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Abstract

Fidelity of predictive models is often limited when they rely overly on biases in train-
ing data. These biases occur due to many constraints in the processes employed for
data generation. While there exist many methods intended to target data imbal-
ance, they are often incapable of removing spurious correlations between attribute
subgroups.
Counterfactual inference allows for the synthesis of plausible images from original
samples by modifying certain attributes while keeping others intact, thus eliminating
false associations. We describe a novel method of counterfactual image data aug-
mentation as a debiasing technique for predictive models. Our method is capable
of synthesizing new data for the purpose of boosting performance when it is limited
by data scarcity, data attributes correlation and other types of bias. To that end two
approaches are used: (i) dataset expansion via counterfactual data augmentation;
(ii) modification of the training objective with a counterfactual regularisation term.
Furthermore, we perform a comparison of the counterfactual method and some cho-
sen commonly used debiasing techniques. The evaluation is focused both on fine-
grained local performance in each predefined attribute subgroup and more general
global performance.
Moreover, we perform bias evaluation, which allows us to test the ability of trained
image classifiers to adapt to counterfactual examples and estimate their fairness
against chosen attributes.
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Chapter 1

Introduction

1.1 Motivation

Deep neural networks quickly gain popularity as they find use cases in many areas
of life. They are often used to substitute a tedious decision process or to identify
patterns or correlations unnoticeable by human observers [1]. One field where the
use of neural networks – more specifically convolutional neural networks – has been
increasing in recent years is medicine, wherein machine learning (ML) systems are
being widely used for radiology, pathology and dermatology [2, 3, 4].

However, using machine learning systems in safety-critical settings does not come
without risks. One such risk is the difficulty in generalisation of an ML model. Train-
ing on an imbalanced dataset often leads to a biased model. This means that ma-
chine learning models are often found to be over-reliant on the correlations between
labels and peripheral attributes, i.e. attributes which do not directly imply the label
of a datapoint [5]. One often used visual example is a classifier trained to distin-
guish between cows and camels [6]. In the training data, we are most likely to find
that the majority of camel pictures will have a desert background while cows will
probably be surrounded by grass. This correlation between label and background
leads to bias in trained models. Given an image of a camel on grass the model is
likely to label it as a cow.

Currently there are many methods used to mitigate dataset imbalance. The most
commonly employed include: (i) resampling (oversampling or undersampling); (ii)
re-weighing the loss function; (iii) data augmentation methods such as flipping, ro-
tations or blurring, to name a few. Data augmentations can also be tailored to given
datasets, targeting specific machine learning tasks by introducing domain knowl-
edge into the training process.

All of the aforementioned methods work to an extent and it is part of this project
to study what their limitations are. That having been said, it is intuitively clear that
they all come with certain shortcomings. It is often not clear why applying specific
actions may improve the performance of a model. For example, it might be counter-
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1.2. CONTRIBUTIONS Chapter 1. Introduction

intuitive to include blurred versions of medical images in the training dataset as by
doing so we are implicitly assuming that blur may occur naturally in held-out data.
Certain data augmentations might also introduce a change in the joint distribution
of inputs and outputs, known as distribution shift [7]. Furthermore, in certain sit-
uations it is highly impractical to condition the model in such a way that would
efficiently target the bias. Coming back to the camels and cows example, it would be
very difficult to find images of cows in deserts, generate them using standard aug-
mentation methods or even apply any model-driven debiasing methods effectively.

This leads us to the concept of counterfactuals and counterfactual data augmenta-
tion. Recent advances in generative neural networks have allowed for the generation
of visually plausible image counterfactuals. Counterfactual images are synthetically
generated versions of original, factual examples in counter-to-fact scenarios. They
can be seen as answers to “what if”-type questions. Using causal interventions we
can manipulate specific attributes and synthesize new counterfactual images based
on existing data.

One particularly useful application of counterfactuals is for debiasing datasets used
for machine learning tasks such as classification or regression by e.g. addressing
dataset imbalance in a principled manner. By constructing realistic structural causal
models of datasets, and with sufficient observational data, we can train deep gener-
ative neural networks to encode image features of interest which respect the causal
relationships in the associated graph. We can then use the trained models to apply
interventions on existing biased data and generate additional, counterfactual, dat-
apoints. Those synthetic images can then be used to expand datasets used to train
predictive models or even utilised in model-based debiasing approaches.

1.2 Contributions

The goal of this project is to determine to what extent image counterfactuals are an
effective method for targeting bias and improving performance of models in imbal-
anced datasets.

As part of the project, we develop a comparison of this novel method with widely-
used, well-established methods and build an evaluation pipeline to analyse the ef-
fects of each technique in a systematic manner.

We test the effectiveness of counterfactual data augmentation on synthetic datasets
as well as a real-world dataset of medical images. For the former, we are in full con-
trol of the attributes and the relationships between them are known apriori. That
is, we have access to the true causal data generating process. On the other hand,
the real-world medical imaging dataset is much more complex as each datapoint
includes multiple attributes pertaining to the patient. The data is highly imbalanced
both in terms of the classes as well as the attributes and exhibits internal attribute
correlations.
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Chapter 1. Introduction 1.2. CONTRIBUTIONS

Furthermore, using counterfactual images, we perform bias evaluation via fairness
analysis on the chosen setups.

We believe that the chosen setups enable a thorough evaluation of the counterfactu-
als data augmentation method in both real and synthetic settings.
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Chapter 2

Background

In this chapter, we:

• provide an overview of image classification and the problems this sub field is
generally designed to solve, as well as introduce convolutional neural networks
and describe some commonly used architectures (Sections 2.1, 2.2),

• discuss different types of bias such as data scarcity or data mismatch and go
into details regarding what the causal factors normally are and how each type
of bias manifests itself in the dataset as well as in a trained predictive model
(Section 2.3),

• introduce some widely-used, standard debiasing methods for mitigating dataset
bias and discuss their potential flaws and shortcomings providing motivation
for novel bias mitigation methods (Section 2.4),

• overview the necessary background on counterfactual inference, covering: (i)
causality; (ii) deep generative models, and (iii) common architectures includ-
ing the Deep Structural Causal Model (DSCM) architecture used in this project
(Section 2.5),

• discuss some evaluation methods frequently used in similar works (Section
2.6),

• provide a review of relevant literature, including several works on counterfac-
tual bias mitigation and model fairness evaluation (Section 2.7).

2.1 Image Classification

Image classification or image label prediction is a supervised learning problem where,
given a training set of images and target labels pertaining to each images, the task is
to train a model to recognise similar images to those seen at training time and assign
correct labels to them. Such models are called image classifiers.

An image classifier is a function that for each image datapoint from the image space

4



Chapter 2. Background 2.2. CONVOLUTIONAL NEURAL NETWORKS

X assigns a label in the predefined label space Y . Then given a classifier θ with a loss
function l : θ× (X × Y )→ R the usual approach is to find a classifier that minimises
the expected loss l via empirical risk minimisation. However, if the observed train-
ing data is not sufficiently homogeneous, then focusing on average performance can
lead to important subgroups being affected. For example, if we find that the dataset
used to train the classifier is biased in any way and fails to accurately represent the
real-world distribution, average performance can be especially misleading.

2.2 Convolutional Neural Networks

Convolutional Neural Networks (CNNs) have become the predominantly used type
of model for most computer vision tasks. Typically, a CNN is composed of multiple
elements such as convolution layers, pooling layers, and fully-connected layers. The
learning process is based on backpropagation through those layers [1].

Convolution layers perform feature extraction, applying linear and non-linear opera-
tions via activation functions. They usually use kernels which are arrays of numbers
and apply them to the input pixel values in a sliding-window fashion to detect fea-
tures and generate feature maps of the input.

Pooling layers also perform feature extraction but typically place greater empha-
sis on high activations. For example, when max-pooling is applied the size of the
feature map is downsampled by extracting the maximum values across local regions
in the input.

In CNNs, fully-connected layers are used at the end to map the extracted features to
class labels, making a prediction. They typically receive flattened feature maps and
the final fully-connected layer will have the same number of neurons as the number
of classes we are trying to classify.

2.2.1 ResNet

A Residual Network (ResNet) [8] is a convolutional neural network specifically de-
signed to scale to thousands of convolutional layers. The general belief is that the
deeper the neural network the better, however, there exists a problem with adding
too many layers called vanishing gradient [9]. As the gradient is calculated and prop-
agated through the network by repeated multiplication, its value vanishes quickly,
approaching zero. It is also possible for the opposite to happen. When the gradients
are large their multiplication also becomes large overtime – a problem called explod-
ing gradients.

To solve this problem, ResNet introduces the “identity shortcut connection” which
allows for skipping one or more layers. A typical ResNet block consists of convolu-
tion layers, batch norms and ReLU activations [10]. At the end of each block, the
output is added to the original input (Figure 2.1). There are many ResNet flavours,
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2.3. DATASET BIAS Chapter 2. Background

such as ResNeXt [11] or Wide ResNet [12], but they all build on top of the basic
block.

Figure 2.1: ResNet block with and without 1×1 convolution. Taken from [10]

2.2.2 DenseNet

DenseNet [13] is another convolutional neural network and it is often called an
extension of ResNet. The main difference between DenseNet and ResNet is that
DenseNet uses concatenation rather than addition to combine the inputs and outputs
of a block. As a result, each layer is connected to every previous layer which creates a
very dense dependency graph (hence DenseNet). DenseNet is built of Dense Blocks,
each consisting of multiple convolution blocks that follow a similar structure to that
of ResNet - convolution layer and batch normalization followed by an activation
function. The outputs of all convolution blocks are then concatenated.

