Search or filter publications

Filter by type:

Filter by publication type

Filter by year:

to

Results

  • Showing results for:
  • Reset all filters

Search results

  • Journal article
    Endres R, Matas-Gil A, 2024,

    Unraveling biochemical spatial patterns: machine learning approaches to the inverse problem of stationary Turing patterns

    , iScience, Vol: 27, ISSN: 2589-0042

    The diffusion-driven Turing instability is a potential mechanism for spatial pattern formation in numerous biological and chemical systems. However, engineering these patterns and demonstrating that they are produced by this mechanism is challenging. To address this, we aim to solve the inverse problem in artificial and experimental Turing patterns. This task is challenging since patterns are often corrupted by noise and slight changes in initial conditions can lead to different patterns. We used both least squares to explore the problem and physics-informed neural networks to build a noise-robust method. We elucidate the functionality of our network in scenarios mimicking biological noise levels and showcase its application using an experimentally obtained chemical pattern. The findings reveal the significant promise of machine learning in steering the creation of synthetic patterns in bioengineering, thereby advancing our grasp of morphological intricacies within biological systems while acknowledging existing limitations.

  • Journal article
    Oqua AI, Manchanda Y, McGlone ER, Jones B, Rouse S, Tomas Aet al., 2024,

    Lipid regulation of the glucagon receptor family.

    , J Endocrinol, Vol: 261

    The glucagon receptor family are typical class B1 G protein-coupled receptors (GPCRs) with important roles in metabolism, including the control of pancreas, brain, and liver function. As proteins with seven transmembrane domains, GPCRs are intimately in contact with lipid bilayers and therefore can be putatively regulated by interactions with their lipidic components, including cholesterol, sphingolipids, and other lipid species. Additionally, these receptors, as well as the agonists they bind to, can undergo lipid modifications, which can influence their binding capacity and/or elicit modified or biased signalling profiles. While the effect of lipids, and in particular cholesterol, has been widely studied for other GPCR classes, information about their role in regulating the glucagon receptor family is only beginning to emerge. Here we summarise our current knowledge on the effects of cholesterol modulation of glucagon receptor family signalling and trafficking profiles, as well as existing evidence for specific lipid-receptor binding and indirect effects of lipids via lipid modification of cognate agonists. Finally, we discuss the different methodologies that can be employed to study lipid-receptor interactions and summarise the importance of this area of investigation to increase our understanding of the biology of this family of metabolically relevant receptors.

  • Journal article
    Delhaye G, van der Linde S, Bauman D, Orme CDL, Suz LM, Bidartondo MIet al., 2024,

    Ectomycorrhizal fungi are influenced by ecoregion boundaries across Europe

    , Global Ecology and Biogeography, Vol: 33, ISSN: 1466-822X

    AimEcoregions and the distance decay in community similarity are fundamental concepts in biogeography and conservation biology that are well supported across plants and animals, but not fungi. Here we test the relevance of these concepts for ectomycorrhizal (ECM) fungi in temperate and boreal regions.LocationEurope.Time Period2008–2015.Major Taxa StudiedEctomycorrhizal fungi.MethodsWe used a large dataset of ~24,000 ectomycorrhizas, assigned to 1350 operational taxonomic units, collected from 129 forest plots via a standardized protocol. We investigated the relevance of ecoregion delimitations for ECM fungi through complementary methodological approaches based on distance decay models, multivariate analyses and indicator species analyses. We then evaluated the effects of host tree and climate on the observed biogeographical distributions.ResultsEcoregions predict large-scale ECM fungal biodiversity patterns. This is partly explained by climate differences between ecoregions but independent from host tree distribution. Basidiomycetes in the orders Russulales and Atheliales and producing epigeous fruiting bodies, with potentially short-distance dispersal, show the best agreement with ecoregion boundaries. Host tree distribution and fungal abundance (as opposed to presence/absence only) are important to uncover biogeographical patterns in mycorrhizas.Main ConclusionsEcoregions are useful units to investigate eco-evolutionary processes in mycorrhizal fungal communities and for conservation decision-making that includes fungi.

  • Journal article
    Makrydaki E, Donini R, Krueger A, Royle K, Moya Ramirez I, Kuntz DA, Rose DR, Haslam SM, Polizzi KM, Kontoravdi Cet al., 2024,

    Immobilized enzyme cascade for targeted glycosylation

    , Nature Chemical Biology, Vol: 20, Pages: 732-741, ISSN: 1552-4450

    Glycosylation is a critical post-translational protein modification that affects folding, half-life and functionality. Glycosylation is a non-templated and heterogeneous process because of the promiscuity of the enzymes involved. We describe a platform for sequential glycosylation reactions for tailored sugar structures (SUGAR-TARGET) that allows bespoke, controlled N-linked glycosylation in vitro enabled by immobilized enzymes produced with a one-step immobilization/purification method. We reconstruct a reaction cascade mimicking a glycosylation pathway where promiscuity naturally exists to humanize a range of proteins derived from different cellular systems, yielding near-homogeneous glycoforms. Immobilized β-1,4-galactosyltransferase is used to enhance the galactosylation profile of three IgGs, yielding 80.2-96.3% terminal galactosylation. Enzyme recycling is demonstrated for a reaction time greater than 80 h. The platform is easy to implement, modular and reusable and can therefore produce homogeneous glycan structures derived from various hosts for functional and clinical evaluation.

