )ds,
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where the convergence is in probability in Skorokhod J1-topology.

As Y (π),p+1 is uniformly bounded over partitions π (Lemma 4.3(i)), we deduce that E[d2
S(Y (π),p+1, Y∞,p+1)]

tends to zero as ∆→ 0, so that (4.4) holds with p replaced by p+ 1.

Proof of (4.5) with p replaced by p + 1: The argument consists of a number of steps that are listed in the

following auxiliary result:

Lemma 4.5. The following convergence holds in the supremum norm in probability as ∆→ 0:∫ ·
0

|Z(π),p+1
s |2ds+

∫
[0,·]×Rd2\{0}

|Z̃(π),p+1
s (x)|2ν(dx)ds+ 〈M (π),p+1〉·(4.8)

−→
∫ ·

0

|Z∞,p+1
s |2ds+

∫
[0,·]×Rd2\{0}

|Z̃∞,p+1
s (x)|2ν(dx)ds,∫ ·

0

Z(π),p+1
s ds −→

∫ ·
0

Z∞,p+1
s ds,(4.9) ∫

[0,·]×Rd2\{0}
Z̃(π),p+1
s (x)Z̄s(x)ν(dx)ds −→

∫
[0,·]×Rd2\{0}

Z̃∞,p+1
s (x)Z̄s(x)ν(dx)ds,(4.10)

for any function Z̄ : [0, T ] × Rd2 \ {0} → R that is bounded, jointly continuous, and zero in an environment

around zero. Furthermore, we have the following convergence in L1:∫ T

0

{
|Z(π),p+1
s − Z∞,p+1

s |2 +

∫
Rd2\{0}

|Z̃(π),p+1
s (x)− Z̃∞,p+1

s (ω, x)|2ν(dx)

}
ds+ |M (π),p+1

T |2 −→ 0,(4.11)

It follows from (4.11) that (4.5) is valid with p replaced by p + 1, and thus the proof of the proposition is

complete. �

Proof of Lemma 4.5: The proof is given in four parts (corresponding to the different equations):

Proof of (4.8): We show that the assertion follows from the convergence of the compensators of the martin-

gales L(π), defined by

(4.12) L
(π)
t = m

(π)
t − Y (π),p+1

0 ,

to the compensator of the martingale L = {Lt = mt−Y∞,p+1
0 }, by verifying that the conditions of Theorem 2.5

are satisfied. We first show

(4.13) E[d2
S(L(π), L)]→ 0, as ∆→ 0.

Since the processes L(π) converge to L in probability in the Skorokhod J1-topology (see the end of the proof

of (4.4)), the convergence in (4.13) follows by the lemma de la Vallée-Poussin and the fact that the collection

(L(π))π is uniformly bounded, as

sup
π
‖L(π)

T ‖∞ ≤ sup
π
‖F (π)‖∞ + sup

π
|Y (π)

0 |+ T sup
π,t
|f (π)(t, 0, 0, 0)|+B(π)(4.14)

+KT
(

sup
π

∥∥∥∥sup
t
|Y (π),p
t |

∥∥∥∥
∞

+ sup
π

∥∥∥∥sup
t
|Z(π),p
t |

∥∥∥∥
∞

)
,

where || · ||∞ denotes the essential-supremum norm and where by Jensen’s inequality, the independence of

increments and the conditions (2.4) and (2.5), we have

B(π) :=
∑
i

∆KK̄p+1

√∫
Rd2\{0}

|x|2ν(π)(dx) ≤
√
TKK̄p+1

√∑
i

∫
Rd2\{0}

|x|2ν(π)(dx)∆

=
√
TKK̄p+1

√
E[|X(π)

T |2]→
√
TKK̄p+1

√
E[|XT |2].
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Since we have the convergence of L
(π)
T to LT in L2 (from (4.13)) and the extended convergence (L(π),F (π))→

(L,F) (from (4.13), Proposition 2.4 and Remark 2.3) it follows from Theorem 2.5 that (〈L(π), L(π)〉t) converges

to (〈L,L〉t) in probability in the Skorokhod J1-topology. By the orthogonality of the martingales M (π), W (π)

and the point process induced by X(π) on the one hand and the orthogonality of W and Ñ on the other hand

we find∑
ti∈π\{T}∩[0,·]

{
|Z(π),p+1
ti |2∆ + Eti [|Z̃

(π),p+1
ti (∆X

(π)
ti )|2]

}
−

∑
ti∈π\{T}∩[0,·]

∣∣∣Eti [Z̃(π),p+1
ti (∆X

(π)
ti )

] ∣∣∣2 + 〈M (π),p+1〉·

−→
∫ ·

0

|Z∞,p+1
s |2ds+

∫
[0,·]×Rd2\{0}

|Z̃∞,p+1
s (x)|2ν(dx)ds(4.15)

in the supremum norm in probability. In this display we note that the second sum vanishes as ∆ tends to zero.