2.3 Dataset Bias

We talk about dataset bias when the distribution of datapoints in the training set
is different from the distribution of real-world data. In a biased dataset, samples
exhibit attributes which are not innate but rather correlated with target labels (i.e.
bias attributes). For example, let us imagine a training dataset of dermatoscopic
images on which we want to train a classifier to distinguish between a number of
different types of skin lesions. The images in the dataset come from multiple sources
and were taken using instruments of varying parameters, hence images produced by
two different instruments have visible differences such as color resolution. A model
trained on such a biased dataset will be likely to learn the bias attributes (e.g. the dif-
ferences caused by varying resolution) rather than the intrinsic attributes that truly
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Chapter 2. Background 2.3. DATASET BIAS

differentiate the various types of skin lesions. This means the model will perform
poorly when tested on a dataset representing the attribute distribution as it appears
in the real world.

There are many examples of such bias found in image classifiers [14, 15, 16, 17].
One such example is the use of imbalanced datasets for training gender classification
systems. The authors in [14] aimed to evaluate three commercial gender classifica-
tion systems on a balanced dataset they constructed which contained images of both
male and female individuals of four different skin tones. They showed error rates
of up to 34.7% on one of the classes (darker-skinned females). While the maximum
error rate for lighter-skinned males was found to be 0.8%. They found that the
classification systems have been trained on biased datasets which favoured lighter-
skinned and male individuals which caused the bias in the final model. Systems like
this one are often used to build facial analysis algorithms and studies like this show
just how much attention they require.

Dataset bias can have many different causes. When dividing bias by its cause we
can distinguish two main types: (i) data scarcity bias, and (ii) data mismatch bias.

2.3.1 Data Scarcity

It is very common – especially in medical contexts [18, 19, 20] – to encounter the
problem of data scarcity. It is most often caused by high costs of data generation or
hiring experts to annotate data points. Some of the techniques commonly used to
fight this problem include semi-supervised learning and data augmentations. How-
ever, for semi-supervised learning to work, certain requirements must be met. Data
points which belong to one class need to be similar to each other in terms of the at-
tributes we perform the clustering on, since they will naturally get clustered together.
Data augmentations often need to be tailored to specific datasets, for example it does
not make much sense to flip MNIST images [21] as they do not represent the same
digits anymore. Therefore, a certain amount of data analysis needs to be done be-
fore debiasing. Furthermore, many methods used are unintuitive and hard to reason
about. For example, in the article introducing cutout [22] as a data augmentation
method, the authors admit that they found the less intuitive, more random, version
of cutout to work better and give superior results. However, they do not provide any
reasoning for why that might be the case.

2.3.2 Data Mismatch

Another common issue is data mismatch in data distributions between the training
set and test sets or the training set and the real-world environment. Data mismatch
tends to hurt the generalisation of trained predictive models.

Most commonly, data mismatch is caused by dataset shift (sometimes referred to
as concept shift or concept drift) which happens when training and testing set dis-
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tributions differ due to certain factors. Based on these factors, we can differentiate
a few types of shifts: (i) population shift; (ii) annotation shift; (iii) prevalence shift;
(iv) manifestation shift, and (v) acquisition shift [23].

Population shift means that the distribution of data attributes in the training set
and test set differ. For example, let us suppose we are training a model to recognise
the age of a person and we provide it with a training set where for most samples
the attribute of age takes values between 10 and 40. The real-world environment
distribution will of course be different with the age attribute having a much bigger
range, meaning there is a population shift in our data.

Annotation shift can happen when there are multiple annotators working on a
single dataset. This can cause differences in how the annotators label the same
datapoint. These can result from individual annotator’s bias or different policies or
grading systems employed. The result would be annotation inconsistencies between
multiple data generating centers.

Under prevalence shift, the differences between datasets relate to class balance
between the training and test sets. This can arise for example from different predis-
positions in the training and test populations, or from variations in environmental
factors.

Manifestation shift means that the way in which intrinsic attributes manifest –
i.e. the attributes that indicate a specific target label – changes between domains.
For example, the attributes which imply the presence of a disease are different in
the dataset used for training than they are in real-world environment data. Mani-
festation shift makes it difficult for models trained on one domain to generalize to
another, and it is generally not clear how to target the problem of manifestation shift.

Acquisition shift relates to data quality, in this case specifically the quality of im-
ages. Differences may be caused by the different instruments used to collect the
images and their properties. For example, a scanning instrument at one hospital
may be of older generation and produce images of low resolution while a scanning
instrument at a different hospital may produce high-quality images. This could lead
to acquisition shift.

2.4 Improving Performance on Biased Datasets

There exist many well-established methods which aim to counter bias in a dataset [6,
22, 24, 25]. We can divide them into data-driven approaches and model-driven ap-
proaches. For the first type, we try to manipulate the data prior to the training
process so as to mitigate the existing bias. And for the second approach, the train-
ing objective gets modified accordingly so that the training process accounts for the
existing bias. In this study, we focus mostly on the data-driven approach, however,
other methods use the model-driven approach to good effect as well [26, 27].
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Figure 2.2: Different types of dataset bias. Taken from [23]

Some of the most-commonly used methods include resampling, re-weighing the loss
function and data augmentations as well as many regularisation techniques. We go
into more detail on each method used later in Chapter 3.

2.4.1 Data-driven Methods

Resampling is a technique used to balance the number of samples across classes in
an imbalanced dataset in order to prevent the model from being biased towards the
majority class. There are two types of resampling: (i) undersampling and (ii) over-
sampling. In oversampling, we duplicate the samples of the minority classes in order
to increase their prevalence. In undersampling, samples of the majority classes are
eliminated at random to reduce their prevalence. It is important to note that under-
sampling can often lead to information loss if not done carefully.

Data augmentation is a method which creates new data points from existing data by
randomly applying controlled perturbations. Some common augmentations include
rotation, flipping, cropping and adding noise. An important thing to mention is that
data augmentation, when done in a controlled fashion, can be used to insert domain
knowledge into the training dataset to improve the model’s robustness to variation
in held-out test sets. This is especially the case when we expect to observe certain
perturbation at test time and would therefore like our model to be invariant to them.

Some data augmentation and regularisation techniques assume previous knowledge
about the causes of poor model performance which can help tailor these methods to
specific model needs. Next, we go through a few of these methods which have been
proven to work well.

Cutout [22] is a data augmentation method which involves randomly masking out
square regions of an image, typically of fixed size. Obscuring part of the image
forces the model to learn the intrinsic features of the objects in the image, rather
than relying on the background or peripheral attributes. Cutout is particularly use-
ful when training object detection and segmentation models as it simulates occlusion
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2.4. IMPROVING PERFORMANCE ON BIASED DATASETS Chapter 2. Background

and makes the model more robust to changes in the background. Additionally, it also
helps to prevent overfitting, by introducing randomness in the training data.

Mixup is a data augmentation technique introduced in [24]. It is a simple method
that generates new training samples by linearly interpolating pairs of input data and
corresponding labels. The idea is to create new samples that lie on the convex com-
bination of two original samples, by taking a weighted average of the input data and
the labels. This allows the model to learn from the interpolated data, which helps to
improve its generalisation performance and robustness.

Disentangled feature augmentation is a technique which uses latent vectors of
image datapoints [5]. New samples are generated by swapping latent feature vec-
tors of existing samples. An encoder and a linear classifier are trained to learn the
disentangled representation of intrinsic attributes and bias attributes, respectively.
These learnt vectors can then be swapped after several iterations of training have
been performed to create novel datapoints.

2.4.2 Model-driven Methods

Re-weighing the loss function is a technique used to balance the contribution of dif-
ferent classes in a multi-class classification problem. In re-weighing, each sample is
multiplied with a ratio equal to its population proportion over its sampling propor-
tion to assign higher weights to the minority classes during training. The weight of
each class can be set manually or it can be learned from the data.

Distributionally robust optimisation (DRO) is a method of regularisation aimed
at minimising the worst-case training loss for predefined subgroups. Often, to gen-
eralise well, overparameterised models are used which help achieve high overall
accuracy but fail to perform well on out-of-domain groups in test sets. For group
DRO [26], spurious correlations in training data are defined which allows for con-
structing and dividing the data into subgroups. The aim is to minimise the loss of
the worst-performing subgroup at each step during training. This approach achieves
substantial improvements in worst-subgroup test set accuracy over standard ap-
proaches with minimal reductions in overall (average) test set performance.

2.4.3 Motivation: Debiasing Methods Discussion

While these methods of fighting dataset imbalance work to an extent, it is often un-
clear why exactly they improve the model’s performance and why one method might
perform better than others [6].

There have been studies trying to analyse the differences in efficiency of particu-
lar methods and find the underlying causes. For example, it has been found that
resampling very often outperforms re-weighting. A 2021 study [28] shows that the
difference in performance appears because of the stochastic gradient-type algorithms
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most often used for training models. Optimal learning rate selection for re-weighing
is often challenging due to the noise of stochastic gradient algorithms. As part of the
study, classification, regression, and reinforcement learning experiments are per-
formed to empirically show that the findings are plausible.

