
MEng Individual Project

Imperial College London

Department of Computing

Quantum Approximate Optimisation for
Boolean Satisfiability

Author:
Andrew Elkadi

Supervisor:
Dr. Roberto Bondesan

Second Marker:
Dr. Herbert Wiklicky

June 21, 2023

Abstract

Implementing a fault-tolerant quantum computer is a challenging task, made difficult by system-
environment interactions and the low temperatures required for stable operation. The current state
of quantum computing, the Noisy Intermediate-Scale Quantum (NISQ) era, is characterised by quan-
tum processors with few, error-prone, qubits. As such, they are incapable of supporting circuits that
require large depths. This has invited interest in developing NISQ-era algorithms, often making use
of hybrid approaches where classical and low-depth quantum processors work in parallel. A popular
example, the Quantum Approximate Optimisation Algorithm (QAOA), is used for solving general
combinatorial optimisation problems.

In this work, we explore the application of QAOA in solving the Boolean satisfiability problem (SAT),
and its variant Not-All-Equal (NAE) SAT. We focus on regimes where the problems are known to
have solutions with low probability: the satisfiability ratio. While classical algorithms are known to
struggle solving problems efficiently near this threshold, recent work has shown a quantum advantage
afforded by QAOA. We develop novel encodings of SAT and NAE-SAT for QAOA, allowing us to
confirm the quantum advantage for SAT and establish a quantum advantage for NAE-SAT. In doing
so, we present new findings on the performance of QAOA for a range of these problems’ instances.

Acknowledgements

Firstly, I would like to express my gratitude to Dr. Roberto Bondesan, who has not only been an
encouraging supervisor throughout the course of this project but also a supportive mentor over the
past year. Additionally, I would like to extend my thanks to Dr. Herbert Wiklickly for his guidance,
particularly his invaluable writing advice.

Finally, thank you to my friends and family.

Contents

1 Introduction 4
1.1 Contributions . 4
1.2 Ethical Considerations . 5

2 Preliminaries 6
2.1 Boolean Satisfiability Problem . 6

2.1.1 Propositional Formulae . 6
2.1.2 k-SAT and k-NAE-SAT . 7
2.1.3 Computational Phase Transitions . 8

2.2 Classical Solvers . 10
2.2.1 DPLL . 10
2.2.2 WalkSAT and WalkSATlm . 10

2.3 Quantum Approximate Optimisation Algorithm . 12
2.3.1 Adiabatic Quantum Computing . 12
2.3.2 Trotterisation . 14
2.3.3 Variational Quantum Eigensolvers . 14
2.3.4 QAOA Procedure . 15
2.3.5 Choosing Hamiltonians . 17
2.3.6 Barren Plateaus . 18

2.4 Representing Functions as Hamiltonians . 19
2.4.1 Boolean Functions . 19
2.4.2 Real/Pseudo-Boolean Functions . 20

3 Related Work 21
3.1 QAOA Success Probabilities . 21

3.1.1 Analytic Derivation . 22
3.1.2 Empirical Validation . 23
3.1.3 Benchmarking . 23

3.2 Quantum Computational Phase Transitions . 27
3.2.1 Barren Plateaus in Training . 27
3.2.2 Accuracy of QAOA . 27

4 QAOA for k-SAT 29
4.1 Implementation . 29

4.1.1 Problem Hamiltonian . 29
4.1.2 QAOA Procedure . 31
4.1.3 Efficient Classical Simulation . 33
4.1.4 Software . 35

4.2 Evaluation . 36
4.2.1 Success Probabilities . 36
4.2.2 Running Times . 37
4.2.3 Benchmarking . 37
4.2.4 Excessive Scaling . 39

2

5 QAOA for k-NAE-SAT 41
5.1 Implementation . 41

5.1.1 Problem Hamiltonian . 42
5.1.2 QAOA Procedure . 43
5.1.3 Efficient Classical Simulation . 45
5.1.4 Classical Benchmarking . 47

5.2 Evaluation . 49
5.2.1 Success Probabilities . 49
5.2.2 Running Times . 49
5.2.3 Benchmarking . 51
5.2.4 Excessive Scaling . 52
5.2.5 Discussion . 54

6 Conclusions and Future Work 56

Appendices 58

A General Representations of Boolean and Real Functions 58
A.1 Boolean Functions . 58
A.2 Real/Pseudo-Boolean Functions . 59

B Complete Results for k-NAE-SAT 60
B.1 Success Probability . 60
B.2 Median Running Times . 60
B.3 Benchmarking . 60
B.4 Excessive Scaling . 60

3

Chapter 1

Introduction

The Boolean satisfiability problem (SAT) is the canonical NP-complete problem [1]. While this
means it is unlikely that a polynomial-time solving algorithm will be found, its wide range of appli-
cations invite interest in finding efficient enough algorithms [2]. This includes areas of: circuit design
[3], logic-based planning [4] and bug detection [5].

An instance of SAT is a Boolean formula consisting of n variables arranged in m clauses. Each
clause represents a constraint on the variables, and to solve SAT is to determine whether there exists
a variable assignment that satisfies all the constraints. When each clause is restricted to k variables
the resulting problem is known as k-SAT [6].

Of particular interest are instances with clause densities r = m/n that undergo computational phase
transitions [6]. The satisfiability ratio rk describes a critical value of r beyond which instances are
unlikely to have any solutions. On the other hand, the algorithmic ratio ak is a threshold beyond
which no classical algorithm is known to find solutions efficiently. Notably, it is known that the
algorithmic ratio is strictly smaller than the satisfiability ratio (ak < rk)[7].

A natural place to search for algorithms to solve instances with ak ≤ r ≤ rk is quantum comput-
ing. In particular, we consider the application of the quantum approximate optimisation algorithm
(QAOA) [8]. QAOA is designed to find approximate solutions to general combinatorial optimisation
problems. Its low circuit depth makes it an attractive candidate as an algorithm to be run on NISQ-
era quantum computers [9]. It is based on the trotterised adiabatic process and is an instance of a
Variational Quantum Eigensolver (VQE) [8].

The recent work of Boulebnane & Montanaro [10] explores the success probability and median running
time of QAOA on k-SAT instances, discovering a quantum advantage over classical algorithms. In
particular, they benchmark QAOA against a range of classical solvers and find that it outperforms
the best performing algorithm, WalkSATlm [11]. In this project, we consider these heuristics and
study the performance of QAOA on a related problem: k-NAE-SAT. Here, in addition to satisfying
all constraints, the variables within a clause cannot all be assigned the same value [12].

1.1 Contributions

In this work, we:

• Derive novel encodings of k-SAT and k-NAE-SAT for QAOA that can be run on any gate-
based quantum computer and implement them in Qiskit [13]. Studying the cost of classically
simulating these, we introduce diagonalisations of our Hamiltonians that allow us to reduce
the effective time complexity from O

(
2kk3N2 logN

)
to O(N), for a system size of N = 2n.

4

• Reproduce the results of Boulebnane & Montanaro [10], implementing an efficient simulator in
PyTorch [14], and confirm the quantum advantage of QAOA for 8-SAT over the best performing
classical solver WalkSATlm.

• Produce novel success probability and median running time results of QAOA for 4-SAT and a
range of k-NAE-SAT problems. We also consider the scaling of these heuristics in the large p
limit and interpret their excessive scaling performance.

• Introduce WalkSATm2b2, a solver for k-NAE-SAT, that extends on WalkSATlm and accounts
for the symmetry of the problem’s instances. We show that it outperforms WalkSATlm on
k-NAE-SAT, yet that QAOA outperforms both solvers on a range of instances.

1.2 Ethical Considerations
This project has no legal or licensing concerns. The libraries being used are all open source and
freely available through a standard package manager.

Although solving satisfiability problems has a range of applications, including ones that could indi-
rectly be malicious, these are not direct consequences of work being done in this thesis.

Nevertheless, the consumption of electricity due to the simulations carried out in the course of this
project should be considered. While distributing and parallelising processes is powerful, it is easy
to overlook the environmental impact of such large scale compute. In particular, such speed ups
allowed for more experiments to be carried out than otherwise would have been possible.

Finally, no humans or animals were used in this project (this would require too many qubits to
encode anyways).

5

Chapter 2

Preliminaries

2.1 Boolean Satisfiability Problem
The Boolean satisfiability problem (SAT) is a combinatorial optimisation problem that seeks a sat-
isfying assignment for a Boolean propositional formula [1]. Simply, given a set of constraints on
variables, we ask whether there exists an assignment of values to these variables that satisfies the
constraints. This is defined formally in what follows, based on the work of Moore & Mertens [6].

2.1.1 Propositional Formulae

Definition 2.1.1. (Boolean variable) A Boolean variable x is a variable that can be assigned a truth
value of either v(x) = ⊤ or v(x) = ⊥, under the assignment v.

Alternatively, and often for brevity, we consider Boolean variables as variables ranging over the values
{0, 1} [15]. A value of 0 corresponds to the truth value ⊥ and 1 the truth value ⊤. For a collection of
variables {x0, x1, . . . , xn−1} their truth values can be succinctly written as the bitstring x ∈ {0, 1}n.

Definition 2.1.2. (Boolean literal) A Boolean literal l is a Boolean variable x or its negation, denoted
¬x.

The negation of a Boolean variable is simply another variable that takes the opposing truth value.
As such, v(¬x) = ⊤ iff v(x) = ⊥.

Definition 2.1.3. (Propositional formula) A propositional formula ϕ is a collection of Boolean lit-
erals {l0, . . . , ln}, conjunctions ∧ and disjunctions ∨.

The truth value of a Boolean variable in isolation is not very expressive. However, the truth value of
a collection of these variables can be used to realise many real-world constraints. The connectives,
∧ and ∨, are used to represent situations where we may require combinations of variables to have
particular truth values, or mutually exclusive truth values.

Definition 2.1.4. (Truth value of a propositional formula) Recursively extending the notion of a
truth value:

• v(l1 ∧ l2) = ⊤ iff v(l1) = v(l2) = ⊤

• v(l1 ∨ l2) = ⊤ iff v(l1) = ⊤ and/or v(l2) = ⊤

Definition 2.1.5. (Satisfying a propositional formula) A propositional formula ϕ is satisfied by
assignment v iff v(ϕ) = ⊤.

In the alternative representation, if the bitstring x (corresponding to the assignment v) satisfies ϕ,
it is denoted as [15]:

x ⊢ ϕ (2.1)

6

Example 2.1.1. Alice will only go to the shops if she can guarantee she’ll stay dry. She’ll stay dry if
and only if it doesn’t rain or the underpass is open. Let r be the Boolean variable such that v(r) = ⊤
if and only if it is raining and p the Boolean variable such that v(p) = ⊤ if and only if the underpass
is open. The propositional formula d = ¬r ∨ p represents whether Alice will stay dry. If v(d) = ⊤,
she will, if v(d) = ⊥, she will not.

SAT considers a class of propositional formulas with the added structure of being in Conjunctive
Normal Form.

Definition 2.1.6. (CNF) A propositional formula ϕ is in Conjunctive Normal Form (CNF) if it
is a conjunction of m clauses

∧m−1
i=0 ci, where each clause is a disjunction of ki Boolean literals

ci =
∨ki−1

j=0 lij.

By these definitions, it is clear that a propositional formula in CNF is satisfied if and only if all of its
clauses are satisfied. A clause on the other hand is satisfied if and only if any of its Boolean literals
are satisfied. Finally, we define SAT.

Definition 2.1.7. (Boolean satisfiability problem - SAT) Given a propositional formula ϕ, in CNF,
does there exist an assignment v on ϕ such that v satisfies ϕ?

It is worth noting, any propositional formula can be converted into an equivalent CNF representation.
As such, this does not restrict the domain of problems SAT considers. An alternative structure,
Disjunctive Normal Form (DNF), which any propositional formula can also be written in, considers
a disjunction of clauses which themselves are conjunctions of literals (ϕ′ =

∨m−1
i=0

∧ki−1
j=0 lij). However,

the SAT problem for DNF formulas is in P, meaning this formulation is of lesser interest.

Remark 2.1.1. While one might consider solving SAT by first converting the propositional formula
into DNF, this is not generally possible in polynomial time. In the worst case, the equivalent DNF
structure is exponentially greater in size, requiring exponential time to construct. Converting to CNF
on the other hand can always be done in polynomial time [6].

Example 2.1.2. The propositional formula (x1 ∨ ¬x2) ∧ x3 is satisfied by the assignment v(x1) =
v(x2) = v(x3) = ⊤, amongst others.

Example 2.1.3. The propositional formula x1 ∧¬x1 is unsatisfiable. A satisfying assignment would
require both x1 and its negation to be true. This is not possible since v(¬x1) = ¬v(x1).

Example 2.1.4. The propositional formula (x1 ∨ y1) ∧ (x2 ∨ y2) converted to DNF takes the form:

(x1 ∨ y1) ∧ (x2 ∨ y2) ≡ (x1 ∧ (x2 ∨ y2)) ∨ (y1 ∧ (x2 ∨ y2))
≡ (x1 ∧ x2 ∨ x1 ∧ y2) ∨ (y1 ∧ x2 ∨ y1 ∧ y2)
≡ (x1 ∧ x2) ∨ (x1 ∧ y2) ∨ (y1 ∧ x2) ∨ (y1 ∧ y2)

(2.2)

where we have used De Morgan’s laws to expand the terms [6]. This has 23 = 8 literals.

Example 2.1.5. In general, the propositional formula (x1 ∨ y1) ∧ (x2 ∨ y2) ∧ · · · ∧ (xn ∨ yn) requires
2n+1 literals when converted to DNF [6].

2.1.2 k-SAT and k-NAE-SAT

SAT is an NP-complete problem [1], meaning it is in NP and that any NP problem can be reduced
to it in polynomial time [6]. As such, many problems of interest can be solved by first representing
them as propositional formulae and then determining whether a satisfying assignment exists [2].
Similarly, by transitivity, showing that SAT reduces to an NP-hard problem allows the problem to
be classified as NP-complete. In particular cases, variants of SAT - that reduce to/from SAT - are
useful to consider as an intermediate reduction. A simple example of this is k-SAT, where there is a
constraint on the size of each clause [6].

7

Definition 2.1.8. (k-SAT) Given a propositional formula ϕ in CNF, where each clause has k literals,
does there exist an assignment v on ϕ such that v satisfies ϕ?

It is clear that k-SAT is an instance of SAT where each clause takes the form ci =
∨k−1

j=0 lij.

Another example, and the focus of the latter part of this work, k-NAE-SAT, places a constraint on
the literals within a clause having the same truth value.

Definition 2.1.9. (k-NAE-SAT) Given a propositional formula ϕ in CNF, where each clause has k
literals, does there exist an assignment v on ϕ such that v satisfies ϕ and v does not assign all literals
within a clause to the same truth value?

Example 2.1.6. In the 2-NAE-SAT formulation, the propositional formula (x1 ∨¬x2)∧ (x3 ∨ x4) is
not satisfied by the assignment v(x1) = v(x3) = ⊤, v(x2) = v(x4) = ⊥. It assigns both literals in the
first clause to the same truth value: v(x1) = v(¬x2) = ⊤.

In other words, k-NAE-SAT requires at least one literal to be true, and at least one literal to be
false, in each clause. Unlike k-SAT, k-NAE-SAT is symmetric with respect to flipping the assignment
values. This makes it especially useful when considering problems with a similar symmetry [6]. An
example of this is the Graph-k-Colouring problem. It asks whether the nodes in a graph can be
coloured with k colours such that no two connected nodes are the same colour. k-NAE-SAT can be
reduced to Graph-k-Colouring by representing the variables in a clause as a collection of connected
nodes. This is done in such a way that the nodes being colourable corresponds to the clause being
satisfiable. It is clear that this will only hold if the collection of nodes are not coloured the same
colour - equivalently, the literals in the clause are not all assigned the same truth value [6].

Figure 2.1: Valid 3-Colouring of the ’Petersen Graph’ [16].

2.1.3 Computational Phase Transitions

In this work, we consider solving randomly generated k-SAT and k-NAE-SAT problems. For each,
given a CNF formula of n variables andm clauses, we are interested in two quantities: the satisfiability
ratio and algorithmic ratio. We begin by making precise the notion of a random problem before
defining these quantities.

Definition 2.1.10. (Random CNF instance) A random CNF instance of n variables and m clauses
is denoted Fk(n,m). For each clause, with replacement, k variables are chosen with uniform
randomness from

(
n
k

)
combinations. Each variable is randomly negated with probability p = 0.5 [6].

We are interested in regimes where Fk(n,m) instances are unsatisfiable and describe these using the
notion of clause density.

Definition 2.1.11. (Clause density) Fk(n,m) has clause density r = m
n

[6].

8

Experimental evidence suggests that there exists a threshold αc, above which instances with clause
densities r > αc become unsatisfiable. Figure 2.2 explores this for 3-SAT and shows that unsat-
isfiability appears at αc ≈ 4.267. While this change occurs continuously, it becomes sharper as n
increases, suggesting that in the limit n → ∞ it becomes a discontinuous jump [6]. Formally, this
discontinuous jump is defined using the notion of satisfiability with high probability.

Figure 2.2: The probability that an F3(n,m) 3-SAT instance is satisfiable as a function of the clause
density α, for various values of n. Sample size varies from 106 for n = 10 to 104 for n = 100 [6].

Definition 2.1.12. (With High Probability) Fk(n,m) is satisfiable/unsatisfiable ’with high probabil-
ity’ (w.h.p) if [6]

lim
n→∞

P [Fk(n,m) satisfiable/unsatisfiable] = 1 (2.3)

Definition 2.1.13. (Satisfiability Ratio) The satisfiability ratio, rk(n), is a sharp threshold on clause
density r such that Fk(n,m) instances are [6]:

Satisfiable w.h.p ∀ε > 0 : r < rk(n)− ε

Unsatisfiable w.h.p ∀ε > 0 : r > rk(n) + ε
(2.4)

Although rk(n) is not known precisely for k ≥ 3, it has been shown that [7]:

2k ln(2)−O(k) ≤ rk(n) ≤ 2k ln(2), for k-SAT
2k−1 ln(2)−O(1) ≤ rk(n) ≤ 2k−1 ln(2), for k-NAE-SAT

(2.5)

While rk(n) is dependent on n, it is conjectured to converge in the limit for fixed k [7].

Besides the satisfiability ratio, we are interested in problems that are satisfiable but cannot be solved
efficiently with currently known classical algorithms.

Definition 2.1.14. (Algorithmic Ratio) The algorithmic ratio, ak, is a sharp threshold on clause
densities r such that there are no efficient (polynomial time) known classical solvers for Fk(n,m)
instances [7].

No classical algorithm is known to find solutions efficiently beyond [7]:

ak =
2k

k
ln(k), for k-SAT

ak =
2k−1

k
ln(k), for k-NAE-SAT

(2.6)

9

Combining 2.5 and 2.6, for k large, we draw our attention to the relationships:

rk(n)

ak
≥ k ln(2)

ln(k)
− O(k)

2k ln(k)
≥ k ln(2)

ln(k)
− 1 > 1, for k-SAT

rk(n)

ak
≥ k ln(2)

ln(k)
− O(1)

2k−1 ln(k)
≥ k ln(2)

ln(k)
− 1 > 1, for k-NAE-SAT

(2.7)

This implies that there exists problems in between the satisfiability and algorithmic ratios. We aim
to explore QAOA’s use in solving problems within this regime.