  • Journal article
    Rosindell J, Manson K, Gumbs R, Pearse WD, Steel Met al., 2024,

    Phylogenetic Biodiversity Metrics Should Account for Both Accumulation and Attrition of Evolutionary Heritage.

    , Syst Biol, Vol: 73, Pages: 158-182

    Phylogenetic metrics are essential tools used in the study of ecology, evolution and conservation. Phylogenetic diversity (PD) in particular is one of the most prominent measures of biodiversity and is based on the idea that biological features accumulate along the edges of phylogenetic trees that are summed. We argue that PD and many other phylogenetic biodiversity metrics fail to capture an essential process that we term attrition. Attrition is the gradual loss of features through causes other than extinction. Here we introduce "EvoHeritage", a generalization of PD that is founded on the joint processes of accumulation and attrition of features. We argue that while PD measures evolutionary history, EvoHeritage is required to capture a more pertinent subset of evolutionary history including only components that have survived attrition. We show that EvoHeritage is not the same as PD on a tree with scaled edges; instead, accumulation and attrition interact in a more complex non-monophyletic way that cannot be captured by edge lengths alone. This leads us to speculate that the one-dimensional edge lengths of classic trees may be insufficiently flexible to capture the nuances of evolutionary processes. We derive a measure of EvoHeritage and show that it elegantly reproduces species richness and PD at opposite ends of a continuum based on the intensity of attrition. We demonstrate the utility of EvoHeritage in ecology as a predictor of community productivity compared with species richness and PD. We also show how EvoHeritage can quantify living fossils and resolve their associated controversy. We suggest how the existing calculus of PD-based metrics and other phylogenetic biodiversity metrics can and should be recast in terms of EvoHeritage accumulation and attrition.

  • Journal article
    Manser CL, Perez-Carrasco R, 2024,

    A mathematical framework for measuring and tuning tempo in developmental gene regulatory networks.

    , Development

    Embryo development is a dynamic process governed by the regulation of timing and sequences of gene expression, which control the proper growth of the organism. While many genetic programs coordinating these sequences are common across species, the timescales of gene expression can vary significantly among different organisms. Currently, substantial experimental efforts are focused on identifying molecular mechanisms that control these temporal aspects. In contrast, the capacity of established mathematical models to incorporate tempo control while maintaining the same dynamical landscape remains less understood. This manuscript addresses this gap by developing a mathematical framework that links the functionality of developmental programs to the corresponding gene expression orbits (or landscapes). This unlocks the ability to find tempo differences as perturbations in the dynamical system that preserve its orbits. We demonstrate that this framework allows for the prediction of molecular mechanisms governing tempo, through both numerical and analytical methods. Our exploration includes two case studies: a generic network featuring coupled production and degradation, with a particular application to neural progenitor differentiation; and the repressilator.In the latter, we illustrate how altering the dimerisation rates of transcription factors can decouple the tempo from the shape of the resulting orbits. The manuscript concludes by highlighting how the identification of orthogonal molecular mechanisms for tempo control can inform the design of circuits with specific orbits and tempos.

  • Journal article
    Tica J, Chen H, LUO S, Chen M, Isalan Met al., 2024,

    Engineering tuneable, low latency spatial computation with dual input quorum sensing promoters

    , ACS Synthetic Biology, ISSN: 2161-5063
  • Journal article
    Rogers J, Bajur AT, Salaita K, Spillane KMet al., 2024,

    Mechanical control of antigen detection and discrimination by T and B cell receptors.

    , Biophys J

    The adaptive immune response is orchestrated by just two cell types: T cells and B cells. Both cells possess the remarkable ability to recognise virtually any antigen through their respective antigen receptors-the T cell receptor (TCR) and B cell receptor (BCR). Despite extensive investigations into the biochemical signalling events triggered by antigen recognition in these cells, our ability to predict or control the outcome of T and B cell activation remains elusive. This challenge is compounded by the sensitivity of T and B cells to the biophysical properties of antigens and the cells presenting them-a phenomenon we are just beginning to understand. Recent insights underscore the central role of mechanical forces in this process, governing the conformation, signalling activity, and spatial organisation of TCRs and BCRs within the cell membrane, ultimately eliciting distinct cellular responses. Traditionally, T cells and B cells have been studied independently, with researchers working in parallel to decipher the mechanisms of activation. While these investigations have unveiled many overlaps in how these cell types sense and respond to antigens, notable differences exist. To fully grasp their biology and harness it for therapeutic purposes, these distinctions must be considered. This review compares and contrasts the TCR and BCR, placing emphasis on the role of mechanical force in regulating the activity of both receptors to shape cellular and humoral adaptive immune responses.

