
MEng Individual Project

Imperial College London

Department of Computing

Discovering Predictive Patterns:
A Study of Contextual Factors for Next

Generation Branch Predictors

Author:
Andrei-Florin Sburlan

Supervisor:
Prof. Paul Kelly

Second Marker:
Dr Giuliano Casale

June 19, 2023

Abstract

Branch prediction is a fundamental part of every modern high-performance processor. However,
in spite of its great importance, breakthroughs in this field have been rare. For a long time now
state-of-the art predictors have based their decisions solely the recent taken/not taken branch
history, disregarding other types of context.

This project is centred around exploring new ways of improving branch prediction, in particular
by augmenting previous methods with extra information about the program execution. We begin
by analysing the effectiveness of a number of context types derived from the Return Address
Stack, though we also dive into the field of Machine Learning by introducing the novel perspective
of branch prediction as a Machine Translation problem. In light of this, we train a Transformer
Neural Network predictor, show its effectiveness in a comparative study with other approaches and
finish by illustrating how analysing the internal weights of the model can give insight into subtle
branch correlations. We hence arrive at a number of key findings:

• Integrating the Return Address Stack into branch prediction has the potential to reduce the
misprediction rate by up to 12% of its initial value

• For object oriented languages, the Return Address Stack at the time of object allocation is
predictive for branch outcomes in virtual methods

• Transformer Neural Networks can be successfully trained to predict branch outcomes. More-
over, their internal weights can be examined to gain insight into subtle branch correlations.

Acknowledgements

I would like to begin by thanking my project supervisor, Prof. Paul Kelly, for his guidance and for
always encouraging me to pursue the research directions that I found most exciting.

I would also like to thank my family for teaching me the values that made me who I am today.

Last but not least, I would like to thank my friends, who have always supported me in my pursuits.

Contents

1 Introduction 5
1.1 Contributions . 6

2 Preliminaries 7
2.1 Branch Instructions . 7

2.1.1 Conditional Branch Instructions . 7
2.1.2 Indirect Branch Instructions . 7

2.2 Processor Types . 8
2.2.1 In-Order Processors . 8
2.2.2 Out-of-Order Processors . 8

2.3 Basic Branch Prediction . 8
2.3.1 Static Branch Prediction . 8
2.3.2 Bimodal Predictor . 8
2.3.3 Branch History Tables . 9
2.3.4 Taken History and Two Level Predictors . 9

2.4 The Predictive Power of the Taken History . 10

3 Background 11
3.1 Current State-of-the-Art Predictors . 11

3.1.1 TAGE Predictor . 11
3.1.2 Machine Learning Predictors . 12
3.1.3 Domain Specific Predictors . 13
3.1.4 Tournament Predictors . 13

3.2 Branch Prediction - a problem not yet solved . 13
3.3 Theoretical Limits of Branch Prediction . 14
3.4 Path History . 14

3.4.1 Loop Code Replication . 14
3.4.2 Path Cloning . 15

4 Execution Trace Generation 17
4.1 Trace Generation . 17

4.1.1 Simulation Environment . 17
4.1.2 Benchmark Programs . 17
4.1.3 Execution Trace Generation . 18

4.2 Generating SimPoints . 19
4.2.1 Overview . 19
4.2.2 Warm Up and Interval Length . 19
4.2.3 Tracing and Reporting Methodology . 19

5 Simple Micro-Architectural Correlations 21
5.1 Return Address Stack Correlation . 21

5.1.1 Overview . 21
5.1.2 Case Study . 21

5.2 Object Allocation Context Correlation . 23
5.2.1 Overview . 23
5.2.2 Implementation . 23
5.2.3 LLVM Compiler Pass . 23

2

5.2.4 Gem5 Tracing . 25
5.2.5 Case Study . 25

5.3 Conclusion . 27

6 Transformer-based Neural Branch Prediction 28
6.1 Motivation: From Taken History to Path History 28
6.2 Transformer Nets and Sequence-to-Sequence Models 29

6.2.1 Sequence-to-Sequence Models . 29
6.2.2 Token Embeddings . 29
6.2.3 Recurrent Neural Networks . 30
6.2.4 Attention Mechanism . 30
6.2.5 Transformer Networks . 31

6.3 Branch Prediction as a Machine Translation Problem 32
6.4 Training Transformer-based Branch Predictors . 33

6.4.1 Parallelising Gradient Outflows for Efficient Training 33
6.4.2 Attention Masking . 34
6.4.3 SimPointed Datasets and Weighted Loss Function 34

6.5 Case Studies . 35
6.5.1 Synthetic Benchmark . 35
6.5.2 445.gobmk . 36

6.6 Summary . 38

7 Evaluation 39
7.1 Methodology . 39
7.2 Return Address Stack Correlation . 39
7.3 Object Allocation Context Correlation . 40
7.4 Transformer-based Neural Branch Prediction . 40

7.4.1 Analysis . 41

8 Ethical Considerations 42

9 Conclusion 43
9.1 Summary of Results . 43
9.2 Limitations . 43
9.3 Future Work . 44

9.3.1 Branch Sets . 44
9.3.2 Hardware Attention . 44
9.3.3 Binary Instrumentation Trace Generation 44

3

List of Acronyms

BPU Branch Prediction Unit . 5

ISA Instruction Set Architecture . 7

RAS Return Address Stack . 6

PC Program Counter . 7

NLP Natural Language Processing . 6

CPU Central Processing Unit . 7

BHT Branch History Table . 9

BHR Branch History Register . 9

IR Intermediate Representation . 23

ABI Application Binary Interface . 24

4

Chapter 1

Introduction

Ever since the advent of computing, there has always been a desire for faster execution of pro-
grams. For many practical workloads though, this often requires accelerating just a single thread
of execution. Under this light, one of the main goals of processor architects is to maximise the
instruction execution throughput of their designs.

A cornerstone idea in this area is processor pipelining, where execution is split in many, in-
dependent stages such as fetching, decoding, arithmetic execution or storing results. Instructions
progress through the pipeline one stage at a time: as one instruction completes a stage, the next
can take its place. Thus multiple instructions are allowed to be in-flight within the processor at
the same time and maximum throughput is achieved when each stage is occupied. Should a stage
not be able to make progress, a pipeline bubble will occur, which results in decreased performance
as subsequent stages will also experience a stall in the future.

Branch Prediction is a technique commonly used in modern processors that aims to anticipate
the outcome of branches within a program before they have actually finished executing. Its purpose
is to alleviate potential stalls which would otherwise occur if the processor waited for branches to
be fully executed before fetching subsequent instructions. However, the accuracy of the Branch
Prediction Unit (BPU) greatly influences the performance of such designs, as any miss-speculation
results in fetching erroneous instructions whose execution will eventually be thrown away.

The aim of this thesis is to evaluate how extra information could help improve the performance
of branch predictors. Most state-of-the-art BPU designs largely base their decisions on recent
branch outcomes. Our initial hypothesis is that the behaviour of branch instructions inside a pro-
gram is highly dependent on the current context of the program as well as the micro-architectural
state of the processor. Although these provide for a very rich stream of information, identifying
the relevant state that correlates with certain branch outcomes is far from trivial. In this work, we
will present our methodology for extracting meaning out of this extra context, as well as evaluate
its predictive value for use in future branch predictors.

5

1.1 Contributions
In the following chapters, we will present a number of approaches that aim to improve branch
prediction by means of using more information about the program execution. In order, these are:

• Return Address Stack Correlations: we provide an extensive analysis into the predic-
tive power of the micro-architectural Return Address Stack (RAS) for anticipating branch
outcomes by examining the statistics captured in a set of traces that we collected by running
a number of benchmark programs on a micro-architectural processor simulator.

• Object Allocation Context Correlations: similarly to the last point, we examine whether
programs built from object oriented languages exhibit branches that are correlated with the
return address stack at the time of object creation. This is a more complex analyses, as it
requires modifying both the compiler and the simulator.

• Transformer-based Neural Branch Prediction: Ever since the introduction of the
Transformer neural network architecture, we have seen a true paradigm shift in the field
of Natural Language Processing (NLP). This architecture is the current state-of-the-art
when it comes to many tasks in NLP (particularly those related to text generation), and
a large part of its success is due to its unique ability to automatically identify correlations
between the tokens of a sequence. Inspired by the recent developments in NLP, we introduce
a novel take on branch prediction, inspired by machine translation, and show that Trans-
formers can be successfully used to predict branch outcomes with great accuracy, although
with potentially unrealistic hardware requirements.

6

Chapter 2

Preliminaries

In this chapter, we will outline some key computer architecture concepts which will set the back-
ground for the problem of branch prediction. We begin by reviewing the structure of common
branch instructions in the ARM AArch64 Instruction Set Architecture (ISA) followed by an anal-
ysis of their interaction with different Central Processing Unit (CPU) architectures. Finally, we
provide an overview of the fundamentals of branch prediction, introducing key terminology that
will be used throughout the report.

2.1 Branch Instructions
Control flow is an essential part of any program. Be it functional, procedural, object-oriented or
anything in between, any programming language supports some notion of conditional statements
and loops. These structures are built over branching instructions, reflected in every ISA. In the
following two subsections, we will briefly survey the most common branch instruction types in
ARM’s AArch64 instruction set, which we will be using in this report.

2.1.1 Conditional Branch Instructions
Conditional Branches have the effect of moving the Program Counter (PC) to an address specified
in the instruction, subject to a condition being true (e.g. a status register is zero). They are often
used to implement control flow structures such as if statements or the exit conditions for loops.

Execution proceeds as normal if the condition is false: the program counter is simply moved to
the next adjacent instruction in memory. BPUs have the job of predicting their takendness, even
if the condition is still being evaluated.

1 .L1:
2 ...
3 cmp x0, 0
4 jz .L1
5 ...

move PC to
L1 if the x0
register is 0

Figure 2.1: Example of Conditional Branch Instruction in AArch64

2.1.2 Indirect Branch Instructions
Indirect Branches have the effect of moving the program counter to an address specified in a
register. One of their most common applications is in the implementation of function pointers.
These are commonly used in the context of Object Oriented Programming when a program has to
select the next method to execute based on an object’s type i.e. a virtual call. BPUs have the job
of predicting their address, even if the value in the address register has not yet been computed.

7

1 ...
2 ldr x0, =.L1
3 blr x0
4 ...
5 .L1: ...
6 ...

move PC to the
address in x0 (i.e.
the address of L1)

Figure 2.2: Example of Indirect Branch Instruction in AArch64

2.2 Processor Types

Most processors today can be broadly classified in two types: in-order and out-of-order, with the
former being more common in low power applications while the latter offering much higher perfor-
mance at the cost of energy usage. Nevertheless, they all employ variants of branch predictors.

2.2.1 In-Order Processors

In-order processors are built as a linear array of stages. All instructions progress through all stages
one at a time and in their natural order. Often times, their first stage is tasked only with fetching
the next instruction from memory. One can easily see here how branches can be problematic in
this context: it may well be the case that the branch depends on another instruction that is still
in the pipeline, hence its result is not yet known. Branch prediction is used in this case so as
to remove an unnecessary pipeline stall. Should the prediction be deemed wrong at a later time
though, the pipeline has to be flushed and the processor has to be reverted to its last valid state -
an expensive operation which can greatly reduce performance.

2.2.2 Out-of-Order Processors

Out-of-order processors take the idea even further, by dynamically reordering instructions in their
pipeline to make better use of the machine’s resources. Their pipelines are generally much more
involved and contain many paths of execution to allow a greater degree of parallelism between
instructions. They have much higher throughput and, in turn, also suffer much more from wrong
branch predictions, as the processor might have made much more progress on an incorrect execution
path and the rollback will be more expensive.

