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Abstract

Dafny is a modern, verification-aware programming language which enables the development of
provably correct software, through writing programs annotated with specification constructs. It
has become popular in teaching, academia and more recently in industry, being used to write
security-critical protocols within AWS.

With this project we introduce fuzz-d, a compiler testing tool which randomly generates valid
Dafny programs. Within fuzz-d, we draw inspiration from previous research to design a novel
approach — advanced reconditioning — which avoids over-constraining program expressiveness
while ensuring program validity. Additionally, we implement a Dafny interpreter to act as a
reference oracle during testing, addressing limitations in applying existing testing mechanisms
to Dafny. We further demonstrate that the interpreter can be used to annotate Dafny programs
in verifiable ways, using it to create a workflow for testing the Dafny verifier.

Testing campaigns with fuzz-d have so far resulted in 14 bug reports being submitted to the
Dafny developers, documenting both crashes and miscompilations across a range of language
features. Of these, three have already been fixed and a further five confirmed. We have also
used fuzz-d to identify weaknesses in the existing Dafny test suite, using both coverage analysis
to find sections of code reachable by fuzz-d but not the integration test suite, and mutation
testing to identify mutants which are killed by fuzz-d but survive with the integration tests.
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1 Introduction

1.1 Motivation

Dafny is a high-level, verification-aware programming language intended for use in building ver-
ified software. It is an extremely expressive language, providing built-in specification constructs
which are used by a Floyd-Hoare-style program verifier [1] to formally prove the functional
correctness of annotated programs. Consequently, Dafny has a wide range of applications in
teaching and in industry-led research at large scale companies such as Microsoft [2] and Amazon
3]

Although Dafny stands out for its verifier, at its core it is a compiled language. Dafny programs
are compiled into another high-level language (the compile target language), and this output
can then be interpreted/executed using mechanisms from the target language (e.g. dotnet for
programs compiled into C# or node for JavaScript). Currently, Dafny supports compilation
of programs into C#, Python, Java, Go, JavaScript (mature support) and C+-+ (very limited

support) [1].

Compilers for modern high-level programming languages are often highly complex, as a result
of supporting a rich set of types, language features, and multiple levels of optimisation. This
naturally creates a problem where there are a large range of possible inputs and corresponding
behaviours which the compiler must be able to generate programs for. Dafny’s compiler is no
different — in order to be correct, it must not only be aware of the semantics of the input language
(Dafny), but also the supported output languages.

Although compilers are inherently complex, they are often assumed by developers to be function-
ally correct and bug-free. However, as with any software application, compilers can also contain
bugs. For example, the compiler testing tool Csmith has identified over 325 bugs in C compilers
[4]. Almost every program that runs on a computer has been processed by a compiler or similar
tool [5], and thus a bug in a production compiler can have significant consequences, especially
if the bug goes unnoticed and produces an executable with invalid or incorrect behaviour. For
example, several Apache applications crashed unexpectedly after the release of Java 7, which
contained a miscompilation bug related to hotspot optimisation [6].

Research into compiler testing and validation has gained traction in recent years, following from
the critical role of compilers and the dependence of software applications on their functional
correctness. In particular, there has been a lot of focus on the area of compiler fuzzing, in which
diverse, interesting programs are generated pseudo-randomly and subsequently used to verify
the compiler’s correctness. This has been applied successfully for many high-level programming
languages, including C/C++ [4] and more recently JavaScript [7]. There also exists previous
work on testing Dafny [3]; however, this omitted a large proportion of Dafny’s language features,
including loops, recursion and object-oriented data structures.

This project aims to analyse and explore existing techniques in compiler fuzzing in order to
create a new tool, fuzz-d, which can be used to test and validate Dafny over its more complex
language features. The primary aim of fuzz-d will be to identify bugs in the Dafny compiler,
as without a reliably correct compiler implementation, Dafny’s program verification would be
meaningless — a written program could be formally correct, but its compiled version might not
be. Equally, it is important that the verifier only accepts formally correct programs, therefore
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a secondary aim of fuzz-d will be to identify testing mechanisms for the Dafny verifier and use
these to identify bugs.