  • Journal article
    Connolly JB, Burt A, Christophides G, Diabate A, Habtewold T, Hancock PA, James AA, Kayondo JK, Lwetoijera DW, Manjurano A, McKemey AR, Santos MR, Windbichler N, Randazzo Fet al., 2024,

    Considerations for first field trials of low-threshold gene drive for malaria vector control

    , Malaria Journal, Vol: 23, ISSN: 1475-2875

    Sustainable reductions in African malaria transmission require innovative tools for mosquito control. One proposal involves the use of low-threshold gene drive in Anopheles vector species, where a 'causal pathway' would be initiated by (i) the release of a gene drive system in target mosquito vector species, leading to (ii) its transmission to subsequent generations, (iii) its increase in frequency and spread in target mosquito populations, (iv) its simultaneous propagation of a linked genetic trait aimed at reducing vectorial capacity for Plasmodium, and (v) reduced vectorial capacity for parasites in target mosquito populations as the gene drive system reaches fixation in target mosquito populations, causing (vi) decreased malaria incidence and prevalence. Here the scope, objectives, trial design elements, and approaches to monitoring for initial field releases of such gene dive systems are considered, informed by the successful implementation of field trials of biological control agents, as well as other vector control tools, including insecticides, Wolbachia, larvicides, and attractive-toxic sugar bait systems. Specific research questions to be addressed in initial gene drive field trials are identified, and adaptive trial design is explored as a potentially constructive and flexible approach to facilitate testing of the causal pathway. A fundamental question for decision-makers for the first field trials will be whether there should be a selective focus on earlier points of the pathway, such as genetic efficacy via measurement of the increase in frequency and spread of the gene drive system in target populations, or on wider interrogation of the entire pathway including entomological and epidemiological efficacy. How and when epidemiological efficacy will eventually be assessed will be an essential consideration before decisions on any field trial protocols are finalized and implemented, regardless of whether initial field trials focus exclusively on the measur

  • Journal article
    Fecht S, Paracuellos P, Subramoni S, Tan CAZ, Ilangovan A, Costa TRD, Filloux Aet al., 2024,

    Functionality of chimeric TssA proteins in the type VI secretion system reveals sheath docking specificity within their N-terminal domains

    , Nature Communications, Vol: 15, ISSN: 2041-1723

    The genome of Pseudomonas aeruginosa encodes three type VI secretion systems, each comprising a dozen distinct proteins, which deliver toxins upon T6SS sheath contraction. The least conserved T6SS component, TssA, has variations in size which influence domain organisation and structure. Here we show that the TssA Nt1 domain interacts directly with the sheath in a specific manner, while the C-terminus is essential for oligomerisation. We built chimeric TssA proteins by swapping C-termini and showed that these can be functional even when made of domains from different TssA sub-groups. Functional specificity requires the Nt1 domain, while the origin of the C-terminal domain is more permissive for T6SS function. We identify two regions in short TssA proteins, loop and hairpin, that contribute to sheath binding. We propose a docking mechanism of TssA proteins with the sheath, and a model for how sheath assembly is coordinated by TssA proteins from this position.

  • Journal article
    Gayford J, Brazeau M, Naylor GJP, 2024,

    Evolutionary trends in the elasmobranch neurocranium

    , Scientific Reports, Vol: 14, ISSN: 2045-2322

    The neurocranium (braincase) is one of the defining vertebrate characters. Housing the brain and other key sensory organs, articulating with the jaws and contributing to the shape of the anteriormost portion of the body, the braincase is undoubtedly of great functional importance. Through studying relationships between braincase shape and ecology we can gain an improved understanding of form-function relationships in extant and fossil taxa. Elasmobranchii (sharks and rays) represent an important case study of vertebrate braincase diversity as their neurocranium is simplified and somewhat decoupled from other components of the cranium relative to other vertebrates. Little is known about the associations between ecology and braincase shape in this clade. In this study we report patterns of mosaic cranial evolution in Elasmobranchii that differ significantly from those present in other clades. The degree of evolutionary modularity also differs between Selachii and Batoidea. In both cases innovation in the jaw suspension appears to have driven shifts in patterns of integration and modularity, subsequently facilitating ecological diversification. Our results confirm the importance of water depth and biogeography as drivers of elasmobranch cranial diversity and indicate that skeletal articulation between the neurocranium and jaws represents a major constraint upon the evolution of braincase shape in vertebrates.