2.3 Basic Branch Prediction

In this section, we will give an overview of the fundamentals of branch prediction.

2.3.1 Static Branch Prediction

Static methods are perhaps the simplest ways of performing branch prediction. Instead of recording
branch outcomes during run time and making predictions according to the collected data (i.e.
dynamic prediction), static predictors have fixed outcomes for all branches. Examples include
the always taken predictor (conditional branches are always taken), the always not taken predictor
(conditional branches are always not taken), or predictors that include static branch hints (e.g. the
ISA implements branch instructions that include information about how they should be predicted).

2.3.2 Bimodal Predictor

The Bimodal Predictor is a building block of many more advanced BPUs. It is implemented as
a saturating counter, whose most significan bit denotes its current prediction. This behaviour is
illustrated as a state machine in Figure 2.3.

8

Figure 2.3: 2-bit Bimodal Predictor as a State Machine

2.3.3 Branch History Tables
The Branch History Table (BHT) is implemented as an array of Bimodal Predictors. The array
is normally indexed by a number of lower bits of the Program Counter as depicted in Figure 2.4.
Although often used as a building block for other predictors, the BHT can be used by itself to
implement a simple local branch predictor, i.e. a predictor that only uses local information about
each branch when making decisions.

Figure 2.4: Branch History Table Structure using 4 PC bits

2.3.4 Taken History and Two Level Predictors
The Branch History Register (BHR) is commonly used when indexing BPU structures. It is
implemented as a shift register and it is updated with every branch decision, forming the taken
history. The GSelect predictor best illustrates how it can be used in practice: GSelect employs an
array of Branch History Tables. Based on the BHR, it selects an appropriate BHT which is then
indexed via the PC. This sort of scheme is also known as a two level predictor, as indexing is done
in two steps: once through the BHR and then through the PC.

Figure 2.5: GSelect Predictor

9

2.4 The Predictive Power of the Taken History
As used in the GSelect predictor, the taken history may appear at first as a rather arbitrary choice
of context to base branch prediction upon. However, the idea has proven highly successful, with
many of the best predictors created in recent times being based upon it. In this section, we aim
to provide some intuition for why the taken history is used in branch prediction.

1 if (condition A) {
2 ...
3 }
4 ...
5 if (condition A && condition B) {
6 ...
7 }
8

(a) Correlation Through Branch Conditions

1 if (...) {
2 ...
3 a = False;
4 }
5 ...
6 if (a && condition B) {
7 ...
8 }

(b) Correlation Through Branch Bodies

Figure 2.6: Simple Example of Correlated Branches

Consider, for the sake of argument the two code listings in Figure 2.6. Clearly, the two examples
showcase correlated branches. In the former, the branches are correlated by virtue of sharing a
common term in their conditions ("condition A"). Assuming the code in between the branches
has no effect on the value of condition A, then if the first branch is not taken, the second one will
not be either. In the latter example, the branches are correlated through the effect of the body of
the first if statement: it sets the variable a to False, resulting in the second branch not being
taken.

Although these examples are rather simplistic and easy to identify statically, they do showcase
how branches could be correlated in practice. Moreover, with more complex programs, such cor-
relations become very subtle and hence hard to recognise. It is under this light that the beauty
of correlating branch outcomes with the recent branch history becomes apparent. The shared
characteristic between the two examples above is that in both cases, the execution of the inner
body of the if statement is predictive for the second if - in compiler terminology, such continuous
blocks of instructions that do not contain branches are known as Basic Blocks. Therefore, when
predictors such as GSelect examine the recent taken history, they in fact approximate which basic
blocks have been executed recently in the program. Hence, without ever needing to analyse the
semantics of the code, they compute statistics for branch outcomes based on this context, correctly
capturing many cases such as the ones showed above.

10

Chapter 3

Background

The aim of this chapter is to conduct an extensive review of the academic literature on the topic
of branch prediction, with particular emphasis on research pertaining to using more contextual
information when making predictions. In order, we will cover the current state-of-the-art in terms
of Branch Prediction Units, followed by a discussion of the future of this field and its limits. We
end by outlining other research done in the area of usign the path history for prediction.

3.1 Current State-of-the-Art Predictors

In the following four sections we will survey the state of the art in terms of publicly available
branch predictor designs. Our analysis and the types of predictors covered are inspired by a
similar overview done by researchers at Intel [1].

3.1.1 TAGE Predictor

The TAGE predictor [2] is widely regarded as one of the most performant branch predictors. Being
itself a descendent of other well established predictors (O-GEHL and PPM), it joins together some
of the most successful and influential ideas in the field.

Figure 3.1: The Structure of the TAGE Predictor (based on a diagram from [2])

11

As showcased in Figure 3.1, TAGE is implemented by simultaneously indexing a base predictor
T0 alongside a number of custom predictor tables Ti. T0 is implemented as a standard Branch
History Table. On the other hand, the Ti predictors use a more complicated scheme. They are
implemented as tables of Bimodal Predictors, indexed and tagged through a hash of the PC and
the BHR. Crucially, indexing the Ti’s uses history lengths following an arbitrary geometric series.
As such, TAGE is able to use long histories for indexing while also making good utilisation of its
storage capacity. The final prediction is given by the match corresponding to the longest history
or the base predictor if there are no matches. Finally, the Ti predictor entries also maintain an
usefulness counter used for entry updating, allocation and deallocation.

TAGE and its variants proved their performance by winning several branch prediction contests,
amongst them being the second and third editions of The Championship Branch Prediction contest.
It has also seen use in practical designs e.g. recently within the BOOMv3 Core [3].

3.1.2 Machine Learning Predictors
Machine Learning (ML) is a field concerned with creating algorithms that learn to perform certain
tasks by observing data rather than being explicitly programmed to solve them. In recent times
tremendous progress has been made in this field, ML methods providing great solutions to many
problems previously deemed untractable.

One of the driving forces of this revolution has been the research into Artificial Neural Networks,
which are function approximators inspired by the inner workings of biological neural networks. It
has been shown in the past that neural networks are universal approximators [4] - i.e. given
enough capacity, they are able to approximate any continuous function to arbitrary precision.
This generality paired with efficient numerical training techniques proved to be a strong baseline
for many learning algorithms. However, although many problems can be solved by neural networks,
it should be noted that this often necessitates the usage of large models, which can be expensive
and time consuming to train.

Given the complexity of branch behaviour, a natural research question would be whether ma-
chine learning techniques (and specifically neural networks) could be used for this problem as well.
Computer architecture comes with a new set of challenges though: any branch prediction algorithm
would eventually need to be implemented in hardware. As such, large models are challenging to
deploy in practice, partially due to their expensive silicon implementation but also due to their
slow learning, which would make them impractical for small workloads.

Even so, research has explored other avenues of machine learning, and Perceptron Networks (a
precursor to regular neural networks) have proven to be realistic candidates for prediction units,
as shown by Jiménezg and Lin [5].

(a) Perceptron Prediction (b) Perceptron Update Procedure

Figure 3.2: The Inner Workings of a Perceptron (based on [5])

12

Figure 3.2a shows a graphical representation of a perceptron. A prediction is made by com-
puting a weighted sum of inputs: if the result is positive, the perceptron outputs a 1, otherwise a
−1. A perceptron is trained by learning the weights used in the aforemetioned sum. Initially, the
weights take random values, but incremental updates can be applied from (input, output) samples
from the target function: Figure 3.2b.

The approach described by Jiménezg and Lin builds an array similar to a Branch History Table
that replaces the saturating counters with perceptrons. Perceptron inference is done taking recent
branch history as input and the output is interpreted as 1 corresponding to predict taken and -1 to
predict not taken. Upon learning the true outcome of a branch, the predictor performs one update
step.

Finally, the authors evaluate their new predictor on the SPEC 2000 benchmark suite. Although
benchmark suites can provide a general expectation for performance, the field of architecture has
moved significantly since the paper’s publication in 2001. Still, this general approach has found
significant success in industry: AMD, one of the largest designers of x86 CPUs has stated that the
branch predictor of their Ryzen architecture uses Neural Net Prediction [6], suspected to be in fact
a perceptron-based approach [7].

3.1.3 Domain Specific Predictors

Although general-purpose branch predictors are in principle capable of handling any branch, real-
istic programs often exhibit certain execution patterns (e.g. simple for-loops with fixed bounds).
Further optimising such cases can prove highly beneficial, especially given that custom hardware
can be design specifically for their use case. Consequently, the research literature has also explored
Domain Specific Predictors tailored for simple control flow patterns (e.g. loop predictors).

3.1.4 Tournament Predictors

Tournament Predictors aim to combine multiple predictors into a single monolithic one such that
their strengths would cover the weaknesses of each individual approach. Often times extra hardware
has to be introduced to select the appropriate branch predictor to use, as is the case in TAGE-SC-L
[8]: a pairing of TAGE with a loop predictor and a Statistical Correlator to choose between the
two.

3.2 Branch Prediction - a problem not yet solved

Branch Predictors have been studied for a long time. As such, there have been many iterations
over these concepts making current designs surprisingly proficient at learning and guessing branch
outcomes. State of the art predictors such as TAGE-SC-L have been evaluated on the Champi-
onship Branch Prediction benchmark programs and achieved less than 3.3 missed predictions per
1000 instructions (3.3 MPKI) [8] - certainly an impressive result which could hint that this topic
has been largely solved.

Alas, in practice their performance varies. Indeed, the patterns found in many common appli-
cations are captured by current predictors, yet one can definitely find real workloads for which their
performance leaves room for improvement. This observation is best showcased in a recent 2019
study by Chit-Kwan Lin and Stephen J. Tarsa at Intel Corporation, suggestively titled "Branch
Prediction Is Not A Solved Problem: Measurements, Opportunities, and Future Directions" [1].
In this paper, the authors show why improvements to branch prediction could have a very signifi-
cant impact on CPU performance, potentially on par with advancing to a new silicon technology
process.

Their analysis is based on a simulated processor with an Intel Skylake configuration (an out-
of-order core) and a TAGE-SC-L predictor, whose pipeline is progressively widened (i.e. it allows
for more instruction level parallelism). As a first step, they classify poorly predicted branches in
two categories:

• Hard-to-predict branches (H2Ps): branches which are inherently hard to model with current
methods, yet are commonly encountered.

13

• Rare branches: branches which are very rarely executed; it is somewhat expected for these
to have poor performance as BPUs are trained after encountering branch instructions.

Upon running the SPECint2017 benchmark suite, they find that performance quickly plateaus,
regardless of the branch predictor capacity. In stark contrast to this, running the simulation with
"perfect" or "perfect H2P" branch prediction shows great potential Instructions per Cycle (IPC)
increases - e.g. a 4x pipeline scaling yields a 55.3% increase in IPC. This evidence strongly suggests
that any improvement in H2P prediction could make wider pipelines more feasible and thus yield
great performance gains.

3.3 Theoretical Limits of Branch Prediction
Another important angle from which the problem of branch prediction should be approached is its
theoretical limit: given that BPUs are trained with limited information and only on past branch
outcomes, some amount of miss-predictions are inevitable to occur and hence a perfect branch
predictor cannot exits.

Chen, Coffey and Mudge have previously explored this problem through the lens of data com-
pression theory [9]. Their paper starts by introducing a conceptual model for a BPU, split in three
main parts as follows:

• The source: the machine code which is actually being executed.

• The Information Processor: this unit has the job of observing the source as it is being
executed. Any relevant information (e.g. branch history) is then encoded and dispatched to
a selected predictor.

• The Predictor: a simple state machine that produces an output prediction given the input
from the information processor. Note that the predictor does not need to understand the
meaning of its input.

Most BPUs fall within this model. For example, in the case of GSelect, the information processor
uses recent recent branch history and the program counter to select a predictor implemented as a
saturating counter. The counter then observes the branch outcome once it is known.