More specifically, in view of Lemma 4.3 and the condition in (2.3) we have

(4.16)
∑

ti∈π\{T}

∣∣∣Eti [Z̃(π),p+1
ti (∆X

(π)
ti )

] ∣∣∣2 ≤ K̄2
p+1

∑
ti∈π\{T}

∣∣∣Eti [|∆X(π)
ti |
]∣∣∣2 → 0

as ∆ tends to zero, where we used that Eti [|∆X
(π)
ti |] = E[|∆X(π)

ti |] by the independence of the increments of X(π).

The assertion in (4.8) follows by combining (4.15) and (4.16) with the fact that Z
(π),p+1
s is piecewise constant

as function of s and with Lemma 2.1(ii), which is applicable as (Z̃(π),p+1)π is uniformly Lipschitz-continuous.

Proof of (4.9): It follows from Corollary 2.6(i) and the representation (3.17) of the square-integrable mar-

tingale L(π) defined in (4.12) that as ∆→ 0

〈W (π), L(π)〉· =

b·Nc−1∑
i=0

|Z(π),p+1
ti |∆→ 〈W,L〉· =

∫ ·
0

Z∞,p+1
s ds,

in the supremeum norm in probability which implies the assertion in (4.9).

Proof of (4.10): We conclude from Corollary 2.6(ii) and the representation of the martingale L(π)

lim
∆→0

∑
ti∈π\{T}∩[0,·]

{
Eti [Z̃

(π),p+1
ti (∆X

(π)
ti )Z̄ti(∆X

(π)
ti )]− Eti [Z̃

(π),p+1
ti (∆X

(π)
ti )]Eti [Z̄ti(∆X

(π)
ti )]

}
→
∫

[0,·]×Rd2\{0}
Z̃∞,p+1
s (x)Z̄s(x)ν(dx)ds,

in probability in the Skorokhod J1-topology. As the limit is continuous, this convergence also holds in the

supremum norm. Moreover, as Z̄ is bounded, continuous, and zero in an environment around zero, it is clear

that there exists K̂ > 0 such that |Z̄s(x)| ≤ K̂|x|. It follows then from Lemma 2.1(ii) that we have the

convergence in (4.10) in the supremum norm in probability.

Proof of (4.11): Next let us switch to a subsequence and assume that all previous convergence results derived

in the proofs of (4.8)–(4.10) hold for a.e. ω ∈ Ω. Fix such an ω ∈ Ω. By Lemma 4.3 there exists constants

K̄p+1 > 0 such that

sup
π

∫
[0,T ]×Rd2\{0}

∣∣∣Z̃(π),p+1
s (ω, x)

∣∣∣2ν(dx)ds ≤ K̄2
p+1

∫
[0,T ]×Rd2\{0}

|x|2ν(dx)ds = TK̄2
p+1

∫
Rd2\{0}

|x|2ν(dx) <∞.

Hence, Z̃
(π),p+1
s (ω, x) is uniformly bounded in L2(ν(dx)× ds). By switching to a subsequence, we may assume

that Z̃
(π),p+1
s (ω, x) converges weakly in L2(ν(dx)×ds,B(Rd2\{0})⊗B([0, T ])) to a limiting function. From (4.10)

it follows that this limit is equal to Z̃∞,p+1
· (ω, ·). Furthermore, by (4.9) we also know that for a.e. ω we have

that Z
(π),p+1
· (ω) converges weakly to Z∞,p+1

· (ω) in L2
d1

(ds). We also have that the pairs (Zn,p+1(ω), Z̃n,p+1(ω))
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converge weakly (Z∞,p+1(ω), Z̃∞,p+1(ω)) in L2
d1

(ds)× L2(ν(dx)× ds) equipped with the inner product

〈(z1, z̃1), (z2, z̃2)〉∗ =

∫ T

0

z1
sz

2
sds+

∫
[0,T ]×Rd2\{0}

z̃1
s(x)z̃2

s(x)ν(dx)ds.

Denoting by ‖ · ‖∗ the norm associated to this inner product we have by (4.8)

lim sup
∆→0

‖I∆‖2∗ := lim sup
∆→0

∥∥∥(Z(π),p+1(ω), Z̃(π),p+1(ω))
∥∥∥2

∗
≤
∥∥∥(Z∞,p+1(ω), Z̃∞,p+1(ω))

∥∥∥2

∗
=: ||I||2∗.

Therefore, we have

0 ≤ lim sup
∆→0

〈I∆ − I, I∆ − I〉 = lim sup
∆→0

(〈I∆, I∆〉 − 2〈I, I∆〉+ 〈I, I〉) ≤ 〈I, I〉 − 2〈I, I〉+ 〈I, I〉 = 0.

Hence, all inequalities must be equalities and we get that∫ T

0

|Z(π),p+1
s (ω)− Z∞,p+1

s (ω)|2ds+

∫
[0,T ]×Rd2\{0}

|Z̃(π),p+1
s (ω, x)− Z̃∞,p+1

s (ω, x)|2ν(dx)ds→ 0 as ∆→ 0.