  • Journal article
    Yuen ELH, Leary AY, Clavel M, Tumtas Y, Mohseni A, Zhao J, Picchianti L, Jamshidiha M, Pandey P, Duggan C, Cota E, Dagdas Y, Bozkurt TOet al., 2024,

    A RabGAP negatively regulates plant autophagy and immune trafficking.

    , Curr Biol, Vol: 34, Pages: 2049-2065.e6

    Plants rely on autophagy and membrane trafficking to tolerate stress, combat infections, and maintain cellular homeostasis. However, the molecular interplay between autophagy and membrane trafficking is poorly understood. Using an AI-assisted approach, we identified Rab3GAP-like (Rab3GAPL) as a key membrane trafficking node that controls plant autophagy negatively. Rab3GAPL suppresses autophagy by binding to ATG8, the core autophagy adaptor, and deactivating Rab8a, a small GTPase essential for autophagosome formation and defense-related secretion. Rab3GAPL reduces autophagic flux in three model plant species, suggesting that its negative regulatory role in autophagy is conserved in land plants. Beyond autophagy regulation, Rab3GAPL modulates focal immunity against the oomycete pathogen Phytophthora infestans by preventing defense-related secretion. Altogether, our results suggest that Rab3GAPL acts as a molecular rheostat to coordinate autophagic flux and defense-related secretion by restraining Rab8a-mediated trafficking. This unprecedented interplay between a RabGAP-Rab pair and ATG8 sheds new light on the intricate membrane transport mechanisms underlying plant autophagy and immunity.

  • Journal article
    Rosenkranz M, Nkumama IN, Ogwang R, Kraker S, Blickling M, Mwai K, Odera D, Tuju J, Fürle K, Frank R, Chepsat E, Kapulu MC, Osier FHAet al., 2024,

    Full-length MSP1 is a major target of protective immunity after controlled human malaria infection

    , Life Science Alliance
  • Journal article
    Pawar S, 2024,

    Metabolic plasticity drives mismatches in physiological traits between prey and predator

    , Communications Biology, ISSN: 2399-3642
  • Journal article
    Creamer A, Lo Fiego A, Agliano A, Prados Martin L, Hogset H, Najer A, Richards D, Wojciechowski J, Foote J, Kim N, Monahan A, Tang J, Shamsabadi A, Rochet LNC, Thanasi IA, de la Ballina LR, Rapley CL, Turnock S, Love EA, Bugeon L, Dallman MJ, Heeney M, Kramer-Marek G, Chudasama V, Fenaroli F, Stevens Met al., 2024,

    Modular synthesis of semiconducting graft co-polymers to achieve ‘clickable’ fluorescent nanoparticles with long circulation and specific cancer targeting

    , Advanced Materials, Vol: 36, Pages: 1-14, ISSN: 0935-9648

    Semiconducting polymer nanoparticles (SPNs) are explored for applications in cancer theranostics because of their high absorption coefficients, photostability, and biocompatibility. However, SPNs are susceptible to aggregation and protein fouling in physiological conditions, which can be detrimental for in vivo applications. Here, a method for achieving colloidally stable and low-fouling SPNs is described by grafting poly(ethylene glycol) (PEG) onto the backbone of the fluorescent semiconducting polymer, poly(9,9′-dioctylfluorene-5-fluoro-2,1,3-benzothiadiazole), in a simple one-step substitution reaction, postpolymerization. Further, by utilizing azide-functionalized PEG, anti-human epidermal growth factor receptor 2 (HER2) antibodies, antibody fragments, or affibodies are site-specifically “clicked” onto the SPN surface, which allows the functionalized SPNs to specifically target HER2-positive cancer cells. In vivo, the PEGylated SPNs are found to have excellent circulation efficiencies in zebrafish embryos for up to seven days postinjection. SPNs functionalized with affibodies are then shown to be able to target HER2 expressing cancer cells in a zebrafish xenograft model. The covalent PEGylated SPN system described herein shows great potential for cancer theranostics.

  • Journal article
    Nguyen H-TT, Zhao M, Wang T, Dang BT, Geffen AJ, Cummins SFet al., 2024,

    Sea anemone-anemonefish symbiosis: Behavior and mucous protein profiling.