Nevertheless, many of the commonly used methods simply lack good explanations
and can even be counter-intuitive at times. Methods such as dropout or cutout at-
tempt to boost performance by obscuring parts of the input images. Through this
technique the method should “force” the network to focus on utilizing the full con-
text of an input image rather than relying on specific visual features which might be
peripheral attributes. This targets the problem of crucial objects or elements being
occluded in test images which would require the network to perform recognition
based on other, visible traits. In the cutout study [22], the authors initially intended
to remove visual features with high activations in latter layers of a CNN, however
when performing experiments they discovered that randomly obscuring square sec-
tions in input images gives similar results, while being significantly computationally
cheaper. Naturally, the question is why does this approach work? Purposefully ap-
plying noise or removing parts of images in the training set seems like corrupting
good data and feels counter-intuitive. Additionally, the final implementation where
cutout obscures random sections poses even more questions as to why that proves to
be more effective than obscuring specific regions which are highly recognisable by
the model.

In this context, counterfactuals as a data augmentation method seem especially use-
ful. It is clear why they would boost the performance of a model and they do that
without throwing away any information or corrupting the existing data. In turn, they
aim to generate plausible new input images that try to mimic data which we would
be likely to find in potential test sets or real-world testing scenarios. Furthermore,
if randomly sampling counterfactuals improves the classifier’s performance then po-
tentially only very little data analysis needs to be done prior to successful debiasing.

Of course, counterfactual data augmentation makes use of generative models which
require significant resources and can be time consuming to train. This is something
we are not forced to take into consideration when using more standard debiasing
methods.

2.5 Background: Counterfactuals

2.5.1 Causality and Structural Causal Models

In causality, Pearl’s ladder of causation is a concept used to represent a three-level
hierarchy of problems of increasing difficulty. The three levels are association, in-
tervention and counterfactuals [29].

The lowest level, association, entails the existing correlations in data in the sys-
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tem. Meaning that we want to answer questions like “given that some variables are
observed to be x what is the probability that some other variable is equal to y”.

The middle level, intervention, is about causal relationships. We perform some
intervention on the system and want to predict what the effects of our actions are.
For example, if we force a variable to be equal to x what is the probability that some
other variable is equal to y.

The highest level, counterfactuals, is about the causal relationships between vari-
ables and the effects of modifying some variables on others retrospectively. Which
means we ask questions like, given that variables Z ⊆ V were observed to be z, if
variables X ⊆ V were forced to be x then how likely is it that variables Y ⊆ V would
have been equal to y?

To model causal mechanisms and relationships of a system we can use Structural
Causal Models (SCMs).

Structural Causal Models comprise a structure similar to directed acyclic graphs
(DAGs) and consist of three elements:

1. A set of variables describing a causal system. There are two types of variables:
(i) observed or endogenous, which are measured in our data; and (ii) unob-
served or exogenous, considered background conditions for which we have no
explanatory mechanisms.

2. Relationships between variables which determine how values are assigned to
each variable in the system. For example, xi = fi(pai, ϵi) describes a process
by which variable xi is assigned its value through a structural assignment or
causal mechanism fi. This mechanism is a function of the variable’s parents
pai, which is the set of its direct causes, and an exogenous factor ϵi.

3. A probability distribution over unobserved (exogenous) variables describing
the likelihood of these variables taking on a specific value.

In SCMs represented by DAGs, all the relationships are one-directional from cause
to effect, and no variables can have a causal relationship with themselves as that
would induce a cycle or feedback loop.

A counterfactual query, e.g. the probability of a counterfactual outcome P (Yx = y | ϵ)
is the probability that Y is y if X were x given the exogenous noise ϵ. Counterfactual
inference of this query entails a three-step process of abduction, action and predic-
tion (more detailed description in 2.5.3).

Relationships in an SCM can be represented by a directed acyclic graph with edges
pointing from causes to effects, which we call a causal graph. Using causal graphs, it
is then possible to perform actions or interventions and compute causal effects. We
can use deep generative models such as GANs, VAEs or diffusion models to learn the
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mechanisms in an SCM from observational data.

To consider an example lets look at a case similar to “Case Study 1: Morpho-MNIST”
from [18]. Here we use the Morpho-MNIST dataset which is a modification of the
MNIST dataset of handwritten digits [21] with additional “thickness” and “intensity”
attribtues introduced using the Morpho-MNIST framework [30]. A causal relation-
ship is introduced where the thickness of a digit influences the brightness (intensity)
of the image. This could be written as follows:

t = f(ϵT )

i = f(ϵI ; t)

x = f(ϵX ; i, t)

where ϵT and ϵI are sampled from some probability distribution and ϵX is sampled
from the set of digits as defined in the MNIST dataset.

A setup like this can then be used to train a model which can generate images fol-
lowing these causal relationships. In [18] such a model is trained and compared
with two other models which do not exploit this causal structure. Some examples of
the generated images and their originals can be seen in Figure 2.3.

Figure 2.3: Original and counterfactual images generated by the full model. Here do(...)
represents an intervention on t - the thickness or i - the intensity. Taken from [18].
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2.5.2 Generative Models

Variational Autoencoders

A variational autoencoder (VAE) is a probabilistic variant of a deterministic autoen-
coder which comprises an encoder and decoder model. The encoder, implemented
using neural network layers, is trained to learn a meaningful representation of input
data as a distribution over the latent space (encoded space). The encoder typically
performs dimensionality reduction on the input data, extracting relevant features, to
encode it in the latent space. Using the decoder, implemented using neural network
layers as well, we can generate new data by forwarding samples from the encoded
latent space. The objective used during training takes into account two factors.
The first one is the minimisation of the reconstruction error, which measures the
difference between original and reconstructed data. The second terms ensures the
regularisation of the learnt latent space using Kulback-Leibler divergence between
the learnt distribution and a standard Gaussian prior distribution. This ensures that
the latent space is constrained and enables sampling new datapoints via the prior.

Normalising Flows

Normalising flow models are based on a series of bijective functions. They aim to
model complex probability distributions of data by successively applying invertible
functions to a simple base distribution such as a standard Gaussian. They are trained
using negative log-likelihood loss.

2.5.3 DSCM Architecture

A Deep Structural Causal Model (DSCM) is an SCM that uses deep-learning com-
ponents to model the causal mechanisms [18]. These deep-learning techniques are
introduced into SCMs to work for more complex, higher-dimensional data such as
images. [18] propose using normalising flows and variational inference to perform
the three necessary steps mentioned above for counterfactual inference.

Therefore, the steps for deep counterfactual inference are as follows:

1. Abduction: the goal of abduction is to predict the exogenous noise ϵ given ob-
served evidence. The abduction can be performed independently for each con-
ditional mechanism given its corresponding observed variable and its parents.
Depending on whether a given mechanism is invertible or not we can obtain
the noise using different methods. For invertible mechanisms, the noise can
be obtained by simply inverting the mechanism f such that ϵi = f−1i (xi;pai),
where xi is the observed variable and pai are its observed parents. When the
mechanism is not invertible, a little care needs to be taken. For example, for
mechanisms based on implicit amortised likelihood where a trained encoder is
used, the noise can be approximated by ϵi ≈ ei(xi;pai), where ei is an encoder
model.
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2. Action: in the action step the causal graph is modified to reflect the desired
intervention and each variable xi we wish to intervene on is replaced either by
a constant x̃i or by a new mechanism f̃k(ϵk; p̃ak).

3. Prediction: in this step we can sample from the new, modified structural causal
model to determine the counterfactual of the observed variables of interest.

2.6 Evaluation

2.6.1 Evaluating Counterfactuals

Evaluating counterfactuals themselves is a very hard task. In situations where we are
interested in generating counterfactuals we normally do it because we lack certain
data therefore there is no target output to compare to, which poses a big challenge.
There is currently ongoing research on how to evaluate the generated data points.
Performance analysis can be done, for example, based on three axioms, namely
effectiveness, composition and reversibility [31] defined as:

• Effectiveness: performing an intervention on a variable x to have a specific
value will actually cause the variable to have that value.

• Composition: performing a null transformation (i.e. an intervention which
does not change the value of a variable) will not have any effect on other
variables in the system.

• Reversibility: given an invertible mechanism and an observation x, its direct
causes (parents) pa and its counterfactual x∗, we have that, if
x∗ := f(x,pa,pa∗) then x := f(x∗,pa∗,pa), where f is a counterfactual func-
tion which is a mapping between an observation and a counterfactual.

Using those axioms we can determine how good a given approximation of a coun-
terfactual function is.

For this project however, it will not be necessary to show that the counterfactuals
themselves are plausible and authentic. This is because we want to use them pri-
marily to train classification networks downstream. Therefore, the evaluation should
focus on how well we can train the networks and how efficient the method is in de-
biasing the training set. With that said, it is likely that more realistic counterfactuals
will perform better at debiasing.

2.6.2 Evaluating Predictive Models

There exist many evaluation metrics commonly used for assessing the performance
of a machine learning model on a specific task. Most-commonly during testing a con-
fusion matrix is devised with its elements representing the correctly and incorrectly
classified datapoints. Multiple metrics can be derived from the confusion matrix
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such as accuracy, precision, recall etc. It is however very important to choose an ad-
equate metric when evaluating a machine learning model. Some metrics can be very
misleading when used incorrectly and can lead to constructing sub-optimal models.

For models trained on balanced datasets, using accuracy as an evaluation metric is a
good choice and is common practice. Problems with using accuracy arise when the
training dataset is biased as for example in a classification problem with imbalanced
class distribution. Accuracy assigns a bigger weight on the majority classes and a
much smaller weight on the minority classes [32]. Therefore, to correctly assess the
performance of a model, other metrics which take into account class imbalance or
bias ought to be used.