By (4.8) it follows that also |M (π),p+1
t (ω)|2 converges to zero as well. Therefore, for a.e. ω, for any subsequence

on the left-hand side in (4.11) we can find a subsubsequence converging to zero. Thus, we must have convergence

in probability in (4.11). We note that, for any p, (M
(π),p
T )2 is uniformly integrable over partitions π, since we

have the bound

sup
π

E[〈M (π),p,M (π),p〉2T ] ≤ sup
π

E[〈L(π),p, L(π),p〉2T ] ≤ sup
π
C̄‖L(π),p

T ‖4∞ <∞, for a C̄ > 0,

which follow by the definitions of M (π),p and L(π),p, the BDG and Doob inequalities, and the fact that L
(π)
T is

bounded uniformly in π (by (4.14)).

That the convergence in (4.11) also holds true in L1 may be seen from another application of the Lemma

de la Vallée-Poussin, which is applicable as the integral on the left-hand side is bounded uniformly in π (by

Lemma 4.3), in combination with the uniform integrability of (M
(π),p+1
T )2. �

4.2. Density argument. We complete the proof of Theorem 4.1 by combining Proposition 4.4 with a density

argument.

Proof of Theorem 4.1. Let k ∈ N be arbitrary. By standard density results we can find functions Hk ∈ C∞b (R2k)

and uniformly K-Lipschitz-continuous functions fk and f (π),k such that fk(t, ·) ∈ C0,∞
b (R× Rd1 × L2(ν(dx)),

and f (π),k(t, ·) ∈ C0,∞
b (R× Rd1 × L2(ν(π)(dx)) converging to fk with

T sup
t,y,z,z̃

(|f(t, y, z, z̃)− fk(t, y, z, z̃)|+ |f (π),k(t, y, z, z̃)− f (π)(t, y, z, z̃)|)

+ E[|F −Hk(Ws1 , Xs1 , . . . ,Wsk , Xsk)|2] ≤ 1

k
.(4.17)

The triangle inequality for the Skorokhod metric dS and the inequality (x+ y + z)2 ≤ 3(x2 + y2 + z2) imply

E[d2
S(Y (π), Y )]

≤ 3E[d2
S(Y (π), Ỹ (π))] + 3E[d2

S(Ỹ (π), Ỹ )] + 3E[d2
S(Ỹ , Y )] := 3d2

1(k, π) + 3d2
2(k, π) + 3d2

3(k),(4.18)

where Ỹ and Ỹ (π) denote the solutions of the BSDE and BS∆E with terminal conditions F̃ = Hk(W,X),

F̃ (π) = Hk(W (π), X(π)) and drivers f̃ = fk and f̃ (π) = f (π),k, respectively.
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We first estimate the distances between Y (π) and Ỹ (π) and between Y and Ỹ in the supremum norm. By

applying Theorem 3.4 and Remark 3.5 we see that the following bounds hold true:

d2
1(k, π) := E

[
sup
t∈[0,T ]

|Y (π)
t − Ỹ (π)

t |2
]
≤ C̄E

[
|F (π) − F̃ (π)|2 +

∫ T

0

|δf (π),k(s, Z(π)
s , Z̃(π)

s )|2ds

]
,

d2
3(k) := E

[
sup
t∈[0,T ]

|Yt − Ỹt|2
]
≤ c̄E

[
|F − F̃ |2 +

∫ T

0

|δfk(s, Zs, Z̃s)|2ds

]
,

where we denote δfk := f − fk and δf (π),k := f (π) − f (π),k. By deploying the bound (4.17) and Proposition

4.4 and using that F (π) ∈ L2(F (π)) converges to F ∈ L2(F) in L2, we find

lim sup
∆→0

d2
1(k, π) ≤ C̄E[|F − F̃ |2] +

C̄

k
≤ 2C̄

k
, lim sup

∆→0
d2

2(k, π) = 0, d2
3(k) ≤ 2c̄

k
.(4.19)

Since the Skorokhod metric is dominated by the supremum norm (see e.g. Eqn. VI.1.26 in Jacod & Shiryaev

(2003)) we conclude from (4.18) and (4.19) that lim sup∆→0 E[d2
S(Y (π), Y )] ≤ 6(C̄+ c̄)/k for arbitrary k. Hence

the proof is complete. �

5. Example

By way of illustration we specify in this section a sequence of approximating BS∆Es driven by a discrete-

valued approximating sequence (X(π))π. We consider the BSDE

(5.1) Yt = F +

∫ T

t

f(s, Ys, Z̃s)ds−
∫

(t,T ]×R\{0}
Z̃s(x)Ñ(ds× dx), t ∈ [0, T ],

which is driven by the compensated Poisson random measure Ñ associated to a square-integrable zero-mean

real-valued Lévy process X (d2 = 1). Here, f : [0, T ]×R×L2(ν(dx),B(R\{0}))→ R is the driver function. As

usual we assume that f is continuous as function of t, and uniformly Lipschitz continuous (as in (1.3) without

the Brownian term). We consider final conditions F of the form

(5.2) F = H(Xs0 , . . . , XsD ) with si − si−1 = ∆0, s0 = 0, sD = T ,

for some Lipschitz function H : RD+1 → R (with Lipschitz constant K say). We also suppose that the Lévy

measure ν of X has Blumenthal-Getoor index‡ β < 2 and admits a strictly positive density gν on R\{0}
satisfying the integrability condition

(5.3)

∫
{|x|>1}

gν(x)|x|2+εdx <∞, for some ε > 0.