The main contribution of this paper is the introduction of the Prediction by Partial Matching
(PPM) predictor, which is derived from the compression algorithm with the same name. In broad
terms, lossless data compression tries to assign bit strings to letters within a text based on their
frequency. Common letters are assigned shorter encodings, which in turn reduces the length of the
compressed text. An essential part of most data compression algorithms is the derivation of the
data’s statistics i.e. given a context text, one has to predict the following letter. As such, there
is a striking similarity between this problem and branch prediction: most state-of-the-art branch
predictors try to predict the next branch outcome given the Global History Register. Moreover, the
PPM data compression algorithm has been shown to be optimal, therefore using it in the context
of branch prediction should provide an upper bound for BPU performance.

The authors show that the PPM predictor does fall within their branch predictor model (though
it may be unrealistic to implement in practice due to its resource requirements). For brevity, we
will omit its inner workings, as for our purposes it only matters that optimal performance is
achieved. Even so, the authors show that the improvement is only marginal: current predictors
asymptotically approach the optimal performance of PPM given enough capacity and time.

The implications of this study are therefore very profound: great leaps in branch predictor
performance are now only possible by consuming more information than previous designs (i.e.
beyond recent branch history).

3.4 Path History

3.4.1 Loop Code Replication
Andreas Krall has explored the the concept of code replication in his paper on improving semi-static
branch prediction [10]. Thus far, we have explored Dynamic Branch Prediction, where a processor

14

contains special hardware that trains itself to predict branch outcomes during run time. In this
paper, Krall chooses to focus on semi-static branch prediction, where program profiling is used to
make decisions about branch takendness before run time (in this context, profiling data is used to
select a single static prediction for each branch). The paper examines in detail ways in which intra
loop branches (branches inside a loop) could be better predicted. Semi-static approaches are hard
to apply in such circumstances because the behaviour of intra loop branches could be correlated
with previous iterations.

Taking inspiration from dynamic methods, the author chooses to focus on a single branch within
a loop, for which profiling data is used to create a history pattern table (i.e. a table which associates
different histories to branch outcomes). It should be noted that such tables can potentially become
unrealistically large (there are 2n patterns associated with histories of length n), though the author
addresses this issue by exemplifying common programs which only exhibit a small subset of all
possible histories.

With this information, the paper then details a way of replicating the loop body to allow
semi-static branch prediction. Each replication corresponds to a different state within a finite
automaton. The automaton’s transitions are based on branch decisions such that the states model
the branch history. As such, each copy of the initial branch should have an associated static
prediction based on the profiled data. Finally, the target addresses of each branch copy correspond
to transitions in the finite automaton.

In effect, the author hence introduces a scheme which allows static prediction at the cost of
increased code size. Naturally, this approach is only beneficial provided that the profiled data
is relevant for many executions of the program, though the paper’s analysis suggests that this is
indeed the case and performance can sometimes surpass that of dynamic methods.

3.4.2 Path Cloning
In a related study, Young and Smith show a different approach the same problem of semi-static
branch prediction [11]. Their paper details a novel profile guided compiler optimisation that aims
to improve static predictions by means of cloning parts of a program’s control flow graph. To
illustrate their idea, consider Figure 3.3.

(a) Before Cloning (b) After Cloning

Figure 3.3: Example illustrating the benefit of path history over pattern history (based on diagrams
in [11])

Figure 3.3a shows a number of nodes within the control flow graph of a program. In this
simple example, in order to reach the node Y, execution has to follow one of two paths: AMY
or BMY. An essential aspect to consider is that both paths would appear as having the same
branch history. Moreover, it may be the case that the branch outcome at node Y is correlated
with the path taken, e.g. on path AMY the branch at Y is likely taken whereas on path on path
BMY it is likely not taken. Such patterns may hinder the accuracy of a history based dynamic

15

branch predictor. The solution detailed in the paper is to use profile data to decide when to clone
the control flow graph, as shown in Figure 3.3b. Such an optimisation could be of help for both
dynamic and static predictors, though it should be noted that using it aggressively could lead to
large increases in binary size which in turn could decrease performance.

16

Chapter 4

Execution Trace Generation

In this chapter, we present our methodology for analysing the characteristics of several repre-
sentative benchmark programs by running them in simulation and capturing the relevant micro-
architectural state. The resulting execution traces will serve as the foundation for our analysis in
the subsequent parts of this work.

4.1 Trace Generation

4.1.1 Simulation Environment

For the purposes of this project, we have chosen to use the Gem5 processor simulator because
it strikes a good balance between micro-architectural detail and simulation speed. Gem5 pro-
vides a state-of-the-art processor model with an out-of-order execution pipeline. Furthermore, it
has support for many branch predictor topologies - of particular interest for our purposes is the
aforementioned TAGE predictor due to its wide commercial deployment.

Specifically, we have configured Gem5 (version 22.1.0.0) with the following parameters:

• Simulation environment uses system call emulation: we choose not to model the execution
of an operating system, opting to forward system calls to the underlying host of Gem5. We
believe this is a sensible choice as for our purposes we are most interested in the performance
characteristics of a single program with a single thread of execution.

• ARM processor frontend: Gem5’s processor model is largely ISA independent, with the
exception of its frontend that decodes instructions into micro-ops. As such, we use the
appropriate frontend for our chosen ISA.

• Cache hierarchy with 64KB L1 and L2 caches.

• TAGE-SC-L branch predictor with 64KB capacity.

• Other Gem5 parameters remain to their default values, as they are already configured to
resemble an Alpha 21264 processor.

4.1.2 Benchmark Programs

As covered earlier, the aim of this project is to evaluate possible opportunities to improve branch
prediction in real workloads. As such, we opted to analyse the SPEC CPU 2006 benchmark suite
as it provides a varied suite of programs used in practice. Moreover, we will limit our analysis
only to the Integer benchmarks, hence omitting the Floating Point ones, as the former are more
focused on intricate control flow whereas the latter tend to be centred around applications with
high arithmetic intensity. To compile the programs, we used the Clang 16.0.2 compiler suite,
with O3 optimisation level as well as link time optimisation enabled, as these choices should be
representative of how production binaries are built in practice.

17

4.1.3 Execution Trace Generation

The execution trace was extracted by instrumenting Gem5’s processor pipeline in key stages such
that relevant micro-architectural state may be captured. This was achieved by augmenting the
model with a new abstract module with an ISA-agnostic interface, the BranchTracer, which is
called at two key execution phases: firstly, it tags every branching instruction passing through the
fetch stage with a record containing a snapshot of the processor state (i.e. registers, return address
stack) just before using the BPU as well as its initial prediction and secondly, in the commit stage,
it logs the previously captured state for every instruction that eventually exits the pipeline (at this
later stage we also capture the eventual outcome of the branch). As such, instructions executed due
to miss-speculations are never logged, which is the desired behaviour. Figure 4.1 shows a simplified
view of Gem5’s processor pipeline, as well as the additions made to the Fetch and Commit stages.

However, it should be noted that in practice it is quite common for real programs to run
in excess of several millions of instructions, making these captured traces challenging to process
and store. As a consequence to the way the data is generated (i.e. sequentially as instructions get
simulated), the natural way to save it is row-wise i.e. saving each data point as a row to some table.
Furthermore, Gem5’s logging framework does not provide infrastructure for using more advanced
storage techniques, so we initially opted to save the traces as simple Comma Separated Values
(CSV) files, although this proved to be rather inefficient for a number of reasons. Firstly, CSV
files do not record any type information of the data, which makes them particularly unsuitable for
storing large tables as they make poor utilisation of the disk space: indeed we have found that even
small programs yielded traces of several GBs. More importantly though, we are most interested in
running large aggregations to gain insight into the statistics of this large volume of data that we
are generating. More often than not, this only requires iterating and filtering on some subset of
the columns in our data, which is unfortunately impractical for large CSVs due to high RAM and
CPU time usage. To address these issues, we implemented a new translation layer on top of the
Gem5 infrastructure to convert the CSV data in real time to the more Apache Parquet format - a
typed column-major format that employs powerful data compression (in our case, up to 10x trace
size reduction). In Table 4.1 we present the format of the resulting execution trace, where each
entry represents a committed branch instruction.

Name Type Description
tick uint64 The simulation tick at which the instruction was reached.
disassembly string Disassembly of the instruction.
inst_addr uint64 The virtual address of the branch instruction.

inst_rel_addr string The address of the instruction as an offset to the closest
function symbol (e.g. "foo+12").

pred_addr uint64 The virtual address to which the branch was predicted to
jump to.

pred_rel_addr uint64 The address to which the branch was predicted to jump to,
as an offset to the closest function symbol.

jump_addr uint64 The address to which the branch actually jumped to.

jump_rel_addr string The address to which the branch actually jumped to, as an
offset to the closest function symbol.

pred_taken bool Whether the branch was predicted as taken.
taken bool Whether the branch was actually taken.
virtual bool Whether the branch represents an indirect jump.
return bool Whether the branch is a return instruction.
call bool Whether the branch is a call instruction.
ras List<uint64> The micro-architectural return address stack.

ras_rel List<string> The micro-architectural return address stack, with addresses
as offsets to the closest function symbol.

Table 4.1: Trace Fields Captured from Gem5 Simulations

18

Figure 4.1: Simplified view of Gem5’s Processor Pipeline After Adding the BranchTracer

4.2 Generating SimPoints

A big challenge when researching computer architecture by means of simulation is that real world
programs that exhibit interesting behaviour often tend to run for several billions of cycles. Natu-
rally, this translates to very long simulation times. In our case, we have found benchmarks that
take up to a couple of days to simulate - the specifics of our hardware are not relevant for this
argument, but rather it is important to stress that these long simulation times would have greatly
hindered our ability to iterate quickly on different ideas.

4.2.1 Overview

SimPoints [12] provide for an elegant alternative to simulating programs in full. To begin with, the
paper’s authors start by observing that at run time programs often exhibit recurrent behaviours
as they go through their different stages of execution. As such, SimPoint tries to identify a small
but representative set of samples out of the full program execution that would faithfully represent
it.

More formally, in SimPoint we begin by splitting the execution trace of a program in contiguous
intervals of a set size (e.g. one million instructions). For each interval, a feature vector is built
based on which basic blocks are executed within it and upon clustering them, the phases of a
program are discovered. Following this procedure, an interval is sampled from each cluster and
a weight is assigned to it based on the cluster size. The selected intervals can then be run in
simulation, and upon weighting the resulting statistics, we should attain great approximations to
the full program execution statistics in a fraction of the time.

4.2.2 Warm Up and Interval Length

An important thing to note when building simpoints is that ultimately they only represent an
approximation of the whole program execution (though many times a surprisingly good one). Yet,
there are a number of hyper-parameters to the algorithm that can greatly impact its performance.
As reported in the paper, there is a subtle balance to be maintained between the interval length, the
maximum number of clusters allowed and simulation time for the simpoints. There are advantages
and disadvantages to both long and short interval lengths, as they provide different levels of
granularity that can be desirable for different applications. Furthermore, they are very closely
related to the maximum number of clusters allowed, as normally the optimal number of clusters
often increases with shorter intervals. There is also the issue of warm up: since only selected
intervals are simulated, short traces can have their statistics skewed by cold micro-architectural
structures such as caches.

4.2.3 Tracing and Reporting Methodology

In this work, we use Gem5’s built in support for generating the feature vectors and the SimPoint
tool (as provided in the paper) to perform the clustering, with the values recommended by the
paper of 10 million instructions per interval with a maximum of 30 clusters, over which we also

19

add a warmup period of 1 million instructions. Furthermore, we use Gem5’s simplest (and fastest
to execute) processor model (NonCachingSimpleCPU) to build simulation checkpoints for the in-
tervals representative of the program’s phases. The checkpoints are then resumed using the highly
detailed out of order core, which then generates our custom execution traces. Finally, when re-
porting our results regarding the execution of some program, we present a weighted average of the
statistics of each SimPoint interval.