2.2 Classical Solvers
Classical algorithms for solving SAT can be split into two main categories: Complete algorithms and
Stochastic Local Search (SLS) algorithms [11].

SLS algorithms are incomplete in the sense that they cannot determine with certainty whether a
given formula is satisfiable. However, in the regime of necessarily satisfiable problems, they are very
efficient, particularly for randomly generated instances. Their general approach consists of starting
with a random assignment and flipping variable truth values until a satisfying assignment is found.
Deciding which variables to flip is done through a combination of randomness or locally searching
the space of truth assignments to optimise a constructed heuristic.

2.2.1 DPLL

Davis, Putnam, Logemann, and Loveland (DPLL) is a standard example of a Complete algorithm
[17]. Its approach (Algorithm 1) is to choose a variable x, assign the two possible truth values to it
and recursively check if either of the two resulting settings is satisfiable. Setting v(x) = ⊤ satisfies
all the clauses containing x, while all the clauses containing ¬x must now be satisfied by another
variable within it. In the former, we can think of the formula shortening and in the latter the clause
shortening. If a clause becomes empty (i.e. all variables are given assignments that disagree with
the clause), then we have a contradiction and DPLL must backtrack. Finally, if every computation
leaf has a contradiction then the formula is certainly unsatisfiable.

It is clear that DPLL’s run time corresponds to the number of recursive calls made (nodes searched).
As such, an increase in backtracking corresponds to an increase in run time. When the clause density
is low, little backtracking is observed since each clause shares few variables with others. As a result,
the impact of setting a variable’s truth value in one clause is unlikely to cause a contradiction in
another and require a backtrack. However, as the density increases, so does the overlap in vari-
ables between clauses, causing more backtracking and recursive calls. Eventually, this becomes an
exponential amount [6].

2.2.2 WalkSAT and WalkSATlm

In general, SLS algorithms select variables to flip based on optimising scoring functions.

Definition 2.2.1. (Make score) For a variable x in a Boolean formula ϕ, make(x) is the number of
clauses that become satisfied by flipping x.

Definition 2.2.2. (Break score) For a variable x in a Boolean formula ϕ, break(x) is the number of
clauses that become unsatisfied by flipping x.

An example of a maximised scoring function is

score(x) = make(x)− break(x) (2.8)

10

Algorithm 1: DPLL Algorithm
1 Function DPLL(ϕ):
2 if ϕ empty then
3 return true;

4 if ϕ contains an empty clause then
5 return false;

6 Choose an unset variable x from ϕ;
7 if DPLL(ϕ[v(x) = ⊤]) then
8 return true;

9 if DPLL(ϕ[v(x) = ⊥]) then
10 return true;

11 return false;

A focused random walk is an SLS approach that chooses variables only from clauses that are un-
satisfied. WalkSAT [18], is a popular example that employs a variable selection scheme (Algorithm
2) based on break scores. At each iteration, any freebie variables are flipped (variables with break
scores of 0). Otherwise, a Bernoulli random variable (controlled by noise parameter p) is sampled.
Depending on the outcome, a variable to be flipped is either chosen at random or amongst those that
have lowest (non-zero) break scores in the clause. WalkSAT solves tiebreaks (multiple variables with
optimal score) through random selection. We note the inclusion of a max_flips argument to account
for SLS being incomplete, avoiding the algorithm looping infinitely in the case of an unsatisfiable
formula.

WalkSATlm [11], builds on WalkSAT, altering the tiebreak procedure to no longer be random. A new
scoring function is introduced as follows.

Definition 2.2.3. (τ -satisfied) Given a Boolean formula ϕ and assignment α, a clause c in ϕ is
τ -satisfied iff under α, it contains exactly τ satisfied literals [11].

As such, a 0-satisfied clause is an unsatisfied clause, while ≥ 1-satisfied clauses are satisfied. 1-
satisfied clauses are of interest as they are very unstable - flipping the variable corresponding to the
satisfied literal returns the clause to an unsatisfied state. Using this, the make score is generalised.

Definition 2.2.4. (τ -level make) For a variable x in a Boolean formula ϕ, makeτ (x) is the number
of (τ − 1)-satisfied clauses that become τ -satisfied by flipping x [11].

It is clear that make1 is equivalent to make. make2, whereas, is the number of clauses that move
away from instability - flipping x would make them 2-satisfied and so they can no longer be broken
by flipping exactly one variable. This corresponds to the number of variables that would have their
break scores decreased by flipping x.

WalkSATlm introduces the lmake scoring function to be used in tiebreak situations (Algorithm 3).

lmake(x) = ω1 ·make1(x) + ω2 ·make2(x) (2.9)

where ω1, ω2 are hyperparameters. The variable with the maximal lmake score amongst those with
the minimal break scores is chosen to be flipped. This simple change allows WalkSATlm to outperform
WalkSAT by orders of magnitude for k > 3 and stems from the fact that tiebreaks occur in 40% and
30% of steps in 5-SAT and 7-SAT respectively [11].

11

Algorithm 2: WalkSAT Algorithm
1 Function WalkSAT(ϕ, p, max_flips):
2 Randomly assign truth values to all variables in ϕ;
3 for i = 1 to max_flips do
4 if ϕ is satisfied then
5 return the assignment ;

6 Choose uniformly at random an unsatisfied clause c from ϕ;
7 if ∃x ∈ c : break(x) = 0 then
8 Flip the value of (the first such) x; // ’Freebie’

9 Sample X ∼ Bernoulli(p);
10 if X then
11 Choose uniformly at random x ∈ c and flip its value;

12 else
13 Choose uniformly at random x ∈ argmin

y∈c
break(y) and flip its value;

14 return No satisfying assignment found ;

Algorithm 3: WalkSATlm Algorithm
1 Function WalkSATlm(ϕ, p, max_flips):
2 Randomly assign truth values to all variables in ϕ;
3 for i = 1 to max_flips do

// As in WalkSAT
4 Sample X ∼ Bernoulli(p);
5 if X then
6 Choose uniformly at random x ∈ c and flip its value;

7 else
8 Choose uniformly at random x ∈ argmax

v∈B
lmake(v), where B = argmin

y∈c
break(y),

9 and flip its value;

10 return No satisfying assignment found ;

2.3 Quantum Approximate Optimisation Algorithm

2.3.1 Adiabatic Quantum Computing

The origins of QAOA lie in Adiabatic Quantum Computing (AQC), also known as Quantum An-
nealing [19].

The evolution of a quantum system under a time dependent Hamiltonian Ĥ(t) is governed by
Schrödinger’s equation [20]:

i
d

dt
|ψ(t)⟩ = Ĥ(t) |ψ(t)⟩ (2.10)

(where ℏ has been set to 1).

Theorem 2.3.1. A physical system remains in its instantaneous eigenstate if a given perturbation is
acting on it slowly enough and if there is a gap between the eigenvalue and the rest of the Hamiltonian’s
spectrum [21].

12

Mathematically, define the instantaneous eigenstates and eigenvalues of Ĥ(t = 0) ∈ CN×N by

Ĥ(t = 0) |λ, t = 0⟩ = Eλ(t = 0) |λ, t = 0⟩ (2.11)

with N = 2n for some n ∈ N, E0(t = 0) ≤ E1(t = 0) ≤ · · · ≤ EN−1(t = 0).

Let |ψ(t = 0)⟩ an instantaneous eigenstate of Ĥ(t = 0) for some λ ∈ {0, . . . , N − 1}, i.e.

Ĥ(t = 0) |ψ(t = 0)⟩ = Eλ(t = 0) |ψ(t = 0)⟩ (2.12)

If ∀t : 0 ≤ t ≤ T

Eλ′(t)− Eλ(t)

{
> 0 λ′ > λ

< 0 λ′ < λ
(2.13)

then [19]
lim
T→∞

| ⟨λ, s = T |ψ(t = T)⟩ | = 1 (2.14)

Consider an interpolating Hamiltonian

ĤA(t) = f(t)ĤI + g(t)ĤF (2.15)

between some initial Hamiltonian ĤI and final Hamiltonian ĤF , with boundary conditions

ĤA(0) = ĤI ⇒ f(0) = 1, g(0) = 0

ĤA(T) = ĤF ⇒ f(T) = 0, g(T) = 1
(2.16)

By application of 2.3.1, preparing the system to start in the λth eigenstate of ĤI and evolving for
sufficiently large T will leave us in the λth eigenstate of ĤF . If finding the λth eigenstate of ĤF
directly is difficult, then this provides an alternative method of calculating it.

Remark 2.3.1. ĤA usually takes the form

ĤA =

(
1− t

T

)
ĤI +

t

T
ĤF (2.17)

but any smooth f, g satisfying the boundary conditions are sufficient.

The necessary run time of the algorithm typically scales as [22]

T = O
(
∆−2

min

)
(2.18)

where

∆min = min (δ−(λ), δ+(λ))

δ− = min
0≤t≤T

Eλ − Eλ−1

δ+ = min
0≤t≤T

Eλ+1 − Eλ

(2.19)

which reduces to ∆min = δ−(λ) for λ = N − 1 and ∆min = δ+(λ) for λ = 0.

However, this scaling means that in certain instances the required run time is

T = o(
√
N) = o(2

n
2) (2.20)

where we recall that N = 2n. In other words, the running time scales exponentially with the problem
size and, as such, the algorithm can be inefficient [23].

13

2.3.2 Trotterisation

Solving equation 2.10 gives rise to the unitary time evolution operator

Û(t) = T e−i
∫ t
0 Ĥ(t′)dt′ (2.21)

wherein T is the time ordering operator, that takes any product of operators and reorders them so
that each operator only has later operators to the left, and

|ψ(t)⟩ = Û(t) |ψ(0)⟩ (2.22)

where |ψ(0)⟩ is the system’s initial state [20].

We are interested in accurate, yet practical, approximations of this operator. As such, we consider
the corresponding Riemann sum to remove the need for T :

Û(t) ≈ e
−i

k−1∑
a=0

τĤ(aτ)
(2.23)

where the elapsed time t has been discretised into k intervals of length τ = t/k. Next, we apply the
Trotter-Suzuki Decomposition to rewrite the unitary as a product of operators.

Theorem 2.3.2. (Trotter-Suzuki Decomposition)

ex(A+B) = eAxeBx +O
(
x2
)

(2.24)

where x is a parameter and A,B are arbitrary operators with [A,B] ̸= 0 [24].

Therefore, for small enough τ [25]:

Û(t) ≈
k−1∏
a=0

e−iĤ(aτ)τ (2.25)

For a system governed by the Hamiltonian described in 2.15

ÛA(t) ≈
k−1∏
a=0

e−iĤA(aτ)τ =
k−1∏
a=0

e−i(f(aτ)ĤI+g(aτ)ĤF)τ (2.26)

By a second application of the decomposition (2.3.2)

ÛA(t) ≈
k−1∏
a=0

e−iτf(aτ)ĤIe−iτg(aτ)ĤF := ÛA(t; τ) (2.27)

This approximation is exact in the limit

ÛA(t) = lim
τ→0

ÛA(t; τ) (2.28)

ÛA(t; τ) is denoted the trotterised form of ÛA(t).

2.3.3 Variational Quantum Eigensolvers

The Variational Quantum Eigensolver (VQE) [26] is a quantum algorithm used to find the ground
state (eigenstate with lowest corresponding eigenvalue) of a physical system governed by Hamiltonian
Ĥ. Solving such a problem has many uses in quantum chemistry and condensed matter physics [27].

Theorem 2.3.3. (Variational Principle) Let |λ0⟩ the ground state of Ĥ such that Ĥ |λ0⟩ = λ0 |λ0⟩.
The expectation of Ĥ, for arbitrary state |ϕ⟩

⟨ϕ|Ĥ|ϕ⟩ ≥ ⟨λ0|Ĥ|λ0⟩ = λ0 (2.29)

14

Proof. Let |ϕ⟩ an arbitrary state. Assume w.l.o.g that it is normalised. The eigenstates of Ĥ form a
basis of the N -dimensional Hilbert space, allowing us to decompose

|ϕ⟩ =
N−1∑
i=0

ci |λi⟩ (2.30)

where Ĥ |λi⟩ = λi |λi⟩. Now

⟨ϕ|Ĥ|ϕ⟩ =
N−1∑
i,j=0

cic
∗
jλi ⟨λj|λi⟩ =

N−1∑
i=0

|ci|2λi ≥ λ0

N−1∑
i=0

|ci|2 = λ0 (2.31)

by |ϕ⟩ normalised.

VQE makes use of this lower bound by recasting the search for the ground state as a minimisation
problem. It prepares a state using a parameterised quantum circuit (PQC), where the unitary U(θ⃗)
represents its action

|ψ(θ⃗)⟩ = U(θ⃗) |0⟩ (2.32)

The goal is to find
θ⃗∗ = argmin

θ⃗

⟨ψ(θ⃗)|Ĥ|ψ(θ⃗)⟩ (2.33)

Where the state |ψ(θ⃗∗)⟩ is (close to) the ground state.

2.3.4 QAOA Procedure

Inspired by the above, QAOA aims to maximise an objective function

C : {0, 1}n → R (2.34)

where {0, 1}n is the n-dimensional vector space of bitstrings.

Definition 2.3.1. (Hamiltonian representation of a function) A Hamiltonian Ĥf represents a func-
tion f if:

Ĥf |x⟩ = f(x) |x⟩ (2.35)

for x ∈ {0, 1}n with corresponding computational basis state |x⟩ [28].

If we represent C by some ĤC then finding

max
x∈{0,1}n

C(x) (2.36)

corresponds to finding
max

x∈{0,1}n
⟨x|ĤC|x⟩ (2.37)

by ⟨x|ĤC|x⟩ = ⟨x|C(x)|x⟩ = C(x) ⟨x|x⟩ = C(x).

In other words, in order to maximise the objective function, we seek the highest energy state of ĤC.
Drawing inspiration from AQC (2.3.1), we consider the effect of initialising our system in the highest
energy eigenstate of some simple Hamiltonian ĤB and evolving slowly such that the system is finally
governed by ĤC. QAOA approximates this adiabatic process by trotterising the unitary evolution
(2.3.2) and applying VQE (2.3.3) principles (where we note that finding the highest energy state of
ĤC is equivalent to finding the ground state of −ĤC).

15

Consider a mixer Hamiltonian ĤB and problem Hamiltonian ĤC that represents the objective function
to maximise. Let

Ĥ(t) = f(t)ĤB + g(t)ĤC (2.38)

with boundary conditions

Ĥ(0) = ĤB ⇒ f(0) = 1, g(0) = 0

Ĥ(T) = ĤC ⇒ f(T) = 0, g(T) = 1
(2.39)

The corresponding unitary evolution operator is trotterised (2.27) as:

Û(t) ≈
k−1∏
a=0

e−iτf(aτ)ĤBe−iτg(aτ)ĤC (2.40)

then discretised and re-parameterised to form

ÛQAOA :=

p−1∏
i=0

ÛB(βi)ÛC(γi) (2.41)

for some p ∈ N, denoted as the depth of the QAOA circuit, and unitary operators

ÛB(βj) = e−iβjĤB

ÛC(γj) = e−iγjĤC
(2.42)

Figure 2.3: Conceptual analogy for comparing analog (continuous) adiabatic, simulated (discretised)
adiabatic evolution and QAOA (discretised and re-parameterised) as a path through state space [29].

The QAOA algorithm involves repeating the following procedure:

1. Preparation of the highest energy state |s⟩ of ĤB

16

2. Applications of the mixing ÛB and problem ÛC unitaries to form

∣∣γ, β〉
p
:=

p−1∏
i=0

ÛB(βi)ÛC(γi) |s⟩ (2.43)

3. Calculating
Fp :=

〈
γ, β

∣∣ ĤC
∣∣γ, β〉

p
(2.44)

and updating γ = γ1, . . . , γp and β = β1, . . . , βp in order to maximise Fp.

Let
Mp = max

γ,β
Fp (2.45)

We note that
Mp+1 ≥Mp (2.46)

because increasing the depth of the circuit only increases the size of the accessible Hilbert space.
By adiabatic considerations [8]:

lim
p→∞

Mp = max
x∈{0,1}n

C(x) (2.47)

2.3.5 Choosing Hamiltonians

While it is clear that our problem Hamiltonian ĤC should represent our objective function (we explore
how to do this in 2.4), it is not immediately obvious what form our mixer Hamiltonian ĤB should
take.

Theorem 2.3.4. [ĤA, ĤB] = 0 ⇒ ĤA, ĤB share a common eigenbasis.

Proof. Let |a⟩ an eigenstate of ĤA with eigenvalue a.

[ĤA, ĤB] = 0 ⇒ [ĤA, ĤB] |a⟩ = 0

⇒ (ĤAĤB − ĤBĤA) |a⟩ = 0

⇒ ĤAĤB |a⟩ − aĤB |a⟩ = 0

⇒ ĤA(ĤB |a⟩) = a(ĤB |a⟩)

(2.48)

I.e. ĤB |a⟩ is also an eigenstate of ĤA with eigenvalue a. If ĤA has a non-degenerate spectrum then
∃b : ĤB |a⟩ = b |a⟩, and if not then a linear superposition of {|ai⟩ : ĤA |ai⟩ = a |ai⟩} can be found
that is an eigenstate of ĤB.

As such, it is important that the mixer Hamiltonian ĤB is chosen to not commute with the prob-
lem Hamiltonian ĤC. Otherwise, only the global phases of states in the circuit would be affected.
Explicitly, if the Hamiltonians commute then

p−1∏
j=0

ÛB(βj)ÛC(γj) |s⟩ =
p−1∏
j=0

e−iβjĤBe−iγjĤC
∑
λ

sλ |λ⟩

=

p−1∏
j=0

e−iβjλbe−iγjλc
∑
λ

sλ |λ⟩

=

p−1∏
j=0

e−iβjλbe−iγjλc

︸ ︷︷ ︸
global phase

|s⟩

(2.49)

17

where we have expanded |s⟩ =
∑

λ sλ |λ⟩ in the shared eigenbasis: ĤC |λ⟩ = λc |λ⟩, ĤB |λ⟩ = λb |λ⟩.
Global phases would result in no impact to the measurement outcomes and make QAOA inexpressive
(unable to explore the Hilbert space).

While not necessary, many QAOA algorithms on n qubits choose

ĤB =
n∑

j=1

Xj (2.50)

where Xj is the multi-qubit Pauli-X operator acting on the jth qubit [8].

The corresponding unitary operator

ÛB(β) = e−iβĤB = e
−iβ

n∑
j=1

Xj

=
n∏

j=1

e−iβXj =
n∏

j=1

RXj
(2β) (2.51)

Where RXj
(θ) is the operator corresponding to a rotation of the jth qubit by θ about the x-axis on

the Bloch sphere and we’ve used the fact that [Xj, Xk] = 0.

ĤB’s highest energy state is

|+⟩⊗n =
1√
2n

∑
x∈{0,1}n

|x⟩ (2.52)

whose form as a uniform superposition of the computational basis states makes it an intuitive choice
as a starting point. However, other Hamiltonians can be used, including ones that encode hard
constraints [30].