We mention that, under the integrability condition (5.3), E[|Xt|2+ε] is finite for any t (see Sato (1999)), so that

in particular F is square-integrable.

For the ease of presentation we consider BS∆Es defined on grids that are refinements of π0 = {s0, s1, . . . , sD}.
We next specify the final value F (π), the driver f (π) and the random walk X(π) and denote the corresponding

BS∆E on the uniform time-grid π ⊂ π0 by

(5.4) Y
(π)
ti = F (π) +

∑
tj :ti≤tj<T

f (π)(tj , Y
(π)
tj , Z̃

(π)
tj )∆−

∑
tj :ti≤tj<T

{
Z̃

(π)
tj (∆X

(π)
tj )− Etj [Z̃

(π)
tj (∆X

(π)
tj )]

}
.

Define the spatial mesh size h by h2 = 3∆Σ2, where Σ2 =
∫
R\{0} x

2ν(dx) and, as before, ∆ denotes the mesh

of the partition π. Then we have ν({x : |x| > h}) ∆ < 1/3 as

ν({x : |x| > h}) ∆ = (3Σ2)−1h2ν({x : |x| > h}) < (3Σ2)−1

∫
{|x|>h}

x2ν(dx) <
1

3
.

‡The Blumenthal-Getoor index β of X is β = inf{p > 0 :
∫
{|x|<1} |x|

pν(dx) <∞}.
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We define the distribution of the increments of X(π) in terms of the averages of the Lévy measure ν over certain

sets:

α(A) :=
1

ν(A)

∫
A

xν(dx), A ∈ B(R), ν(A) > 0.

If α([−h, h]c) ≥ 0 then set h− := h and h+ := inf{u ≥ h : α([−h, u]c) = 0} and similarly if α([−h, h]c) < 0 then

set h+ := h and h− := inf{` ≥ h : α([−`, h]c) = 0}.
Setting Bi+1 := (h+(i), h+(i + 1)] and B−i−1 := [−h−(i + 1),−h−(i)) for i ∈ N for some strictly increasing

sequences (h±(i))i∈N with h+(1) = h+ and h−(1) = h− and mesh size going to zero, we define for any integer

|i| ≥ 2

P(X
(π)
t1 = xi) = pi with pi = ∆ ν(Bi), xi =

1

ν(Bi)

∫
Bi

xν(dx).

Note that with this choice we have

P
(
X

(π)
t1 /∈ [h−, h+]

)
=
∑
i:|i|≥2

pi = ∆ ν({x : x /∈ [h−, h+]}),

E
[
X

(π)
t1 I{X(π)

t1
/∈[h−,h+]}

]
=
∑
i:|i|≥2

xipi = 0 = α([h−, h+]c).

The description of the distribution of X
(π)
t1 is completed by setting P(X

(π)
t1 = ±h) = p±1 and P (X

(π)
t1 = 0) = p0,

where p0 and p±1 are chosen so as to satisfy the conditions of unit mass and zero mean and to match the

instantaneous variance:∑
i:|i|≥0

pi = 1,
∑
i:|i|≥0

xipi = 0,
∑
i:|i|≥0

pi(xi)
2 = ∆

∫
R\{0}

x2ν(dx),

or equivalently, p−1 + p0 + p1 = 1− ν({x : x /∈ [h−, h+]}) ∆, and

(p1 − p−1)h = 0, (p1 + p−1)h2 = ∆

∫
{x∈[h−,h+]}

x2ν(dx) + ∆V (h−, h+)

⇒ p−1 = p1 =
1

6Σ2
{S(h−, h+) + V (h−, h+)} ≤ 1

6
, p0 >

1

3
,

with

S(h−, h+) :=

∫
[h−,h+]

x2ν(dx) and V (h−, h+) :=

∫
{x/∈[h−,h+]}

x2ν(dx)−
∑
i:|i|≥2

1

ν(Bi)

{∫
Bi

xν(dx)

}2

,

which is non-negative as a consequence of the Cauchy-Schwarz inequality. In particular, we see that the zero-

jump-condition (2.7) is satisfied. We note that the approximating processes (X(π))π also satisfy conditions (2.3)

and (2.4), since by construction E[|X(π)
t1 |

2] = ∆
∫
R\{0} x

2ν(dx), while the expectation of
∣∣∣X(π)

t1

∣∣∣ is o(
√

∆), since

we have

E
[∣∣∣X(π)

t1

∣∣∣] = (p1 + p−1)h+ ∆

∫
[h−,h+]c

|x|ν(dx),

where p1 + p−1 tends to zero when ∆ → 0 and the second term is bounded by c · h2−β/2 (which is o(
√

∆)

as ∆ → 0 since β < 2 by assumption) with c =
∫
|x|1+β/2ν(dx)/(3Σ2) (which is finite by definition of β and∫

x2ν(dx) <∞⇔ E[X2
t ] <∞).