20

Chapter 5

Simple Micro-Architectural
Correlations

In this chapter, we evaluate the predictive power of simple micro-architectural contexts with regards
to branch outcomes, with the aim of integrating this knowledge either in future hardware predictors
or in software optimisations within the compiler.

We hence take as a starting point the hypothesis that the branch outcomes within a function
are correlated with some easily accessible micro-architectural context (e.g. the call stack). Under
this light, functions that are reached through many execution paths are of particular interest,
as they could become candidates for further optimisations such as cloning (duplicating code and
selectively calling it, such that physical addresses encode the context) or could simply index an
extra dimension of a branch predictor table, akin to current methods.

5.1 Return Address Stack Correlation

5.1.1 Overview
We begin by considering the context of the call stack. While the call stack is generally not stored
directly, it can always be recovered by examining the return address of every function call. On many
processor architectures (including ARM based cores), the return addresses are stored together with
each stack frame, in system memory. Normally this information would be rather expensive to access
in a dynamic setting, hence we turn to using a structure that is already implemented in virtually
all modern processor cores: the RAS. The RAS is a simple finite-capacity stack implemented in
hardware that maintains a snapshot of recent return addresses - its main purpose is to accelerate
the execution of return instructions. We therefore make use of this hardware structure as it also
has a correspondent within Gem5 and whenever a branch instruction is reached in simulation, we
save its contents in the execution trace.

5.1.2 Case Study
In the following, we present a of case study that illustrates the effectiveness of using the RAS
to enhance branch prediction. Our aim in this section is to showcase kinds of analyses that
we conducted as applied to a concrete benchmark, leaving the complete results across the full
SPEC2006 benchmark suite for the evaluation chapter.

We begin by examining the SPEC2006 403.GCC benchmark with the train input set. This
benchmark is based on the well-known GNU Compiler Collection and consists of a standard C
compilation task. Compilers are particularly interesting for analysing branch prediction as they
exhibit a high density of control flow structures. As a fist step, we use SimPoints as described in
Section 4.2 to approximate the global misprediction rate of TAGE 64KB on this program: 2.22%
- a very low value, though as we have covered in Section 3.2, even small improvements can have
profound consequences for example by allowing wider processor pipelines.

21

(a) Scatter Plot of All Branches in 403.GCC (b) Scatter Plot of All Functions in 403.GCC

Figure 5.1: Global Statistics for the SPEC2006 403.GCC Benchmark

To further focus our analysis, we plot in Figure 5.1a all branches in the program, alongside their
misprediction rate and total share of all mispredictions. We hence observe that most branches in
the program have misprediction rates under 50%. Furthermore, we observe that the mispredictions
in this program cannot be attributed only to a small set of branches: even the highest heavy hitter,
only accounts for 2.74% of all mispredictions.

Similar results are achieved when grouping branches based on the function they are part of
(Figure 5.1b). Although on an individual level each function contributes a relatively low fraction of
all mispredictions, the program execution could benefit from optimising them. We hence considered
the possibility that perhaps a simple local predictor is sufficient for predicting the branches within
certain functions, provided that the return address stack is known. The main intuition behind this
idea is that while functions are generally written in such a way that they handle many use scenarios,
their call sites sometimes focus only on some specific cases. Furthermore, this approach has a
natural correspondent as a potential compiler optimisation in the form of function cloning, where
certain functions would be duplicated within a binary. Upon selectively calling these functions
based on the call stack, the virtual address of the cloned branches would end up effectively encoding
some information about the return address stack, thus making classical predictors such as TAGE
learn different behaviours for each context.

Building on this idea of function cloning, we propose a way to calculate an upper bound for
its potential for improving the misprediction rate. Firstly, we compute the taken ratio rtaken and
misprediction rate rmiss for each branch / RAS context (i.e. top of the return address stack)
combination in the benchmark. Based on this information, we can approximate the error of a
local predictor for each branch in each context as rlocal = min(rtaken, 1− rtaken). By filtering the
trace to only the entries satisfying rlocal < rmiss we obtain candidate branches and contexts where
cloning would be beneficial. Aggregating this data allows us to compute the change in expected
misprediction rate as ∆rmiss = rmiss − rlocal for each branch/context pair and hence the change
in the global misprediction rate by appropriately weighting these rate with the total number of
branch occurrences, yielding a total of change of 0.35% for this benchmark (i.e., moving the total
from miss rate from 2.22% to 1.87%).

To conclude, we managed to obtain a marginal change in expected misprediction rate, though in
practice there are other factors that could limit the effectiveness of this approach: replicating code
in a binary will increase pressure on the internal micro-architectural structures of the processor,
such as the branch predictor (more instances of the same branch might take longer to train) or the
memory hierarchy (increased traffic on the instruction cache).

22

5.2 Object Allocation Context Correlation

5.2.1 Overview

In this section, we present a variation on the previous idea of correlating branch outcomes with the
RAS by focusing our attention on programs built using object oriented patters. Such programs
often make use of virtual calls, which are implemented in the underlying assembly as indirect jump
instructions. We hence hypothesise that knowing the place where an object was allocated (i.e. the
top element of the call stack) can help increase branch prediction accuracy within virtual functions.

5.2.2 Implementation

To evaluate this hypothesis, we augmented the captured execution trace with extra information
about object allocations: whenever execution passes through a virtual function we require all
trace entries generated within to be tagged with the topmost call stack item at the time of object
allocation.

As such, Gem5 would need to detect object allocations and virtual method calls, and save the
trace information accordingly. Gathering this data is not trivial though, as the compilation process
discards most information about object allocations and types, hence making the problem difficult
to solve within Gem5 alone. Inside the simulator, object allocations appear just like any other
type of memory allocation, although with one key difference: objects are normally initialised via a
(potentially inlined) constructor. In light of this, it becomes clear that a hybrid approach is needed
here, in which the compiler emits more context towards the simulator.

Our solution to this problem centres around augmenting the Aarch64 ISA with a new, custom
instruction, obj_alloc_hint, used for signalling object allocation. In this design, each constructor
is instrumented with this new instruction such that later on Gem5 may decode it and record
the object allocation. The main advantage of this design is its minimal impact on performance:
while only introducing very little overhead to each constructor, it does not prevent the compiler
optimisations such as inlining.

5.2.3 LLVM Compiler Pass

The LLVM Project comprises of a collection of tools and technologies for building compilers [13].
It is a mature project with very wide commercial use, and much of its success is due to its very
modular structure. Compilers based on LLVM generally follow a simple structure, as in Figure
5.2. First, a compiler frontend parses code written in a high level language and generates the
corresponding unoptimised LLVM Intermediate Representation (IR). Then, the LLVM middle end
runs a number of passes and analyses over the IR in a long pipeline, producing at the end a highly
optimised version of the IR. Finally, the optimised IR is sent to an ISA-specific back end to be
transformed in executable code.

Figure 5.2: The Main Blocks of Different LLVM-based Compilers

For the purposes of object constructor instrumentation, a natural option to explore would be
modifying the compiler front end. Since we are evaluating our work on SPEC 2006, whose object
oriented benchmarks are written in C++, this would involve writing a plugin for the Clang front
end. Although there is a compelling argument for this as Clang has access to the abstract syntax

23

tree of the program and hence has full visibility of all user-defined constructors, this comes at the
disadvantage that implicitly defined constructors are not captured.

In light of this, we decided to build an LLVM middle end pass to perform the instrumentation.
Our pass is inserted in the early extension point of the simplification pipeline, i.e. it is run as early
as possible in the middle end compilation processes such that further passes are free to perform
optimisations on the instrumented code. Crucially, the pass is run prior to any form of inlining,
which ensures that at this stage all object allocations in the IR call into the constructor.

Identifying constructors in the middle end is more challenging though. The LLVM IR is build
to mimic the structure of assembly code and as such it does not capture the high level concept
of a constructor; in effect, constructors appear just as regular functions. The solution to this
problem becomes apparent when analysing the name of the symbols produced by Clang: as is the
case with virtually all modern C++ compilers, the resulting code is built to follow the Itanium
C++ Application Binary Interface (ABI) - an interface specification for binaries made to allow
interoperability. We hence find that all constructors have their names mangled in a deliberate and
specific way, with certain suffixes determining whether a function symbol is of interest to us:

• Complete Object Constructors: these constructors are invoked first upon object creation,
and have the suffix "C1ev" under the ABI. To properly support inheritance and virtual
methods, complete object constructors will set up the object’s virtual table and may make
further calls base class constructors.

• Base Object Constructors: these constructors are invoked when a derived type is instan-
tiated, and have the suffix "C2ev" under the ABI.

The ABI defines two types of constructors, complete and base, with the purpose of aiding the
implementation of virtual inheritance. For our problem though, extra care needs to be taken such
that every object allocation is instrumented only once. Consequently, in our implementation, we
begin by identifying all complete object constructors by demangling the function names in the IR
and proceed to instrument them. This approach is sound because it correctly handles multiple
inheritance: whereas multiple base constructors may be invoked whenever an object is created,
only a single complete constructor will be called. As such, every object allocation is only logged
once.

Performing the actual instrumentation is just a matter of adding the correct IR instructions to
the beginning of each identified constructor. To avoid modifying the compiler back end, we emit
the custom instruction by means of an inline assembly directive such that the correct instruction
bytes are hard-coded in the assembly template. Special care was taken to instruct the compiler
that the template has no side effect, although it does use the architectural register x0 for reading.
The code transformation is showcased in Figure 5.3. Although the instruction setting this register
to the object address (line 7, Figure 5.3b) might look superfluous at first glance, it will play a
very important role for data collection as it provides a way for the simulator to access the object
address, regardless of any optimisations.

1

2

3

4 define ... void @_ZN1AC1Ev(ptr ... %0) ... {
5 %2 = alloca ptr, align 8
6 store ptr %0, ptr %2, align 8
7 %3 = load ptr, ptr %2, align 8
8 call void @_ZN1AC2Ev(ptr ... %3)
9 ret void

10 }
11

12

13

14

(a) Before Instrumentation

1 define ... void @_ZN1AC1Ev(ptr ... %0) ... {
2 ; get object address from first parameter
3 %2 = ptrtoint ptr %0 to i64
4 ; inline assembly directive with
5 ; hard-coded instruction bytes
6 call void asm sideeffect
7 "mov x0, $0\0A\09.long 0xFF550110",
8 "r,~{x0}"(i64 %2)
9 %3 = alloca ptr, align 8

10 store ptr %0, ptr %3, align 8
11 %4 = load ptr, ptr %3, align 8
12 call void @_ZN1AC2Ev(ptr ... %4)
13 ret void
14 }

(b) After Instrumentation

Figure 5.3: Simplified LLVM IR for a Sample Constructor

24

5.2.4 Gem5 Tracing
On the simulator side, we first needed to decide on how to encode the new obj_alloc_hint instruc-
tion. Fortunately, Gem5 already has support for "pseudo-instructions", which are custom additions
to the ISA normally used for controlling the simulator from within the executing program. Gem5’s
pseudo-instructions use an unallocated instruction encoding that contains a control byte to select
the function to be executed within the simulator. We therefore based our implementation on this
infrastructure and augmented the Gem5 code base with support for a new value in the control
byte, used for signalling an object allocation.

Building on this foundation, we augmented the branch tracer to record the address of every
object upon its allocation. As detailed in the previous section, upon every object allocation the
compiler will emit an instruction setting the x0 register to the object address as well as the
obj_alloc_hint instruction to signal the allocation to the simulator. As such, the simulator only
needs to record in a table the value of x0 and the top of the return address stack whenever the
obj_alloc_hint is encountered.