2.3.6 Barren Plateaus

Barren Plateaus are a significant issue faced in the training of Variational Quantum Algorithms
(VQAs), such as QAOA, or more generally VQEs (2.3.3) [31]. This term describes the phenomenon
where the process of parameter optimisation halts at a sub-optimal set of values (a local minimum).
This occurs when the training landscape is flat such that no descent direction can be found: a plateau.

Definition 2.3.2. (Ansatz) An ansatz is a quantum circuit parameterised by variable angles, it is
expressed as a parameterised unitary for some D ∈ N+

U(θ) :=
D∏
j=1

Uj(θj)Wj (2.53)

where {Wj}Nj=1 is a chosen set of fixed unitaries and Uj = e−iθjVj is a rotation parameterised by θj
and generated by Hermitian operator Vj.

Definition 2.3.3. (VQA cost function) A VQA cost function takes the form

Cρ,H := Tr[HU(θ)ρU(θ)†] (2.54)

where ρ is an n-qubit input state, H a Hermitian operator and U(θ) takes the form in 2.3.2.

If ρ = |ψ⟩ ⟨ψ|, a pure state

Tr[HU(θ)ρU(θ)†] = ⟨ψ|U(θ)†HU(θ)|ψ⟩ (2.55)

We recognise that this is the form of the QAOA objective function (2.37), and that the QAOA circuit
takes the form of an ansatz. As such, we consider the following results derived in the work of Holmes
et. al [32].

18

Theorem 2.3.5. (Average of gradient) For a generic ansatz of the form 2.3.2, and cost function
Cρ,H of the form 2.3.3, the average of ∂kCρ,H over all parameters θ vanishes [32]

Eθ[∂kCρ,H] = 0 (2.56)

where
∂kCρ,H :=

∂Cρ,H(θ)

∂θk
(2.57)

Theorem 2.3.6. (Deviation of gradient) For δ ≥ 0 [32]

P (|∂kCρ,H | ≥ δ) ≤ V ar[∂kCρ,H]

δ2
(2.58)

where
V ar[∂kCρ,H] = Eθ[(∂kCρ,H)

2]− Eθ[∂kCρ,H]
2 (2.59)

This means that if the variance of partial derivatives is small for all θk then the probability that
the partial derivative is non-zero is also small for all θk. Such a situation is susceptible to Barren
Plateaus during optimisation. In particular, this occurs in expressive circuits consisting of multiple
unitaries that allow a large part of the effective Hilbert space to be explored [32]. We consider the
effects of Barren Plateaus in QAOA in Section 3.2.

2.4 Representing Functions as Hamiltonians
The notion of representing a function with a Hamiltonian was introduced in 2.3.1. In this section,
we explore this further, focusing on objective functions of the form

C : {0, 1}n → R (2.60)

The results derived will allow us to encode SAT problems into our QAOA problem Hamiltonian.

2.4.1 Boolean Functions

Definition 2.4.1. (Boolean function) The class of Boolean function on n bits takes the form

Bn := {f : {0, 1}n → {0, 1}} (2.61)

We begin by representing f(x) = 1 and g(x) = 0 respectively:

Ĥf = I
Ĥg = 0

(2.62)

Where I is the identity operator and 0 the null operator.

It is clear that

Ĥf |x⟩ = 1× |x⟩ = |x⟩
Ĥg |x⟩ = 0× |x⟩ = 0

(2.63)

Next, we represent hj(x) = xj where x = x0x1 . . . xn−1, making use of the Pauli-Z operator Z =
|0⟩ ⟨0| − |1⟩ ⟨1|. We consider the multiple qubit version

Zj := I⊗(j−1) ⊗ Z ⊗ I⊗(n−j) (2.64)

whose application gives
Zj |x⟩ = (−1)xj |x⟩ = (1− 2xj) |x⟩ (2.65)

19

Letting Ĥhj
:= 1

2
(I− Zj) |x⟩

Ĥhj
|x⟩ = 1

2
(1− (1− 2xj)) |x⟩ = xj |x⟩ (2.66)

It is clear Ĥhj
represents hj. Combining these together, the following composition rules can be

derived.
Theorem 2.4.1. Let f, g ∈ Bn represented by Ĥf , Ĥg, then [28]:

• Ĥ¬f = I− Ĥf

• Ĥf∧g = ĤfĤg

• Ĥf∨g = Ĥf + Ĥg − ĤfĤg

• Ĥf⊕g = Ĥf + Ĥg − 2ĤfĤg

• Ĥf⇒g = I− Ĥf + ĤfĤg

• Ĥaf+bg = aĤf + bĤg

In cases where it is inefficient or difficult to express a function as a composition before finding its
representation, more general results exist in terms of Fourier coefficients (see Appendix A).

f(x) Ĥf f(x) Ĥf

x 1
2
I − 1

2
Z ¬x 1

2
I + 1

2
Z

x1 ⊕ x2
1
2
I − 1

2
Z1Z2

k⊕
j=1

xj
1
2
I − 1

2

k∏
i=1

Zk

x1 ∧ x2 1
4
I − 1

4
(Z1 + Z2 − Z1Z2)

k∧
j=1

xj
1
2k

k∏
j

(1− Zj)

x1 ∨ x2 3
4
I − 1

4
(Z1 + Z2 + Z1Z2)

k∨
j=1

xj I − 1
2k

k∏
j

(1 + Zj)

x1x2
3
4
I + 1

4
(Z1 + Z2 − Z1Z2) x1 ⇒ x2

3
4
I + 1

4
(Z1 − Z2 + Z1Z2)

Table 2.1: Basic composition rules.

2.4.2 Real/Pseudo-Boolean Functions

In many cases, functions of interest take the form of a (weighted) sum of Boolean functions. We will
find that it is useful to be able to express these.
Definition 2.4.2. (Real function) The class of Real functions on n bits take the form

Rn := {f : {0, 1}n → R} (2.67)

Theorem 2.4.2. Every g ∈ Rn can be written (non-uniquely) as the weighted sum of Boolean
functions [28]:

g(x) =
∑
j

wjfj(x) (2.68)

where fj ∈ Bm≤n (i.e. acts on a subset of the bits) and wj ∈ R.

Taking Bn as the elements of a real vector space, they form a basis of Rn for each n. As such, the
terms fj, wj above are effectively basis vectors and their corresponding coefficients in the expansion
of the given Real function g. A Real function in this representation is termed Pseudo-Boolean.
Theorem 2.4.3. Let g ∈ Rn a Pseudo-Boolean function, its representing Hamiltonian takes the
form [28]:

Ĥg =
∑
j

wjĤfj (2.69)

where Ĥfj is the representing Hamiltonian of fj ∈ Bn.

We will find that the objective functions of k-SAT and k-NAE-SAT take Pseudo-Boolean forms.

20

Chapter 3

Related Work

3.1 QAOA Success Probabilities

The recent work of Boulebnane & Montanaro [10] explores the success probability of fixed angle, con-
stant depth QAOA for solving k-SAT. While QAOA is often used for finding approximate solutions,
this work examines its application as an exact solver. Namely, the authors consider repeatedly run-
ning QAOA until a measurement outcome on the output state corresponds to a satisfying assignment.

This translates into an exact, yet incomplete, algorithm for solving SAT. If no satisfying assign-
ment exists then no measurement outcome will be a solution and the algorithm will infinitely loop.
Nevertheless, incomplete solvers are common in classical algorithms (2.2.2) and are either run on
necessarily satisfiable instances or with a finite limit on the number of attempts.

In this section, we summarise their findings and introduce relevant definitions.

Definition 3.1.1. (Random k-SAT generation). Let k ∈ N+ and r > 0. A random k-SAT
σ ∼ CNF (n, k, r) instance is constructed as follows [10]:

• Sample m ∼ Poisson(rn)

• Generate σ :=
∧m−1

i=0 σi, σ ∼ Fk(n,m) as in 2.1.10

An assignment x ∈ {0, 1}n satisfying σ is denoted as

x ⊢ σ (3.1)

Definition 3.1.2. (Random k-SAT QAOA). Let k, n ∈ N+, r > 0 in σ ∼ CNF (n, k, r)

Ĥσ :=
∑

x∈{0,1}n
|{j ∈ {0, . . . ,m− 1} : x ⊬ σj}| |x⟩⟨x| (3.2)

represents the objective function counting the number of unsatisfied clauses in σ. For each m′ ∈
{0, . . . ,m− 1}

{Ĥσ = m′} :=
∑

x∈{0,1}n
|{j∈{0,...,m−1}:x⊬σj}|=m′

|x⟩⟨x| (3.3)

denotes the orthogonal projector onto the eigenspace of Ĥσ with eigenvalue m′. For β, γ ∈ Rp

∣∣Ψ(β, γ, σ)
〉
:=

p−1∏
j=0

e
−

iβj
2

n−1∑
k=0

Xk

e−
iγj
2

Ĥσ |+⟩⊗n (3.4)

21

denotes the state prepared by p-layer QAOA for the problem defined by Ĥσ. Here

|+⟩⊗n =
1√
2n

∑
x∈{0,1}n

|x⟩ (3.5)

is the equal superposition across all possible bitstrings.

In particular {Ĥσ = 0} denotes the orthogonal projector onto the space of satisfying assignments.

An ideal QAOA algorithm prepares a state entirely within this subspace, resulting in measurement
outcomes that are only satisfying assignments. For states that are not entirely within this subspace,
we consider the probability that a measurement outcome is a satisfying assignment.

Definition 3.1.3. (Success probability) Let k, n ∈ N+, r > 0 in σ ∼ CNF (n, k, r) and β, γ ∈ Rp

psucc(β, γ, σ) =
〈
Ψ(β, γ, σ)

∣∣{Ĥσ = 0}
∣∣Ψ(β, γ, σ)

〉
(3.6)

For brevity this is denoted as just psucc(σ). Optimising the parameters within the QAOA procedure
corresponds to maximising the success probability.

3.1.1 Analytic Derivation

Boulebnane & Montanaro prove the following result on the expectation of psucc over randomly gen-
erated k-SAT instances.

Theorem 3.1.1. (Average-case success probability of random k-SAT QAOA) Let q, p ∈ N+ and
β, γ ∈ Rp. For k = 2q, n ∈ N+ and γ sufficiently small (constant independent of n)

lim
n→∞

1

n
logEσ∼CNF (n,k,r)[psucc(σ)] = F (z∗) + (k − 1)

∑
α⊂[2p+1]

(
∂F

∂zα

)k

(3.7)

[2p+ 1] = {1, . . . , 2p+ 1} and z∗ ∈ C22p+1 is the unique fixed point of

C22p+1 → C22p+1

(zα)α⊂[2p+1] 7→
(
−k(∂αF ((zα′)α′⊂[2p+1]))

k−1
)
α⊂[2p+1]

(3.8)

wherein

F : C22p+1 → C

F ((zα)α⊂[2p+1]) 7→ log
∑

s∈{0,1}2p+1

bs exp

1

2

∑
α⊂[2p+1]

∀j,j′∈α:sj=sj′

(−cα)
1
k zα

(3.9)

where

bs :=
1

2
(−1)1[s0 ̸=sp]

∏
j∈[p]

(
cos

βj
2

)
1[sj=sj+1]+1[s2p−j=s2p−j−1](

i sin
βj
2

)
1[sj ̸=sj+1]+1[s2p−j ̸=s2p−j−1]

cs := (−1)1[p∈α]
∏

j∈α,j<p

(
e−

iγj
2 − 1

) ∏
j∈α,j>p

(
e

iγ2p−j
2 − 1

) (3.10)

1 is the indicator function.

22

The result in 3.1.1 is dependent on fixed p ∈ N+ and β, γ ∈ Rp. In other words, a QAOA circuit with
predetermined depth and angles that are independent of the actual problem instance σ. While this
is advantageous, as it does not require re-training of the parameters, it gives a pessimistic estimate
of the performance of QAOA. It also does not optimise for different values of n, adding an additional
source of inaccuracy. Finally, calculating the unique fixed point is an expensive computation with a
complexity of O(22p+1).

Nevertheless, this provides an important heuristic to predict the performance of QAOA. In particular,
the authors show that the success probability is closely related to the running time of the algorithm.
As such, a quantum advantage can be achieved if the running times corresponding to this analytic
result are shown to outperform classical solvers. We explore these heuristics in the section below, as
well as our own work later in the thesis.

Their proof relies on the use of generalised multinomial sums which considers expressions of the form(∑
j

xj

)n

(3.11)

The expected success probability of fixed-angle k-SAT QAOA can be cast as such a sum. Its leading
exponential contribution is estimated with the use of a saddle point method that requires γ is small.
However, the bound on γ is not straightforward, and while the authors prove that it is unique and
exists, they do not provide an immediate representation of it.

The derivation of their results is involved and beyond the scope of this thesis.

3.1.2 Empirical Validation

Boulebnane & Montanaro validate the derived result by examining the performance of QAOA on
instances near the satisfiability threshold r ∼ rk. In each case, the parameters β and γ are selected
by training on a subset of 100 instances. A larger set of size 10000 is then used to evaluate the
empirical success probability.

Definition 3.1.4. (Empirical success probability) Given the ensemble {σi : σi ∼ CNF (n, k, r)}v−1
i=0 ,

the QAOA empirical success probability is defined as

p̂succ :=
1

v

v−1∑
i=0

psucc(σi) (3.12)

In this case v = 10000. For k = 8, p ∈ {1, 2, 4, 8, 30, 60} and n ∈ {12, . . . , 20}. They find that the
predicted and empirical success probabilities closely agree, as in Figure 3.1. This provides confidence
in the derived result.

We note the choice of parameters: the values of n are such that all QAOA states can be calculated
exactly and so classically simulated while the choice of k fits the requirement (3.1.1) that k = 2q

for some q. In particular, k = 16 would result in instances that are computationally expensive to
analyse while k = 4 is a regime that classical solvers are very performant in [11].

3.1.3 Benchmarking

Following confidence in the derived analytic result, Boulebnane & Montanaro carry out a series of
benchmarking experiments to investigate the potential of QAOA in solving k-SAT problems.

23

Figure 3.1: Success probability for k = 8, varying p. Points are empirical results p̂succ with solid lines
fitted. Dashed lines are psucc predicted by theory [10].

3.1.3.1 Running Times

Definition 3.1.5. (Instance running time) The running time of a random k-SAT QAOA instance rσ
is defined as the number of bitstrings that have to be sampled from the final quantum state

∣∣Ψ(β, γ, σ)
〉

before one is a satisfying assignment of σ.

Definition 3.1.6. (Median running time) The median running time of a random k-SAT QAOA
Medσ∼CNF (n,k,r)[rσ] is defined as the median of instance running times {rσ : σ ∼ CNF (n, k, r)}.

The median is used as a benchmark, rather than expected or maximum running time, to mitigate
the effect of problem instances that are unsatisfiable. In such cases, it is clear that the instance run
time will be infinite, causing the expected run time to be so too. It is also a common method to
benchmark classical SAT solvers; allowing for easier comparison [33].

The expected success probability gives a lower bound on the median running time.

Lemma 3.1.1.
Medσ∼CNF (n,k,r)[rσ] ≥

1

2Eσ∼CNF (n,k,r)[psucc(σ)]
(3.13)

Proof. Let mp the median success probability

Eσ[psucc(σ)] =
∑
σ

Pr(σ)psucc(σ)

=
∑

σ:psucc(σ)<mp

Pr(σ)psucc(σ) +
∑

σ:psucc(σ)≥mp

Pr(σ)psucc(σ)

≥
∑

σ:psucc(σ)≥mp

Pr(σ)psucc(σ)

≥ 1

2
mp

(3.14)

It follows
Eσ[psucc(σ)]

−1 ≤ 2

mp

≤ 2Medσ[rσ] (3.15)

where we have used Jensen’s inequality for medians [34].

The authors assess the relationship

Medσ∼CNF (n,k,r)[rσ] ∼ [Eσ∼CNF (n,k,r)[psucc(σ)]]
−1 (3.16)

in more detail for k = 8, by considering the empirical median running time.

24

Definition 3.1.7. (Empirical median running time) Given the ensemble R = {σi : σi ∼ CNF (n, k, r)}v−1
i=0 ,

the QAOA empirical median running time Medσ∈R[rσ] is defined as the median of the corresponding
running times {rσi

: σi ∈ R}.

Again, the ensemble size is v = 10000 and r ∼ rk. As shown in Figure 3.2, they observe that for
small p, the two measures are well aligned, while the slopes differ for larger p. They hypothesise that
this is due to the procedure used in selecting the QAOA parameters β, γ.

Figure 3.2: Empirical median running time Medσ∈R[rσ] (solid line) compared with running time
estimated from average success probability [Eσ∼CNF (n,k,r)[psucc(σ)]]

−1 (dashed line) [10].

3.1.3.2 Classical Benchmarking

The authors compare the median running time of QAOA for p = 14 and p = 60 to different classical
algorithms for k = 8. The instance running time for classical solvers is defined as the number of
evaluations of the Boolean formula made during solving. As seen in Figure 3.3, QAOA with p ≥ 14
outperforms the classical solvers.

Figure 3.3: Median running times of selected quantum and classical algorithms [10].

3.1.3.3 Scaling Exponents

We are interested in the scaling of QAOA’s performance (with respect to the problem size n),
particularly in the large n limit. This is considered formally in 3 contexts as follows.

Definition 3.1.8. (Predicted scaling exponent)

Cp,k(β, γ) = − lim
n→∞

1

n
logEσ∼CNF (n,k,r)[psucc(σ)] (3.17)

25

Upon rearrangement:
Eσ∼CNF (n,k,r)[psucc(σ)] ∼ 2−nCp,k(β,γ) (3.18)

Definition 3.1.9. (Empirical success probability scaling exponent) Given the ensemble {σi : σi ∼
CNF (n, k, r)}v−1

i=0 , Ĉp,k(β, γ) is such that

p̂succ =
1

v

v−1∑
i=0

psucc(σi) = 2−nĈp,k(β,γ) (3.19)

Definition 3.1.10. (Empirical median running time scaling exponent) Given the ensemble R = {σi :
σi ∼ CNF (n, k, r)}v−1

i=0 , C̃p,k(β, γ) is such that

Medσ∈R[rσ] = 2nC̃p,k(β,γ) (3.20)

Since
lim
v→∞

p̂succ = Eσ∼CNF (n,k,r)[psucc(σ)] (3.21)

and the results in the previous section show

Medσ∼CNF (n,k,r)[rσ] ∼ [Eσ∼CNF (n,k,r)[psucc(σ)]]
−1 (3.22)

we expect
Cp,k(β, γ) ≈ Ĉp,k(β, γ) ≈ C̃p,k(β, γ) (3.23)

To this end, Boulebnane & Montanaro focus on these induced exponents in comparison to WalkSATlm,
the classical solver found to have the lowest median running time (3.3). The experiments were carried
out for n ∈ {12, . . . , 20}, k = 8 and

Cp,k(β, γ) for p ≤ 10 (3.24) Ĉp,k(β, γ), C̃p,k(β, γ) for p ≤ 60 (3.25)

The authors observe (3.4) that Cp,k(β, γ) and Ĉp,k(β, γ) closely agree. However, C̃p,k(β, γ) diverges.
They also attribute this to the β and γ selection procedure. Nonetheless, in all 3 cases, they find
an advantage over WalkSATlm. In particular, they calculate the scaling of WalkSATlm from Figure
3.1.3.2 and find regimes of p for which the scaling exponents of QAOA are smaller.