Furthermore, it is easily checked that the sequence (X(π))π also satisfies the conditions in (2.5) and (2.6). In

particular, X(π) L→ X as ∆→ 0, and on a suitably chosen probability space, X(π) converges to X in probability

in the Skorokhod J1-topology, and X
(π)
T converges to XT in L2.

Next we define F (π) = H(X
(π)
s0 , . . . , X

(π)
sD ). By the Lipschitz continuity of H and the convergence of X(π) to

X in S2 (by Doob’s maximal inequality) it follows that also F (π) converges to F in L2.
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Finally, we specify f (π) in terms of f by f (π)(t, y, z̃) = f(t, y,Qz̃) with

(Qz̃)(x) =


z̃(xi), x ∈ Bi, i 6= 1, i 6= 0,

x√
2h

(z̃(−h) + z̃(+h)), x ∈ [h−, h+]\{0},

0, x = 0.

It is straightforward to verify that the drivers f (π) satisfy the required regularity conditions. In particular,

the uniform Lipschitz-continuity of f (π) (as in (3.2)) can be derived as follows: for any y1, y0 ∈ R, z̃1, z̃0 ∈
L2(ν(π),B(R\{0})) the Lipschitz continuity of f implies

|f (π)(t, y1, z̃1)− f (π)(t, y0, z̃0)| ≤ K
(
|y1 − y0|+

√
IQ

)
, with IQ :=

∫
R\{0}

|Qz̃1(x)−Qz̃0(x)|2ν(dx).

Inserting the definitions of Qz̃0 and Qz̃1 shows

IQ =
∑
i:|i|≥2

|z̃1(xi)− z̃0(xi)|2ν(Bi) +
(z̃1(h)− z̃0(h) + z̃1(−h)− z̃0(−h))

2

2

S(h−, h+)

h2

≤
∑
i:|i|≥2

pi
∆
|z̃1(xi)− z̃0(xi)|2 + (z̃1(h)− z̃0(h))

2 p1

∆
+ (z̃1(−h)− z̃0(−h))

2 p−1

∆

=

∫
R\{0}

|z̃1(x)− z̃0(x)|2ν(π)(dx).

We next move to the description of the solution of the BS∆E. Specifically, we have from Proposition 3.1 that

the solution is given by

Y
(π)
ti = vi

(
X

(π)
t0 , . . . , X

(π)
ti

)
, i = 0, . . . , N − 1,(5.5)

Z̃
(π)
ti (x) = wi

(
X

(π)
t0 , . . . , X

(π)
ti ;x

)
− wi

(
X

(π)
t0 , . . . , X

(π)
ti ; 0

)
,(5.6)

with Y
(π)
tN = F (π), for certain functions vi : Ri → R and wi : Ri+1 → R that are specified recursively as follows:

wi(z0,i;x) = E[Y
(π)
ti+1
|X(π)

t0 = z0, . . . , X
(π)
ti = zi,∆X

(π)
ti = x] = vi+1(z0,i, zi + x), x ∈ E(π),

vi(z0,i) = f (π)(ti, vi(z0,i), wi(z0,i; ·)− wi(z0,i; 0)) +
∑

xj∈E(π)

vi+1(z0,i, zi + xj)pj ,(5.7)

where z0,i = (z0, . . . , zi) and E(π) = {xi : i ∈ Z} denotes the support of the step-size distribution of X(π).

While in general vi is only implicitly defined by (5.7), the recursion in (5.7) has an explicit solution when the

driver f(t, y, z̃) (and thus f (π)(t, y, z̃)) is constant as function of y. In this case, the solution Y of the BSDE

is translation invariant in the sense that Y (F + a) = a + Y (F ) for a ∈ R, where Y (F ) denotes the solution of

the BSDE with final condition F (see Royer (2006)). By Theorem 4.1, the solution Y (π) of the BS∆E (5.4)

specified in (5.5) converges to the solution Y of the BSDE (5.1) in L2 in the Skorokhod J1-topology.