    , J Fish Biol

    Fish species of the genus Amphiprion (Perciformes: Pomacentridae) seek protection from predators among the tentacles of sea anemones as their natural habitat, where they live essentially unharmed from stinging by the host's nematocysts. The skin mucus of these anemonefish has been suggested as a protective mechanism that prevents the discharge of the nematocysts upon contact. Whereas some anemonefish species seem to produce their own protective mucous coating, others may acquire mucus (or biomolecules within) from the sea anemone during an acclimation period. In controlled experiments, we show that Amphiprion ocellaris acclimated successfully to their natural host anemone species Stichodactyla gigantea, and also to Stichodactyla haddoni, and in some cases Heteractis crispa, neither of which are natural host species. No symbiosis was observed for three other anemone species tested, Entacmaea quadricolor, Macrodactyla doreensis, and Heteractis malu. We explored the skin mucous protein profile from naive and experienced A. ocellaris during their acclimation to natural and unnatural host anemones. We confidently report the presence of metabolic and structural proteins in the skin mucus of all samples, likely involved in immunological defense, molecular transport, stress response, and signal transduction. For those anemonefish that established symbiosis, there was a clear increase in ribosomal-type proteins. We additionally provide evidence for the presence of anemone proteins only in the skin mucus of individuals that established symbiosis. Our results support previous speculation of the role of skin mucous-associated proteins in anemonefish-anemone symbiosis. Further exploration of these mucosal proteins could reveal the mechanism of anemonefish acclimation to host anemones.

  • Journal article
    Miao A, Luo T, Hsieh B, Edge CJ, Gridley M, Wong R, Constandinou T, Wisden W, Franks Net al., 2024,

    Brain clearance is reduced during sleep and anesthesia

    , Nature Neuroscience, ISSN: 1097-6256

    It has been suggested that the function of sleep is to actively clear metabolites and toxins from the brain. Enhanced clearance is also said to occur during anesthesia. Here, we measure clearance and movement of fluorescent molecules in the brains of male mice and show that movement is, in fact, independent of sleep and wake or anesthesia. Moreover, we show that brain clearance is markedly reduced, not increased, during sleep and anesthesia.

  • Journal article
    Ono M, Satou Y, 2024,

    Spectrum of Treg and Self-Reactive T cells: Single Cell Perspectives from Old Friend HTLV-1

    , Discovery Immunology

    <jats:title>Summary</jats:title> <jats:p>Despite extensive regulatory T cell (Treg) research, fundamental questions on in vivo dynamics remain to be answered. The current study aims to dissect several interwoven concepts in Treg biology, highlighting the ‘self-reactivity’ of Treg and their counterparts, namely naturally-arising memory-phenotype T-cells, as a key mechanism to be exploited by a human retroviral infection. We propose the novel key concept, Periodic TCR-signalled T-cells, capturing self-reactivity in a quantifiable manner using the Nr4a3-Timer-of-cell-kinetics-and-activity (Tocky) technology. Periodic and brief TCR signals in self-reactive T-cells contrast with acute TCR signals during inflammation. Thus, we propose a new two-axis model for T-cell activation by the two types of TCR signals or antigen recognition, elucidating how Foxp3 expression and acute TCR signals actively regulate Periodic TCR-signalled T-cells. Next, we highlight an underappreciated branch of immunological research on Human T-cell Leukemia Virus-1 (HTLV-1) that precedes Treg studies, illuminating the missing link between the viral infection, CD25, and Foxp3. Based on evidence by single cell analysis, we show how the viral infection exploits the regulatory mechanisms for T-cell activation and suggests a potential role of Periodic TCR signalling in infection and malignant transformation. In conclusion, the new perspectives and models in this study provide a working framework for investigating Treg within the self-reactive T-cell spectrum, expected to advance understanding of HTLV-1 infection, cancer, and immunotherapy strategies for these conditions.</jats:p>

  • Journal article
    Endres R, Endres R, Pazuki R, 2024,

    Robustness of Turing models and gene regulatory networks with a sweet spot

    , Physical Review E: Statistical, Nonlinear, and Soft Matter Physics, ISSN: 1539-3755
  • Journal article
    Schroeder J, 2024,

    Not in the countryside please! Investigating UK residents’ perceptions of an introduced species, the ring-necked parakeet (Psittacula krameri)

    , NeoBiota, ISSN: 1314-2488
  • Journal article
    Sun Y, Dunning J, Taylor T, Schroeder J, Anne Zollinger Set al., 2024,

    Calls of Manx shearwater Puffinus puffinus contain individual signatures

    , Journal of Avian Biology, Vol: 2024, ISSN: 0908-8857

    Vocalisations are widely used to signal behavioural intention in animal communication, but may also carry acoustic signatures unique to the calling individual. Here, we used acoustic analysis to confirm that Manx shearwater Puffinus puffinus calls carry individual signatures, and discerned which features made the calls individual. Manx shearwater are nocturnal seabirds that breed in dense colonies, where they must recognize and locate mates among thousands of conspecifics calling in the dark. There is evidence for mate vocal recognition in two shearwater species, but quantitative data on the vocalisations are lacking. We elicited vocal responses to playback of conspecific calls in Manx shearwaters, and measured spectral and temporal parameters of the calls. We then applied linear discriminant analysis with leave-one-out cross-validation and could confirm the presence of individual vocal signatures. We then calculated among-individual repeatability of 34 features describing the vocalisation to determine the extent to which these features may contribute to individual signature coding. We found that calls cluster by individual in both temporal and spectral characteristics, suggesting these traits are contributing to Manx shearwaters' unique call signatures.