Figure 3.4: Comparison of scaling exponents Cp,k(β, γ), Ĉp,k(β, γ) and C̃p,k(β, γ). Dashed black line
is empirically estimated median running time of WalkSATlm. Dashed blue line is fitting based on all
p and solid blue line is fitted on p ≤ 10 [10].

26

3.2 Quantum Computational Phase Transitions
The recent work of Zhang et. al [35] explores phase transitions (2.1.3) and Barren Plateaus (2.3.6),
within the context of QAOA for k-SAT and 1-in-k-SAT+.

Definition 3.2.1. (1-in-k-SAT+) Given a propositional formula ϕ in CNF, where each clause has k
positive variables (no negations), does there exist an assignment v on ϕ, such that v satisfies ϕ and
v assigns exactly one variable true in each clause.

In particular, the authors focus on instances where k = 2 and k = 3 as this allows for comparison
between the complexity classes (2-SAT, 1-in-2-SAT+ ∈) P and (3-SAT, 1-in-3-SAT+ ∈) NP.

3.2.1 Barren Plateaus in Training

Zhang et. al study the relationship between Barren Plateaus and QAOA’s ability to solve SAT
problems. To do so, they consider different clause densities m/n and evaluate the gradient of the
cost function on random choices of circuit parameters. The following standard deviation (SD) is
introduced: [

SD(∂1C(γ, β))
]−1 (3.26)

where ∂1C(γ, β) is the partial derivative, with respect to parameter γ1, of C(γ, β) = ⟨γ, β|ĤC|γ, β⟩p
(2.37). This allows situations where the variance of the gradient vanishes (and Barren Plateaus are
expected) to be easily identified.

The results in Figures 3.5a, 3.5b clearly show that for all problems
[
SD(∂1C(γ, β))

]−1 has a clear peak
at some critical clause density m/n. In general, this isn’t the same as the satisfiability threshold,
except for 1-in-3-SAT+. This indicates that there is an algorithmic threshold (2.6) for quantum
algorithms that is different to that of classical algorithms and to the satisfiability threshold.

3.2.2 Accuracy of QAOA

The authors also investigate the accuracy of QAOA in solving SAT problems via the approximation
ratio. They compare this to the approximation ratio of the MWIS algorithm [36].

Definition 3.2.2. (Approximation Ratio) r ≤ 1 is the ratio between the number of clauses satisfied
by a solution and the maximum number of clauses that can be satisfied.

For QAOA, the approximation ratio is found by measuring the output of the circuit 10 times, finding
the approximation ratio of each outcome, and keeping the highest amongst the results.

Figures 3.5c, 3.5d show that as p increases, QAOA’s approximation ratio does too. On the other
hand, as expected, an increase in the clause density corresponds to a decrease in the approximation
ratio. However, the decay is rather slow and supports the robustness of QAOA. For MAX-1-3-SAT+,
they identify a clear quantum advantage at around p ≈ 16. For MAX-1-2-SAT+ advantages appear
for an even shallower depth of p ≈ 8 [35].

Zhang et. al also recast each optimisation problem as a decision problem by setting a threshold
Eth = 0.5 on the number of satisfied clauses. The instance is considered satisfiable iff the number
of clauses the solution satisfies is greater than Eth. The probability of successfully classifying the
instance for fixed clause densities is analysed. The results of this are seen in Figures 3.5c, 3.5d. As
expected, the success probability increases with p. The areas of low success observed are remnants
of the classical empirical hardness and are different from the Barren Plateau difficulties investigated
in the previous set of results [35].

27

(a) Trainability of k-SAT+: (a, b) Probability
problem instance is satisfiable for n variables, (c,
d) Mean of 1/SD(∂1C(γ, β)) for n = 16. Vertical
dashed line represents satisfiability ratio rk, x-
axis is clause density m/n [35].

(b) Trainability of 1-in-k-SAT: (a, b) Probability
problem instance is satisfiable for n variables, (c,
d) Mean of 1/SD(∂1C(γ, β)) for n = 16. Vertical
dashed line represents satisfiability ratio rk, x-
axis is clause density m/n [35].

(c) Accuracy of QAOA in k-SAT: (a,b) Approx-
imation ratio r, (c, d) Success probability in de-
termining satisfiability with n = 10. Horizontal
green line represents success probability of the
random guess. Vertical black dashed line repre-
sents satisfiability ratio rk [35].

(d) Accuracy of QAOA in 1-in-k-SAT+: (a,b)
Approximation ratio r, (c, d) Success probability
in determining satisfiability with n = 10. Hor-
izontal green line represents success probability
of the random guess. Vertical black dashed line
represents satisfiability ratio rk [35].

28

Chapter 4

QAOA for k-SAT

The main aim of this section is to independently reproduce the results of Boulebnane & Montanaro
[10] and gain confidence in our approach before analysing the k-NAE-SAT problem. To do so, we
derive an encoding of k-SAT for QAOA and evaluate its performance on a range of problem instances.

4.1 Implementation

We begin by deriving a formulation that is implementable on any gate-based quantum computer and
provide an implementation of the result using Qiskit [13]. In addition, for the purposes of efficient
large-scale simulation, we consider a diagonalisation of our encoding and produce a corresponding
performant PyTorch [14] procedure.

4.1.1 Problem Hamiltonian

As introduced, QAOA aims to maximise an objective function through its representing Hamiltonian.
In the case of k-SAT, the aim is to find a satisfying assignment. This corresponds to maximising the
number of satisfied clauses, or equivalently, minimising the number of unsatisfied clauses. We follow
conventions in 3.1 and apply the results derived in 2.4 to represent this objective. First, we recall
the definition of a random k-SAT instance.

Definition 4.1.1. (Random k-SAT generation). Let k ∈ N+ and r > 0. A random k-SAT
σ ∼ CNF (n, k, r) instance is constructed as follows:

• Sample m ∼ Poisson(rn)

• Generate σ ∼ Fk(n,m) as in 2.1.10, where σ :=
m−1∧
i=0

σi, σi :=
k−1∨
j=0

lσij

lσij
is a Boolean literal lσij

= xσij
or ¬xσij

and σij ∈ {0, . . . , n− 1} is an index into the n variables.

An assignment x ∈ {0, 1}n satisfying σ is denoted as

x ⊢ σ (4.1)

Minimising the number of unsatisfied clauses corresponds to minimising:

Cσ(x) =
m−1∑
i=0

1{x ⊬ σi} (4.2)

where x ∈ {0, 1}n encodes variable assignments and 1 is the indicator function.

29

Example 4.1.1. Let σ = (x0 ∨ x1 ∨ ¬x2) ∧ (x0 ∨ x3 ∨ x4). Cσ(01100) = 1
This is a CNF formula of 5 variables, 3 variables per clause and 2 clauses.
The assignment v(x0) = v(x3) = v(x4) = ⊥, v(x1) = v(x2) = ⊤ corresponds to x = 01100.
1{x ⊬ σ0} = 0 because v(x0 ∨ x1 ∨ ¬x2) ≡ v(x0) ∨ v(x1) ∨ v(¬x2) ≡ ⊥ ∨⊤ ∨⊤ ≡ ⊤.
1{x ⊬ σ1} = 1 because v(x0 ∨ x3 ∨ x4) ≡ v(x0) ∨ v(x3) ∨ v(x4) ≡ ⊥ ∨⊥ ∨⊥ ≡ ⊥.

We identify Cσ as a Pseudo-Boolean function. By Theorem 2.4.3 its representing Hamiltonian takes
the form

ĤCσ =
m−1∑
i=0

Ĥ1{x⊬σi} ≡
m−1∑
i=0

Ĥ¬σi
(4.3)

where Ĥ1{x⊬σi} represents each clause and can be written as Ĥ¬σi
. This is because each clause can

be treated as a Boolean function
σi : {0, 1}n → {0, 1} (4.4)

such that

σi(x) =

{
1 x ⊢ σi
0 x ⊬ σi

(4.5)

By De Morgan’s law:
Ĥ¬σi

= Ĥ¬(
∨k−1

j=0 lσij)
≡ Ĥ∧k−1

j=0 ¬lσij
(4.6)

Applying composition laws (2.4.1):

Ĥ∧k−1
j=0 ¬lσij

=
k−1∏
j=0

Ĥ¬lσij =
k−1∏
j=0

(I− Ĥlσij
) (4.7)

Recalling (2.1) Ĥfi =
1
2
(I−Zi) represents fi(x) = xi and Ĥfi =

1
2
(I+Zi) represents fi(x) = ¬xi, we

combine these to derive that:

Ĥlσij
=

1

2
I+ sσij

1

2
Zσij

(4.8)

represents lσij
, where sσij

= −1 for positive literals lσij
= xσij

and sσij
= 1 for negative literals

lσij
= ¬xσij

. Putting this together, we find:

Ĥ¬σi
=

k−1∏
j=0

(
I− Ĥlσij

)
=

k−1∏
j=0

(
I− 1

2
I− sσij

1

2
Zσij

)
=

1

2k

k−1∏
j=0

(
I− sσij

Zσij

)
(4.9)

Expanding, and ignoring constants as this is a function being minimised, we arrive at:

Ĥ¬σi
=

1

2k

(
−

k−1∑
a=0

sσia
Zσia

+
k−1∑
b>a

sσia
sσib

Zσia
Zσib

−
k−1∑

c>b>a

sσia
sσib

sσic
Zσia

Zσib
Zσic

. . .

)
(4.10)

Example 4.1.2. Let σi = xa ∨ xb ∨ xc, this reduces to:

Ĥ¬σi
=

1

23

(
2∑

j=0

Zσij
+

2∑
j=0

2∑
k>j

Zσij
Zσik

+ ZaZbZc

)

=
1

8
(Za + Zb + Zc + ZaZb + ZbZc + ZaZc + ZaZbZc)

=
1

8

2∏
j=0

(I+ Zj)−
1

8
I

= I−

(
I− 1

8

2∏
j=0

(I+ Zj) +
1

8
I

)
(4.11)

in agreement with 2.1 up to a constant term.

30

Next, we consider the corresponding unitary operator

ÛCσ(γ) = exp
[
−iγĤCσ

]
= exp

[
−iγ

m−1∑
j=0

Ĥ¬σj

]
=

m−1∏
j=0

exp
[
−iγĤ¬σj

]
:=

m−1∏
j=0

Û¬σj
(γ) (4.12)

and find that

Û¬σj
(γ)

= exp

[
−iγ 1

2k

(
−

k−1∑
a=0

θaZσja
+

k−1∑
b>a

θabZσja
Zσjb

−
k−1∑

c>b>a

θabcZσja
Zσjb

Zσjc
. . .

)]

= exp

[
iγ

1

2k

k−1∑
a=0

θaZσja

]
exp

[
−iγ 1

2k

k−1∑
b>a

θabZσja
Zσjb

]
exp

[
iγ

1

2k

k−1∑
c>b>a

θabcZσja
Zσjb

Zσjc

]
. . .

=
k−1∏
a=0

exp

[
iγ

1

2k
θaZσja

] k−1∏
b>a

exp

[
−iγ 1

2k
θabZσja

Zσjb

] k−1∏
c>b>a

exp

[
iγ

1

2k
θabcZσja

Zσjb
Zσjc

]
. . .

=
k−1∏
a=0

RZσja

[
− γ

2k−1
θa

] k−1∏
b>a

RZσjaZσjb

[γ

2k−1
θab

] k−1∏
c>b>a

RZσjaZσjb
Zσjc

[
− γ

2k−1
θabc

]
. . .

(4.13)

where

• θab...q = sσja
sσjb

. . . sσjq

• RZ1,Z2,...,Zl
(2γ) corresponds to the operation exp

[
−iγ

∏l
j=1 Zj

]
and is implemented using the

decomposition

exp

[
−iγ

l∏
j=1

Zj

]
= exp

[
−iγZ⊗l

]
=

(
l−1∏
i=1

CXl−i,l−i+1

)
RZl

(2γ)

(
l−1∏
i=1

CXi,i+1

)
(4.14)

where CXa,b is the controlled-not gate with control qubit a and target qubit b.

Figure 4.1: Quantum circuit performing the operation Û = exp [−iγZ1Z2Z3] [28].

4.1.2 QAOA Procedure

The mixer Hamiltonian is as defined in 2.3.5, recall:

ĤB =
n−1∑
j=0

Xj (4.15)

where Xj is the multi-qubit Pauli-X operator acting on the jth qubit.

31

The corresponding unitary operator is therefore

ÛB(β) = eiβĤB = e
iβ

n−1∑
j=0

Xj

=
n−1∏
j=0

eiβXj =
n−1∏
j=0

RXj
(−2β) (4.16)

Where RXj
(θ) is the operator corresponding to a rotation of the jth qubit by θ about the x-axis on

the Bloch sphere. We note the rotation sign due to the problem being recast as a minimisation.

The output of the QAOA circuit is then given by

∣∣Ψ(β, γ, σ)
〉
p
:=

p−1∏
i=0

ÛB(βi)ÛCσ(γi) |s⟩ (4.17)

where the initial state |s⟩ is

|+⟩⊗n =
1√
2n

∑
x∈{0,1}n

|x⟩ (4.18)

∣∣Ψ(β, γ, σ)
〉
p

is measured and the corresponding outcome is checked as a satisfiable assignment. This
is repeated until a satisfying assignment is found (if one exists). We emphasise that in this context,
QAOA is being used an exact algorithm rather than an approximate one (as explored in 2.3.4). The
final output of the algorithm is an entirely satisfying assignment and not an approximate solution to
the problem.

Extending on the work of Boulebnane & Montanaro (3.1.2), we assess the ability of fixed angle QAOA
to solve random k-SAT instances, with clause densities near the satisfiability threshold rk (2.5). Since
the threshold is not exactly known, we use the following approximations [6]:

r̂4 = 9.93 (4.19) r̂8 = 176.54 (4.20)

The fixed angles are pretrained parameters β∗ and γ∗. For each layer count p, and value of k, they
are selected by:

1. Generating t = 100 random instances (4.1.1), {σi : σi ∼ CNF (n = 12, k, r̂k)}t−1
i=0

2. Initialising βi = 0.01, γi = −0.01,∀i ∈ {0, . . . , p− 1}

3. Optimising β, γ over 100 epochs using the PyTorch ADAM optimiser to maximise

1

t

t−1∑
i=0

psucc(σi) (4.21)

the success probability over the instances

For clarity, we recall the definition of the success probability (3.6) here:

Definition 4.1.2. (Success probability) Let k, n ∈ N+, r > 0 in σ ∼ CNF (n, k, r) and β, γ ∈ Rp

psucc(β, γ, σ) =
〈
Ψ(β, γ, σ)

∣∣{ĤCσ = 0}
∣∣Ψ(β, γ, σ)

〉
p

(4.22)

where {ĤCσ = 0} is the projector onto the subspace of states with eigenvalues 0 (satisfying states).
For brevity, this is denoted as psucc(σ).

We note that the parameters are selected through training only on CNF (n = 12, k, r̂k) instances.
In doing so, we assess QAOA’s ability to generalise across instances with other variable counts n.

32

The initial values of β, γ were chosen following observations that excessively large angles led to Bar-
ren Plateaus (2.3.6). An obvious limitation to this procedure is the small number of instances used
to find the optimal values of these parameters. However, Boulebnane & Montanaro justify this by
showing the technique provides near-optimal angles (for small p) [10].

To evaluate the circuits, 2500 satisfiable random k-SAT instances (3.1.1), {σi : σi ∼ CNF (n, k, r̂k)}
are generated. Importantly, this is done without biasing the procedure (e.g. by selecting variables in
such a way that the final formula is guaranteed to be satisfiable). Instead, we randomly generate the
instances (as in 3.1.1) then confirm if they are satisfiable using the Glucose4 solver from PySAT [37].
This is an efficient, complete solver (2.2) which allows us to determine with certainty if the instance
is satisfiable.

Example 4.1.3. The propositional formula σ ∈ CNF (3, 3, 8
3
), with clauses:

σ0 = ¬x0 ∨ x1 ∨ x2
σ1 = x0 ∨ ¬x1 ∨ x2
σ2 = x0 ∨ x1 ∨ ¬x2

σ3 = ¬x0 ∨ ¬x1 ∨ x2
σ4 = ¬x0 ∨ x1 ∨ ¬x2
σ5 = x0 ∨ ¬x1 ∨ ¬x2

σ6 = x0 ∨ x1 ∨ x2

is satisfied if and only if x = 111. Training a single layer (p = 1) QAOA circuit to maximise psucc(σ)
results in the measurement outcomes seen in Figure 4.2. It is clear that 111 is the most sampled
outcome with a corresponding empirical success probability of ≈ 0.42.

Figure 4.2: 10000 simulated measurements of |Ψ(β, γ, σ)⟩1, σ defined in 4.1.3.

4.1.3 Efficient Classical Simulation

While the unitary operator, ÛCσ , derived above is required to implement QAOA on a gate-based
quantum computer, it is inefficient for the purposes of simulation. For a system size of N = 2n,
states are classically represented as vectors, z ∈ CN , and operators as matrices, Û ∈ CN×N . As such,
the application of a gate can be realised as matrix-vector multiplication, requiring O(N2) operations.
Therefore, we deduce that naively

Û¬σi
=

k︷ ︸︸ ︷
k−1∏
a=0

RZσia
(θa)︸ ︷︷ ︸

N2

k−1︷ ︸︸ ︷
k−1∏
b>a

RZσiaZσib
(θab)︸ ︷︷ ︸

3N2

k−2︷ ︸︸ ︷
k−1∏

c>b>a

RZσiaZσib
Zσic

(θabc)︸ ︷︷ ︸
5N2

. . . (4.23)

requires

N2

k∑
l=0

(k − l + 1)(2l − 1) = N21

6
k(k + 1)(2k + 1) (4.24)

33

operations, where we have used that the decomposition of RZ1,Z2,...,Zl
(θ) (4.14) consists of 2(l−1)+1

gates. Thus, the application of ÛCσ requires:

mN21

6
k(k + 1)(2k + 1) = O

(
mN2k3

)
= O

(
rk3N2 logN

)
(4.25)

operations since m = rn and n = logN . Near the satisfiability threshold the clause density takes
the value r = rk ∼ 2k ln 2 and so we find the application of ÛCσ requires

O
(
2kk3N2 logN

)
(4.26)

operations. In the large n limit, N2 dominates, giving a cost of O(N2). However, for the purposes
of simulation and, in particular, for cases where n ∼ k, the pre-factors are computationally relevant.
In addition, optimising parameters over the circuit means inefficiencies are aggregated during the
automatic differentiation procedure.

Alternatively, inserting a resolution of identity, ĤCσ can be written as a diagonal operator:

ĤCσ =
m−1∑
i=0

Ĥ¬σi

=
∑

x∈{0,1}n

m−1∑
i=0

Ĥ¬σi
|x⟩ ⟨x|

=
∑

x∈{0,1}n

m−1∑
i=0

¬σi(x) |x⟩ ⟨x|

:=
∑

x∈{0,1}n
h(x) |x⟩ ⟨x|

(4.27)

In other words,

h(x) :=
m−1∑
i=0

¬σi(x) (4.28)

is the number of unsatisfied clauses in σ under the assignment x.