Appendix A. Proof of Theorem 3.4

The structure of the proof is inspired by that of an analogous estimate derived in a Wiener setting in

Proposition 7 in Briand et al. (2002).
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Assuming without loss of generality ti = T and that f (π)(t, 0, 0, 0) = 0, and simplifying notation by dropping

in the proof the superscripts (π) in the solution (Y (π), Z(π), Z̃(π),M (π)), we have for tj , tk ∈ π with tj < tk

δYtj = δYtk +

k−1∑
r=j

(
δf (π)(tr, Y

0
tr , Z

0
tr , Z̃

0
tr ) + f (π),1(tr, Y

0
tr , Z

0
tr , Z̃

0
tr )− f

(π),1(tr, Y
1
tr , Z

1
tr , Z̃

1
tr )

)
∆

−
k−1∑
r=j

{δZtr∆W
(π)
tr + δZ̃tr (∆X

(π)
tr )− Etr [δZ̃tr (∆X

(π)
tr )]} − (δMtk − δMtj ).(A.1)

Since the functions f (π) are K-Lipschitz and assuming without loss of generality K > 1, we have

|δYtj | ≤ Etj

|δYtk |+K

k−1∑
r=j

{ ∣∣∣δf (π)(tr, Y
0
tr , Z

0
tr , Z̃

0
tr )
∣∣∣+ |δYtr |+ |δZtr |+

√
Eν(π)([δZ̃tr (ξ)]

2)

}
∆


and an application Doob’s inequality yields for tm < tk with tm, tk ∈ π\{0}

E

[
sup

m≤j<k
|δYtj |2

]
≤ 4E

[(
|δYtk |+K

k−1∑
r=m

{ ∣∣∣δf (π)(tr, Y
0
tr , Z

0
tr , Z̃

0
tr )
∣∣∣

+|δYtr |+ |δZtr |+
√
Eν(π)([δZ̃tr (ξ)]

2)

}
∆

)2]
.(A.2)

Since W (π), X(π) and δM (π) are orthogonal martingales, we have

E

∣∣∣∣∣
k−1∑
r=m

{
δZtr∆W

(π)
tr + δZ̃tr (∆X

(π)
tr )− Etr [δZ̃tr (∆X

(π)
tr )]

}
+ δMtk − δMtm

∣∣∣∣∣
2
(A.3)

= E

[
k−1∑
r=m

|δZtr |2∆ + 〈δM̃〉tk − 〈δM̃〉tm + 〈δM〉tk − 〈δM〉tm

]

where δM̃ is the martingale that is piecewise constant (outside the partition π) and has increment δM̃tr+1
−

δM̃tr given by `tr (∆X
(π)
tr ) := δZ̃tr (∆X

(π)
tr ) − Etr [δZ̃tr (∆X

(π)
tr )], and 〈δM̃〉 and 〈δM〉 denote the predictable

compensators of δM and δM̃ , which are equal to

〈δM〉ti =
∑

tj≤ti−1

Etj [|∆M
(π)
tj |

2], 〈δM̃〉ti =
∑

tj≤ti−1

Etj [|∆`tj (X
(π)
tj )|2].

Using the fact that f (π),1 is K-Lipschitz using (A.1) we obtain

∣∣∣∣∣
k−1∑
r=m

{
δZtr∆W

(π)
tr + δZ̃tr (∆X

(π)
tr )− Etr [δZ̃tr (∆X

(π)
tr )]

}
+ δMtk − δMtm

∣∣∣∣∣
≤ |δYtk |+K

k−1∑
r=m

{ ∣∣∣δf (π)(tr, Y
0
tr , Z

0
tr , Z̃

0
tr )
∣∣∣+ |δYtr |

+|δZtr |+
√
Eν(π)([δZ̃tr (ξ)]

2)

}
∆ + sup

m≤r<k
|δYtr |.(A.4)



22 DILIP MADAN, MARTIJN PISTORIUS, AND MITJA STADJE

By combining the estimates in (A.2), (A.3), (A.4) we get

E

[
sup

m≤r<k
|δYtr |2 +

k−1∑
r=m

|δZtr |2∆ + 〈δM̃〉tk − 〈δM̃〉tm + 〈δM〉tk − 〈δM〉tm

]

≤ 14E
[(
|δYtk |+K

k−1∑
r=m

{ ∣∣∣δf (π)(tr, Y
0
tr , Z

0
tr , Z̃

0
tr )
∣∣∣

+ |δYtr |+ |δZtr |+
√
Eν(π)([δZ̃tr (ξ)]

2)

}
∆

)2]
.

An application of Hölder’s inequality leads then to the estimate

E

[
sup

m≤r<k
|δYtr |2 +

k−1∑
r=m

|δZtr |2∆ + 〈δM̃〉tk − 〈δM̃〉tm + 〈δM〉tk − 〈δM〉tm

]

≤ C(tk − tm)E
[

max
m≤r<k

|δYtr |2 +

k−1∑
r=m

{ ∣∣∣δf (π)(tr, Y
0
tr , Z

0
tr , Z̃

0
tr )
∣∣∣2 + |δZtr |2 + Eν(π)([δZ̃tr (ξ)]

2)

}
∆

]
+42E[|δYtk |2](A.5)

with C(u) = 126K2 max{u2, u} independent of π.