The last step in this process is to tag each branch with its corresponding object allocation
context. For indirect branches the process is rather simple, as upon calling a virtual method the
compiler will always store the object address in the x0 register. As such, Gem5 only needs to fetch
this value and look it up the its table of allocation contexts. However, the process of tagging any
other branch is not as clear, and hence allows for multiple interpretations. In this work, we take the
view that all branches that happen after a virtual call are inherently linked to the call’s context and
as such will be tagged the same, even if they live in a different function (e.g. branches in another
function called by the virtual method). As such, we implemented the tagging by maintaining a
stack of contexts, where each branch gets tagged with the value on the top of the stack. Each
virtual call pushes its own context to the stack, while regular function calls just duplicate the top
most context. Finally, all function returns pop the context stack. The process is summarised in
Figure 5.4.

(a) Virtual Method Call (b) Regular Function Call

(c) Return

Figure 5.4: Object Allocation Stack Maintenance

5.2.5 Case Study
Within this subsection, we will elaborate on the specifics of correlating the object allocation context
with branch outcomes, as applied to the SPEC2006 483.xalancbmk benchmark on its training input.
The benchmark is based on the Xalan C++ XSLT processor, which is a program that transforms
XML documents into various other formats such as HTML. It consists of a very large code base
that makes extended use of object oriented patterns, and as such serves as a great candidate for
analysing our premises.

As in the previous section, we begin by estimating the global misprediction rate of the program
through its SimPoint intervals, arriving at 4.25%. Following this, we compute the misprediction
and taken ratios per branch, and aggregate the resulting data into bins to better visualise it.
Results are presented in Figure 5.5. Figure 5.5a showcases the distribution of the unique branches
in the program trace, where each bin groups together branches with similar taken and misprediction

25

10%

20%

30%

40%

share of all
branches

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%100%

taken rate (binned)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%
m

is
p

re
d

ic
ti

o
n

 r
a
te

 (
b

in
n

e
d

)

(a) By Share of Occurrences

2%

4%

6%

8%

10%

share of all
mispredictions

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%100%

taken rate (binned)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

m
is

p
re

d
ic

ti
o
n

 r
a
te

 (
b

in
n

e
d

)

(b) By Share of Mispredictions

Figure 5.5: Binned Plots for the Branches in the SPEC2006 403.GCC Benchmark

rates. The colour of each bin is determined by the weight the branches carry with respect to their
total occurrences in the trace. As such, bins with blue shades correspond to rare branches, whereas
orange shades contain branches with high execution counts. As expected, most branches fall into
bins on the bottom row, which correspond to low misprediction rates. Furthermore, many fall on
the extremes of this row, which means they are highly unimodal (i.e. more than 90% taken or less
than 10% taken, so they are easy to predict even for a local predictor).

Figure 5.5b is a variation on the same concept, where each bin’s colour is determined by the
share of mispredictions coming from the branches within. We observe multiple hot spots where
mispredictions stem from. Firstly, it appears that many mispredictions happen for branches with
takeness above 90%, for which even a local predictor should perform well. However, the same
bins appear in the previous plot as having a low overall share of the total execution, so we could
reason that these are just rare branches whose statistics are hard to learn due to sparse data. We
also find another hot spot between 60%− 80% takeness and 30%− 40% misprediction rate. Since
these numbers have a sum of around 100%, it appears likely that TAGE just learns to use a local
predictor for these branches.

The above plots were built in rather coarse fashion as branches could only contribute to one
bin. We can now introduce the main analysis for this section: we now create bins that aggregate
branch/object allocation context pairs, with weights based again on their share of all mispredic-
tions. This should provide us with some insight into the predictive power of the object allocation
context. If it is indeed predictive, we should observe a change into the bin distribution when com-
pared to the previous plot in Figure 5.5b, as each unique branch would now be able to contribute
to multiple bins. Figure 5.6 illustrated the results of this experiment.

0%

2%

4%

6%

8%

10%

share of all
mispredictions

0% 10% 20% 30% 40% 50% 60% 70% 80% 90%100%

taken_rate (binned)

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

m
is

p
re

d
ic

ti
o
n

_r
a
te

 (
b

in
n

e
d

)

Figure 5.6: Binned Plot for Branch/Object Allocation Context Pairs

26

We indeed see a change in distribution, with branches being more evenly distributed across all
bins. Furthermore, the hot spot at 60%− 80% takeness appears to have been greatly reduced, and
we observe an increase in branches that are highly unimodal yet very poorly predicted (more than
90% misprediction rate with taken ration below 10% or above 90%). We believe this to be good
evidence that future predictors could explore incorporating the object allocation context into their
predictions.

Finally, as in the previous section, we provide an upper bound for the possible misprediction
rate decrease when this approach is paired with local predictors. While not necessarily attainable in
practice, it should nonetheless show the potential of the optimisation. To compute this, we calculate
the takeness and misprediction rate for all branch/object allocation context pairs. Following this,
we filter pairs based on whether applying a local predictor to them would improve performance as
previously and then aggregate the results. For this benchmark, we obtain a maximum misprediction
rate decrease of 2.44%, which in the ideal case would move the total misprediction rate to 1.81%.

5.3 Conclusion
To summarise, in this chapter we explored the effectiveness of introducing more context into
branch prediction by collecting different pieces of microarchitectural state and correlating them
with branch outcomes. We began by examining the predictive power of the microarchitectural
return address stack, and presented some preliminary results of this idea in a case study based on
a SPEC2006 benchmark based on the GNU Compiler Collection. Ultimately, we found that this
idea only has marginal potential to improve branch prediction in this scenario. We also explored
whether the call stack at the time of object allocation is predictive for branches executed in later
method calls, with a higher degree of success, as we have found a good potential for improving
performance. The implementation details of this approach were detailed alongside another case
study into a SPEC2006 C++ benchmark based on the Xalan XSLT processor.

27

Chapter 6

Transformer-based Neural Branch
Prediction

The focus of this chapter is to explore hidden correlations between the execution path of a program
and the corresponding branch outcomes. Given the challenging nature of the problem, we hence
approach it from a deep learning perspective and introduce a novel take on branch prediction
inspired by the state of the art in the field of Natural Language Processing: treating branch
prediction as a machine translation problem.

6.1 Motivation: From Taken History to Path History

Current state-of-the-art branch predictors (e.g. TAGE, Perceptrons) base their decisions on local
branch statistics in the context of the recent taken branch history. It is an approach that has
passed the test of time, being the dominant idea behind the best predictors of the last decades. In
previous sections, we explored the effectiveness of extending the taken branch history context with
extra information extracted from the return address stack either at the time of branch execution
or, for object oriented languages, at the time of object creation. In this section though, we aim to
provide some intuition into the shortcomings of the taken branch history context, and how using
the full path history could alleviate these issues.

Consider, for the sake of argument, the example code listing below:

1 if (condition A) { // B1
2 ...
3 }
4 int N = random_int();
5 for (int i = 0; i < N; i++) {
6 if (random_boolean()) { // B2
7 ...
8 }
9 }

10 if (condition A && condition B) { // B3
11 ...
12 }

Figure 6.1: Example of a Hard-To-Predict Branch (B3)

The code above is a synthetic example showcasing a hard-to-predict branch. Nevertheless, it
has been chosen to reflect some of the findings of the researches at Intel as detailed in [1]. The
code contains a branch on line 1 (B1) that is highly correlated with another branch on line 12 (B3).
However, in between the two branches there is a loop that runs for an unknown and unpredictable
number of iterations. Furthermore, the loop contains an unpredictable branch within it (B2), that
will pollute the taken history with irrelevant entries.

28

This is a scenario in which both TAGE and Perceptrons fail. To understand why, consider the
taken history (and hence the contents of the Global History Register) when predicting the branch
B3 (Figure 6.2; ignoring the branches needed to implement the for loop as they are not relevant
for this argument).

Figure 6.2: Branch History when Predicting Branch B3

As suggested by the diagram, the outcome of the correlated branch B1 appears at a random
offset in the branch history. As such, a predictor based on the taken history alone (e.g. TAGE,
Perceptrons) cannot learn this correlation because there is not enough information to differentiate
between the entries in the GHR - from the point of view of the predictor, the GHR contains just
random values.

In spite of this, the diagram suggests a possible solution: a mechanism is needed that would use
the path history to filter the branch history, or, in other words, a method to instruct the branch
predictor to which history positions it should attend to. It is under this light that we developed a
Transformer-based neural network that performs precisely this function.

6.2 Transformer Nets and Sequence-to-Sequence Models

Introduced by Vaswani et. al in 2017, the Transformer architecture [14] has started a true revo-
lution in the field of Natural Language Processing (NLP). Particularly well suited for sequence-
to-sequence problems such as machine translation, it has greatly surpassed the performance of
previous models. In this section, we will give a high-level overview into the inner workings of the
Transformer Architecture as well as cover some of its advantages and how these relate to previous
models.

6.2.1 Sequence-to-Sequence Models

As presented in the original paper, Transformers fall in the larger family of sequence-to-sequence
models. These are models designed to solve problems in which a source sequence needs to be
converted into a target sequence, potentially in a different language and even with a different
meaning. Common examples in NLP include machine translation (e.g. translating texts form
Romanian to English), document summarisation or chat bots.

A common pattern in the design of sequence-to-sequence models is the usage of the encoder-
decoder architecture, where the model is split between two functional blocks. Firstly, an encoder
block is tasked with analysing the source sequence so that it may represent its semantics into some
underlying embedded space. The results of the encoder are then passed to the decoder so that it
may then generate the target sequence.

6.2.2 Token Embeddings

As is the case with virtually all other machine learning algorithms operating on sequences,
Transformers do not operate on tokens directly, but rather on their embeddings. Simply put,
token embeddings are just numerical representations of the tokens in a high dimensional vector
space. Each token has its own unique embedding vector, whose entries are model parameters that
can be learned through gradient descent just like any other internal weight.

29

6.2.3 Recurrent Neural Networks
Prior to the introduction of the Transformer, some of the most successful approaches for tackling
problems with sequential data were the ones based on Recurrent Neural Networks (RNNs). The
core idea behind such networks is to repeatedly apply some functional unit (i.e. a neural network
cell) to each token of an input sequence, while passing some fixed-sized embeddings from one
cell to the next to maintain some memory of past tokens, as illustrated in Figure 6.3. As a
technicality of the learning process and gradient descent, this approach is particularly prone to
exploding/vanishing gradients; as such the academic community proposed alternative cell models
that aim to alleviate this issue in the form of LSTM [15], GRU [16] cells.

Figure 6.3: RNN Cells

RNNs are still commonly deployed to solve sequence-to-sequence tasks, often using an encoder-
decoder topology, as the token alignment and length may differ from the source to the target
sequence. As such, the decoder is generally built to be auto-regressive, i.e. the output of one
decoder cell is sent as the input to the next, alongside the memory.

Figure 6.4: Encoder-Decoder RNN with Auto-Regressive Decoder

Although they have been widely deployed to many tasks in NLP with good success, their
design poses a fundamental information bottleneck in the fixed-size memory embedding, which
consequently limited their ability to learn very long correlations between the tokens of a sequence.

6.2.4 Attention Mechanism
The Transformer architecture addresses the limitations of prior methods by employing the
Scaled Dot-Product Attention mechanism as a primary way of capturing correlations between the
tokens of a sequence. In essence, the mechanism aims to reduce the distance that information has
to travel from one token to any other.