One such metric is the F1-score, (equation (2.1)) which is a harmonic mean of
precision and recall which allows it to account for the size of each class. F1-score
penalizes models that achieve high accuracy by predicting the majority class all the
time:

F1 = 2 · precision · recall
precision+ recall

. (2.1)

Another popular metric which can be used for imbalanced datasets is the AUC-ROC
curve. ROC is a measure of probability and AUC measures separability. Therefore,
the metric measures how much the model is capable of distinguishing between dif-
ferent classes [33]. The basic ROC can be used for binary classification and to use
the metric for multi-class problems we calculate it by taking the average of AUCs
calculated for all classes against each other.

To calculate the AUC-ROC curve we use True Positive Rate (equation 2.2), also
referred to as sensitivity, and False Positive Rate (equation 2.3), also referred to as
fall-out or false alarm ratio. However, these metrics can also be used on their own
as they provide valuable information and are insensitive to dataset bias.

TPR =
TruePositives

Positives
, (2.2)

FPR =
FalsePositives

Negatives
. (2.3)

Another metric commonly used is the Kappa coefficient (equation 2.4) which has
its origins in psychology [34]. It measures the agreement between two evaluators
who rate certain subjects. It is used in machine learning to give a score of how a
model is performing in comparison with an untrained model (so one which chooses
at random), taking into account the imbalance in classes.

κ =
p0 − pe
1− pe

(2.4)
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where p0 is the overall accuracy of the model and pe is the measure of agreement
between the model’s predictions and the predictions made by the untrained model.

With that said, every situation is different and it is crucial to tailor the evaluation
metrics to a concrete setup. As previously mentioned, data bias can have many
causes and can take many forms. For a simple class imbalance looking at the F1-
score might be enough. However, when the bias is based on attribute correlation,
or if we are dealing with acquisition shift for example, these metrics might not be
enough to show the true performance of the model on real-world data.

2.7 Related Work

There is a lot of research around the evaluation of counterfactuals as a bias mitiga-
tion method in the NLP area [35, 36]. In the domain of computer vision, this concept
is still relatively new and hence there is less research done on it. There are however
some case studies around evaluating bias mitigation using counterfactual images.

2.7.1 Counterfactual bias mitigation

In [37] a bias mitigation method is described, which uses counterfactuals to mod-
ify the model training objective. Additionally, bias evaluation is performed on the
CelebA dataset [38] using counterfactual images as well as fairness analysis, utilising
counterfactuals generated around specific, bias attributes to compare the predictions
of a trained classifier and estimate its bias. In the experiments, an alternative method
is used, called ImageCFGen. The proposed architecture consists of an encoder, a gen-
erator (decoder) and Attribute-SCM which is a component which performs interven-
tions on the desired attributes.

The authors of [39] introduce another alternative conditional generative model
called CounterSynth, which they use to generate counterfactual augmentations of
training data. They run experiments, using the UK Biobank dataset, where they
compare standard ERM methods with group DRO and counterfactual augmentation.
In their work they focus on identified bias attributes and compare both global and
local performance. They then analyse the performance of multiple predictive models
trained to label test images using those chosen attributes.

Similarly, [40] analyse attribute confounding and propose an algorithm for counter-
factual data generation where they aim to remove the biases based on their measure-
ments. They conduct a comparison of standard empirical risk minimization methods
and the novel causality-based augmentations.
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2.7.2 Counterfactual fairness estimation

Counterfactual augmentation is also used to measure classifier fairness in [41]. They
measure the fairness of computer vision APIs widely used both commercially and in
research, defined using the following equality: P (YA←a(x) = y | x) = P (YA←a′(x) =
y | x) where A← a′ indicates an intervention. If the equality holds for all y, a and a′

then a classifier is deemed fair.

To perform the analysis they use generative models to obtain image counterfactu-
als around certain common bias attributes such as “race”. They find that some of
those APIs behave in a way which is related to the gender gap/distribution present
in many occupations.
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Bias Mitigation

In this chapter, we describe all the standard bias mitigation methods we use as base-
lines for performance improvement comparison (Section 3.1.1).

We introduce the counterfactuals-based methods including: (i) dataset expansion
with targeted interventions; (ii) dataset expansion with random sampling; (iii) coun-
terfactual regularisation, and (iv) several hybrid methods combining counterfactual
data augmentation and standard methods (Section 3.1.2).

Lastly, we provide implementation details on all methods used (Sections 3.2, 3.3).

3.1 Debiasing Methods

3.1.1 Baselines

To enable comparisons between methods, we debias using five different standard
techniques:

• Sampling. In the experiments we make use of oversampling as the data avail-
able is scarce to begin with, therefore it does not make much sense to un-
dersample. By counting the number of samples per each class or predefined
subgroup we calculate their difference in size and then oversample by that dif-
ference. Multiple attribute subgroups can be oversampled at once until the
underrepresented subgroup is as numerous as the others. For Morpho-MNIST
we oversample based on the class label. For Mimic CXR we oversample both
around the class label and around the specific targeted attributes chosen for a
given experiment (more details in Chapter 6).

• Loss Function Re-weighing. This is done where applicable. It is applicable
when we are dealing with an undersampled class like in the example of Mimic
CXR where there is significantly less data of the negative class.

• Standard Data Augmentation. For the Morpho-MNIST dataset we use blur-
ring and adding noise (Gaussian and Salt&Pepper nosie) and rotations by a
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small angle (less than 30 degrees).
For the Mimic CXR dataset we use all the augmentations used for Morpho-
MNIST plus flipping, as flipping makes more sense in the context of medical
images but not much sense for digit images.
An augmentation is chosen at random from a list of available options for each
datapoint. We apply the augmentations to the targeted undersampled class
or subgroup until it is as numerous as the others or as the most numerous
subgroup.

• Group DRO. For the Mimic CXR dataset we define the DRO groups around
a specific attribute and calculate the counts of each group appropriately. To
calculate the DRO loss we adapt the original algorithm as defined in [26].
First, per-sample losses are calculated using the criterion loss function (Cross
Entropy), these are then sorted into the defined groups and average loss is
calculated for each group. The total, returned loss calculation is based on the
per group losses and follows Algorithm 1.

• Mixup. We also use the previously mentioned mixup method [24]. Pairs of
datapoints are combined online, during training. Pixels of both datapoints are
combined using a λ hyperparameter and both labels are used for loss calcula-
tion which follows Equation 3.1.

l = λ · loss fn(logits, targetsa) + (1− λ) · loss fn(logits, targetsb) (3.1)

where logits is the output of the model for the combined pixels input. Mixup
is a method which combines datapoints randomly hence no specific attribute
bias is targeted in our study.

Algorithm 1 Group DRO Loss
Require: ypred, ytrue, group idxs

Initialize: loss0 ←
[

1

n groups

]
n groups

loss per sample← loss(ypred, ytrue)
group losses← get loss average per group(loss per sample, group idxs)
losst ← losst−1 ∗ exp(η ∗ group losses)

We then treat these methods as baselines for the new counterfactual data augmen-
tation method.

3.1.2 Counterfactual Inference Methods

In the context of using counterfactual generation as a data augmentation method,
we can distinguish two types of augmentations based on their influence on the target
label of a data point:
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• Label-preserving perturbations are ones which do not change the target la-
bel. For example, in the context of digit classification on the MNIST dataset,
generating images by altering the thickness of a digit is a label-preserving per-
turbation as it does not modify the digit label.

• Label-altering perturbations modify the target label as a result of the augmen-
tation they perform. Again, for example, in the context of digit classification on
the MNIST dataset, generating images by changing the digit while keeping, for
instance, the thickness as is, is a label-altering perturbation as the digit label
changes.

Distinguishing between those two types of augmentations is important when plan-
ning to debias a dataset using counterfactuals and here we use both types.

We attempt to achieve performance improvement and generalisation via generative
models in two ways: (i) data manipulation prior to training; (ii) by modelling the
training objectives appropriately [37]; as well as several hybrid approaches combin-
ing counterfactual data augmentation and different standard methods:

• Expanding the dataset prior to training
For the first approach, the original dataset is expanded with counterfactual
images. The images are generated by performing interventions on specific
variables and to determine which variable to intervene on dataset analysis is
necessary. For each dataset we compare the impact of debiasing with coun-
terfactuals with respect to several different attributes. For the Morpho-MNIST
dataset the attributes we intervene on are “thickness” and “digit label”, and
for the Mimic CXR dataset the attributes are “sex”, “age”, “race” and “disease
label”. All counterfactual images are generated from training samples and
we generate them until the underrepresented groups are as numerous as the
largest group.

• Expanding with random sampling
The second approach is a slight modification of the first one. Rather than mod-
ifying a specific attribute by tailoring the augmentation to a predefined bias
(e.g. generating young female samples as the existing data shows a deficit
thereof) we make use of random sampling and generate additional counterfac-
tual data at random. This approach does not require much prior knowledge
about the dataset hence in certain constrained scenarios it can be superior.
Here it is unclear how many counterfactuals to generate therefore we aim to
generate enough to bridge the gap between the class counts.

• Expanding the dataset & mixup
For this method we use targeted counterfactual generation to expand the dataset
and in addition use mixup to bridge some potential gaps in attribute distribu-
tions with combined examples.