Next we let r0 ∈ (0, T ) be such that C(r) ≤ 1
6 min{1, C ′} for all r ≤ r0, where C ′ is the constant from

Lemma 3.6 [with Ũ taken equal to the function δZ̃(π)]. Let us fix b = [T/r0] + 1 and consider the regular

partition of [0, T ] into b intervals. We set for 0 ≤ ` ≤ b− 1, I` = {k : tk ∈ π ∩ [`T/b, (`+ 1)T/b)}, `∗ = min I`,

`∗ = max I` + 1. Then we obtain from (A.5) and Lemma 3.6 that for every `∗

E

[
sup

`∗≤r<`∗
|δYtr |2 +

`∗−1∑
r=`∗

|δZtr |2∆ + 〈δM̃〉t`∗−1
− 〈δM̃〉t`∗ + 〈δM〉t`∗ − 〈δM〉t`∗−1

]

≤ 42 · 6

5
E
[
|δYt∗` |+

1

5

`∗−1∑
r=`∗

∣∣∣δf (π)(tr, Y
0
tr , Z

0
tr , Z̃

0
tr )
∣∣∣2 ∆

]
.

The proof is completed by a repeated application of this inequality.

Appendix B. Proof of Lemma 4.3

Proof of part (i). Recall that Z̃
(π),p
ti (0) = 0 for all i. Thus, to prove (4.3), it is enough to show that Z̃

(π),p
ti (x) is

uniformly Lipschitz in x ∈ Rd2 . Given the assumed form of F , it is possible to find a function y
(π),p
ti : R(d1+d2)i →

R such that y
(π),p
ti (∆W

(π)
t0 ,∆X

(π)
t0 , . . . ,∆W

(π)
ti−1

,∆X
(π)
ti−1

) := Y
(π),p
ti . Subsequently, we will suppress the arguments

∆W
(π)
t0 ,∆X

(π)
t0 , . . . ,∆W

(π)
ti−2

,∆X
(π)
ti−2

whenever there is no ambiguity and write y
(π),p
ti (∆W

(π)
ti−1

,∆X
(π)
ti−1

).

Fix t ∈ [0, T ] and for every mesh size ∆ choose i such that i∆ ≤ t < (i + 1)∆ and denote w = ∆wti

and x = ∆xti . Denote by Y
(π),p,w,x
tj for j ≥ i + 1 the process (Y

(π),p
tj )j≥i+1 conditional on ∆W

(π)
ti = w and

∆X
(π)
ti = x. For j ≥ i+ 1 the conditioned BS∆E with solution (Y

(π),p,w,x
t , Z

(π),p,w,x
t , Z̃

(π),p,w,x
t ,M

(π),p,w,x
t ) can

be written as

Y
(π),p,w,x
tj = F (π),w,x +

∑
tu≥tj

f(tu, Y
(π),p−1,w,x
tu , Z

(π),p−1,w,x
tu , Z̃

(π),p−1,w,x
tu )∆−

∑
tu≥tj

Z
(π),p,w,x
tu ∆W (π)

u

−
∑
tu≥tj

{
Z̃

(π),p,w,x
tu (∆X

(π)
ti )− Eti−1 [Z̃

(π),p,w,x
tu (∆X

(π)
ti )]

}
− (M

(π),p,w,x
T −M (π),p,w,x

tj ),(B.1)
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with

F (π),w,x = H
(
wt1 , . . . , wti + w, . . . , wti + w +W

(π)
T −W (π)

ti+1
,

xt1 , . . . , xti + x, . . . , xti + x+X
(π)
T −X(π)

ti+1

)
.

Clearly, y
(π),p
ti+1

(w, x) has the same law as Y
(π),p,w,x
ti+1

. To simplify notation let us assume for the rest of the

proof that W and X (and hence W (π) and X(π)) are one-dimensional. The lemma would follow if we could

prove through an induction over p that for every p the following holds: For every l ∈ N0 there exist constants

K̃Y,l,p, K̃Z,l,p, K̃Z̃,l,p > 0 such that for every m, k = 0, . . . , l, and for all t :

(a) For the mappings (w, x)→ Y
(π),p,w,x
j we have that supw,x,∆,tj>t

∣∣∣ ∂m+k

∂wm∂xk
Y

(π),p,w,x
tj

∣∣∣ ≤ K̃Y,l,p.

(b) For the mappings (w, x)→ Z̃
(π),p,w,x
tj we have that supw,x,∆,tj>t

∣∣∣ ∂m+k

∂wm∂xk
Z̃

(π),p,w,x
tj

∣∣∣ ≤ K̃Z̃,l,p.

(c) For the mappings (w, x)→ Z
(π),p,w,x
tj we have that supw,x,∆,tj>t

∣∣∣ ∂m+k

∂wm∂xk
Z

(π),p,w,x
tj

∣∣∣ ≤ K̃Z,l,p.