Intuitively, the Attention mechanism has many similarities to search algorithms. To begin
with, the algorithm takes as input a sequence of embeddings representing keys K, queries Q and
values V . Under the search interpretation, the keys can be viewed as containing some internal
representation of the meaning of the sequence tokens, the queries would be filters used for finding
other related tokens in the sequence and the values would contain some extracted information
about the tokens. The algorithm then matches all queries with all keys such that it would obtain
an attention score for each pair of tokens; the higher the overlap between the query and the key, the
more the tokens are deemed to be correlated. The attention weights are then used in a weighted
sum between the value embeddings, resulting in new, context-aware embeddings for each token.

30

Formally, as per the original paper [14], the embeddings in K, Q and V are taken to have the
same dimension dk. The attention weights are obtained by performing the dot product between
the query and key vectors, followed by a scaling of 1√

dk
and the softmax activation function (Figure

6.5). The weights can then be used to create a weighted average of the V embeddings. The original
paper also introduces the concepts of self-attention, where the same embeddings are chosen for the
keys, queries and values and multi-head attention, where attention is applied multiple times to
different projections of the input sequences, thus forming multiple heads whose results are then
concatenated and projected to form the final output.

Figure 6.5: Computing Attention Weights for a Sequence of Three Elements

The complete process is succinctly summarised by the following equations, taken as an extract
from the original paper:

Attention(Q,K, V) = softmax
(
QKT

√
dk

)
V

headi = Attention
(
QWQ

i ,KWK
i , V WV

i

)
MultiHead(Q,K, V) = Concat(head1, ...,headh)W

O

6.2.5 Transformer Networks

As is the case for other sequence-to-sequence models, Transformer networks follow an encoder-
decoder architecture as well. The Transformer Encoder is built by stacking a number encoder
layers, each of whom contains a multi-head self-attention block and a point-wise fully-connected
layer. The output of the encoder, also called memory, will be used as part of the decoder. The
decoder is built in a similar manner, though in addition each decoder layer contains a cross-attention
block, that takes its queries from previous layers, but the keys and values from the encoder memory.
Residual connections and normalisation layers are also added throughout the network to improve
training.

Nevertheless, making proper use of this network architecture requires special care for a number
of subtle details regarding its inner workings. Firstly, as a consequence to the pairwise matching of
tokens in the input sequence followed by a weighted sum, the self-attention block is permutation
equivariant. Naturally, this is an important issue, as in most sequence-based problems the order
of the tokens is highly relevant. The solution to this problem is to feed the network positional
encodings: the sum of regular token embeddings with some positional information, which can
either be fixed or learned.

Finally, there is another subtle issue is with regards to the way the attention weights are
computed. As stated earlier, the network computes pairwise matches between all queries and all
keys to computer the weights. This is not always desirable as in many problems tokens should not
be able to peek/attend at future tokens. As such, masking has to be applied, so as to prohibit the
attention mechanism to assign weights to future tokens.

In Figure 6.6, we present an diagram based on the original paper on Transformers which
illustrates the complete model architecture.

31

Figure 6.6: The Transformer Architecture (based on a diagram from [14])

6.3 Branch Prediction as a Machine Translation Problem

Considering the limitations of predictors based on the taken history as presented earlier, we propose
a Transformer-based branch predictor that operates on a combination between the path history
and the take history. The model is based on a novel perspective on branch prediction, that it
can be viewed as a machine translation problem from the domain of path history sequences to the
domain taken history sequences.

To begin, as is the custom in NLP, we will formalise the alphabet of our problem. The input
tokens are formed of branch addresses, and are sent to the encoder in the sequence in which they
have been encountered, i.e. the recent path history. To reduce the amount of source alphabet
tokens, we may also apply a mask to the address (e.g. to keep only the low order bits). The
decoder operates on the branch outcomes, and as such the target sequence alphabet is made out
of the "taken" and "not taken" tokens. A further token is added to the output alphabet, namely
the "start of sequence" token, so as to indicate to the decoder that it should start predicting
branch outcomes.

For the purposes of this work, we will employ learned positional encodings, i.e. the learned
token embedding vectors are to be summed with corresponding learned embedding vectors for their
position in the sequence before being sent to the Transformer network (Figure 6.7). As such, the
maximum history length supported by the model becomes a hyper-parameter.

Figure 6.7: Calculating Positional Encodings

32

To produce a branch prediction out of the Transformer network, the encoder has to be provided
with the recent history of branch addresses (including the current candidate branch for which a
prediction will be made as the last token). The decoder has to be provided with a shifted sequence
of recent branch outcomes - shifted in the sense that the sequence has to start with the "start
of sequence" token and, of course, does not contain the outcome for the candidate branch (i.e.
the last branch in the source sequence). For each input token, the decoder will hence produce a
prediction, as illustrated in Figure 6.8. Therefore, the last decoder output will correspond to the
branch prediction for the candidate branch.

Figure 6.8: Predicting Branch Outcomes with the Transformer Model
(Ai)

n
i=0 is the sequence of branch addresses in the path history, (Oi)

n−1
i=0 it the sequence of true branch

outcomes and (Pi)
n
i=0 is the sequence of branch predictions. The candidate branch An is predicted as

having the outcome of Pn.

6.4 Training Transformer-based Branch Predictors

When training a Transformer model such as the one proposed above, special care has to be taken
to a number of subtle details. In this section, we will describe in detail the training procedure as
well as the rationale behind the different choices we made while designing it.

6.4.1 Parallelising Gradient Outflows for Efficient Training

The prediction method described in Figure 6.8 has in effect a single output, i.e. the outcome
for the candidate branch. The other outputs could be considered superfluous, as the true branch
outcomes are already known for those positions. Still, they will play a crucial role in the training
of the model, as we will now detail.

Figure 6.9: Poor Gradient Flow with One Output
Blue arrows represent gradient flows. Dashed lines indicate ignored memory outputs.

33

Initially, while designing the model, we experimented with using simpler training procedures
as well as simpler models. We experimented with using only a Transformer encoder with outputs
derived through a feed forward network and a Sigmoid activation from the last memory entry. As
such, the for every input combination, we would compute the Binary Cross Entropy loss for this
single output and perform gradient descent on the result. Unfortunately, this model was not able
to converge or learn any branch behaviours, achieving an accuracy of near 50% on out benchmarks.
We believe this to be due to inefficient training, in particular due to poor gradient flows through
the network. To further elaborate, consider Figure 6.9. The diagram shows how for this design, the
network only learns about the output of one branch at a single time, and only with a fixed history
length. Moreover, intermediate memory outputs have no gradient inflow or outflow, so part of the
network does not get gradient updates.

The solution to this problem is to perform training in parallel for all output tokens. Apart from
the benefit of having good gradients (Figure 6.10), this method also has the advantage of guiding
the network to learn something about the behaviour of each branch in the training sequence in
parallel, as well as exposing the network to different sequence lengths (e.g., the first branch will
observe no history, the second one will only observe the previous branch etc.).

Figure 6.10: Good Gradient Flow with Multiple Outputs

6.4.2 Attention Masking

Training a model with multiple outputs as presented in previous sections imposes a number of
restrictions on the internal attention weights generated by the model. Intuitively, we want to ensure
that the prediction made at each position is based solely on information resulting from preceding
tokens in the sequence, as this is how the network will be used in practice. Consequently, we will
have to apply attention masks to the different attention blocks in the network.

Starting with the encoder, a triangular mask is applied to the self-attention block such that
entries to the right of any sequence position are ignored. This has the effect of making every
resulting memory cell only contain information up to its position, i.e. when making predictions,
the network is not allowed to look into the future of the path history. Similarly, the decoder self-
attention will be masked with an identical mask so as to prohibit looking into the future of the
taken history. Finally, the decoder cross-attention block requires the same mask to be applied, as
not doing so would risk leaking information about the future path history through the memory
embeddings.

6.4.3 SimPointed Datasets and Weighted Loss Function

An early, yet highly important step in training any machine learning model is gathering good
datasets for training, validation and testing. At first glance, this may appear as a simple endeavour:
choose a target benchmark program and run it with different inputs in a simulator such as Gem5,
while capturing as in previous chapters an execution trace containing the complete path and taken
histories. Such a dataset should be highly representative for the kinds of branch histories exhibited
by the program. Unfortunately, this simple approach comes with a very significant drawback:
most real programs run in excess of even billions of instructions and as such would yield immense
training datasets. Furthermore, transformers are notorious for being large models that are slow to
train. It hence becomes clear that this training procedure quickly becomes impractical.

34

Nevertheless, we aim to tackle this challenge by first hypothesising that large parts of these
potential execution traces would be in fact redundant. The success of SimPoint does appear to
suggest that this is the case, and as such we propose that training is to be done solely on traces
captures in intervals selected by SimPoint (as elaborated in Section 4.2). Naturally, we cannot
simply aggregate the interval traces into a normal dataset as this would capture wrong statistics
about the program: different intervals (and hence traces) hold a different share of the total program
execution. In much the same way we weighted statistics based on the SimPoint weights in previous
chapters, we now aim to weight the resulting gradients of the training procedure. We achieve this
by using a weighted Binary Cross Entropy loss function, where each training entry is weighted by its
corresponding SimPoint interval weight. The final formula for the loss function is as follows (where
N is the batch size, p is a vector of predictions, t is a vector of targets, and w is the corresponding
vector of SimPoint weights. Note that the output sequences are flattened for computing the loss):

WeightedBCE(p, t, w) = − 1

N

N∑
i=1

[
t(i) log(p(i)) + (1− t(i)) log(1− p(i))

]
· w(i)

6.5 Case Studies

In this section, we will present a number of case studies showcasing the power of the Transformer
architecture when applied to branch prediction.

6.5.1 Synthetic Benchmark

We begin by analysing a synthetic benchmark that we have designed by hand to include a hard-to-
predict branch. A simplified version of the benchmark is presented in Figure 6.11. The program
is loosely based on the example code in Section 6.1, and contains two correlated branches, B1 on
line 5 and B3 on line 15. In between them we can find B2 on line 10, which is an uncorrelated
branch with unpredictable behaviour that pollutes the branch history. We aim to gain insight into
whether the Transformer can discover that B2 is not correlated.

1 int acc = 0;
2 for (int i = 0; i < ITER; i++) {
3

4 int long_dependency = randint();
5 if (long_dependency % 2 == 0) {
6 long_dependency += 2;
7 }
8 int n = randint() % 16;
9 for (int j = 0; j < n; j++) {

10 if (randint() % 2 == 0) {
11 long_dependency += 4;
12 }
13 }
14

15 if (long_dependency % 2 == 0) {
16 acc+=8;
17 }
18 }

Figure 6.11: Caption

As the benchmark is very simplistic and fast to execute, we built a training dataset for it without
SimPoint. We hence trained a Transformer model on the resulting trace, with the following hyper-
parameters:

• Maximum sequence length of 64 tokens

• 2 encoder layers and 2 decoder layers

• 2 head Multi-head attention

• Embedding dimension of 512

35

• Internal Feed Forward layers of 128 neurons

• Adam Optimiser with β1 = 0.9, β2 = 0.98, ϵ = 1.0e− 9 and learning rate of 0.0001

• Batch size of 32

• 5 Epochs

The model quickly achieves more then 95% accuracy on the train set. To examine whether the
model successfully learned that branch B2 is not correlated, we analyse the attention weights
computed in an arbitrary window of a trace from another run.

Figure 6.12: Slice of the Attention Weight Matrix for the Encoder Layer 0 (average of the two
attention heads)

Figure 6.12 showcases a relevant slice of the resulting attention matrix as a heat map. Each
row represents the attention weights that were computed for a particular occurrence of a branch in
the path history. Hence, by fixing a row, we can find the computed attention for each position in
the sequence by analysing the columns. Branches are listed in order of their occurrence, from top
to bottom and from left to right. Given that tokens are not allowed to attend to future positions,
the plot takes on a triangular shape. It also contains a number of bright spots which we will
suggestively call fireflies - these correspond to positions of high attention.