• Counterfactual regularisation
The next approach uses counterfactual regularisation [37] and is a model-
driven approach. It enforces that the classifier predicts the same output for
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both the original and counterfactual image. A regulariser term, calculated from
the output of the classifier before applying the sigmoid activation function, is
added to the loss to train the classifier:

loss = CrossEntropyLoss(logits, ytrue) + λ ∗MSE(logits, logitscf ), (3.2)

where logits is the output of the classifier for the original images and logitscf
is the output of the classifier for the counterfactual images, before applying
the sigmoid activation function, ytrue are the ground truth labels and λ is a
hyperparameter.

Figure 3.1: Counterfactual regularisation pipeline.

3.2 Baseline Methods: Implementation

The oversampling method was implemented from scratch as we needed to over-
sample not only on the level of classes but also individual attributes, taking into
consideration attribute correlations.

For data augmentations torchvision [42] and the Pillow library [43] were used. For
each sample an augmentation is chosen at random from a list of available augmenta-
tions. As mentioned, for group DRO we adapted the original algorithm as proposed
in [26].

Similarly, for mixup the proposed algorithm was used for online interpolation of
samples.

3.3 Counterfactual Generation

For the generation of image counterfactuals, we trained checkpoints of DSCMs for
Morpho-MNIST, Colored-MNIST and Mimic CXR datasets. For dataset expansion,
the counterfactuals were generated prior to training the model from observational
data, to enable a faster training process. Consequently, the same counterfactuals are
used in each epoch.
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For CF regularisation, the counterfactuals are generated online for each batch of
training data to use a fresh batch on every epoch. They are then passed through the
model so that original and counterfactual predictions can be compared and used in
the loss function.
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Datasets

In this chapter we explain the requirements we took into consideration when choos-
ing the datasets for bias evaluation and mitigation comparison (Section 4.1).

We introduce the chosen datasets and the particular tasks which we focus on. We
also go into details on the necessary data preprocessing steps implemented for each
dataset (Sections 4.2, 4.3, 4.4).

4.1 Requirements

In order to evaluate the impact of different debiasing methods on the performance
of image predictive models we require that the datasets used consist of annotated
images with discrete labels as we focus primarily on classification tasks and utilise
supervised learning. It is not important for this project whether the labels are binary
or not.

It is preferable that the datasets already exhibit some kind of bias. This could mean
that certain label classes are under or over represented, that specific attribute sub-
groups are correlated either between each other or with the target labels or any
other type of bias. However, this is not strictly necessary, as in some cases it can be
straightforward to synthetically introduce bias which is what we do for some of the
datasets.

4.2 Morpho-MNIST

The Morpho-MNIST dataset is an extension of the MNIST dataset of handwritten
digits. There are 10 classes representing the 10 digits. The dataset consists of 70k
images, 7k per each class. We split it into a training set of 60k images and a test set
of 10k images. In addition to a class label the Morpho-MNIST dataset also consists of
two additional attributes describing each sample, namely “thickness” and “intensity”.
The values of these attributes are continuous within specified ranges.
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Figure 4.1: Example images from the Morpho-MNIST dataset.

As the Morpho-MNIST dataset itself is mostly equally distributed in terms of all the
attributes, we introduced a bias ourselves to get baseline results which we could
then try and improve upon with different methods. The bias which we introduce
is based on the “thickness” attribute. To change the thickness of a digit we use the
Morpho-MNIST framework [30] which allows for multiple perturbations specifically
of the MNIST dataset. We define a classification of classes into those which are more
likely to consist thicker digits (1, 3, 6, 9) and others which consist mostly of thin
digits (0, 7, 8). The remaining digits are equally likely to be thick or thin. We then
construct the biased dataset with varying percentages of bias-aligned samples. The
average thickness for each class is depicted in Figure 4.2.

To synthetically inject bias we introduce the concept of the percentage of bias-
conflicting samples. Given a specific bias, we modify the dataset so that the bias-
aligned and bias-conflicting samples amount corresponds to the percentage. For
example, in a colored version of the MNIST dataset where each digit is tied with a
chosen color, e.g all ones are red, all twos are blue, we set the percentage of bias-
conflicting samples to 5%. Then 95% of all images will abide by the bias, meaning
95% of all ones will be red, 95% of all twos will be blue etc. The remaining 5% of
all images is colored with a randomly chosen color.

We experimented with different values of the bias-conflicting samples percentage.
We tried 1%, 2% and 5%. With 2% and 5% the results were not satisfactory as the
classifier was able to easily train from the scarce data available and still obtain good
results. Therefore, we tried with 1% of bias-conflicting samples and observed a drop
in overall accuracy of around 10%.

For the test set all of the classes are balanced and there is the same amount of
thick and thin samples per each class.
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Figure 4.2: Thickness of biased Morpho-MNIST

4.3 Colored-MNIST

Colored-MNIST is another extension of the MNIST dataset, where we assign a dis-
tinct color to each digit and apply it on the foreground of each image (Figure 4.3).
The dataset consists of 60k training images and 10k test images. The test set is
fully balanced, meaning each digit receives a random color out of the ten available.
Again, we make use of the bias-conflicting percentage variable and focus on two
scenarios. One, where 1% of the images are bias-conflicting (colored randomly)
and another where all samples follow the bias. The later scenario is particularly
interesting from the perspective of utilising counterfactual data augmentation, as it
would be very challenging to mitigate the bias using any of the baseline methods.
It is, however, a representation of many real-world scenarios where certain data is
completely unavailable during train time.

Figure 4.3: Example images from train (top) and test (bottom) Colored-MNIST data.

4.4 Mimic CXR

Mimic CXR [44] is a dataset of approximately 200 thousand images of chest x-rays
and attributes corresponding to each image. For the purposes of this project, we
use the “sex”, “race” and “age” attributes as well as all attributes associated with a
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disease to determine the value of a binary class – “finding” or “no finding”. Here we
focus on a single disease – Pleural Effusion. Therefore“finding” means the subject
was diagnosed with Pleural Effusion and “no finding” means they were diagnosed as
being healthy.

Figure 4.4: Example images from the Mimix CXR dataset.

As mentioned, we filter out many samples from the original dataset to suit the tasks.
After this procedure there are approximately 100k images left. We divide the data
into training, validation and test sets with a 60:10:30 split ratio, which gives around
60k images in the training set, around 10k in the validation set and 30k in the test
set. We resize all the images to a 192x192 resolution. The “race” and “sex” attributes
are discrete values and the “age” attribute is continuous therefore we define five age
ranges, every 20 years, to target age bias.

The dataset contains a number of attributes describing each image. From analysing
the dataset, we can see there is a strong bias correlated with the attributes distribu-
tion. It is clear that there are significantly more negative samples, meaning those of
healthy patients (Table 4.1). While this difference is not very significant for some
subgroups - like race “White” - it makes a big different for other, e.g. the ages 0-
19, 20-39 or race “Black”. Unfortunately, this bias is also present in the validation
and test set which makes fair testing challenging. One way around this would be
to downsample majority classes in the validation and test sets however there are so
few samples in the minority classes that this is rather impractical. Alternatively, we
can look at metrics which do not take into consideration subgroup sizes or look at
relative changes in subgroup performance between two models.

There is also some attribute correlation bias in addition to data scarcity. The younger
patients (aged 0-39) are much more likely to be healthy than diagnosed with Pleural
Effusion, while among the older patients (aged 60-100) there are more samples with
the disease present. The middle-aged group seems to be more balanced. This irreg-
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Positive samples Negative samples

Sex

male 55% 53%
female 45% 47%

Race

White 85% 75%
Asian 4% 4%
Black 11% 21%

Age

0-19 0.07% 0.3%
20-39 4% 9.8%
40-59 20.17% 28.9%
60-79 47.91% 42.6%
80-100 27.85% 18.3%

Table 4.1: Attribute percentage counts per class in training set

ularity may condition a classifier to associate the target label with the age attribute.

Further, the size imbalance continues within certain attributes. For the “race” at-
tribute, there are significantly more White patients and Asian patients are the least
numerous group. The “sex” attribute is by far the most balanced one and as expected
within the “age” attribute there are much more samples of middle-aged patients (40-
80) and there is very little data of young individuals (0-40).
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Chapter 5

Experimental Setup

In this chapter, we introduce the setups and tasks chosen as well as the baselines
used for further comparison of the previously described bias mitigation methods
(Section 5.1).

We also describe several additional evaluation techniques which were used in the
experiments for performance comparison (Section 5.2).

5.1 Models & training

5.1.1 Morpho-MNIST

For Morpho-MNIST we define a multiclass classification problem of digit prediction.

First, we train a classifier on the biased dataset with the “thickness” attribute corre-
lated with the digit and certain classes undersampled (labels 0, 1, 3, 6, 7, 8 and 9
are undersampled where their counts are cut down to 20k). We experimented with
different values of the bias-conflicting percentage variable and finally settled on us-
ing 1%.

The thickness bias is visible on the mean thickness diagram (Figure 4.2). We cal-
culate the overall performance and per-class performance as well as performance
based on the value of the “thickness” attribute. The overall accuracy reached is
89.7% with F1-score of 89.5%, while the SOTA performance on balanced Morpho-
MNIST is around 99% accuracy. From per-class performance (Table 5.1) we can see
certain classes dropped in performance more than others, mainly we notice worse
performance for the undersampled classes with thickness bias. Classes left intact,
such as label 4 and label 5, show the best performance except for label 0 and label
1 which are arguably the easiest to distinguish.
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Precision Recall F1-score

label 0 91.23 94.43 92.12
label 1 99.14 96.3 97.74
label 2 84.22 99.54 91.04
label 3 88.71 90.15 89.34
label 4 90.07 99.31 94.63
label 5 88.65 98.77 93.45
label 6 96.31 80.12 87.65
label 7 86.74 77.79 81.27
label 8 91.24 82.34 87.66
label 9 86.66 80.11 83.75

Table 5.1: Baseline Morpho-MNIST digit classification per-class performance.