The corresponding evolution operator ÛCσ is therefore also diagonal and takes the form:

ÛCσ(γ) = e−iγĤCσ =
∑

x∈{0,1}n
e−iγh(x) |x⟩ ⟨x| (4.29)

Or, in matrix form
diag [h(0), h(1), . . . , h(N − 1)] (4.30)

where we have written x in its decimal representation

h(x) ≡ h

(
n−1∑
l=0

xl2
−l

)
(4.31)

Applying a diagonal matrix only requires O(N) operations. The calculation of h(x) requires travers-
ing m = r logN ∼ 2k logN clauses and k literals per clause. As such, the application of this
diagonalisation only requires

O
(
2kkN logN

)
(4.32)

operations. Further, the cost of calculating h(x) can be amortised through preprocessing. As such,
we can actually apply ÛCσ in O(N) operations.

34

Similarly, the naive application of

ÛB(β) =

n︷ ︸︸ ︷
n−1∏
j=0

RXj
(−2β)︸ ︷︷ ︸
N2

(4.33)

requires O(N2 logN) operations, where n = logN . However, writing

ÛB(β) =
n−1∏
j=0

eiβXj =
n−1∏
j=0

[cos(β)I+ i sin(β)Xj] (4.34)

we realise that ÛB can be implemented in O(N logN) operations. First,

[cos(β)I+ i sin(β)Xj] |x⟩ = cos(β) I |x0 . . . xn−1⟩︸ ︷︷ ︸
0 operations

+i sin(β)Xj |x0 . . . xn−1⟩︸ ︷︷ ︸
O(1) operations

= cos(β) |x0 . . . xn−1⟩︸ ︷︷ ︸
N operations

+ i sin(β) |x0 . . . x̄j−1 . . . xn−1⟩︸ ︷︷ ︸
N operations

(4.35)

where x̄ denotes the flipped value of x (0̄ = 1, 1̄ = 0) and we identify that we can apply

• Xj in O(1) operations by realising that

Xj |x0 . . . xn−1⟩ = |x0 . . . x̄j−1 . . . xn−1⟩ ≡ Xj |x⟩ =
∣∣2n−j − x

〉
(4.36)

where we have again written x in its decimal representation (4.31). As such, applying the
operator corresponds to swapping 2 elements in the corresponding vector z ∈ CN .

• cos(β), sin(β) in N operations by a component wise multiplication of the vector z ∈ CN .

Therefore

ÛB(β) =

n︷ ︸︸ ︷
n−1∏
j=0

[cos(β)I+ i sin(β)Xj]︸ ︷︷ ︸
O(N)

(4.37)

requires O(N logN) operations, where n = logN .

We emphasise that this is only a valid procedure within classical simulations. It is not feasible
to directly encode such a diagonal unitary on a gate based quantum computer. Nonetheless, this
does not pose an issue for success probability or run time analysis. In particular, the output of
both encodings (considered as some z ∈ CN) is identical. Therefore, since the procedure is based
on sampling from the output state, all calculated metrics, including the induced scaling exponents
(3.19), will be unaffected.

4.1.4 Software

We identify that general satisfiability problems, including SAT and its variants, fit into a clause-
literal framework. The instances consist of clauses that have to be satisfied in some combination,
e.g. all of them in k-SAT (since the formula is in CNF). Similarly, the clauses consist of literals that
have to be satisfied in some combination, e.g. any of them in k-SAT or at least one, but not all, in
k-NAE-SAT. As such, we make use of an object oriented approach to encode our problem instances,
wherein the responsibility of confirming satisfiability is delegated to the problem instance.

In particular, all problems derive from a base Formula class that contains a set of base Clause
instances. The Formula class implements the is_satisfied method, accepting a bitstring and re-
turning True or False to denote whether the instance is satisfied by the assignment the bitstring

35

represents. We create extensions of this base class to represent the requirements of the formula, such
as CNF which encodes that the formula is satisfied if and only if all the clauses are satisfied. Sim-
ilarly, extensions of the Clause class: DisjunctiveClause and NAEClause represent each clauses’
constraints.

Not only does this allow us to share logic between classes, but it also means we can construct algo-
rithms that are agnostic to problem instance specifics until run time. In addition, we can generate
random problem instances using a common selection procedure that simply instantiates the relevant
problem class. We validate the correctness of all this, including our algorithms and problem repre-
sentations, using the Python unittest framework.

The simulations are implemented in Qiskit [13], for the generalised unitary, and in PyTorch [14],
for the diagonalised unitary. In addition, using Condor [38] on Imperial College’s Department of
Computing systems, we are able to parallelise up to 300 simultaneous processes, each with 16 threads.

Figure 4.3: Class diagrams for problem instances.

4.2 Evaluation

4.2.1 Success Probabilities

Given parameters β∗ and γ∗, we evaluate the success probability of QAOA over v = 2500 satisfiable
random k-SAT instances, {σi : σi ∼ CNF (n, k, r̂k)}v−1

i=0 , and calculate

p̂succ =
1

v

v−1∑
i=0

psucc(σi) (4.38)

This is done for p ∈ {1, 2, 4, 8, 16} layers, 12 ≤ n ≤ 20 and k ∈ {4, 8}. The results (Figure 4.4)
are found to be in strong agreement with the work of Boulebnane & Montanaro (3.1) and show, as
expected, an exponential decay in success probability with instance size. Importantly, the rate of
decay decreases as the number of layers p increases.

36

(a) QAOA average success probabilities across
2500 satisfiable 4-SAT CNF (n, 4, r̂4) instances
(error bars too small to be seen).

(b) QAOA average success probabilities across
2500 satisfiable 8-SAT CNF (n, 8, r̂8) instances
(error bars too small to be seen).

Figure 4.4: QAOA k-SAT success probabilities.

4.2.2 Running Times

Given parameters β∗ and γ∗, we evaluate the running time of QAOA over v = 2500 satisfiable
random instances, R = {σi : σi ∼ CNF (n, k, r̂k)}v−1

i=0 , and calculate the median

Medσ∈R[rσ] (4.39)

recalling (3.1.3.1) that the running time of a random k-SAT QAOA instance rσ is defined as the
number of bitstrings that have to be sampled from the final quantum state

∣∣Ψ(β, γ, σ)
〉

before one
is a satisfying assignment of σ.

This is done for p ∈ {1, 2, 4, 8, 16} layers, 12 ≤ n ≤ 20 and k ∈ {4, 8}. The results are plotted (Figure
4.5) against the reciprocal of the success probabilities to assess their concordance. Again, the results
are found to be in strong agreement with the work of Boulebnane & Montanaro (3.2). In particular,
they show both an exponential scaling in median running time with instance size and an alignment
with the reciprocal of the success probability. Yet, the slope of the scaling decreases as the number
of layers p increases.

We interpret the improved alignment between the two metrics for k = 8 as being a result of k = 4
instances being small and therefore unchallenging for the QAOA to procedure to solve. This causes
the running times to be very similar across instances sizes and results in flat fitting lines.

4.2.3 Benchmarking

We compare the median running time for k = 8, 12 ≤ n ≤ 19 of QAOA to that of WalkSATlm across
2500 satisfiable random k-SAT instances, {σi : σi ∼ CNF (n, k, r̂k)}v−1

i=0 . In particular, we consider
larger values of p to explore the scaling of the run time, where we recall (3.20):

Definition 4.2.1. (Empirical median running time scaling exponent) Given the ensemble R = {σi :
σi ∼ CNF (n, k, r)}v−1

i=0 , C̃p,k(β, γ) is such that

Medσ∈R[rσ] = 2nC̃p,k(β,γ) (4.40)

As introduced in 3, WalkSATlm is implemented natively, using suggested hyper-parameters of p =
0.15, ω1 = 6 and ω2 = 5 [11]. We define its run time as the number of loop iterations (3) made by

37

(a) QAOA median running times across 2500 sat-
isfiable 4-SAT CNF (n, 4, r̂4) instances. Dashed
lines are the reciprocal of corresponding success
probabilities.

(b) QAOA median running times across 2500 sat-
isfiable 8-SAT CNF (n, 8, r̂8) instances. Dashed
lines are the reciprocal of corresponding success
probabilities.

Figure 4.5: QAOA k-SAT median running times.

the algorithm. Comparing this to QAOA’s run time is justified by considering the cost of operations
associated with each. For WalkSATlm, one iteration involves

O
(
mk2

)
(4.41)

operations to consider the score of each of k variables in a clause. Calculating the score requires
traversing each of the k variables in each of the m clauses.

For QAOA, one sample corresponds to measuring the state

∣∣Ψ(β, γ, σ)
〉
p
:=

p−1∏
i=0

ÛB(βi)︸ ︷︷ ︸
n gates

ÛCσ(γi) |s⟩︸ ︷︷ ︸
mk3 gates

(4.42)

and so requires
O
(
p(mk3 + n)

)
(4.43)

gates (4.25) - where we have absorbed the O(n) cost of measurement. As m = rn, we deduce that
for fixed k, p and r, one iteration in both algorithms is an O(n) operation. Since we are primarily
interested in the scaling (3.1.3.3) of the algorithms’ running times, which follow an exponential fit
∼ 2cn, the comparison is valid.

We observe (Figure 4.6a) that the median running time of QAOA outperforms WalkSATlm for k = 8.
Further, we assess the scaling of these running times, C̃p,k(β, γ), (Figure 4.6b) and find that for both
k = 4 and k = 8, there exists a threshold p above which QAOA’s scaling improves on WalkSATlm.
We fit the coefficients to a power law ∼ apb and calculate that the coefficients scale as

C̃p,4(β, γ) ∼ 0.59p−0.53 (4.44) C̃p,8(β, γ) ∼ 0.69p−0.28 (4.45)

The power law fit for k = 4 begins to disagree with the coefficients in the large p limit. Again, this is
likely due to the fact that the instances are easy for QAOA to solve regardless of the problem size n.
As such, effectively no scaling is induced since the running times are generally ≈ 1. It is clear that
this is not the case for k = 8 where we find improved agreement due to harder problem instances.

38

(a) Median running times across 2500 satisfiable
8-SAT CNF (n, 8, r̂8) instances of QAOA and
WalkSATlm.

(b) Induced scaling C̃p,k(β, γ) of QAOA k-SAT
median running times. Dashed line is observed
WalkSATlm scaling.

Figure 4.6: Benchmarked QAOA k-SAT median running times.

4.2.4 Excessive Scaling

In addition to benchmarking against WalkSATlm, we examine the excessive scaling [10] of QAOA.
In particular, we consider the case where the initial state |+⟩⊗n is mostly unchanged by the circuit.
We’d expect such behaviour from QAOA when [ĤB, ĤC] = 0 as well as when ||β|| or ||γ|| ≪ 1. In
such regimes, QAOA would effectively act as an algorithm that randomly selected bitstrings, with
equal probabilities, until a satisfying assignment was found.

We are interested in the scaling of QAOA’s success probability in such instances as it allows us to
discern its performance from that of the algorithm simply acting as a proxy for random bitstring
selection. Recall (3.17):

Definition 4.2.2. (Predicted scaling exponent)

Cp,k(β, γ) = − lim
n→∞

1

n
logEσ∼CNF (n,k,r)[psucc(σ)] (4.46)

Theorem 4.2.1. (k-SAT QAOA random assignment scaling exponent)

Cp,k(n, β, 0) = Cp,k(n, 0, γ) = 2−kr (4.47)

Proof. First, we realise ∀p
∣∣Ψ(β, 0, σ)

〉
p

=
p−1∏
i=0

ÛB(βi) |+⟩⊗n ∝ |+⟩⊗n = 1√
2n

∑
x∈{0,1}n

|x⟩∣∣Ψ(0, γ, σ)
〉
p

=
p−1∏
i=0

ÛCσ(γi) |+⟩⊗n ∝ |+⟩⊗n = 1√
2n

∑
x∈{0,1}n

|x⟩
(4.48)

since in both cases, the resulting operators all commute and the state is simply effected with a global
phase (2.49). As such,

psucc(σ) =
1

2n

∑
x,x′∈{0,1}n

⟨x′| {ĤCσ = 0} |x⟩ (4.49)

Since {ĤCσ = 0} denotes the orthogonal projector onto the space of satisfying assignments

1

2n

∑
x,x′∈{0,1}

⟨x′| {ĤCσ = 0} |x⟩ = 1

2n

∑
x,x′∈{0,1}n

Pr(x ⊢ σ)δx,x′ =
1

2n

∑
x∈{0,1}n

Pr(x ⊢ σ) (4.50)

39

Recall σ ∼ CNF (n, k, r) is a randomly generated problem instance with m ∼ Poisson(rn) clauses,
such that σ :=

∧m−1
i=0 σi and σi =

∨k−1
j=0 lσij

. Therefore,

Pr(x ⊢ σ) =
m−1∏
i=0

Pr(x ⊢ σi) =
m−1∏
i=0

[1− Pr(x ⊬ σi)] =
m−1∏
i=0

[
1−

k−1∏
j=0

Pr
(
x ⊬ lσij

)]
(4.51)

This reduces to

Pr(x ⊢ σ) =

[
1−

(
1

2

)k
]m(σ)

(4.52)

since all the clauses and literals are chosen independently and satisfying a literal occurs with proba-
bility 1/2 as it is negated with equal probability. We write m(σ) to emphasise that m is a property
of the random instance σ.

Finally, as m ∼ Poisson(rn)

Eσ∼CNF (n,k,r)

[(
1− 2−k

)m(σ)
]
= Em∼Poisson(nr)

[(
1− 2−k

)m]
=
∑
m≥0

e−rn(rn)m

m!
(1− 2−k)m

= e−rn
∑
m≥0

[
rn(1− 2−k)

]m
m!

= e−rnern(1−2−k)

= e−rn2−k

(4.53)

This means that

lim
n→∞

1

n
logEσ∼CNF (n,k,r)[psucc(σ)] = lim

n→∞

1

n
log e−rn2−k

= −2−kr (4.54)

and so
Cp,k(β, 0) = Cp,k(0, γ) = 2−kr (4.55)

We have studied the relationship Cp,k(β, γ) ≈ Ĉp,k(β, γ) ≈ C̃p,k(β, γ) and found that they agree well
(3.23). As such, we compare C̃p,k(β, γ) = 2−kr̂k to the empirical observations in our experiments.
As anticipated, QAOA outperforms the random scaling (Figure 4.7). Interestingly, in the small p
regime, the scaling is effectively that of random assignment. This is due to the fact that few-layer
circuits are inexpressive, leading to outputs that are effectively unchanged from the initial state.

Figure 4.7: Induced scaling of QAOA k-SAT median running times, C̃p,k(β, γ). Dashed line is
observed WalkSATlm scaling. Dotted line is random assignment scaling.

40

Chapter 5

QAOA for k-NAE-SAT

With confidence in our procedure, following the results in the previous section, we derive an encoding
of k-NAE-SAT for QAOA and evaluate its performance on a range of problem instances.

5.1 Implementation

Both k-SAT and k-NAE-SAT consider Boolean formulas in Conjunctive Normal Form (CNF). As
such, we maintain the formalisms introduced in (4.1.1) and solve problem instances σ ∼ CNF (n, k, r),
with m clauses, such that

σ :=
m−1∧
i=0

σi (5.1) σi =
k−1∨
j=0

lσij
(5.2)

Again, lσij
is a Boolean literal lσij

= xσij
or ¬xσij

and σij ∈ {0, . . . , n − 1} is an index into the n
variables. Recalling the definition of the k-NAE-SAT problem (2.1.9), the aim is to find a satisfying
assignment that sets at least one literal true and at least one literal false in each clause. We denote
this

x ⊢NAE σ (5.3)

Our objective function to be minimised is therefore

CNAE
σ (x) =

m−1∑
i=0

1{x ⊬NAE σi} (5.4)

We note however that

x ⊢NAE σi ≡

[
x ⊢ σi ∧ x ⊬

k−1∧
j=0

lσij

]
(5.5)

So, by De Morgan’s law

x ⊬NAE σi ≡

[
x ⊬ σi ∨ x ⊢

k−1∧
j=0

lσij

]
(5.6)

In other words, the assignment is penalised if it does not satisfy the clause or if it sets all its literals
to true. As such, we can write

CNAE
σ (x) =

m−1∑
i=0

1{x ⊬NAE σi} =
m−1∑
i=0

1{x ⊬ σi ∨ x ⊢
k−1∧
j=0

lσij
} (5.7)

We have translated our objective function into one that is directly related to the k-SAT problem.
This will allow us to re-use our previously constructed Hamiltonian Ĥ¬σi

(4.10).

41

5.1.1 Problem Hamiltonian

Again, we identify CNAE
σ as a Pseudo-Boolean function (2.4.3). Its representing Hamiltonian takes

the form

ĤCNAE
σ

=
m−1∑
i=0

Ĥ
1{x⊬σi∨x⊢

∧k−1
j=0 lσij }

≡
m−1∑
i=0

Ĥ¬σi∨(
∧k−1

j=0 lσij)
(5.8)

where we have treated the clauses and literals as Boolean functions.

σi : {0, 1}n → {0, 1} (5.9) lij : {0, 1} → {0, 1} (5.10)

such that

σi(x) =

{
1 x ⊢ σi
0 x ⊬ σi

(5.11) lij(x) =

{
1 x ⊢ lij
0 x ⊬ lij

(5.12)

Applying composition rules (2.4.1):

Ĥ¬σi∨(
∧k−1

j=0 lσij)
= Ĥ¬σi

+ Ĥ∧k−1
j=0 lσij

− Ĥ¬σi
Ĥ∧k−1

j=0 lσij
(5.13)

The first Hamiltonian, Ĥ¬σi
, is as derived for k-SAT (4.10). It is clear that the third Hamiltonian,

Ĥ¬σi
Ĥ∧k−1

j=0 lσij
vanishes, namely x cannot both satisfy

∧k−1
j=0 lσij

while not satisfying σi =
∨k−1

j=0 lσij
.

Finally, applying composition rules (2.4.1) and the representation of a literal (4.8), the middle Hamil-
tonian takes the form

Ĥ∧k−1
j=0 lσij

=
k−1∏
j=0

Ĥlσij
=

k−1∏
j=0

(
1

2
I+ sσij

1

2
Zσij

)
=

1

2k

k−1∏
j=0

(
I+ sσij

Zσij

)
(5.14)

Expanding, and ignoring constants as this is a function being minimised:

Ĥ∧k−1
j=0 lσij

=
1

2k

(
k−1∑
a=0

sσia
Zσia

+
k−1∑
b>a

sσia
sσib

Zσia
Zσib

+
k−1∑

c>b>a

sσia
sσib

sσic
Zσia

Zσib
Zσic

. . .

)
(5.15)

The unitary operator corresponding to this is

ÛCNAE
σ

(γ) = exp
[
−iγĤCNAE

σ

]
= exp

[
−iγ

m−1∑
j=0

Ĥ¬σj
+ Ĥ∧k−1

q=0 lσjq

]

=
m−1∏
j=0

exp
[
−iγ

(
Ĥ¬σj

+ Ĥ∧k−1
q=0 lσjq

)]
=

m−1∏
j=0

exp
[
−iγĤ¬σj

]
exp

[
−iγĤ∧k−1

q=0 lσjq

]
:=

m−1∏
j=0

Û¬σj
(γ)Û∧k−1

q=0 lσjq
(γ)

(5.16)

Where we have used the fact that both Hamiltonians only consist of 1 and Pauli Z operators, meaning
they commute. Û¬σj

(γ) is as before, while

42

Û∧k−1
q=0 lσjq

(γ)

= exp

[
−iγ 1

2k

(
k−1∑
a=0

θaZσja
+

k−1∑
b>a

θabZσja
Zσjb

+
k−1∑

c>b>a

θabcZσja
Zσjb

Zσjc
. . .