We observe that branch B3 appears twice in the sequence. The first occurrence is not very
relevant, because it occurs early in the sequence and thus does not have access to a long history.
However, the second occurrence exhibits a firefly, precisely for the position corresponding to the
most recent occurrence of B1. Moreover, it appears as though the network learned to ignore
positions corresponding to B2, as they have very low attention scores (and hence appear dark in
the plot). We believe these results give strong circumstantial evidence that the model is working
as intended.

6.5.2 445.gobmk

We also trained and validated a model on the SPEC2006 445.gobmk benchmark. This benchmark
is based on an AI program that plays the well-known game of Go.

To build a training dataset for this benchmark, we ran all the train benchmark inputs under
Gem5, calculated simpoints for each run and proceeded to build execution traces for each SimPoint
interval as detailed in Chapter 4. The final dataset was an aggregate of all traces alongside their
respective SimPoint weights (although not necessary, we also re-normalised the weights by dividing
them by the number of benchmark inputs). The validation set was built based on traces from the
first 10, 000, 000 instructions of each ref input set to allow for faster evaluation. Based on validation

36

results, we tuned the hyper-parameters of the network by hand and arrived at the following network
parameters:

• Maximum sequence length of 512 tokens

• 8 encoder layers and 8 decoder layers

• 8 head Multi-head attention

• Embedding dimension of 512

• Internal Feed Forward layers of 128 neurons

• Adam Optimiser with β1 = 0.9, β2 = 0.98, ϵ = 1.0e− 9 and learning rate of 0.0001

• Batch size of 32

• 5 Epochs

Below are the loss and accuracy curves for the train and validation sets:

(a) Average Train Loss per Epoch (b) Validation Accuracy per Epoch

(c) Train Loss per Batch

Figure 6.13: Loss Curves for Training on the SPEC2006 445.gobmk Benchmark

37

Finally, we also took another slice of an attention weight matrix generated for some arbitrary
window in the training set. As can be seen in Figure 6.14, fireflies are present once again, indicating
learned correlations of the program branches.

Figure 6.14: Attention Matrix in the SPEC2006 445.gobmk benchmark

6.6 Summary
To conclude, in this chapter we introduced a novel approach on branch prediction inspired by
Natural Language Processing and Machine Translation. We applied Transformer networks to solve
the problem, and detailed a training procedure that is fast and efficient based on SimPoints. We
also explored a number of case studies, and showed evidence that suggests that the networks trained
with this approach are able to learn subtle dependencies between branches.

38

Chapter 7

Evaluation

In this chapter, we will provide a formal evaluation of the methods described so far in this work
on the SPEC2006 integer benchmarks.

7.1 Methodology

All results in this chapter will be provided as a weighted aggregate over a number of SimPoint
intervals extracted from the test inputs of each benchmark. The data generation process will follow
the same procedures as described in Chapter 4. For benchmarks containing more than one set of
inputs, we will further average the metrics over the different inputs.

7.2 Return Address Stack Correlation

Benchmark TAGE-SC-L 64KB
Misprediction Rate

RAS Correlation Opportunity
(Upper Bound)

400.perlbench 5.9% 2.7%
401.bzip2 5.9% 0.1%
403.gcc 3.2% 0.8%
429.mcf 9.6% 0.6%
445.gobmk 7.9% 0.7%
456.hmmer 5.1% 0.5%
458.sjeng 8.4% 0.8%
462.libquantum 3.4% 0.1%
464.h264ref 4.4% 0.2%
471.omnetpp 2.3% 1.1%
473.astar 16.0% 0.5%
483.xalancbmk 1.7% 0.9%

Average 6.1% 0.7%

Table 7.1: Optimisation Opportunities Across the SPEC2006 Integer Benchmarks when Correlating
the Top Element of the Return Address Stack

In Table 7.1, we present the final evaluation across the full SPEC2006 Integer benchmark suite.
We find an overall average opportunity to reduce the misprediction rate by 0.7%. The results show
that within the benchmark suite, there exists small fraction of branches that are in fact correlated
to a degree with the return address stack. However, the results represent only an upper bound,
and in all likely hood in practice the observed benefit would be smaller.

39

7.3 Object Allocation Context Correlation

Benchmark TAGE-SC-L 64KB
Misprediction Rate

Object Allocation Context
Correlation Opportunity

(Upper Bound)

471.omnetpp 2.3% 0.9%
473.astar 16.0% 0.0%
483.xalancbmk 1.7% 0.7%

Average 6.6% 0.5%

Table 7.2: Optimisation Opportunities Across the SPEC2006 Integer Benchmarks when Correlating
the Top Element of the Return Address Stack at the time of Object Allocaion with Branches in
Virtual Methods

In Table 7.2 we present the results on the 3 C++ Integer benchmarks of the SPEC2006 suite.
We can observe once again modest prospects for optimisations, and in one specific case, i.e. the
astar benchmark, no opportunity at all.

7.4 Transformer-based Neural Branch Prediction

TAGE-SC-L 64KB
Accuracy

Transformer Model
Accuracy

Delta
Accuracy

Known
Branches

All
Branches

Known
Branches

All
Branches

400.perlbench 94.1% 85.6% 83.0% -8.5% -11.1%
401.bzip2 94.1% 96.8% 94.9% +2.7% +0.8%
403.gcc 96.8% 94.7% 91.3% -2.1% -5.5%
429.mcf 90.4% 94.7% 94.5% +4.7% +4.1%
445.gobmk 92.1% 94.5% 94.1% +2.4% +2.0%
456.hmmer 94.9% 90.3% 90.4% -4.6% -4.5%
458.sjeng 91.6% 91.1% 91.0% -0.5% -0.6%
462.libquantum 96.6% 97.2% 94.6% +0.6% -2.0%
464.h264ref 95.6% 97.8% 97.7% +2.2% +2.1%
471.omnetpp 97.7% 95.6% 82.8% -2.1% -14.9%
473.astar 84.0% 91.1% 90.9% +7.1% +6.9%
483.xalancbmk 98.3% 90.0% 87.8% -8.3% -10.5%
Average 93.8% 93.3% 91.1% -0.5% -2.7%

Table 7.3: Accuracy obtained by the Transformer model on the SPEC2006 Integer Benchmark
Suite

Table 7.3 showcases the final results after training a Transformer network on the SPEC2006
train benchmark inputs and evaluating on the test benchmark inputs inputs. The network architec-
ture was chosen to be the same as in Subsection 6.5.2. For clarity, we will list the hyperparameters
here once more:

• Maximum sequence length of 512 tokens

• 8 encoder layers and 8 decoder layers

• 8 head Multi-head attention

• Embedding dimension of 512

• Internal Feed Forward layers of 128 neurons

• Adam Optimiser with β1 = 0.9, β2 = 0.98, ϵ = 1.0e− 9 and learning rate of 0.0001

40

• Batch size of 32

• 5 Epochs

Given that the Transformer network is an offline algorithm (i.e. no training is done during
inference), we differentiate in the table between the known branches and all branches. While test-
ing, we have found that the SimPoint intervals we used for training did not cover all branches
in the program. As such, when reporting results we considered unknown branches as being pre-
cisely 50% correctly predicted (i.e. the accuracy of a coin flip) and aggregated results in the All
Branches columns. We also reported the accuracy for branches encountered in training in the
Known Branches columns.

7.4.1 Analysis
When analysing the results above, one has to be careful in comparing the two predictors as they
did not have a level playing field. On the one hand, TAGE is an online algorithm and as such could
learn about the statistics of the program while it was executing. At the same time, the Transformer
might have suffered from covariate shift, i.e. the test distribution was not the same as the one it
was trained on. On the other hand, the Transformer network is a much larger mechanism than
TAGE, and was also trained on much more data, which could have given it an advantage when
testing.

Therefore, the two predictors cannot be put clearly in a hierarchy. However, we believe that
the results achieved by the Transformer network are very promising and could warrant further
research into optimising the architecture: the model achieved comparable performance to TAGE,
and even surpassed it in certain benchmarks. Furthermore, although not necessarily implementable
in hardware in its current form, the Transformer model provides a large set of weights that could
be analysed to discover hidden branch correlations, similar to how we analysed the self-attention
weights in earlier sections.

41

Chapter 8

Ethical Considerations

Branch prediction is a fundamental aspect of virtually all modern processors. Although often
overlooked, it has an influence whenever computers are used, which can be both for good and for
malice. On the one hand, the performance increases brought by this technology can be used for
the greater good of humanity through ethical research activities or simply by helping people be
more productive in their daily live. On the other hand though, greater computing power can be
used for disreputable purposes as well such as weapon development.

As such, its use is a double edged sword: at the same time, it can be of use for both good and bad
actors. In recent times, we have also seen an increase in cybersecurity attacks specifically targeting
the branch predictor such that sensitive information may be exfiltrated through micro-architectural
side-channels. The attacks, collectively known as Spectre and Meltdown, affect to some degree all
high performance processors. Various attempts to reduce their impact have been made, but thus
far no comprehensive solution has been found, apart from removing branch prediction altogether
- a compromise in performance which is impractical to make.

Our work in this research project neither solves nor aggravates these ethical issues. On the
whole, branch prediction is a fundamental technology and the success of modern processors has
also been due to its development.

However, we would like to address another issue in the greater field of computer architecture: the
problem of open research. It is often the case that some of the greatest developments in the field are
published long after their discovery or even never at all. As such, their potential impact on shaping
the research literature is often diminished. Commercial corporations that design microprocessors
have a natural incentive to limit the amount of information shared as their businesses are often
built around a competitive performance advantage. The academic world sometimes suffers from this
issue as well: although research papers are normally openly available through established journals,
numerous ones do not fully publish their designs and limit themselves to high level descriptions.
More often than not, new ideas in computer architecture are experimentally evaluated, hence
making concrete designs and evaluation environment an invaluable resource for further research.
Consequently, we intend to promote transparency and accessibility in our research by making our
work open source.

Finally, our planned evaluation methodology is based around the SPEC 2006 benchmark
suite. The software is protected by copyright and licensed under the SPEC GENERAL LICENSE
AGREEMENT license. We have used the benchmark suite as part of this work by virtue of the
license given to the project supervisor.

42

Chapter 9

Conclusion

9.1 Summary of Results

Overall, the aim of this project has been to explore and find new avenues for incorporating more
context into branch prediction. We believe we have been successful in this search, as this work in-
troduced a number of potential context sources for future branch predictor, alongside an evaluation
over potential performance gains. To be specific, the most important contributions are:

• A study into the correlation opportunity between the Return Address Stack and branch out-
comes. We have found that on average, the upper bound for the achievable misprediction rate
decrease on the SPEC2006 Integer Benchmarks is 0.7%, i.e. on average from a misprediction
rate of 6.1% to 5.4%, so around 12% net reduction in misprediction rate.

• A study into the correlation opportunity between the Return Address Stack at the time of
object allocation and branch outcomes within virtual functions. We have found that on
average, the upper bound for the achievable misprediction rate decrease on the SPEC2006
Integer Benchmarks is 0.5%, i.e. on average from a misprediction rate of 6.6% to 6.1%, so
around 8% net reduction in misprediction rate.

• A novel perspective on branch prediction as a Machine Translation problem, and the intro-
duction of a Transformer-based neural network designed for branch prediction.

• An efficient training procedure based on SimPoints for training neural branch predictors

• An evaluation into the effectiveness of using Transformer Neural Networks for branch pre-
diction. On average, the model performed within 0.5% accuracy on branches encountered in
training when compared to TAGE-SC-L 64KB.