5.1.2 Colored-MNIST

For Colored-MNIST, similarly to Morpho-MNIST, we define a multiclass classification
task of digit prediction. From training a baseline classifier it is obvious the model’s
predictions align with the digit-color correlation present in the dataset. The perfor-
mance is fairly equal among classes. For the fully-biased version of the dataset (0%
bias-conflicting samples) there is a significant reduction in performance (from accu-
racy of 73.53% to 19.29%) which is expected as we are fully correlating the label
with the color attribute.

5.1.3 Mimic CXR

We define two tasks on the Mimic CXR dataset: disease classification and race clas-
sification.

Disease Classification

From investigating the original dataset, it is clear there is a strong bias in the data,
especially in terms of race and age of patients. We calculate the performance per
class and also per attribute for each task attempted. Table 5.2 shows some standard
evaluation metrics for the disease classification task. Both accuracy and F1-score are
similar which would indicate the model performs comparably for both labels and is
unbiased. That is why it is important to look at per-attribute performance as well
and analyse whether the classifier is not biased with respect to certain subgroups. We
observe the model achieves higher results for samples marked as “White” than it does
for “Black”, however, it is performing extremely well for samples marked “Asian”,
which could be because there are only a few Asian samples in the test set. Similarly
there is a significant drop in performance for very young and elderly patients. The
sex attribute is the most balanced one and as expected we do not observe a big
difference in performance between male and female patients.
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Accuracy F1-score Precision Recall

Disease classification

No finding 90.12 90.33 91.65 89.05
Pleural Effusion 89.04 88.68 87.22 89.63
macro-avg 89.58 89.51 89.64 89.57

Race classification

White 92.36 92.12 91.88 92.36
Asian 42.32 43.37 44.47 42.34
Black 72.62 73.04 73.46 72.62
macro-avg 86.65 69.51 69.94 69.1

Table 5.2: Baseline disease/race classification global performance.

Female Male 0-19 20-39 40-59 60-79 80-100

Accuracy 84.31 88.84 87.65 82.55 87.3 87.72 85.35
F1-score 89.08 93.31 90.74 86.77 91.23 92.31 91.4

Table 5.3: Baseline race classification per-attribute performance for sex and age at-
tributes.

Race Classification

For the race classification task, we analyse the data again and performance of a
baseline classifier. As previously mentioned, the data is highly imbalanced with
respect to the race attribute. The trained model achieves very good performance
for the largest subgroups of White patients and the lowest performance for Black
patients as this subgroup is significantly under represented in the training set (Table
5.2). Further, classification of patients from different age ranges shows different
results, with middle-aged patients achieving higher accuracy than young and older
patients. Further, male patients score slightly higher results than female patients
(Table 5.3).

5.1.4 Training Details

Generative Model

The DSCMs used for this project consist of two components trained separately. For
all variables other than the image, normalising flows were trained. A VAE is used for
the causal mechanisms of the images.

For each dataset we trained a DSCM to generate plausible counterfactuals. Each
DSCM is trained on a biased version of the dataset to simulate the accessibility of

31



5.1. MODELS & TRAINING Chapter 5. Experimental Setup

data in real-world scenarios where data available to train GANs would be imbal-
anced by definition of the problem.
For the Morpho-MNIST dataset, the attributes learned by the DSCM are “thickness”,
“intensity” and “digit”. For the Mimic CXR dataset, the discrete attributes are “sex”,
“race” and “finding” and there is a continuous attribute “age”. The normalizing
flow-based model and the VAE are both trained separately. They are trained for 200
epochs each. Once all the individual components are trained, they are combined into
one module which can then be used for inferring visually plausible counterfactuals.

The DSCM is trained solely on the training sets to simulate a situation where test
data is truly unseen and unavailable. The training sets are therefore split into train
and test sets using an 80:20 ratio.

Figure 5.1: Top: example original images sampled from the Colored-MNIST training set
and counterfactual images generated using a trained DSCM by applying interventions
on the color attribute. Bottom: example images sampled from Mimic CXR and coun-
terfactual images generated by applying interventions on age, sex, race and disease,
respectively.
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Predictive Models

For Morpho-MNIST and Colored-MNIST we fine-tune a pre-trained ResNet18 model
with an extra linear layer. We use the AdamW optimiser and start learning rate of
0.0003 with weight decay of 0.05 and train for 20 epochs with early stopping and a
batch size of 32.

For Mimic CXR, first, we train a classifier without applying any modifications, to
get a good reference for all further experiments. We first used a ResNet architec-
ture [8] with an additional linear layer, as it can be trained with a large number of
layers easily without increasing the training error at the same time.

Then we trained using a DenseNet-121 architecture to compare the results, and
we achieve better performance with DenseNet. Therefore, we will be using the
DenseNet architecture in the experiments. Furthermore, [19] published their results
on the Mimic CXR dataset using DenseNet-121 so it was possible for us to compare
our results with theirs and use them as a benchmark. They report an AUC-ROC score
of 0.83% on a multiclass classification problem. As our task is a binary classification
we expect to achieve slightly better results overall.

We use the AdamW optimiser and start with a learning rate of 0.00005 for disease
classification with weight decay of 0.05. We train for 20 epochs with early stopping.

We use a batch size of 32 as that was the maximum possible batch size on the
machines available to us to avoid out-of-memory errors.

5.2 Evaluation Methods

5.2.1 Standard Metrics

Multiple metrics were used to evaluate the experiments done as part of this project.
Standard metrics, mentioned before in Chapter 2, such as accuracy, precision, recall
or F1-score are used to compare both overall and per-class performance. However,
a fair model should ideally approach the maximum achievable performance equally
closely across all subgroups [45]. This definition means that standard metrics, most
often used in evaluating machine learning tasks, are not up to standard here. It is
therefore necessary to also analyse the model’s performance comparing the different
subgroups rather than just looking at the model as a whole.

5.2.2 Global & Local Performance

It is trivial to achieve equal performance over subgroups by lowering the overall
performance to that of the worst-performing subgroup, however, we do not want to
harm global performance in the process. Therefore, the goal is to increase the per-
formance over some predefined subgroups while maintaining a good baseline level.
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To focus on the overall change, we can calculate the global (∆G) and local (∆L)
changes in performance defined in 5.1 and 5.2 respectively:

∆G =

∑
k(a

new
k − abasek )∑
k a

base
k

(5.1)

where k is the number of subgroups, anewk is the mean performance of subgroup k
for a chosen debiased model and abasek is the mean performance of subgroup k for
the baseline model. The local (∆L) changes are then:

∆L =
anewp − abaseq

abaseq

(5.2)

where anewp is the mean performance of the worst-case subgroup for a chosen debi-
ased model and abaseq is the mean performance of the worst-case subgroup for the
baseline model (p and q need not be the same).

5.2.3 True Positive Rate Disparity

We also calculate the true positive rate (TPR), also called sensitivity (Equation 5.3)
and TPR disparity. TPR is a good metric to use here as it works well in scenarios
with imbalanced datasets. TPR disparity is calculated for binary subgroups as the
difference between the TPR of the subgroup value and the TPR of the other subgroup
value. For non-binary subgroups it is calculated as the difference between the TPR
of the subgroup value and the mean TPR of that subgroup (Equation 5.4).

TPR =
TP

TP + FN
(5.3)

TPRDSj ,i = TPRSj ,i −Median(TPRSj ,1...TPRSj ,k) (5.4)

where TPRSj ,i represents the TPR or the jth attribute subgroup and the ith attribute
value in that subgroup.

5.2.4 Fairness Analysis

In addition to using standard evaluation metrics, we can use counterfactuals them-
selves to estimate the bias in a classifier that predicts a discrete label, by comparing
predicted labels for original and counterfactual images. In [37] a classifier is defined
to be biased if the predicted label changes for a label-preserving counterfactual im-
age and if it changes the label to one class from another more often than vice versa.
This can be expressed as:

bias = p(yr ̸= yc) [p(yr = 0, yc = 1|yr ̸= yc)− p(yr = 1, yc = 0|yr ̸= yc)] (5.5)

which gives a representation of the bias as a number between -1 and 1. In the case
when the classifier is unbiased the number will be 0, when it is negative then the
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classifier is more likely to change the label to 0 and equivalently it is positive if the
classifier is more likely to change the label to 1.

We can use this method to estimate classifier bias and express its fairness visually,
constructing two-dimensional plots of the predictions for original and augmented
images. In the ideal case, where there is no bias present and the classifier can be
labelled as “fair”, all the points should be clustered along the x = y line. Clusters of
points in the top-left quadrant mean the label was changed from 0 to 1 - meaning
there are a lot of false positives - and analogously clusters of points in the bottom-
right quadrant mean the label was changes from 1 to 0 - meaning there are false
negatives present.

It is also beneficial to compare fairness plots for the difference in predictions for
original images and images augmented using both standard augmentation methods
and the counterfactual method. With this comparison, we can see how “useful” a
given augmentation method is by itself and in comparison with others. Given a
debiased classifier with improved performance, we can check its fairness using a
chosen augmentation technique. If the results indicate that the classifier is unfair,
even though other evaluation metrics prove differently, then this is an indication that
the method being analysed is not a valid way of estimating classifier bias, and hence
debiasing using that method does not provide much empirical evidence for being
beneficial in bias mitigation.