1.2 Objectives

This project aims to implement a fuzzer, fuzz-d, which can randomly generate programs used for
testing the Dafny workflow. We undertake this project with the following primary objectives:

1.

To build a fuzzer for the Dafny programming language, using existing compiler testing
techniques to generate a diverse and feature-rich set of valid test programs.

. To design novel techniques for ensuring validity of test programs and investigate their

effectiveness compared to existing techniques when applied in the context of Dafny.

. To identify mechanisms allowing for the generation of programs with a known verification

outcome, using these to build a workflow for testing the Dafny verifier.

. Analysing the ability of fuzz-d to test the core areas of the Dafny workflow, using these

results to evaluate the effectiveness of using fuzzing for testing Dafny.

1.3 Contributions

This project makes the following key contributions:

1.

d.

We develop a novel random program generator capable of building complex, but valid,
Dafny programs using a generational approach. Its design and techniques are documented
in Section 4.2.

. We implement a reconditioner module which is capable of ensuring validity of generated

programs, introducing a new technique — advanced reconditioning — which minimises the
constraint over program expressiveness introduced by reconditioning mechanisms. We also
use these techniques to avoid introducing invalid behaviour during reduction of test cases.
Reconditioning mechanisms are described in Section 4.4.

. We create an interpreter for the supported subset of the Dafny language, capable of resolv-

ing limitations in performing differential testing over Dafny’s backends (Section 3.4). We
further use the interpreter to introduce mechanisms for annotating generated programs
with valid specification constructs, integrating this into a workflow for testing the Dafny
verifier. The design and techniques behind the interpreter are detailed in Section 4.3.

. We analyse and illustrate the ability of the fuzz-d generator to test Dafny through:

(a) Highlighting bugs identified by testing campaigns across multiple versions of Dafny,
including both compiler crashes and miscompilations. In total, 35 bugs were found,
of which there were 18 unique root causes. Four of these were previously reported,
thus 14 new bug reports were submitted to Dafny developers.

(b) Achieving 46% line coverage over the DafnyCore module of the Dafny workflow —
significantly higher than the existing XDsmith tool — in a 12 hour controlled experi-
ment.

(¢) Demonstrating that fuzz-d is able to both cover lines of code and kill mutants in parts
of the DafnyCore module which the Dafny integration tests are unable to, highlighting
possible weaknesses in Dafny’s testing mechanisms.

We make the fuzz-d project available open-source on GitHub, alongside tools and resources
required for the project.


https://www.github.com/fuzz-d

2 Background

2.1 Compiler Testing

A compiler takes as input a program written in a specific high-level language, and outputs an exe-
cutable version of the program in a lower-level language such as assembly or bytecode. Compilers
are complex pieces of software by nature and involve interaction between several components.
Figure 2.1 details the stages an input program might go through during compilation, including
parsing the program, checking it for syntactic and semantic errors, applying optimisations and
generating the code.

Input Lexical Syntax Semantic Obtimisation Code Output
Program Analysis Analysis Analysis P Generation Executable
< 4

Figure 2.1: The stages of compilation

Due to the feature-rich nature of modern high-level programming languages, there is typically a
broad input space of valid programs and a large number of possible paths the compilation of a
program can take. Aside from core language support, compilers offer numerous additional fea-
tures, such as support across different target platforms, different language versions, and several
types/levels of optimisation. Optimisations can often be applied in different orders, or at differ-
ent stages of compilation (e.g. before/after code generation). For example, the Clang compiler
has 58 different optimisation passes [§].