9.2 Limitations

As is the case with any academic work, the results presented in this paper are subject to the
scrutiny of the wider academic community. In this section, we aim to provide a list of known
limitations of this work, such that further research based on it can address them or take them into
account.

• SimPoints: using SimPoints has both advantages and disadvantages. One the one hand,
they can greatly increase the speed of reaseach. On the other hand, they are only approxi-
mations to the full program execution, and, as we have seen when training the Transformer
model, they do not have 100% coverage of the code.

• Warm up Length: When resuming simulation checkpoints, we use a 1, 000, 000 instruction
interval for warming up the internal micro-architectural structures of the processor (e.g.
caches, BPU). However, we have not run experiments to prove that this warm up length is
appropriate.

43

• Rare Branch Statistics: to evaluate the Return Address Stack correlations and the Object
Allocation Context correlations we computed an upper bound for the possible improvement
to the misprediction rate. We did so by considering every branch in the trace, and the
calculating whether a local predictor paired with the context would yield better predictors.
However, this approach is prone to outliers in the form of rare branches, which could skew
the statistic, as their rare occurrences may not be representative of their actual behaviour.

• Transformer Hyper-parameter Tuning: We tuned the Transformer model by hand on
a single benchmark. Given enough compute power, the ideal procedure would be to employ
a form of automated hyper-parameter turning (e.g. grid search) and perform the tuning
individually for every benchmark.

• Over-fitting to the Benchmark: Evaluating results on a predefined benchmark suite runs
the risk of steering research towards optimising the benchmarks rather than actual workloads
used by people in practice.

9.3 Future Work
In this section, we will detail a number of possible ideas and research directions that are beyond the
scope of this project, but which we nonetheless believe as having high potential for great results.

9.3.1 Branch Sets
A future possible research idea is that of Branch Sets. While building the Transformer model, we
identified that a lot of issues in branch prediction could be solved by properly filtering the taken
history and removing irrelevant entries. As such we imagined grouping the branches in a program
into sets. The ISA would expose a number of architectural sets, and all branch outcomes from the
members of a particular set would be pushed into a set-specific GHR. Furthermore, when making
a branch prediction, only the branch’s set GHR would be used to index into the BPU. Ideally,
correlated branches would be assigned to the same set, such that the branch predictor can make
effective use of the branch history. For example, the set assignment could be computed before run
time by analysing the weights learned by a Transformer network.

9.3.2 Hardware Attention
Another research direction would be that of exploring hardware implementations for the attention
mechanism. In the past, Courbariaux et al. have explored the concept of binarized neural networks
[17]: neural nets with weights and activations that only take the values -1 and 1. Such networks can
be effectively implemented in hardware, though have lower performance and can be hard to train.
Future research could be centred around improving these techniques so that hardware attention
mechanisms become viable.

9.3.3 Binary Instrumentation Trace Generation
Currently, we generate traces for training Transformer networks by simulating programs in Gem5.
Although this approach has many advantages for research as it provides easy access to micro-
architectural state, it can be rather slow in practice. However, for the purpouses of training a
Transformer network only the path history and taken history are required. This information could
be collected by a plugin for a binary instrumentation tool such as Intel Pin [18].

44

List of Figures

2.1 Example of Conditional Branch Instruction in AArch64 7
2.2 Example of Indirect Branch Instruction in AArch64 8
2.3 2-bit Bimodal Predictor as a State Machine . 9
2.4 Branch History Table Structure using 4 PC bits . 9
2.5 GSelect Predictor . 9
2.6 Simple Example of Correlated Branches . 10

3.1 The Structure of the TAGE Predictor (based on a diagram from [2]) 11
3.2 The Inner Workings of a Perceptron (based on [5]) 12
3.3 Example illustrating the benefit of path history over pattern history (based on dia-

grams in [11]) . 15

4.1 Simplified view of Gem5’s Processor Pipeline After Adding the BranchTracer . . . 19

5.1 Global Statistics for the SPEC2006 403.GCC Benchmark 22
5.2 The Main Blocks of Different LLVM-based Compilers 23
5.3 Simplified LLVM IR for a Sample Constructor . 24
5.4 Object Allocation Stack Maintenance . 25
5.5 Binned Plots for the Branches in the SPEC2006 403.GCC Benchmark 26
5.6 Binned Plot for Branch/Object Allocation Context Pairs 26

6.1 Example of a Hard-To-Predict Branch (B3) . 28
6.2 Branch History when Predicting Branch B3 . 29
6.3 RNN Cells . 30
6.4 Encoder-Decoder RNN with Auto-Regressive Decoder 30
6.5 Computing Attention Weights for a Sequence of Three Elements 31
6.6 The Transformer Architecture (based on a diagram from [14]) 32
6.7 Calculating Positional Encodings . 32
6.8 Predicting Branch Outcomes with the Transformer Model 33
6.9 Poor Gradient Flow with One Output . 33
6.10 Good Gradient Flow with Multiple Outputs . 34
6.11 Caption . 35
6.12 Slice of the Attention Weight Matrix for the Encoder Layer 0 (average of the two

attention heads) . 36
6.13 Loss Curves for Training on the SPEC2006 445.gobmk Benchmark 37
6.14 Attention Matrix in the SPEC2006 445.gobmk benchmark 38

45

Bibliography

[1] Lin CK, Tarsa SJ. Branch Prediction Is Not A Solved Problem: Measurements, Opportunities,
and Future Directions. In: 2019 IEEE International Symposium on Workload Characterization
(IISWC); 2019. p. 228-38.

[2] Seznec A, Michaud P. A case for (partially) TAgged GEometric history length branch predic-
tion. The Journal of Instruction-Level Parallelism. 2006;8:23.

[3] Zhao J, Korpan B, Gonzalez A, Asanovic K. SonicBOOM: The 3rd Generation Berkeley Out-
of-Order Machine. Fourth Workshop on Computer Architecture Research with RISC-V. 2020
May.

[4] Hornik K, Stinchcombe M, White H. Multilayer Feedforward Networks Are Universal Ap-
proximators. Neural Netw. 1989 jul;2(5):359–366.

[5] Jimenez DA, Lin C. Dynamic branch prediction with perceptrons. In: Proceedings HPCA
Seventh International Symposium on High-Performance Computer Architecture; 2001. p. 197-
206.

[6] Corporation A. AMD; 2016. Available from: https://www.anandtech.com/Gallery/Album/
5197#18.

[7] Fog A. The microarchitecture of Intel, AMD and VIA CPUs: An optimization guide for
assembly programmers and compiler makers. Copenhagen University College of Engineering.
2022;3.

[8] Seznec A. Tage-sc-l branch predictors. In: JILP-Championship Branch Prediction; 2014. .

[9] Chen ICK, Coffey JT, Mudge TN. Analysis of Branch Prediction via Data Compression. In:
Proceedings of the Seventh International Conference on Architectural Support for Program-
ming Languages and Operating Systems. ASPLOS VII. New York, NY, USA: Association
for Computing Machinery; 1996. p. 128–137. Available from: https://doi.org/10.1145/
237090.237171.

[10] Krall A. Improving Semi-Static Branch Prediction by Code Replication. In: Proceedings of
the ACM SIGPLAN 1994 Conference on Programming Language Design and Implementation.
PLDI ’94. New York, NY, USA: Association for Computing Machinery; 1994. p. 97–106.
Available from: https://doi.org/10.1145/178243.178252.

[11] Young C, Smith MD. Improving the Accuracy of Static Branch Prediction Using Branch
Correlation. In: Proceedings of the Sixth International Conference on Architectural Support
for Programming Languages and Operating Systems. ASPLOS VI. New York, NY, USA:
Association for Computing Machinery; 1994. p. 232–241. Available from: https://doi.org/
10.1145/195473.195549.

[12] Hamerly G, Perelman E, Lau J, Calder B. SimPoint 3.0: Faster and More Flexible Program
Phase Analysis. J Instr Level Parallelism. 2005;7.

[13] Lattner C, Adve V. LLVM: A Compilation Framework for Lifelong Program Analysis and
Transformation. San Jose, CA, USA; 2004. p. 75-88.

46

https://www.anandtech.com/Gallery/Album/5197#18
https://www.anandtech.com/Gallery/Album/5197#18
https://doi.org/10.1145/237090.237171
https://doi.org/10.1145/237090.237171
https://doi.org/10.1145/178243.178252
https://doi.org/10.1145/195473.195549
https://doi.org/10.1145/195473.195549

[14] Vaswani A, Shazeer N, Parmar N, Uszkoreit J, Jones L, Gomez AN, et al. Attention is All
you Need. In: Guyon I, Luxburg UV, Bengio S, Wallach H, Fergus R, Vishwanathan S, et al.,
editors. Advances in Neural Information Processing Systems. vol. 30. Curran Associates, Inc.;
2017. Available from: https://proceedings.neurips.cc/paper_files/paper/2017/file/
3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.

[15] Hochreiter S, Schmidhuber J. Long Short-Term Memory. Neural Computation. 1997
11;9(8):1735-80. Available from: https://doi.org/10.1162/neco.1997.9.8.1735.

[16] Cho K, van Merrienboer B, Gulcehre C, Bahdanau D, Bougares F, Schwenk H, et al.. Learn-
ing Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation;
2014.

[17] Courbariaux M, Hubara I, Soudry D, El-Yaniv R, Bengio Y. Binarized Neural Networks:
Training Deep Neural Networks with Weights and Activations Constrained to +1 or -1; 2016.

[18] Luk CK, Cohn R, Muth R, Patil H, Klauser A, Lowney G, et al. Pin: building customized
program analysis tools with dynamic instrumentation. Acm sigplan notices. 2005;40(6):190-
200.

47

https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf
https://doi.org/10.1162/neco.1997.9.8.1735

	Introduction
	Contributions

	Preliminaries
	Branch Instructions
	Conditional Branch Instructions
	Indirect Branch Instructions

	Processor Types
	In-Order Processors
	Out-of-Order Processors

	Basic Branch Prediction
	Static Branch Prediction
	Bimodal Predictor
	Branch History Tables
	Taken History and Two Level Predictors

	The Predictive Power of the Taken History

	Background
	Current State-of-the-Art Predictors
	TAGE Predictor
	Machine Learning Predictors
	Domain Specific Predictors
	Tournament Predictors

	Branch Prediction - a problem not yet solved
	Theoretical Limits of Branch Prediction
	Path History
	Loop Code Replication
	Path Cloning

	Execution Trace Generation
	Trace Generation
	Simulation Environment
	Benchmark Programs
	Execution Trace Generation

	Generating SimPoints
	Overview
	Warm Up and Interval Length
	Tracing and Reporting Methodology

	Simple Micro-Architectural Correlations
	Return Address Stack Correlation
	Overview
	Case Study

	Object Allocation Context Correlation
	Overview
	Implementation
	LLVM Compiler Pass
	Gem5 Tracing
	Case Study

	Conclusion

	Transformer-based Neural Branch Prediction
	Motivation: From Taken History to Path History
	Transformer Nets and Sequence-to-Sequence Models
	Sequence-to-Sequence Models
	Token Embeddings
	Recurrent Neural Networks
	Attention Mechanism
	Transformer Networks

	Branch Prediction as a Machine Translation Problem
	Training Transformer-based Branch Predictors
	Parallelising Gradient Outflows for Efficient Training
	Attention Masking
	SimPointed Datasets and Weighted Loss Function

	Case Studies
	Synthetic Benchmark
	445.gobmk

	Summary

	Evaluation
	Methodology
	Return Address Stack Correlation
	Object Allocation Context Correlation
	Transformer-based Neural Branch Prediction
	Analysis

	Ethical Considerations
	Conclusion
	Summary of Results
	Limitations
	Future Work
	Branch Sets
	Hardware Attention
	Binary Instrumentation Trace Generation