  • Journal article
    Stiller J, Feng S, Chowdhury A-A, Rivas-González I, Duchêne DA, Fang Q, Deng Y, Kozlov A, Stamatakis A, Claramunt S, Nguyen JMT, Ho SYW, Faircloth BC, Haag J, Houde P, Cracraft J, Balaban M, Mai U, Chen G, Gao R, Zhou C, Xie Y, Huang Z, Cao Z, Yan Z, Ogilvie HA, Nakhleh L, Lindow B, Morel B, Fjeldså J, Hosner PA, da Fonseca RR, Petersen B, Tobias JA, Székely T, Kennedy JD, Reeve AH, Liker A, Stervander M, Antunes A, Tietze DT, Bertelsen MF, Lei F, Rahbek C, Graves GR, Schierup MH, Warnow T, Braun EL, Gilbert MTP, Jarvis ED, Mirarab S, Zhang Get al., 2024,

    Complexity of avian evolution revealed by family-level genomes.

    , Nature, Vol: 629, Pages: 851-860

    Despite tremendous efforts in the past decades, relationships among main avian lineages remain heavily debated without a clear resolution. Discrepancies have been attributed to diversity of species sampled, phylogenetic method and the choice of genomic regions1-3. Here we address these issues by analysing the genomes of 363 bird species4 (218 taxonomic families, 92% of total). Using intergenic regions and coalescent methods, we present a well-supported tree but also a marked degree of discordance. The tree confirms that Neoaves experienced rapid radiation at or near the Cretaceous-Palaeogene boundary. Sufficient loci rather than extensive taxon sampling were more effective in resolving difficult nodes. Remaining recalcitrant nodes involve species that are a challenge to model due to either extreme DNA composition, variable substitution rates, incomplete lineage sorting or complex evolutionary events such as ancient hybridization. Assessment of the effects of different genomic partitions showed high heterogeneity across the genome. We discovered sharp increases in effective population size, substitution rates and relative brain size following the Cretaceous-Palaeogene extinction event, supporting the hypothesis that emerging ecological opportunities catalysed the diversification of modern birds. The resulting phylogenetic estimate offers fresh insights into the rapid radiation of modern birds and provides a taxon-rich backbone tree for future comparative studies.

  • Journal article
    Mwima R, Hui T-YJ, Kayondo JK, Burt Aet al., 2024,

    The population genetics of partial diapause, with applications to the aestivating malaria mosquito Anopheles coluzzii.

    , Mol Ecol Resour, Vol: 24

    Diapause, a form of dormancy to delay or halt the reproductive development during unfavourable seasons, has evolved in many insect species. One example is aestivation, an adult-stage diapause enhancing malaria vectors' survival during the dry season (DS) and their re-establishment in the next rainy season (RS). This work develops a novel genetic approach to estimate the number or proportion of individuals undergoing diapause, as well as the breeding sizes of the two seasons, using signals from temporal allele frequency dynamics. Our modelling shows the magnitude of drift is dampened at early RS when previously aestivating individuals reappear. Aestivation severely biases the temporal effective population size ( N e $$ {N}_e $$ ), leading to overestimation of the DS breeding size by 1 / 1 - α 2 $$ 1/{\left(1-\alpha \right)}^2 $$ across 1 year, where α $$ \alpha $$ is the aestivating proportion. We find sampling breeding individuals in three consecutive seasons starting from an RS is sufficient for parameter estimation, and perform extensive simulations to verify our derivations. This method does not require sampling individuals in the dormant state, the biggest challenge in most studies. We illustrate the method by applying it to a published data set for Anopheles coluzzii mosquitoes from Thierola, Mali. Our method and the expected evolutionary implications are applicable to any species in which a fraction of the population diapauses for more than one generation, and are difficult or impossible to sample during that stage.

  • Journal article
    Lewis-Brown E, Jennings N, Mills M, Ewers Ret al., 2024,

    Comparison of carbon management and emissions of universities that did and did not adopt voluntary carbon offsets