)]

= exp

[
−iγ 1

2k

k−1∑
a=0

θaZσja

]
exp

[
−iγ 1

2k

k−1∑
b>a

θabZσja
Zσjb

]
exp

[
−iγ 1

2k

k−1∑
c>b>a

θabcZσja
Zσjb

Zσjc

]
. . .

=
k−1∏
a=0

exp

[
−iγ 1

2k
θaZσja

] k−1∏
b>a

exp

[
−iγ 1

2k
θabZσja

Zσjb

] k−1∏
c>b>a

exp

[
−iγ 1

2k
θabcZσja

Zσjb
Zσjc

]
. . .

=
k−1∏
a=0

RZσja

[γ

2k−1
θa

] k−1∏
b>a

RZσjaZσjb

[γ

2k−1
θab

] k−1∏
c>b>a

RZσjaZσjb
Zσjc

[γ

2k−1
θabc

]
. . .

(5.17)

as in 4.13:

• θab...q = sσja
sσjb

. . . sσjq

• RZ1,Z2,...,Zl
(2γ) corresponds to the operation exp

[
−iγ

∏l
j=1 Zj

]
and is implemented using the

decomposition

exp

[
−iγ

l∏
j=1

Zj

]
= exp

[
−iγZ⊗l

]
=

(
l−1∏
i=1

CXl−i,l−i+1

)
RZl

(2γ)

(
l−1∏
i=1

CXi,i+1

)
(5.18)

where CXa,b is the controlled-not gate with control qubit a and target qubit b.

5.1.2 QAOA Procedure

This proceeds as in the case of k-SAT (4.1.2), where the mixer Hamiltonian is defined:

ĤB =
n−1∑
j=0

Xj (5.19)

where Xj is the multi-qubit Pauli-X operator acting on the jth qubit.

The corresponding unitary operator is therefore

ÛB(β) = eiβĤB = e
iβ

n−1∑
j=0

Xj

=
n−1∏
j=0

eiβXj =
n−1∏
j=0

RXj
(−2β) (5.20)

Where RXj
(θ) is the operator corresponding to a rotation of the jth qubit by θ about the x-axis on

the Bloch sphere. We note the rotation sign due to the problem being recast as a minimisation.

The output of the QAOA circuit is then given by

∣∣ΨNAE(β, γ, σ)
〉
p
:=

p−1∏
i=0

ÛB(βi)ÛCNAE
σ

(γi) |s⟩ (5.21)

where the initial state |s⟩ is

|+⟩⊗n =
1√
2n

∑
x∈{0,1}n

|x⟩ (5.22)

43

∣∣ΨNAE(β, γ, σ)
〉
p

is measured and the corresponding outcome is checked as a satisfiable assignment.
This is repeated until a satisfying assignment is found (if one exists). Again, QAOA is being used
an exact algorithm rather than an approximate one (as explored in 2.3.4). The final output of the
algorithm is an entirely satisfying assignment and not an approximate solution to the problem.

We evaluate the effectiveness of this procedure for fixed angle QAOA on instances with clause densities
near the satisfiability threshold rk (2.5). Asymptotic values of the threshold are known to be

rNAE
k =

(
2k−1 − 1

2
− 1

4 log 2

)
log 2 + ok(1) (5.23)

where ok(1) → 0 in the k → ∞ limit [39]. As such, we approximate

r̂NAE
k =

(
2k−1 − 1

2
− 1

4 log 2

)
log 2 (5.24)

Next, we extend the definition of the success probability introduced for k-SAT.

Definition 5.1.1. (k-NAE-SAT success probability) Let k, n ∈ N+, r > 0 in σ ∼ CNF (n, k, r) and
β, γ ∈ Rp, the success probability of a random k-NAE-SAT QAOA instance is defined as

pNAE
succ (β, γ, σ) =

〈
ΨNAE(β, γ, σ)

∣∣{ĤCNAE
σ

= 0}
∣∣ΨNAE(β, γ, σ)

〉
p

(5.25)

where {ĤCNAE
σ

= 0} is the projector onto the subspace of states with eigenvalues 0 (satisfying states).
For brevity, this is denoted as pNAE

succ (σ).

The fixed angles are pretrained parameters β∗ and γ∗. For each layer count p, and value of k, they
are selected by:

1. Generating t = 100 random instances (4.1.1), {σi : σi ∼ CNF (n = 12, k, r̂NAE
k)}t−1

i=0

2. Initialising βi = 0.01, γi = −0.01,∀i ∈ {0, . . . , p− 1}

3. Optimising β, γ for 100 epochs using the PyTorch ADAM optimiser to maximise the success
probability over the instances

1

t

t−1∑
i=0

pNAE
succ (σi) (5.26)

We emphasise that the parameters are selected through training only on CNF (n = 12, k, r̂NAE
k) in-

stances. In doing so, we assess QAOA’s ability to generalise across instances with other variable
counts n.

To evaluate the circuits, 2500 satisfiable random k-NAE-SAT instances (3.1.1), {σi : σi ∼ CNF (n, k, r̂NAE
k)}

are generated. Importantly, this is done without biasing the procedure (e.g. by selecting variables
in such a way that the final formula is guaranteed to be satisfiable). Instead, we randomly generate
the instances then confirm if they are satisfiable using the Glucose4 solver from PySAT [37]. This is
an efficient, complete k-SAT solver (2.2). As such, to use Glucose4, we make use of the results in
the following section to recast k-NAE-SAT in terms of k-SAT and determine with certainty if the
instance is satisfiable.

44

5.1.3 Efficient Classical Simulation

It is clear that for a system size of N = 2n, the unitary operator derived above has the same
complexity as that considered previously: O

(
2kk3N2 logN

)
(4.13). In what follows, we consider an

alternative formulation that allows for a more efficient classical simulation. First, we establish a
second representation of NAE-SAT.

Lemma 5.1.1. (Satisfying a k-NAE-SAT clause) For σi =
∨k−1

j=0 lσij
, x ⊢NAE σi iff x ⊢ σi and

x̄ ⊢ σi, where x̄ is the flipped assignment: 0̄ = 1, 1̄ = 0.

Proof. "⇒" Suppose x ⊢NAE σi

⇒ ∃lt, lf ∈ σi : x ⊢ lt, x ⊬ lf
⇒ x ⊢ σi

(5.27)

But x ⊬ lf ⇒ x̄ ⊢ lf ⇒ x̄ ⊢ σi.

"⇐" Suppose x ⊢ σi and x̄ ⊢ σi

⇒ ∃lt ̸= lf ∈ σi : x ⊢ lt, x̄ ⊢ lf
⇒ ∃lt ̸= lf ∈ σi : x ⊢ lt, x ⊬ lf
⇒ x ⊢NAE σi

(5.28)

Consequently

x ⊬NAE σi ⇐⇒ ¬(x ⊢ σi ∧ x̄ ⊢ σi)
⇐⇒ x ⊬ σi ∨ x̄ ⊬ σi

(5.29)

by De Morgan’s law. As such, recalling the initial form of our objective function, we derive

CNAE
σ (x) =

m−1∑
i=0

1{x ⊬NAE σi} =
m−1∑
i=0

1{x ⊬ σi ∨ x̄ ⊬ σi} (5.30)

The representing Hamiltonian ĤCNAE
σ

can therefore be written as

ĤCNAE
σ

=
m−1∑
i=0

Ĥ1{x⊬σi∨x̄⊬σi} ≡
m−1∑
i=0

Ĥ¬σi(x)∨¬σi(x̄) (5.31)

Applying the composition rules (2.4.1), we deduce

Ĥ¬σi(x)∨¬σi(x̄) = Ĥ¬σi(x) + Ĥ¬σi(x̄) − Ĥ¬σi(x)Ĥ¬σi(x̄) (5.32)

Lemma 5.1.2.
Ĥ¬σi(x̄) = P Ĥ¬σi(x)P (5.33)

where

P =
n−1∏
i=0

Xi (5.34)

Proof.
P Ĥ¬σi(x)P |x⟩ = P Ĥ¬σi(x) |x̄⟩ = ¬σi(x̄)P |x̄⟩ = ¬σi(x̄) |x⟩ = Ĥ¬σi(x̄) |x⟩ (5.35)

Lemma 5.1.3.
Ĥ¬σi(x)Ĥ¬σi(x̄) ≡ 0 (5.36)

Proof.

45

¬σi(x) = 1 ⇒ x ⊬ σi
⇒ ∀l ∈ σi, x ⊬ l
⇒ ∀l ∈ σi, x̄ ⊢ l
⇒ x̄ ⊢ σi
⇒ ¬σi(x̄) = 0

(5.37)

¬σi(x̄) = 1 ⇒ x̄ ⊬ σi
⇒ ∀l ∈ σi, x̄ ⊬ l
⇒ ∀l ∈ σi, x ⊢ l
⇒ x ⊢ σi
⇒ ¬σi(x) = 0

(5.38)

The result immediately follows:

Ĥ¬σi(x)Ĥ¬σi(x̄) |x⟩ = ¬σi(x)¬σi(x̄) |x⟩ = 0 (5.39)

As such, the Hamiltonian takes the form

ĤCNAE
σ

=
m−1∑
i=0

Ĥ¬σi(x)∨¬σi(x̄) =
m−1∑
i=0

Ĥ¬σi(x) + P Ĥ¬σi(x)P (5.40)

where

P =
n−1∏
i=0

Xi (5.41)

and Ĥ¬σi
is as in (4.10). This diagonalises:

ĤCNAE
σ

=
∑

x∈{0,1}n

[
m−1∑
i=0

Ĥ¬σi(x) + P Ĥ¬σi(x)P

]
|x⟩ ⟨x|

=
∑

x∈{0,1}n

[
m−1∑
i=0

Ĥ¬σi(x) |x⟩ ⟨x|+ P Ĥ¬σi(x) |x̄⟩ ⟨x|

]

=
∑

x∈{0,1}n

[
m−1∑
i=0

¬σi(x) |x⟩ ⟨x|+ P¬σi(x̄) |x̄⟩ ⟨x|

]

=
∑

x∈{0,1}n

[
m−1∑
i=0

¬σi(x) + ¬σi(x̄)

]
|x⟩ ⟨x|

=
∑

x∈{0,1}n
[h(x) + h(x̄)] |x⟩ ⟨x|

:=
∑

x∈{0,1}n
hNAE(x) |x⟩ ⟨x|

(5.42)

Where h(x), as introduced previously (4.27), corresponds to the number of unsatisfied clauses in σ
under x, and by extension we can interpret

hNAE(x) :=
m−1∑
i=0

¬σi(x) + ¬σi(x̄) (5.43)

as the number of unsatisfied clauses in σ, under the assignment x, in the NAE-SAT formulation.

The corresponding evolution operator ÛCNAE
σ

is therefore also diagonal and takes the form:

ÛCNAE
σ

(γ) = e
−iγĤCNAE

σ =
∑

x∈{0,1}n
e−iγhNAE(x) |x⟩ ⟨x| (5.44)

46

Since hNAE(x) = h(x) + h(x̄), it can be calculated with the same order of cost as before (4.27).
Therefore, this application of ÛCNAE

σ
only requires

O
(
2kkN logN

)
(5.45)

operations. The calculations of hNAE(x) can be pre-processed, amortising the cost of ÛCNAE
σ

down to
O(N).

Remark 5.1.1. We note that while the symmetry of hNAE

hNAE(x) = h(x) + h(x̄) = h(¯̄x) + h(x̄) = hNAE(x̄) (5.46)

might lead to the problematic presumption that [ĤCNAE
σ

, ĤB] = 0 (2.3.4), this is not the case. In
particular, for arbitrary |x⟩ = |x0x1 . . . xn−1⟩, let Xi |x⟩ = |x0x1 . . . x̄i−1 . . . xn−1⟩ := |xi⟩

[ĤCNAE
σ

, ĤB] |x⟩ = ĤCNAE
σ

ĤB |x⟩ − ĤBĤCNAE
σ

|x⟩

=
n−1∑
i=0

ĤCNAE
σ

∣∣xi〉− hNAE(x)ĤB |x⟩

=
n−1∑
i=0

hNAE(xi)
∣∣xi〉− hNAE(x)

n−1∑
i=0

∣∣xi〉
=

n−1∑
i=0

[
hNAE(xi)− hNAE(x)

] ∣∣xi〉
(5.47)

Since |x⟩ arbitrary,

[ĤCNAE
σ

, ĤB] |x⟩ = 0 ⇐⇒ ∀x ∈ {0, 1}n, hNAE(xi) = hNAE(x) (5.48)

This is clearly not true (as can be shown with a simple counterexample).

5.1.4 Classical Benchmarking

To account for the additional symmetry in k-NAE-SAT, we adapt the WalkSATlm algorithm (3) and
introduce WalkSATm2b2. In particular, we did not find any dedicated k-NAE-SAT solvers in the
literature. As such, this is an entirely novel contribution of this thesis.

First, we recall (2.2.2) the scoring functions for a variable x in a Boolean formula ϕ:

• make(x), the number of clauses that become satisfied by flipping x.

• break(x), the number of clauses that become unsatisfied by flipping x.

• makeτ (x), the number of (τ − 1)-satisfied clauses that become τ -satisfied by flipping x.

• lmake(x) = ω1 ·make1(x) + ω2 ·make2(x)

where a clause c in ϕ is τ -satisfied if and only if it contains exactly τ satisfied literals. It is clear that
make1(x) = make(x).

WalkSATlm uses the lmake score during tiebreaks, as such, it only considers the impact flipping a
variable has on increasing the number of satisfied literals. This approach is relevant for k-SAT,
where formulas are more likely to be satisfied if more literals are set true. On the other hand, k-
NAE-SAT requires that at least one literal be unsatisfied in each clause. To take this into account,
we introduce the following extensions.

47

Definition 5.1.2. (NAE Make score) For a variable x in a Boolean formula ϕ, makeNAE(x) is the
number of clauses that become satisfied by flipping x, in the NAE formulation.

Definition 5.1.3. (NAE Break score) For a variable x in a Boolean formula ϕ, breakNAE(x) is the
number of clauses that become unsatisfied by flipping x, in the NAE formulation.

Definition 5.1.4. (τ -level break) For a variable x in a Boolean formula ϕ, breakτ (x) is the number
of (τ)-satisfied clauses that become (τ − 1)-satisfied by flipping x.

Consequently, we deduce the following relationships

makeNAE(x) = make1(x) + breakk(x)

breakNAE(x) = break1(x) +makek(x)
(5.49)

These follow from the fact that in k-NAE-SAT, satisfying all the literals now means the clause is no
longer satisfied. It is clear that unlike k-SAT, wheremake1(x) = make(x), make1(x) ≤ makeNAE(x).

Using this, we introduce the following scoring function.

Definition 5.1.5. (m2b2) For a variable x in a Boolean formula ϕ,

m2b2(x) = ω1 ·makeNAE(x) + ω2 · (make2(x) + breakk−1(x)) (5.50)

Expanding the definition using the identities in 5.49, we find

m2b2(x) = ω1 · (make1(x) + breakk(x)) + ω2 · (make2(x) + breakk−1(x)) (5.51)

This form allows for an immediately efficient implementation of the scoring function where the
algorithm keeps track of the number of true literals in each clause and considers changes caused by
a variable being flipped. The WalkSATm2b2 algorithm (4) uses m2b2 to resolve tiebreaks, regaining
symmetry in its selection procedure.

Algorithm 4: WalkSATm2b2 Algorithm
1 Function WalkSATm2b2(ϕ, p, max_flips):
2 Randomly assign truth values to all variables in ϕ;
3 for i = 1 to max_flips do

// As in WalkSATlm (3)
4 Sample X ∼ Bernoulli(p);
5 if X then
6 Choose x ∈ c randomly and flip its value;

7 else
8 Choose x ∈ argmax

v∈B
m2b2(v), B = argmin

y∈c
break(y), randomly and flip its value;

9 return No satisfying assignment found ;

Intuitively, m2b2 rewards variables for moving clauses away from standard instability (no literals sat-
isfied) and for moving away from NAE instability (all literals satisfied). A similar idea, subscores, is
considered in the work of Cai & Su [40] where they make use of multi-level scores for k-SAT solvers.
In this, however, subbreak(x) - which considers clauses that move from being (k − 1)-satisfied to
(k − 2)-satisfied - is minimised since this makes k-SAT clauses more unstable.

48

In what follows, we benchmark QAOA against both WalkSATlm and WalkSATm2b2. For both classical
solvers, we carry out a grid search across

• noise p ∈ { i
20

: 0 ≤ i ≤ 20}

• weights ω1 ∈ { i
10

: 0 ≤ i ≤ 10}, ω2 = 1− ω1

to identify the optimal set of hyperparameters for each k. In particular, in keeping with the β, γ
angle selection procedure for QAOA, this is done for only t = 100 satisfiable random k-NAE-SAT
instances, {σi : σi ∼ CNF (n = 12, k, r̂NAE

k)}t−1
i=0.

5.2 Evaluation

The satisfiability threshold for k-NAE-SAT is approximately half that of k-SAT (2.5). Since the
number of clauses m is sampled as m ∼ Poisson(rn), we will analyse k ∈ {5, 9} instances to parallel
our discussion of k ∈ {4, 8} results in the previous section. This allows us to consider instances of
similar sizes. The full set of results for other k and p are listed in Appendix B.

5.2.1 Success Probabilities

Given parameters β∗ and γ∗, we evaluate the success probability of QAOA over v = 2500 satisfiable
random k-NAE-SAT instances, {σi : σi ∼ CNF (n, k, r̂NAE

k)}v−1
i=0 and calculate

p̂NAE
succ =

1

v

v−1∑
i=0

pNAE
succ (σi) (5.52)

This is done for p = {1, 2, 4, 8, 16, 32} layers and 12 ≤ n ≤ 19. The results (Figure 5.1) show, as
expected, an exponential decay in success probability with instance size. Importantly, the rate of
decay decreases as the number of layers p increases.

(a) QAOA average success probabilities across
2500 satisfiable 5-NAE-SAT CNF (n, 5, r̂NAE

5) in-
stances (error bars too small to be seen).

(b) QAOA average success probabilities across
2500 satisfiable 9-NAE-SAT CNF (n, 9, r̂NAE

9) in-
stances (error bars too small to be seen).

Figure 5.1: QAOA k-NAE-SAT success probabilities.

5.2.2 Running Times

We extend the notion of (median) running times to k-NAE-SAT as follows.

49

Definition 5.2.1. (Instance running time) The running time of a random k-NAE-SAT QAOA in-
stance, rNAE

σ , is defined as the number of bitstrings that have to be sampled from the final quantum
state

∣∣ΨNAE(β, γ, σ)
〉

before one is a satisfying assignment of σ.

Definition 5.2.2. (Empirical median running time) Given the ensemble R = {σi : σi ∼ CNF (n, k, r)}v−1
i=0 ,

the QAOA empirical median running time Medσ∈R[r
NAE
σ] is defined as the median of the correspond-

ing running times {rNAE
σi

: σi ∈ R}.