The combination of a compiler’s broad input space and its large number of additional features
therefore makes it very difficult (if not impossible) for developers to exhaustively test all possible
configurations using traditional manual testing methods. While they may be able to test more
intuitive cases, it is likely that some more complex edge cases may be missed. Sometimes it
is unclear what a compiler should do for particular input configurations, and this can further
increase the difficulty of manual testing. For example, the C language specification does not
detail the order in which optimisations should be applied.

As a result of the complexity of compilers and the importance of their correctness, a lot of effort
has recently been placed into researching compiler testing, with the aim of improving compiler
validity and correctness. One possible approach to solve this problem is to formally verify
the compiler code, using specifications and machine-checked proofs to ensure correctness. For
example, CompCert [9] is a formally verified compiler for Clight, a subset of the C language. This
approach is able to eliminate the possibility of compiler-introduced bugs by formally proving that
the compiler outputs executables which semantically correspond to the input program. However,
such proof constructs are difficult and time consuming to create, therefore the technique does
not currently scale well onto large-scale compilers — it is likely that the formal proof specification
would be larger than the compiler’s source.

An alternative to formal verification involves applying the automated testing technique fuzzing
to compilers, randomly generating a large number of programs and testing these on the compiler,
consequently ensuring they compile and execute with the correct behaviour [5]. The random
nature of the program generation means it is likely programs will cover a large portion of the
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input space, and they are also likely to be more complex (less intuitive) than manually generated
test cases, thus covering possible edge cases.

Fuzzing can detect both types of compiler bugs for a particular generated program:

o Compiler crashes occur when the compilation process exits early without producing a valid
output, typically reporting a non-zero exit code and some form of crash or error.

o Miscompilations occur when the compiler generates an executable, but the behaviour of
this executable is semantically different from the input program. They can be harder to
identify manually since the compilation succeeds without warnings or errors, thus compiler
fuzzers, such as Csmith [4] and YARPGen [10], commonly identify more miscompilations
than crashes.

No

Generate Test Compile Run Program; Verlfy Output p Reduce Program
Generated using Test Bugs detected?
Program Collect Output to Understand Bug
Program Oracles

Figure 2.2: A general workflow for compiler testing using fuzzers

Figure 2.2 shows the stages which a general approach to compiler fuzzing involves. This begins
with generating the test programs in the source language — techniques for generating diverse
programs are detailed in Sections 2.2 and 2.3. These generated programs need to be valid
in order to test the entire compilation pipeline, and this is discussed in Section 2.4. Once a
program is generated, it is compiled and executed. The execution output is used to verify
that the compiled program exhibits the expected behaviour — Section 2.5 discusses how we can
overcome the test oracle problem to know the expected behaviour for a generated program. If a
program is detected as containing a bug, it is reduced to a simpler program which can be easily
debugged by a compiler developer. Methods for program reduction are discussed in Section 2.6.

2.2 Program Generation

Testing any piece of software requires test cases to be created, and in the case of testing a
compiler, a test case is represented by a program. Constructing programs automatically, as is
done in compiler fuzzing, can have many challenges. Generated programs need to be diverse,
covering multiple different parts of a compiler in interesting ways, while being wvalid enough
so as not to be rejected before the compiler stage under test. When the aim is to test the
behaviour of executables produced by the compiler, a program must be able to pass through
the entire compiler pipeline, thus it must be both syntactically and semantically valid. There
are two common approaches to generating such programs: generative and mutational program
generation.

2.2.1 Generative Program Generation
With generative program generation, test programs are generated from scratch. This can be
categorised into two approaches: grammar-directed and grammar-aided |5] generation.

Grammar-Directed Program Generation

The grammar-directed approach takes as input a context-free grammar (CFG) for a language
and generates test programs based on this. This is done by taking a unique start symbol and
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recursively walking over the rules of the grammar in a top-down approach, applying these rules
to generate strings which can be combined to form the program.

With grammar-directed generation, we can generate programs which are syntactically correct.
Since generated programs follow the rules of the language’s grammar, they can be applied to
testing the lexical and syntactic analysis stages; however, the approach does not reliably generate
programs that can test all parts of a compiler pipeline. This is because it is difficult to express
the context sensitive features of a language using a CFG.