    , Climate Policy, Vol: 24, Pages: 706-722, ISSN: 1469-3062

    The urgent need to reduce greenhouse gas emissions, remove carbon from the atmosphere and stabilize natural carbon sinks has led to the development of many carbon management measures, increasingly including voluntary carbon offsets (VCOs). We studied carbon management in universities, institutions with large carbon footprints and considerable influence in climate science and policy fora. However, concerns that VCOs may deter adopters (including universities) from adopting other carbon reduction measures and limit emissions reductions, for example, through moral hazard, have been raised but understudied. We compared the carbon management characteristics (priorities, policies, practices and emissions) of universities that did and did not adopt VCOs. We found adopters measured carbon emissions for longer, and had set targets to reach net zero earlier than had non-adopters. Adopters of VCOs also undertook more carbon management practices in both 2010 and 2020 than non-adopters. We also found that both adopters and non-adopters significantly increased their carbon management practices over the decade studied, but with no difference between groups. Gross CO2 emissions were reduced significantly over time by adopters of VCOs but not by non-adopters, whereas carbon intensity and percentage annual emissions reductions did not relate to adoption status. Consequently, our study showed no indication of mitigation deterrence due to adoption of VCOs at the universities studied. Rather, greater emissions reductions correlated with earlier net zero target dates, and a higher number of policies and carbon management practices. However, our study was constrained to universities that were affiliated with a national environmental network, so research beyond these organizations, and with individuals, would be useful. The survey was voluntary, exposing the study to potential self-selection bias so the findings may not be generalized beyond the study group. Finally, we found the carbon ac

  • Journal article
    Pereira HM, Martins IS, Rosa IMD, Kim H, Leadley P, Popp A, van Vuuren DP, Hurtt G, Quoss L, Arneth A, Baisero D, Bakkenes M, Chaplin-Kramer R, Chini L, Di Marco M, Ferrier S, Fujimori S, Guerra CA, Harfoot M, Harwood TD, Hasegawa T, Haverd V, Havlík P, Hellweg S, Hilbers JP, Hill SLL, Hirata A, Hoskins AJ, Humpenöder F, Janse JH, Jetz W, Johnson JA, Krause A, Leclère D, Matsui T, Meijer JR, Merow C, Obersteiner M, Ohashi H, De Palma A, Poulter B, Purvis A, Quesada B, Rondinini C, Schipper AM, Settele J, Sharp R, Stehfest E, Strassburg BBN, Takahashi K, Talluto MV, Thuiller W, Titeux N, Visconti P, Ware C, Wolf F, Alkemade Ret al., 2024,

    Global trends and scenarios for terrestrial biodiversity and ecosystem services from 1900 to 2050.

    , Science, Vol: 384, Pages: 458-465

    Based on an extensive model intercomparison, we assessed trends in biodiversity and ecosystem services from historical reconstructions and future scenarios of land-use and climate change. During the 20th century, biodiversity declined globally by 2 to 11%, as estimated by a range of indicators. Provisioning ecosystem services increased several fold, and regulating services decreased moderately. Going forward, policies toward sustainability have the potential to slow biodiversity loss resulting from land-use change and the demand for provisioning services while reducing or reversing declines in regulating services. However, negative impacts on biodiversity due to climate change appear poised to increase, particularly in the higher-emissions scenarios. Our assessment identifies remaining modeling uncertainties but also robustly shows that renewed policy efforts are needed to meet the goals of the Convention on Biological Diversity.

  • Journal article
    Fallesen T, Amerteifio S, Pruessner G, Jensen H, Sena Get al., 2024,

    Intermittent cell division dynamics in regenerating Arabidopsis roots reveals complex long-range interactions

    , Quantitative Plant Biology, ISSN: 2632-8828
  • Journal article
    Guerrero P, Perez-Carrasco R, 2024,

    Choice of friction coefficient deeply affects tissue behaviour in stochastic epithelial vertex models.

    , Philos Trans R Soc Lond B Biol Sci, Vol: 379

    To understand the mechanisms that coordinate the formation of biological tissues, the use of numerical implementations is necessary. The complexity of such models involves many assumptions and parameter choices that result in unpredictable consequences, obstructing the comparison with experimental data. Here, we focus on vertex models, a family of spatial models used extensively to simulate the dynamics of epithelial tissues. Usually, in the literature, the choice of the friction coefficient is not addressed using quasi-static deformation arguments that generally do not apply to realistic scenarios. In this manuscript, we discuss the role that the choice of friction coefficient has on the relaxation times and consequently in the conditions of cell cycle progression and division. We explore the effects that these changes have on the morphology, growth rate and topological transitions of the tissue dynamics. These results provide a deeper understanding of the role that an accurate mechanical description plays in the use of vertex models as inference tools. This article is part of a discussion meeting issue 'Causes and consequences of stochastic processes in development and disease'.

  • Journal article
    Saranholi BH, França FM, Vogler AP, Barlow J, Vaz de Mello FZ, Maldaner ME, Carvalho E, Gestich CC, Howes B, Banks-Leite C, Galetti PMet al., 2024,

    Testing and optimizing metabarcoding of iDNA from dung beetles to sample mammals in the hyperdiverse Neotropics.