Given parameters β∗ and γ∗, we evaluate the running time of QAOA over v = 2500 satisfiable
random k-NAE-SAT instances, R = {σi : σi ∼ CNF (n, k, r̂NAE)}v−1

i=0 , and calculate Medσ∈R[r
NAE
σ].

We consider circuits with p ∈ {1, 2, 4, 8, 16, 32} layers and instances where 12 ≤ n ≤ 19, k ∈ {5, 9}.
Our results (Figure 5.2) show that the median running time scales exponentially with instance size
and confirm its alignment with the reciprocal of the success probability. Importantly, the slope of
scaling decreases as the number of layers p increases.

(a) QAOA median running times across 2500 sat-
isfiable 5-NAE-SAT CNF (n, 5, r̂NAE

5) instances.
Dashed lines are the reciprocal of corresponding
success probabilities.

(b) QAOA median running times across 2500 sat-
isfiable 9-NAE-SAT CNF (n, 9, r̂NAE

9) instances.
Dashed lines are the reciprocal of corresponding
success probabilities.

Figure 5.2: QAOA k-NAE-SAT median running times.

Observing that the two metrics agree more strongly for k = 9 than k = 5, we hypothesise that
this is related to the discrete nature of the running time in contrast to the continuity of the success
probability. In particular, since a smaller k corresponds to generally less challenging instances, the
QAOA running times are similar across instance sizes and produce flat scalings. A similar effect
occurs for larger values of p. In this case, we expect the QAOA circuits with more layers to be more
powerful, requiring fewer samples to extract a satisfying assignment.

We investigate our hypothesis further by assessing the exponents induced by the two metrics. In
particular, recalling the previously introduced success probability and median running time scaling
exponents (3.1.3.3), we extend them to k-NAE-SAT as follows.

Definition 5.2.3. (NAE Empirical success probability scaling exponent) Given the ensemble {σi :
σi ∼ CNF (n, k, r)}v−1

i=0 , ĈNAE
p,k (β, γ) is such that

p̂NAE
succ =

1

v

v−1∑
i=0

pNAE
succ (σi) = 2−nĈNAE

p,k (β,γ) (5.53)

50

Definition 5.2.4. (NAE Empirical median running time scaling exponent) Given the ensemble R =
{σi : σi ∼ CNF (n, k, r)}v−1

i=0 , C̃NAE
p,k (β, γ) is such that

Medσ∈R[r
NAE
σ] = 2nC̃

NAE
p,k (β,γ) (5.54)

We consider the relative error of these exponents across 3 ≤ k ≤ 10, defined as∣∣∣∣∣ĈNAE
p,k (β, γ)− C̃NAE

p,k (β, γ)

ĈNAE
p,k (β, γ)

∣∣∣∣∣ (5.55)

The results (Figure 5.3) support our observations: we find that the error decreases as k increases and
increases as p increases. This is particularly clear in Figure 5.3c where we consider more values of p.

(a) (b)

(c)

Figure 5.3: ĈNAE
p,k (β, γ), C̃NAE

p,k (β, γ) relative error across 2500 satisfiable k-NAE-SAT
CNF (n, k, r̂NAE

k) instances.

We note that these effects are also in part due to the relatively small values of n which we are
considering. We do not expect that the median running times will continue to scale as flatly in the
large n limit, even for the large p that we have considered. As such, it is important to consider the
scaling of our exponents as a function of p to take these effects into account. We consider this in
what follows.

5.2.3 Benchmarking

We compare the median running time of QAOA to that of WalkSATlm and WalkSATm2b2 across 2500
satisfiable random k-NAE-SAT instances, {σi : σi ∼ CNF (n, k, r̂NAE

k }v−1
i=0 , for k ∈ {5, 9}, 12 ≤ n ≤

51

19. As for k-SAT, we define and justify (4.2.3) the runtime of both classical solvers as the number
of loop iterations made.

We observe (Figures 5.4a, 5.4b) that the median running time of QAOA outperforms WalkSATm2b2
which in turn outperforms WalkSATlm for both k = 5 and k = 9. Further, we assess the scaling
of these runtimes rather than their absolute values (Figure 5.4c) and find that for both k = 5 and
k = 9, there exists a threshold p above which QAOA’s scaling improves on WalkSATm2b2. We fit the
coefficients to a power law ∼ apb and calculate that the coefficients scale as

C̃NAE
p,5 (β, γ) ∼ 0.64p−0.52 (5.56) C̃NAE

p,9 (β, γ) ∼ 0.69p−0.22 (5.57)

The power law fit for k = 5 begins to disagree with the coefficients in the large p limit. As in
the previous section, this is likely due to the fact that the instances are easy for QAOA to solve,
regardless of the problem size n (for the range that we considered here). As such, effectively no
scaling is induced since the running times are generally ≈ 1. It is clear that this is no longer the case
for k = 9 where we find improved agreement due to harder problem instances.

(a) (b)

(c)

Figure 5.4: (5.4a, 5.4b) Median running times across 2500 satisfiable k-NAE-SAT CNF (n, k, r̂NAE
k)

instances of QAOA, WalkSATlm and WalkSATm2b2. (5.4c) Induced scaling of QAOA k-NAE-SAT
median running times C̃NAE

p,k (β, γ). Dashed lines are observed WalkSATm2b2 scalings.

5.2.4 Excessive Scaling

As for k-SAT, we examine the notion of excessive scaling (4.2.4) by considering the scaling induced
by QAOA in cases where the initial state |+⟩⊗n is mostly unchanged by the circuit. First, we extend
the definition of the predicted scaling exponent (3.17).

52

Definition 5.2.5. (NAE Predicted scaling exponent)

CNAE
p,k (β, γ) = − lim

n→∞

1

n
logEσ∼CNF (n,k,r)[p

NAE
succ (σ)] (5.58)

Theorem 5.2.1. (k-NAE-SAT QAOA random assignment scaling exponent)

CNAE
p,k (β, 0) = CNAE

p,k (0, γ) = 21−kr (5.59)

Proof. First, we realise ∀p
∣∣ΨNAE(β, 0, σ)

〉
p
=

p−1∏
i=0

ÛB(βi) |+⟩⊗n ∝ |+⟩⊗n = 1√
2n

∑
x∈{0,1}n

|x⟩∣∣ΨNAE(0, γ, σ)
〉
p
=

p−1∏
i=0

ÛCNAE
σ

(γi) |+⟩⊗n ∝ |+⟩⊗n = 1√
2n

∑
x∈{0,1}n

|x⟩
(5.60)

since in both cases, the resulting operators all commute and the state is simply effected with a global
phase (2.49). As such,

pNAE
succ (σ) =

1

2n

∑
x,x′∈{0,1}n

⟨x′| {ĤCNAE
σ

= 0} |x⟩

=
1

2n

∑
x,x′∈{0,1}n

Pr(x ⊢NAE σ)δx,x′

=
1

2n

∑
x∈{0,1}n

Pr(x ⊢NAE σ)

(5.61)

Since {ĤCNAE
σ

= 0} denotes the orthogonal projector onto the space of satisfying assignments.

As σ is in CNF

Pr(x ⊢NAE σ) =
m−1∏
i=0

Pr(x ⊢NAE σi) =
m−1∏
i=0

[1− Pr(x ⊬NAE σi)] (5.62)

Recalling 5.6:

Pr(x ⊬NAE σi) = Pr

(
x ⊬ σi ∨ x ⊢

k−1∧
j=0

lσij

)
=

(
1

2

)k

+

(
1

2

)k

= 21−k (5.63)

since all literals are chosen independently and satisfying a literal occurs with probability 1/2 as it is
negated with equal probability.

As such,

pNAE
succ (σ) =

1

2n

∑
x∈{0,1}n

m−1∏
i=0

[1− Pr(x ⊬NAE σi)] =
1

2n

∑
x∈{0,1}n

[
1− 21−k

]m(σ) (5.64)

since all the clauses are chosen independently. We write m(σ) to emphasise m is a property of the
random instance σ.

53

Finally, as m ∼ Poisson(rn)

Eσ∼CNF (n,k,r)

[(
1− 21−k

)m(σ)
]
= Em∼Poisson(nr)

[(
1− 21−k

)m]
=
∑
m≥0

e−rn(rn)m

m!
(1− 21−k)m

= e−rn
∑
m≥0

[
rn(1− 21−k)

]m
m!

= e−rnern(1−21−k)

= e−rn21−k

(5.65)

This means that

lim
n→∞

1

n
logEσ∼CNF (n,k,r)[p

NAE
succ (σ)] = lim

n→∞

1

n
log e−rn21−k

= −21−kr (5.66)

and so
CNAE

p,k (β, 0) = CNAE
p,k (0, γ) = 21−kr (5.67)

In the limit v → ∞ (5.54), we expect ĈNAE
p,k (β, γ) = CNAE

p,k (β, 0). Further, we have studied the
relationship between ĈNAE

p,k (β, γ) and C̃NAE
p,k (β, γ) and found that they agree well. As such, we com-

pare C̃NAE
p,k (β, γ) = 21−kr to the empirical observations in our experiments. As anticipated, QAOA

outperforms the random scaling (Figure 5.5). Interestingly, as in k-SAT, in the small p regime, the
scaling is effectively that of random assignment. This is due to the fact that few-layer circuits are
inexpressive leading to outputs that are effectively unchanged from the initial state.

Figure 5.5: Induced scaling of QAOA k-NAE-SAT median running times C̃NAE
p,k (β, γ). Dashed line is

observed WalkSATm2b2 scaling. Dotted line is random assignment scaling.

5.2.5 Discussion

The results above provide three main contributions, in addition to the QAOA encodings derived for
k-NAE-SAT.

54

First, we have shown that the success probability agrees strongly with the median running time.
This suggests that, as for k-SAT, we can make use of an analytic heuristic to predict the empirical
performance of QAOA, over an ensemble of random instances. This is particularly useful in the
current NISQ-era, where we only have access to quantum processors with low gate fidelities and
high qubit decoherence rates [41]. Meanwhile, classical simulations are limited to less than 50 qubits
[42] so don’t provide a practical means of predicting the large n QAOA performance. We explored
the strength of agreement between the success probability and median running time and identified
regimes where they diverge. However, these were primarily related to problem instances being too
easy or the QAOA circuits too powerful - both situations of lesser interest for the purposes of solving
difficult problems.

We have introduced a novel stochastic local search (2.2) algorithm for k-NAE-SAT, WalkSATm2b2,
and shown that it outperforms its predecessor WalkSATlm. This identifies that the symmetries of the
problem can be exploited to improve running time. Benchmarking QAOA against both solvers, we
find a quantum advantage across all k-NAE-SAT instances of 3 ≤ k ≤ 9. Importantly, all solver
hyperparameters were fine-tuned over the same set of problem instances, suggesting that QAOA is
more capable of generalising. The advantage occurs at a threshold number of layers p ≈ 5 for k = 5
and p ≈ 14 for k = 9. These are similar thresholds to those found for 4-SAT and 8-SAT, and suggest,
as anticipated, that the performance of QAOA depends on the size of the problem instance being
considered. Namely, we considered instances with clause densities near the satisfiability threshold,
which scales as 2k for k-SAT and 2k−1 for k-NAE-SAT. As such, we predicted, and found, that the
results for k-SAT and (k + 1)-NAE-SAT were similar.

Finally, we considered the excessive scaling of QAOA for k-NAE-SAT and showed that for small p,
QAOA circuits act closely to a random assignment algorithm. This confirms the inexpressivity of
shallow depth circuits. Nonetheless, the scaling rapidly decreases for a small increase in the number
of layers, highlighting the effectiveness of the QAOA ansatz and suggesting that large circuits are
not necessary for advantages over classical algorithms.

55

Chapter 6

Conclusions and Future Work

In this work, we successfully:

• Derived novel encodings of k-SAT and k-NAE-SAT for QAOA that could be run on any gate-
based quantum computer and implemented them in Qiskit [13]. This was done with an object
oriented approach, allowing general combinatorial optimisation problems to be considered.

• Studied the cost of classically simulating our encodings and introduced diagonalisations of our
Hamiltonians to reduce the effective time complexity from O

(
2kk3N2 logN

)
to O(N), for a

system size of N = 2n. This was experimentally improved with preprocessing and parallelisa-
tion.

• Reproduced the results of Boulebnane & Montanaro [10], implementing an efficient simulator
in PyTorch [14], and confirmed the quantum advantage of QAOA for 8-SAT over the best
performing classical solver WalkSATlm.

• Produced novel success probability and median running time results of QAOA for 4-SAT and
a large range of k-NAE-SAT problems. We highlighted regimes where the scalings disagreed,
yet showed that these were largely in situations where problem instances were easy and so less
important. We also considered the scaling of these heuristics in the large p limit and interpreted
their excessive scaling performance.

• Introduced WalkSATm2b2, an extension of WalkSATlm that accounted for the symmetry of k-
NAE-SAT instances and showed that it improved performance. Yet, we showed that QAOA
outperformed both solvers on a range of k-NAE-SAT instances.

A number of extensions naturally arise from the work achieved in this project. We consider them as
follows.

Extensions of empirical findings. While we considered a range of problem instances CNF (n, k, r)
and QAOA circuits, further assessment should be done in other regimes. In particular:

• Problems with other clause densities r, including the unique solution threshold and the clus-
tering threshold (solutions can be organised into clusters where they only differ by one variable
assignment) [12].

• Problems with other variable numbers n and k. We note that these will require large efforts
in simulation efficiency to allow for realistic run times - both for the classical and quantum
solvers.

• Evaluation over more problem instances. We only considered 2500 instances to evaluate the
solvers. Nonetheless, errors were found to be insignificant and unnoticeable.

• QAOA circuits with more fine-grained and larger layer counts p. Again, this will require
engineering efforts.

56

Theoretical analysis. While our empirical findings provide a solid indication of QAOAs perfor-
mance for k-NAE-SAT, this can be improved through a theoretical understanding. This is particu-
larly relevant to the study of large instance sizes n→ ∞, where it is impractical to simulate circuits
with such large widths. This can involve the techniques of multinomial sums, introduced by Bouleb-
nane & Montanaro [10].

NAE-SAT classical solvers. We introduced WalkSATm2b2 and showed it outperformed WalkSATlm
on k-NAE-SAT instances. Further extensions should be considered as well as entirely new classical
solvers. It is important to identify regimes where there is true quantum advantage. As such, it is
equally important to identify possible improvements to current classical approaches.

Variants of SAT and NAE-SAT QAOA. In this work, we focused on fixed angle QAOA, selecting
hyperparameters with one procedure. While we demonstrated that this was sufficient to identify a
quantum advantage, other procedures may improve QAOA’s ability to generalise and reduce the
number of layers p required. Possible extensions can be categorised as:

1. Non-fixed angle QAOA, where parameters are trained on the instance itself. This is computa-
tionally expensive and so the incurred costs should be studied and justified over a generalised
procedure.

2. Other procedures for directly generating hyperparameters. Again, this should take into con-
sideration the cost of the procedure and not just improvements to the success probability of
QAOA.

3. Other procedures of indirectly generating hyperparameters. This can include warm starts,
where the parameters for other k and p are used as the initial values in training. Qualitatively,
we found that there was often agreement of β∗ and γ∗ in regimes of similar problems and layer
counts.

Variants of SAT. This work focused on k-SAT and k-NAE-SAT. The potential of QAOA can be
studied for other problems as both an exact (1-in-k-SAT, Graph-k-colouring, etc) and approximate
(MAX-k-SAT, MAX-k-CUT, etc) solver. Our object oriented approach allows for a straightforward
extension to such problems.

57

Appendix A

General Representations of Boolean and
Real Functions

A.1 Boolean Functions

Theorem A.1.1. Let f ∈ Bn. The unique Hamiltonian Ĥf representing f is [28]:

Ĥf =
∑
S⊂[n]

f̂(S)
∏
j∈S

Zj = f̂(∅)I +
n∑

j=1

f̂({j})Zj +
∑
j<k

f̂({j, k})ZjZk . . . (A.1)

with Fourier coefficients:

f̂(S) =
1

2n

∑
x∈{0,1}n

f(x)(−1)S·x =
1

2n
tr(Ĥf

∏
j∈S

Zj) (A.2)

where the following notation has been used:

• S · x :=
∑
j∈S

xj

• [n] := {1, 2, . . . , n}

• Zj := I⊗(j−1) ⊗ Z ⊗ I⊗(n−j) i.e. the Z-Pauli operator applied to the jth qubit.

Example A.1.1. Let f : {0, 1}3 → {0, 1}, f(x) = x1 ⊕ x2 ⊕ x3

f̂(∅) = 1

8

∑
x∈{0,1}3

f(x)(−1)∅·x =
1

8

∑
x∈{0,1}3

f(x) =
1

2

f̂({j}) = 1

8

∑
x∈{0,1}3

f(x)(−1){j}·x =
1

8

∑
x∈{0,1}3

f(x)(−1)xj = 0

f̂({j, k}) = 1

8

∑
x∈{0,1}3

f(x)(−1){j,k}·x =
1

8

∑
x∈{0,1}3

f(x)(−1)xj+xk = 0

f̂({j, k, l}) = 1

8

∑
x∈{0,1}3

f(x)(−1){j,k,l}·x =
1

8

∑
x∈{0,1}3

f(x)(−1)xj+xk+xl = −1

2

(A.3)

The representing Hamiltonian is thus

Ĥf =
∑
S⊂[3]

f̂(S)
∏
j∈S

Zj =
1

2
(I − Z1Z2Z3) (A.4)

58

We verify its application

Ĥf |111⟩ =
1

2
(I − Z1Z2Z3) =

1

2
(1− (−1)) |111⟩ = 1× |111⟩ (A.5)

as expected.

A.2 Real/Pseudo-Boolean Functions

Theorem A.2.1. For g ∈ Rn, the unique Hamiltonian representing g is Ĥg s.t [28]:

Ĥg =
∑
S⊂[n]

ĝ(S)
∏
j∈S

Zj (A.6)

with Fourier coefficients:

ĝ(S) =
1

2n

∑
x∈{0,1}n

g(x)(−1)S·x =
1

2n
tr(Ĥg

∏
j∈S

Zj) (A.7)

where the following notation has been used:

• S · x :=
∑
j∈S

xj

• [n] := {1, 2, . . . , n}

• Zj := I⊗(j−1) ⊗ Z ⊗ I⊗(n−j) i.e. the Z-Pauli operator applied to the jth qubit.

59

Appendix B

Complete Results for k-NAE-SAT

B.1 Success Probability
Given parameters β∗ and γ∗, we evaluate the success probability of QAOA over v = 2500 satisfiable
random k-NAE-SAT instances, {σi : σi ∼ CNF (n, k, r̂NAE

k)}v−1
i=0 and calculate

p̂NAE
succ =

1

v

v−1∑
i=0

pNAE
succ (σi) (B.1)

The results for 3 ≤ k ≤ 10 and p ∈ {1, 2, 4, 8, 16, 20, 24, 28, 32} are as in Figure B.1.