5.2.5 Dimensionality Reduction

To analyse and explore the effects of debiasing datasets with various methods on the
representations the model learns, it is useful to look at the learnt embeddings and
analyse patterns that emerge. With high-dimensional data it is hard to capture the
embeddings visually, therefore dimensionality reduction is commonly used to reduce
the dimensions of datapoints and generate 2D plots of data.

T-SNE is a method commonly used for this task, introduced in [46]. It is a highly-
adaptable technique which can give an intuition for how the data is arranged or
how it correlates internally. T-SNE aims to capture similarity between samples in
the high-dimensional feature space. It is often used in tandem with PCA [47] which
is another dimensionality reduction technique. The new dimensions obtained after
applying PCA represent the largest variation in the high-dimensional feature space.
Therefore, the first few dimensions of PCA will contain the strongest separation of
data based on the attributes the model was trained on. Because t-SNE is computa-
tionally expensive, often times PCA is applied first to reduce the dimensions of the
data which is then fed into t-SNE.

Here we use dimensionality reduction for two reasons. Firstly, we samples from the
test set and extract embeddings generated by the trained models to see how good
they are in clustering test data. Secondly, we can extract embeddings for original
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data and counterfactually augmented data and thus try to spot bias around different
attributes.

5.2.6 Metrics: Implementation

An evaluation pipeline was implemented to evaluate the different methods used in
this comparison. We mostly made use of standard python libraries such as scikit-
learn [48] and statistics to get the basic evaluation metrics. To generate comparison
plots matplotlib [49] and seaborn [50] were used. For dimensionality reduction
we used ready implementations from sklearn.decomposition and sklearn.manifold to
apply both PCA and t-SNE.
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Chapter 6

Results & Analysis

In this chapter, we describe the experiments performed on all previously introduced
setups. We present both quantitative and qualitative results and analyse the impact
of each tested method.

6.1 MNIST

To evaluate the counterfactual data augmentation method on the Morpho-MNIST
and Colored-MNIST datasets, a baseline trained predictive model and four standard
debiasing methods were used as reference for the comparison. The methods were
oversampling, standard data augmentations (rotations, blurring, adding noise) and
mixup for Morpho-MNIST as well as Group DRO for Colored-MNIST.

All hyperparameters were tuned for the baseline models and kept the same for all
further debiasing methods.

6.1.1 Quantitative Evaluation

Looking at some standard metrics for Morpho-MNIST we can see that all debiasing
methods have an impact on the classifier’s performance, improving it as expected.
We note an improvement in results over standard debiasing methods for both the
counterfactual augmentations expansion and the CF regularisation method. It is
clear that the most significant change was observed for the CF regularisation method,
both overall (Table 6.1) and per-class (Figure 6.1). There is no loss in recall or pre-
cision as well and metrics for all classes are evened out.

Looking at Morpho-MNIST TPR disparity for the thickness attribute, (Figure 6.3)
we can see that while the standard augmentation method performs well in improv-
ing performance per each class, it also introduces a rather significant TPR disparity
between labels and all attribute subgroups. Both the counterfactual and CF reg-
ularisation methods remove the difference between thick and thin samples almost
completely, with the counterfactual expansion method achieving a lower TPR range
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Accuracy F1-score Precison Recall ROC-AUC Bias

Baseline 89.73 89.51 89.84 89.7 99.23 -0.013
Oversampling 93.32 93.2 93.31 93.32 99.64 -0.005
Std Augs 91.31 91.31 80.1 83.32 99.72 -0.017
Mixup 93.12 93 93.34 93.1 99.71 0.0123

CFs (do t) 94.22 94.1 94.22 94.24 0.997 0.005
CF reg (do t) 97.52 97.54 97.6 97.51 99.9 0.004

Table 6.1: Morpho-MNIST overall performance comparison. For accuracy, F1-score,
precison, recall and ROC-AUC score higher is better and for bias lower is better. Bias is
measured using Equation 5.5 for the thickness attribute. For counterfactual data aug-
mentation methods do t signified an intervention on thickness.

(approx. 0.91) than the CF regularisation method (approx 1.0). We can observe sim-
ilar behaviour for per-class TPR disparity. We can therefore conclude that the coun-
terfactual methods improve local performance evenly among all subgroups while
also increasing global performance.

Similarly, for Colored-MNIST, it is clear that the counterfactual regularisation method
achieves the best improvement. Counterfactual dataset expansion performs slightly
worse than standard augmentations (Table 6.2). Counterfactual regularisation pro-
vides steady improvement among all classes as well as color subgroups with minimal
disparity which is in comparison to the baseline methods (Figure 6.2).

As previously mentioned, we also run an experiment with 0% bias-conflicting sam-
ples. For this setup we train the DSCM on a fully-biased version of Colored-MNIST
as well to simulate a real-life scenario well. As this is the case we expect the qual-
ity of generated counterfactuals to be reduced as well which is what we observe.
It is however clear that the counterfactual methods are still capable of improving
the model’s performance. In this scenario they significantly outperform any baseline
methods. This is to be expected, as it is impossible to remove the spurious color-digit
correlation with standard debiasing.

6.1.2 Qualitative evaluation

To evaluate the improvement in fairness we perform fairness analysis around the
thickness attribute for Morpho-MNIST and around the color attribute for Colored-
MNIST. We compare predictions of trained models between original samples and
images with modified thickness. Evaluating fairness with the previously described
method requires a binary classification setup, therefore we test the task of predicting
whether a given image is of digit class x or not, rather than testing multilabel digit
classification. We sample 10k images, labeled as 9, from the test set and for each
generate seven counterfactuals, changing the thickness/color of the digit. Then for
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Figure 6.1: Standard metrics for digit classification on Morpho-MNIST. From left to
right (top to bottom): accuracy, F1-score, precision, recall

each trained model we compare the predicted probability that a given digit is a 9, as
from analysing model performance it is clear the baseline was underperforming for
digit 9 with respect to other digits.

For Morpho-MNIST, we observe a significant improvement in bias (Equation 5.5)
from -0.0129 for the baseline classifier to 0.0039 for CF regularised model. A com-
parison of biases for different models debiased using different methods (Figures 6.4,
6.5) shows that the CF regularisation method achieves the highest improvement.

6.2 Mimic CXR

As previously mentioned, we define two tasks on the Mimic CXR dataset, namely
binary disease classification and race classification.

Disease Classification

For disease classification we observed a bias with respect to the “race” attribute
therefore we chose to target it by balancing the attribute counts using the standard,
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Accuracy F1-score Precison Recall ROC-AUC

0% bias-conflicting

Baseline 19.29 20.25 24.58 18.96 57.45
Oversampling 19.41 19.11 19.71 19.98 56.57
StdAugs 12.81 12.71 12.82 12.62 52.25
Group DRO 18.02 17.99 20.1 17.69 55.75

CFs (do c) 52.86 52.14 54.8 52.54 85.89
CF reg (do c) 71.67 71.19 73.17 71.29 96.33

1% bias-conflicting

Baseline 73.53 73.6 75.44 73.42 94.27
Oversampling 88.78 88.66 89.49 77.3 98.7
StdAugs 90.83 90.65 91.33 90.82 99.4
Group DRO 60.26 58.43 59.78 59.54 89.57

CFs (do c) 86.22 86.06 86.45 86.05 98.57
CF reg (do c) 93.45 93.33 93.41 93.34 99.65

Table 6.2: Overall performance comparison of digit classification on Colored-MNIST
with 1% and 0% bias-conflicting samples. For counterfactual data augmentation meth-
ods do c signifies an intervention on color.

reference methods and the counterfactual method. For counterfactual regularisa-
tion, for each batch of original images a random race value is chosen for which
counterfactual images are generated for comparison.

Additionally, there is a visible correlation between the patient’s age and whether or
not they are diagnosed as healthy. Younger patients (0-39 years old) are more likely
to be healthy and older patients (80-100 years old) are most often diagnosed with
the disease. To counter this imbalance we use regularisation around the age-disease
correlation.

Race Classification

For the race classification task we observe a significant drop in performance for Asian
and Black patients therefore we decided to balance those subgroups. We also notice
that TPR drops for younger patients in comparison to older patients and so we also
target the age-disease correlation for this task.
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Figure 6.2: Comparison of per-class and per-color attribute subgroup metrics for
Colored-MNIST dataset with 1% bias-conflicting samples. From left to right (top to
bottom): per-class accuracy, per-class precision, per-subgroup accuracy, per-subgroup
precision.

6.2.1 Quantitative Evaluation

Disease Classification

For Mimic CXR we do not observe a significant improvement for the counterfactual
methods in comparison with standard techniques. Again, all methods used have an
impact on the model, however the counterfactual methods are performing very sim-
ilarly to data augmentations and oversampling. One interesting thing to notice is
the improvement in precision over all race subgroups, which is the best for the CF
regularisation method. Conversely, we also notice a drop in recall and no significant
improvements overall. This lack of improvement could be caused by the complex
correlations between image attributes, where targeting one bias might unintention-
ally impact another one.

Race Classification

For the race classification task we observe more varied results. While oversampling
is counter-effective and decreases performance, both standard data augmentations
and mixup make an improvement on precision for Asian and Black samples. Coun-
terfactual data augmentation and CF regularisation also boost per-class precision
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Figure 6.3: TPR disparity per thickness subgroup comparison for the Morpho-MNIST
dataset. TPR disparity per class (left), TPR values per thickness range (top-right) and
box plot depicting thickness TPR disparity (bottom-right).

however to a lower extent.