    , Mol Ecol Resour

    Over the past few years, insects have been used as samplers of vertebrate diversity by assessing the ingested-derived DNA (iDNA), and dung beetles have been shown to be a good mammal sampler given their broad feeding preference, wide distribution and easy sampling. Here, we tested and optimized the use of iDNA from dung beetles to assess the mammal community by evaluating if some biological and methodological aspects affect the use of dung beetles as mammal species samplers. We collected 403 dung beetles from 60 pitfall traps. iDNA from each dung beetle was sequenced by metabarcoding using two mini-barcodes (12SrRNA and 16SrRNA). We assessed whether dung beetles with different traits related to feeding, nesting and body size differed in the number of mammal species found in their iDNA. We also tested differences among four killing solutions in preserving the iDNA and compared the effectiveness of each mini barcode to recover mammals. We identified a total of 50 mammal OTUs (operational taxonomic unit), including terrestrial and arboreal species from 10 different orders. We found that at least one mammal-matching sequence was obtained from 70% of the dung beetle specimens. The number of mammal OTUs obtained did not vary with dung beetle traits as well as between the killing solutions. The 16SrRNA mini-barcode recovered a higher number of mammal OTUs than 12SrRNA, although both sets were partly non-overlapping. Thus, the complete mammal diversity may not be achieved by using only one of them. This study refines the methodology for routine assessment of tropical mammal communities via dung beetle 'samplers' and its universal applicability independently of the species traits of local beetle communities.

  • Journal article
    Merckx VSFT, Gomes SIF, Wang D, Verbeek C, Jacquemyn H, Zahn FE, Gebauer G, Bidartondo MIet al., 2024,

    Mycoheterotrophy in the wood-wide web

    , Nature Plants, ISSN: 2055-026X

    The prevalence and potential functions of common mycorrhizal networks, or the 'wood-wide web', resulting from the simultaneous interaction of mycorrhizal fungi and roots of different neighbouring plants have been increasingly capturing the interest of science and society, sometimes leading to hyperbole and misinterpretation. Several recent reviews conclude that popular claims regarding the widespread nature of these networks in forests and their role in the transfer of resources and information between plants lack evidence. Here we argue that mycoheterotrophic plants associated with ectomycorrhizal or arbuscular mycorrhizal fungi require resource transfer through common mycorrhizal networks and thus are natural evidence for the occurrence and function of these networks, offering a largely overlooked window into this methodologically challenging underground phenomenon. The wide evolutionary and geographic distribution of mycoheterotrophs and their interactions with a broad phylogenetic range of mycorrhizal fungi indicate that common mycorrhizal networks are prevalent, particularly in forests, and result in net carbon transfer among diverse plants through shared mycorrhizal fungi. On the basis of the available scientific evidence, we propose a continuum of carbon transfer options within common mycorrhizal networks, and we discuss how knowledge on the biology of mycoheterotrophic plants can be instrumental for the study of mycorrhizal-mediated transfers between plants.

  • Journal article
    Blackford K, Kasoar M, Burton C, Burke E, Prentice IC, Voulgarakis Aet al., 2024,

    INFERNO-peat v1.0.0: a representation of northern high latitude peat fires in the JULES-INFERNO global fire model

    , Geoscientific Model Development, Vol: 17, Pages: 3063-3079, ISSN: 1991-959X

    Peat fires in the northern high latitudes have the potential to burn vast amounts of carbon-rich organic soil, releasing large quantities of long-term stored carbon to the atmosphere. Due to anthropogenic activities and climate change, peat fires are increasing in frequency and intensity across the high latitudes. However, at present they are not explicitly included in most fire models. Here we detail the development of INFERNO-peat, the first parameterization of peat fires in the JULES-INFERNO (Joint UK Land Environment Simulator INteractive Fire and Emission algoRithm for Natural envirOnments) fire model. INFERNO-peat utilizes knowledge from lab and field-based studies on peat fire ignition and spread to be able to model peat burnt area, burn depth, and carbon emissions, based on data of the moisture content, inorganic content, bulk density, soil temperature, and water table depth of peat. INFERNO-peat improves the representation of burnt area in the high latitudes, with peat fires simulating on average an additional 0.305×106 km2 of burn area each year, emitting 224.10 Tg of carbon. Compared to Global Fire Emissions Database version 5 (GFED5), INFERNO-peat captures ∼ 20 % more burnt area, whereas INFERNO underestimated burning by 50 %. Additionally, INFERNO-peat substantially improves the representation of interannual variability in burnt area and subsequent carbon emissions across the high latitudes. The coefficient of variation in carbon emissions is increased from 0.071 in INFERNO to 0.127 in INFERNO-peat, an almost 80 % increase. Therefore, explicitly modelling peat fires shows a substantial improvement in the fire modelling capabilities of JULES-INFERNO, highlighting the importance of representing peatland systems in fire models.

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://www.imperial.ac.uk:80/respub/WEB-INF/jsp/search-t4-html.jsp Request URI: /respub/WEB-INF/jsp/search-t4-html.jsp Query String: id=1200&limit=30&resgrpMemberPubs=true&respub-action=search.html Current Millis: 1717874718806 Current Time: Sat Jun 08 20:25:18 BST 2024