B.2 Median Running Times
Given parameters β∗ and γ∗, we evaluate the running time of QAOA over v = 2500 satisfiable
random k-NAE-SAT instances, r = {σi : σi ∼ CNF (n, k, r̂NAE)}v−1

i=0 , and calculate the median

Medσ∈r[r
NAE
σ] (B.2)

The results for 3 ≤ k ≤ 10 and p ∈ {1, 2, 4, 8, 16, 20, 24, 28, 32} are as in Figure B.2 where we compare
the median running time to the reciprocal of the sucess probability.

B.3 Benchmarking
We compare the median running time of QAOA to that of WalkSATlm and WalkSATm2b2 across 2500
satisfiable random k-NAE-SAT instances, {σi : σi ∼ CNF (n, k, r̂NAE

k }v−1
i=0 .

The results for 3 ≤ k ≤ 9 and p ∈ {1, 2, 4, 8, 16, 20, 24, 28, 32} are as in Figure B.3. 1

B.4 Excessive Scaling
We assess the scaling C̃NAE

p,k (β, γ) of the above runtimes and fit the points to a power law ∼ apb. This
is compared to random assignment scaling C̃NAE

p,k (β, γ) = 21−kr.

The results for 3 ≤ k ≤ 9 and p ∈ {1, 2, 4, 8, 16, 20, 24, 28, 32} are as in Figure B.4 and Table B.1.

1Due to time and resource constraints we did not benchmark for k = 10.

60

Figure B.1: QAOA average success probabilities across 2500 satisfiable k-NAE-SAT CNF (n, k, r̂NAE
k)

instances (error bars too small to be seen).

61

Figure B.2: QAOA median running times across 2500 satisfiable k-NAE-SAT CNF (n, k, r̂NAE
k) in-

stances. Dashed lines are the reciprocal of corresponding success probabilities.

62

Figure B.3: Median running times across 2500 satisfiable k-NAE-SAT CNF (n, k, r̂NAE
k) instances of

QAOA, WalkSATlm and WalkSATm2b2.

63

Figure B.4: Induced scaling of QAOA k-NAE-SAT median running times. Dashed line is observed
WalkSATm2b2 scaling. Dotted line is random assignment scaling.

64

k a b
3 0.48193188 -0.73653218
4 0.59220998 -0.68702534
5 0.64106651 -0.51678505
6 0.64427816 -0.37302963
7 0.66099965 -0.30455395
8 0.67472907 -0.24718223
9 0.68581328 -0.22158058
10 0.6987176 -0.19971659

Table B.1: Power law fit C̃NAE
p,k (β, γ) ∼ apb.

65

Bibliography

[1] Stephen A. Cook. The complexity of theorem-proving procedures. In Proceedings of the Third
Annual ACM Symposium on Theory of Computing, STOC ’71, page 151–158, New York, NY,
USA, 1971. Association for Computing Machinery. Available from https://doi.org/10.1145/
800157.805047.

[2] Lintao Zhang and Sharad Malik. The quest for efficient boolean satisfiability solvers. In Pro-
ceedings of the 14th International Conference on Computer Aided Verification, CAV ’02, page
17–36, Berlin, Heidelberg, 2002. Springer-Verlag. Available from https://www.princeton.edu/
~chaff/publication/cade_cav_2002.pdf.

[3] Ted Hong, Yanjing Li, Sung-Boem Park, Diana Mui, David Lin, Ziyad Abdel Kaleq, Nagib
Hakim, Helia Naeimi, Donald S. Gardner, and Subhasish Mitra. Qed: Quick error detection
tests for effective post-silicon validation. In 2010 IEEE International Test Conference, pages
1–10, 2010. Available from https://ieeexplore.ieee.org/document/5699215.

[4] Henry A. Kautz and Bart Selman. Planning as satisfiability. In Bernd Neumann, editor, 10th
European Conference on Artificial Intelligence, ECAI 92, Vienna, Austria, August 3-7, 1992.
Proceedings, pages 359–363. John Wiley and Sons, 1992. Available from https://www.cs.
cornell.edu/selman/papers/pdf/92.ecai.satplan.pdf.

[5] Daniel Jackson and Mandana Vaziri. Finding bugs with a constraint solver. In Proceedings of
the 2000 ACM SIGSOFT International Symposium on Software Testing and Analysis, ISSTA
’00, page 14–25, New York, NY, USA, 2000. Association for Computing Machinery. Available
from https://doi.org/10.1145/347324.383378.

[6] Cristopher Moore and Stephan Mertens. The Nature of Computation. Oxford University Press,
2011. Available from https://www.amazon.co.uk/Nature-Computation-Cristopher-Moore/
dp/0199233217.

[7] Amin Coja-Oghlan. Random constraint satisfaction problems. In S. Barry Cooper and Vin-
cent Danos, editors, Proceedings Fifth Workshop on Developments in Computational Models–
Computational Models From Nature, DCM 2009, Rhodes, Greece, 11th July 2009, volume 9 of
EPTCS, pages 32–37, 2009. Available from https://doi.org/10.4204/EPTCS.9.4.

[8] Edward Farhi, Jeffrey Goldstone, and Sam Gutmann. A quantum approximate optimization
algorithm, 2014. Available from https://arxiv.org/abs/1411.4028.

[9] Ruslan Shaydulin and Yuri Alexeev. Evaluating quantum approximate optimization algorithm:
A case study. In 2019 Tenth International Green and Sustainable Computing Conference (IGSC).
IEEE, oct 2019. Available from https://doi.org/10.1109%2Figsc48788.2019.8957201.

[10] Sami Boulebnane and Ashley Montanaro. Solving boolean satisfiability problems with the quan-
tum approximate optimization algorithm, 2022. Available from https://arxiv.org/abs/2208.
06909.

66

https://doi.org/10.1145/800157.805047
https://doi.org/10.1145/800157.805047
https://www.princeton.edu/~chaff/publication/cade_cav_2002.pdf
https://www.princeton.edu/~chaff/publication/cade_cav_2002.pdf
https://ieeexplore.ieee.org/document/5699215
https://www.cs.cornell.edu/selman/papers/pdf/92.ecai.satplan.pdf
https://www.cs.cornell.edu/selman/papers/pdf/92.ecai.satplan.pdf
https://doi.org/10.1145/347324.383378
https://www.amazon.co.uk/Nature-Computation-Cristopher-Moore/dp/0199233217
https://www.amazon.co.uk/Nature-Computation-Cristopher-Moore/dp/0199233217
https://doi.org/10.4204/EPTCS.9.4
https://arxiv.org/abs/1411.4028
https://doi.org/10.1109%2Figsc48788.2019.8957201
https://arxiv.org/abs/2208.06909
https://arxiv.org/abs/2208.06909

[11] Shaowei Cai, Chuan Luo, and Kaile Su. Improving WalkSAT By Effective Tie-Breaking and
Efficient Implementation. The Computer Journal, 58(11):2864–2875, 11 2014. Available from
https://doi.org/10.1093/comjnl/bxu135.

[12] Allan Sly, Nike Sun, and Yumeng Zhang. The number of solutions for random regular nae-sat,
2016. Available from https://arxiv.org/abs/1604.08546.

[13] Qiskit contributors. Qiskit: An open-source framework for quantum computing, 2023. Available
from https://doi.org/10.5281/zenodo.2573505.

[14] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gre-
gory Chanan, Trevor Killeen, Zeming Lin, Natalia Gimelshein, Luca Antiga, Al-
ban Desmaison, Andreas Kopf, Edward Yang, Zachary DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and
Soumith Chintala. Pytorch: An imperative style, high-performance deep learning li-
brary. In Advances in Neural Information Processing Systems 32, pages 8024–8035.
Curran Associates, Inc., 2019. Available from http://papers.neurips.cc/paper/
9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf.

[15] Michael Huth and Mark Ryan. Logic in computer science : modelling and reasoning about
systems. Cambridge University Press, Cambridge [U.K.]; New York, 2004. Available from
http://www.amazon.de/s/url=search-alias%3Daps&field-keywords=052154310X.

[16] Wikipedia. Petersen graph 3-coloring, 2006. Available from https://commons.wikimedia.org/
wiki/File:Petersen_graph_3-coloring.svg. Accessed: June 1, 2023.

[17] Martin Davis, George Logemann, and Donald Loveland. A machine program for theorem-
proving. Journal of Symbolic Logic, 32(1):118–118, 1967. Available from https://doi.org/10.
2307/2271269.

[18] Bart Selman, Henry Kautz, and Bram Cohen. Noise strategies for improving lo-
cal search. Proceedings of the National Conference on Artificial Intelligence, 1, 09
1999. Available from https://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=
EA15D3B4A4BA9334625A14FC12A28742?doi=10.1.1.319.7660&rep=rep1&type=pdf.

[19] Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Michael Sipser. Quantum computation
by adiabatic evolution, 2000. Available from https://arxiv.org/abs/quant-ph/0001106.

[20] A. Messiah. Quantum Mechanics. Number v. 2 in Quantum Mechanics. Elsevier Science, 1961.
Available from https://books.google.co.uk/books?id=VR93vUk8d_8C.

[21] M. Born and V. Fock. Beweis des Adiabatensatzes. Zeitschrift fur Physik, 51(3-4):165–180,
March 1928. Available from https://doi.org/10.1007/BF01343193.

[22] Tameem Albash and Daniel A. Lidar. Adiabatic quantum computation. Rev. Mod. Phys.,
90:015002, Jan 2018. Available from https://link.aps.org/doi/10.1103/RevModPhys.90.
015002.

[23] Edward Farhi, Jeffrey Goldstone, Sam Gutmann, and Daniel Nagaj. How to make the quantum
adiabatic algorithm fail, 2005. Available from https://arxiv.org/abs/quant-ph/0512159.

[24] Naomichi Hatano and Masuo Suzuki. Finding exponential product formulas of higher orders. In
Quantum Annealing and Other Optimization Methods, pages 37–68. Springer Berlin Heidelberg,
nov 2005. Available from https://doi.org/10.1007%2F11526216_2.

[25] Yin Sun, Jun-Yi Zhang, Mark S. Byrd, and Lian-Ao Wu. Adiabatic quantum simulation using
trotterization, 2018. Available from https://arxiv.org/abs/1805.11568.

67

https://doi.org/10.1093/comjnl/bxu135
https://arxiv.org/abs/1604.08546
https://doi.org/10.5281/zenodo.2573505
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://papers.neurips.cc/paper/9015-pytorch-an-imperative-style-high-performance-deep-learning-library.pdf
http://www.amazon.de/s/url=search-alias%3Daps&field-keywords=052154310X
https://commons.wikimedia.org/wiki/File:Petersen_graph_3-coloring.svg
https://commons.wikimedia.org/wiki/File:Petersen_graph_3-coloring.svg
https://doi.org/10.2307/2271269
https://doi.org/10.2307/2271269
https://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=EA15D3B4A4BA9334625A14FC12A28742?doi=10.1.1.319.7660&rep=rep1&type=pdf
https://citeseerx.ist.psu.edu/viewdoc/download;jsessionid=EA15D3B4A4BA9334625A14FC12A28742?doi=10.1.1.319.7660&rep=rep1&type=pdf
https://arxiv.org/abs/quant-ph/0001106
https://books.google.co.uk/books?id=VR93vUk8d_8C
https://doi.org/10.1007/BF01343193
https://link.aps.org/doi/10.1103/RevModPhys.90.015002
https://link.aps.org/doi/10.1103/RevModPhys.90.015002
https://arxiv.org/abs/quant-ph/0512159
https://doi.org/10.1007%2F11526216_2
https://arxiv.org/abs/1805.11568

[26] Alberto Peruzzo, Jarrod McClean, Peter Shadbolt, Man-Hong Yung, Xiao-Qi Zhou, Peter J.
Love, Alán Aspuru-Guzik, and Jeremy L. O’Brien. A variational eigenvalue solver on a photonic
quantum processor. Nature Communications, 5(1), jul 2014. Available from https://doi.org/
10.1038%2Fncomms5213.

[27] Jules Tilly, Hongxiang Chen, Shuxiang Cao, Dario Picozzi, Kanav Setia, Ying Li, Edward Grant,
Leonard Wossnig, Ivan Rungger, George H. Booth, and Jonathan Tennyson. The variational
quantum eigensolver: A review of methods and best practices. Physics Reports, 986:1–128, nov
2022. Available from https://doi.org/10.1016%2Fj.physrep.2022.08.003.

[28] Stuart Hadfield. On the representation of boolean and real functions as hamiltonians for quantum
computing. ACM Transactions on Quantum Computing, 2(4):1–21, dec 2021. Available from
https://doi.org/10.1145%2F3478519.

[29] Guillaume Verdon, Michael Broughton, and Jacob Biamonte. A quantum algorithm to train
neural networks using low-depth circuits, 2017. Available from https://arxiv.org/abs/1712.
05304.

[30] Mark Fingerhuth, Tomáš Babej, and Christopher Ing. A quantum alternating operator ansatz
with hard and soft constraints for lattice protein folding, 2018. Available from https://arxiv.
org/abs/1810.13411.

[31] Jarrod R. McClean, Sergio Boixo, Vadim N. Smelyanskiy, Ryan Babbush, and Hartmut Neven.
Barren plateaus in quantum neural network training landscapes. Nature Communications, 9(1),
nov 2018. Available from https://doi.org/10.1038%2Fs41467-018-07090-4.

[32] Zoë Holmes, Kunal Sharma, M. Cerezo, and Patrick J. Coles. Connecting ansatz expressibility
to gradient magnitudes and barren plateaus. PRX Quantum, 3(1), jan 2022. Available from
https://doi.org/10.1103%2Fprxquantum.3.010313.

[33] Earl Campbell, Ankur Khurana, and Ashley Montanaro. Applying quantum algorithms to
constraint satisfaction problems. Quantum, 3:167, jul 2019. Available from https://doi.org/
10.22331%2Fq-2019-07-18-167.

[34] Milan Merkle. Jensen’s inequality for medians. Statistics & Probability Letters,
71(3):277–281, 2005. Available from https://www.sciencedirect.com/science/article/
pii/S0167715204003104.

[35] Bingzhi Zhang, Akira Sone, and Quntao Zhuang. Quantum computational phase transition
in combinatorial problems. npj Quantum Information, 8(1), jul 2022. Available from https:
//doi.org/10.1038%2Fs41534-022-00596-2.

[36] Shuichi Sakai, Mitsunori Togasaki, and Koichi Yamazaki. A note on greedy algorithms
for the maximum weighted independent set problem. Discrete Applied Mathematics,
126(2):313–322, 2003. Available from https://www.sciencedirect.com/science/article/
pii/S0166218X02002056.

[37] R.A. Stoneback, J.H. Klenzing, A.G. Burrell, C. Spence, M. Depew, N. Hargrave, J. Smith,
V. von Bose, A. Pembroke, G. Iyer, and S. Luis. Python satellite data analysis toolkit (pysat)
vx.y.z, 2021. Available from https://doi.org/10.5281/zenodo.1199703.

[38] John Bent. Data-Driven Batch Scheduling. PhD thesis, University of Wisconsin, Madi-
son, May 2005. Available from https://research.cs.wisc.edu/wind/Publications/thesis_
johnbent.pdf.

[39] Danny Nam, Allan Sly, and Youngtak Sohn. One-step replica symmetry breaking of random
regular nae-sat i, 2021. Available form https://arxiv.org/abs/2011.14270.

68

https://doi.org/10.1038%2Fncomms5213
https://doi.org/10.1038%2Fncomms5213
https://doi.org/10.1016%2Fj.physrep.2022.08.003
https://doi.org/10.1145%2F3478519
https://arxiv.org/abs/1712.05304
https://arxiv.org/abs/1712.05304
https://arxiv.org/abs/1810.13411
https://arxiv.org/abs/1810.13411
https://doi.org/10.1038%2Fs41467-018-07090-4
https://doi.org/10.1103%2Fprxquantum.3.010313
https://doi.org/10.22331%2Fq-2019-07-18-167
https://doi.org/10.22331%2Fq-2019-07-18-167
https://www.sciencedirect.com/science/article/pii/S0167715204003104
https://www.sciencedirect.com/science/article/pii/S0167715204003104
https://doi.org/10.1038%2Fs41534-022-00596-2
https://doi.org/10.1038%2Fs41534-022-00596-2
https://www.sciencedirect.com/science/article/pii/S0166218X02002056
https://www.sciencedirect.com/science/article/pii/S0166218X02002056
https://doi.org/10.5281/zenodo.1199703
https://research.cs.wisc.edu/wind/Publications/thesis_johnbent.pdf
https://research.cs.wisc.edu/wind/Publications/thesis_johnbent.pdf
https://arxiv.org/abs/2011.14270

[40] Shaowei Cai and Kaile Su. Comprehensive score: Towards efficient local search for sat with
long clauses. In International Joint Conference on Artificial Intelligence, 2013. Available from
https://www.ijcai.org/Proceedings/13/Papers/080.pdf.

[41] Wenbo Sun, Sathwik Bharadwaj, Li-Ping Yang, Yu-Ling Hsueh, Yifan Wang, Dan Jiao, Rajib
Rahman, and Zubin Jacob. Limits to quantum gate fidelity from near-field thermal and vacuum
fluctuations, 2023. Available from https://arxiv.org/abs/2207.09441.

[42] Xin-Chuan Wu, Sheng Di, Emma Maitreyee Dasgupta, Franck Cappello, Hal Finkel, Yuri Alex-
eev, and Frederic T. Chong. Full-state quantum circuit simulation by using data compression.
In Proceedings of the International Conference for High Performance Computing, Networking,
Storage and Analysis. ACM, nov 2019. Available from https://doi.org/10.1145%2F3295500.
3356155.

69

https://www.ijcai.org/Proceedings/13/Papers/080.pdf
https://arxiv.org/abs/2207.09441
https://doi.org/10.1145%2F3295500.3356155
https://doi.org/10.1145%2F3295500.3356155

	Introduction
	Contributions
	Ethical Considerations

	Preliminaries
	Boolean Satisfiability Problem
	Propositional Formulae
	k-SAT and k-NAE-SAT
	Computational Phase Transitions

	Classical Solvers
	DPLL
	WalkSAT and WalkSATlm

	Quantum Approximate Optimisation Algorithm
	Adiabatic Quantum Computing
	Trotterisation
	Variational Quantum Eigensolvers
	QAOA Procedure
	Choosing Hamiltonians
	Barren Plateaus

	Representing Functions as Hamiltonians
	Boolean Functions
	Real/Pseudo-Boolean Functions

	Related Work
	QAOA Success Probabilities
	Analytic Derivation
	Empirical Validation
	Benchmarking

	Quantum Computational Phase Transitions
	Barren Plateaus in Training
	Accuracy of QAOA

	QAOA for k-SAT
	Implementation
	Problem Hamiltonian
	QAOA Procedure
	Efficient Classical Simulation
	Software

	Evaluation
	Success Probabilities
	Running Times
	Benchmarking
	Excessive Scaling

	QAOA for k-NAE-SAT
	Implementation
	Problem Hamiltonian
	QAOA Procedure
	Efficient Classical Simulation
	Classical Benchmarking

	Evaluation
	Success Probabilities
	Running Times
	Benchmarking
	Excessive Scaling
	Discussion

	Conclusions and Future Work
	Appendices
	General Representations of Boolean and Real Functions
	Boolean Functions
	Real/Pseudo-Boolean Functions

	Complete Results for k-NAE-SAT
	Success Probability
	Median Running Times
	Benchmarking
	Excessive Scaling