Furthermore, all methods improve TPR disparity for all attributes however there
is no definitive best result. No method harms per-attribute performance, preserving
values similar to the ones achieved for the baseline model.

6.2.2 Qualitative Evaluation

We sample 1k original images from the test set and for each generate seven counter-
factual images altering the race attribute to Black to determine the fairness of trained
disease classifiers. We use all trained classifiers to predict whether the image is of a
healthy patient or not and compare the original and augmented predictions (Figure
6.7). If a classifier is fair and unbiased then all the points should be clustered along
the x = y line. For the baseline model we observe both false positives (upper-left
quadrant) and false negatives (lower-right quadrant) meaning the model incorrectly
classifies healthy patients as unhealthy and vice-versa after the race of the patient
is changed to Black. For standard debiasing methods used (oversampling, data aug-
mentations, group DRO) we do not observe much improvement. Similarly, on the
plot corresponding to counterfactual data augmentations we still observe false pos-
itives and false negatives. The model debiased with CF regularisation proves the
most efficient and fair as most of the points are clustered along the x = y line.

We calculate the classifier’s fairness and observe a substantial improvement in bias.
For disease classification the baseline classifier reports a bias score of -0.018 against
race Black and the CF regularised classifier obtains a bias score of 0.003.
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Figure 6.4: Fairness analysis (bias estimation) for digit classification task on Morpho-
MNIST. The top left plot is generated using the baseline model with no balancing tech-
niques employed. The remaining plots correspond to predictive models trained using
different debiasing methods, from left to right (top to bottom): oversampling, standard
data augmentations, mixup, counterfactual data augmentations dataset expansion and
CF regularisation. The debiasing methods target the thickness attribute bias.

Figure 6.5: Fairness analysis (bias estimation) for digit classification task on Colored-
MNIST. The top left plot is generated using the baseline model with no balancing tech-
niques employed. The remaining plots correspond to predictive models trained using
different debiasing methods, from left to right (top to bottom): oversampling, standard
data augmentations and CF regularisation. The debiasing methods target the color at-
tribute bias.
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Accuracy F1-score Precison Recall ROC-AUC

Baseline 89.58 89.51 89.43 89.63 94.95
Oversampling 88.29 88.18 88.18 88.18 94.1
StdAugs 89.03 88.98 88.89 89.15 94.19
Group DRO 89.27 89.2 89.14 89.27 94.91

CFs (do r) 89.63 89.56 89.49 89.67 94.85
CFs (do r) + mixup 89.88 89.81 89.74 89.91 94.97
CFs (rs) 89.88 89.79 89.79 89.77 95.29
CF reg (do r) 88.9 88.84 88.77 89.04 94.6

Table 6.3: Disease classification overall performance comparison. do r and rs signify an
intervention on race and random sampling, respectively.

Accuracy F1-score Precison Recall ROC-AUC

Baseline 86.65 69.51 69.94 69.1 88.66
Oversampling 86.09 67.14 70.38 64.65 87.45
Std Augs 88.86 72.22 82.4 67.05 90.56
Mixup 89.7 72.25 86.1 67.08 89.25

CFs (do r) 88.17 69.53 73.75 66.56 91.08
CFs (do r) + mixup 89.11 66.48 78.55 63.94 90.68
CFs (rs) 90.12 76.04 78.36 74.09 92.94
CF reg (do a, do f) 88.59 69.38 78.81 64.69 88.86

Table 6.4: Race classification overall performance comparison. For counterfactual data
augmentation methods do r, do a, do f and rs signify an intervention on race, age, find-
ing and random sampling, respectively.
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Figure 6.6: Per-class comparison of training results for the race classification task on
Mimic CXR. From left to right: per-class F1-score, per-class precision, per-attribute sub-
group TPR disparity, per-attribute subgroups change in accuracy with respect to global
model accuracy.

Figure 6.7: Fairness analysis (bias estimation) for disease classification task. The top
left plot is generated using the baseline model with no balancing techniques employed.
The remaining plots correspond to predictive models trained using different debiasing
methods, from left to right (top to bottom): oversampling, standard data augmentations,
group DRO, counterfactual data augmentations dataset expansion and CF regularisation.
The debiasing methods target the race attribute bias.
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Figure 6.8: T-SNE dimensionality reduction on the test set for disease prediction classi-
fiers. We observe more pronounced clustering and less overlap for the model debiased
using the counterfactual expansion method.

6.3 Conclusion

From the results obtained, it is clear that counterfactual data augmentation is a
valid debiasing technique which succeeds at targeting certain imbalance present in
training datasets. Whether it provides significant improvements over other, more
commonly used techniques, seems to depend on the complexity of the setup and
correlation biases present.

We have observed how counterfactual data augmentation can improve a predic-
tive model, outperforming widely-used methods, on synthetically created Morpho-
MNIST and Colored-MNIST datasets. The important thing to note about the MNIST
datasets is that there are only a few attributes describing each image, which we
are in full control of. We are also aware of all the relationships between attributes.
Further, the test set is perfectly balanced which enables fair evaluation of trained
models.

The Mimic CXR dataset, in comparison, is a collection of real-world data. It exhibits
multiple types of bias and balancing one of them can, unintentionally, influence an-
other one. Due to data scarcity, the test set in use reflects the imbalance present in
the training data, making fair testing a challenge. Further, there are some known
issues in the current version on the Mimic CXR DSCM. Namely, intervening on cer-
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tain attributes such as race can have an impact on others, for instance amplifying
the disease present in a given x-ray. Nevertheless, we have observed a substantial
improvement in the model’s fairness when debiasing with the counterfactual regu-
larisation method.

Taking all above into consideration, we can conclude that counterfactual data aug-
mentation can indeed mitigate bias introduced by spurious correlations in data and
can match the performance or even outperform many commonly used methods, both
model and data-driven.

Furthermore, in terms of explainability, counterfactual data augmentation is espe-
cially useful as all augmentations are fully based on causal relationships which is
often not the case for more commonly used techniques.

We also acknowledge that there is still opportunity for improvement in the cur-
rent implementation of the generative model used in this evaluation – the DSCM.
It is highly likely, that a refined model would further improve performance both on
synthetic and real-world data.
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Chapter 7

Discussion

In this chapter, we outline a few potential areas of future work and describe the
broader research context which this project resides in (Section 7.1).

We also cover any ethical issues taken into consideration for this project (Section
7.2).

7.1 Outlook & Future Work

7.1.1 Other Computer Vision Tasks

The evaluation in this project focuses solely on image classification as it is most intu-
itive to apply counterfactual inference for this task. It would, however, be interesting
to see counterfactual data augmentation applied in other computer vision tasks such
as regression or structured prediction (e.g image segmentation).

7.1.2 Reducing Data Analysis

Performing bias analysis is essential to use any data augmentation technique ef-
ficiently. Similarly, it is crucial to understand the spurious correlations between
attributes present in training data to correctly and efficiently apply counterfactual
inference. It is, however, a time-consuming activity, and, ideally, we would like to
reduce it to a minimum while keeping the efficacy of the method. An attempt at en-
abling this is the random sampling experiments we ran, as those do not require mod-
ifications tailored to specific biases. We observed an improvement for randomised
debiasing compared to the more targeted mitigation.

7.1.3 Counterfactuals Evaluation and Uncertainty Analysis

As part of this project we conduct fairness analysis of the trained classifiers. We do
not, however, evaluate the generated counterfactuals as we make the assumption
that it might not be of necessity for bias mitigation. It would be, nonetheless, inter-
esting to perform further evaluation and measure the uncertainty of generated coun-
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terfactual images. Quantification of uncertainty in counterfactual inference would
allow for identifying flaws and limitations in the generation process. These could
then be used for implementing potential improvements.

7.2 Ethical Considerations

7.2.1 Protection of Personal Data

This research is exempt from ethical approval as the analysis is based on secondary
data which is publicly available, and no permission is required to access the data.

Furthermore, all datasets used in this project are open source. Multiple data aug-
mentation methods used for generating both augmented data points and counterfac-
tuals involve modifying the image data. All of the datasets are available under the
Creative Commons (CC) License which allows distribution, remix, adaptation, and
building upon the material in any medium or format, so long as attribution is given
to the creator. Moreover, all data available as part of the datasets is anonymized. For
datasets which include sensitive data, accepted and well-established methodologies
will be followed.

7.2.2 Potential Misuse

Counterfactuals have a potential for being misused in some contexts. For example,
generating plausible counterfactual images could be misused in a medical context to
trick a machine learning model. As previously mentioned, there are more and more
medical systems, especially classification systems, using machine learning to improve
the speed and accuracy of processes usually performed by humans. Lets consider a
situation where government medical funding is distributed based on some classifi-
cation process which is done by analysing medical images submitted from patients.
A medical facility could generate plausible counterfactual images and use those to
receive additional government funding if those decision processes are done using
machine learning techniques. This project does not directly aim to develop tools for
generating image counterfactuals but rather evaluate how efficient using counterfac-
tuals can be in improving performance of neural networks. The results from model
evaluation however could potentially be used as guidelines on how to best generate
counterfactual images to fit the classification criteria of a specific neural network.

We should also consider misuse from the perspective of human users. Machine learn-
ing systems can be used malevolently to trick human observers. One example of such
use is DeepFakes which aim to generate images or videos where they replace the like-
ness of one person with another and can be used to generate fake and misleading
content. Counterfactuals can be used in a similar way by altering input images and
generating fake, possibly harmful outputs.
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