Notice that (b) implies in particular that supw,x,∆,tj>t

∣∣∣Z̃(π),p,w,x
tj (x′)

∣∣∣ ≤ (K̃Z̃,1,p ∨ K̃Z̃,0,p)(1 ∧ |x′|).
Let us prove (a)—(c). As Y (π),0 = Z(π),0 = Z̃(π),0 = 0, (a)–(c) clearly hold for p = 0 with K̃Y,l,0 = K̃Z,l,0 =

K̃Z̃,l,0 = 0 for all l. Now assume that we have shown the induction for p− 1. Let us next show (a)-(c) for p.

By the induction assumption for all j∆ ≥ t all higher derivatives of the processes Y
(π),p−1,w,x
j , Z

(π),p−1,w,x
j ,

and Z̃
(π),p−1,w,x
j with respect to w and x satisfy (a)—(c). As by assumption also all higher derivatives of

f (π)(tj , ·, ·, ·) are bounded as well uniformly in t, j and ∆ with tj > t we have that

∂m+k

∂wm∂xk
f (π)(tj , Y

(π),p−1,w,x
tj , Z

(π),p−1,w,x
tj , Z̃

(π),p−1,w,x
tj )

is uniformly bounded by a constant, say K̂l,p−1. Now (B.1) entails that

sup
w,x,∆,tj>t

∣∣∣ ∂m+k

∂wm∂xk
Y

(π),p,w,x
tj

∣∣∣
= sup
w,x,∆,tj>t

∣∣∣∣Etj
 ∂m+k

∂wm∂xk
F (π),w,x +

∑
u≥j

∂m+k

∂wm∂xk
f (π)(tu, Y

(π),p−1,w,x
tu , Z

(π),p−1,w,x
tu , Z̃

(π),p−1,w,x
tu )∆

 ∣∣∣∣
≤ sup
w,x,∆

∣∣∣∣∣∣ ∂m+k

∂wm∂xk
F (π),w,x

∣∣∣∣∣∣
∞

+ T sup
w,x,∆,tj>t

∣∣∣∣∣∣ ∂m+k

∂wm∂xk
fn((j + 1)/n, Y

(π),p−1,w,x
tj , Z

(π),p−1,w,x
tj , Z̃

(π),p−1,w,x
tj )

∣∣∣∣∣∣
∞

≤ K̃H,l + TK̂l,p−1 =: K̃Y,l,p,

where K̃H,l is the uniform bound of the derivatives of the function H up to order l for every l ∈ N0. This shows

that (a) holds. The validity of (b) follows immediately from that of (a) and the form (3.8) of Z̃.

To see that (c) holds true note that for every tj > t

| ∂m+k

∂wm∂xk
Z

(π),p,w,x
tj |

= ∆−1
∣∣∣Etj [ ∂m+k

∂wm∂xk
Y

(π),p,w,x
tj ∆W

(π)
tj

] ∣∣∣
= ∆−1

∣∣∣∣Etj[( ∂m+k

∂wm∂xk
y

(π),p,w,x
tj (∆W

(π)
tj ,∆X

(π)
tj )− ∂m+k

∂wm∂xk
y

(π),p,w,x
tj (0,∆X

(π)
tj )

)
∆W

(π)
tj

]∣∣∣∣
≤ ∆−1Etj

[∣∣∣ ∂m+k

∂wm∂xk
y

(π),p,w,x
tj (∆W

(π)
tj ,∆X

(π)
tj )− ∂m+k

∂wm∂xk
y

(π),p,w,x
tj (0,∆X

(π)
tj )

∣∣∣|∆W (π)
tj+1
|
]

≤ ∆−1K̃Y,l+1,pE
[∣∣∆W (π)

tj

∣∣′ |∆W (π)
tj

∣∣] = ∆−1K̃Y,l+1,pE
[∣∣∣∆W (π)

tj

∣∣∣2] = K̃Y,l+1,p.
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This establishes that (c) holds with K̃Z,l,p := K̃Y,l+1,p. The proof of the induction is complete. �

Proof of part (ii). The proof is analogous to the proof of part (i). Denote by Y p,∞,xs for s ≥ t the pro-

cess (Y p,∞t )s≥t conditional on ∆Xt = Xt − Xt− = x. For s ≥ t the conditioned BSDE with solution

(Y p,∞,xs , Zp,∞,xs , Z̃p,∞,xs ) can be written as

Y p,∞,xs = F x +

∫ T

s

f(u, Y p−1,∞,x
u , Zp−1,∞,x

u , Z̃p−1,∞,x
u )du−

∫ T

s

Zp,∞,xu dWu

−
∫

(s,T ]×Rd2\{0}
Z̃p,∞,xu (z)Ñp(du× dz).

One may check directly that we have Z̃p,∞,xt (z) = Y p,∞,x+z
t −Y p,∞,xt , so that we only have to show that

∂Y p,∞,xt

∂x

is uniformly bounded. Using the assumptions on H (Assumption 2) this follows by a line of reasoning that is

analogous to the one followed in part (i). �
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