For example, given the grammar detailed in Figure 2.3, a grammar-directed generator would
be able to declare and assign values to variables, but it would not have context sensitive in-
formation, for example that a variable needs to be declared before assignment or that vari-
ables can only be assigned values of their type. Therefore, it could generate programs such as
var x : Int := false or x := 3 (x undeclared) — these would be rejected by the compiler as
they are not semantically valid.

statement := declaration | assignment |
declaration := var <ident> : <type> := <expression>
assignment := <ident> := <expression>

expression BooleanlLiteral | IntLiteral

Figure 2.3: An example context-free grammar

Approaches have been suggested to provide a grammar-directed generator with context-sensitive
information, such as two-level grammar techniques which involve defining an additional layer of
rules/attributes. For example, Hanford proposes a system based on affiz grammars that uses
syntax generators to store information about declared labels [11], e.g. if we declare x then a
rule for x is added into the CFG by the syntax generator. With this example, the generator
would know a variable can only be used after declaration. However, we can see that two-level
grammars are still limited in the extent to which they can provide a generator with context
sensitive information and grammar-aided approaches are able to provide a more generalised
solution.

Grammar-Aided Program Generation

Grammar-aided approaches also take a language grammar as input (or it may be hard coded
into the generator implementation), but unlike grammar-directed approaches, they instead use
heuristics to handle context sensitivity.

An example of a grammar-aided generator is Csmith [4]. After generating a number of top-level
members and storing these in a global environment, it takes a top-down approach to generating
C code, starting with the main function and using the grammar along with probability tables
and filters to select future constructs to generate. These selection techniques, along with other
complex heuristics, help Csmith to generate programs which are semantically valid and free
of undefined behaviour. YARPGen [10] also takes a similar approach, except it is able to use
heuristics to avoid introducing undefined behaviour or semantic errors in expressions.

2.2.2 Mutational Program Generation

Mutational program generation takes the approach of modifying parts of an existing test pro-
gram, by applying a series of transformations to produce a mutated program. Note that it is
possible the existing program was created via a generative approach. There are two possible
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approaches to these transformations: semantics-preserving and non-semantics-preserving trans-
formations. Typically, mutational approaches are used to find bugs in the optimisation phase
of a compiler, since the mutations complicate control flow and are therefore likely to engage the
optimiser in different ways.

Semantics Preserving Mutations

Semantics preserving mutations transform a program in ways which do not alter its runtime
behaviour. This is based on the idea of equivalence modulo inputs (EMI), which defines two
programs as equivalent under a set of inputs if they exhibit the same behaviour over that set of
inputs. Le et al provide a formal definition in [12]: given programming language £, two programs
P,Q € L are equivalent w.r.t. input set [ iff Vi € I:: [P](:) = [Q] (7). When applied to compiler
testing, the concept of EMI ensures that two test programs will have the same output under a
set of inputs — this has applications in solving the test oracle problem and is discussed in Section
2.5.

An example of a bug-finding tool using these transformations is Orion 12|, which applies the
“profile and mutate” strategy to identify unexecuted sections of a program (dead code), then
generating a number of EMI variants by randomly applying mutations to identified dead code.
These mutations involve removing statements, which should have no impact on the behaviour
of the original program.

While Orion is limited to pruning programs, a more powerful example is GLFuzz [13|, which is
applied to testing the graphics shading language OpenGL to generate equivalent shader pro-
grams. When rendered, the equivalent shader programs should be visually equivalent — a
rendered shader which differs significantly from another is seen as a miscompilation bug. As
well as pruning dead code, GLFuzz adds new code to unexecuted sections via generative tech-
niques, demonstrating how generative and mutational techniques can coincide. It also leverages
semantics-preserving identities to mutate numeric and boolean expressions in live sections of
code, e.g. sin(—z) = —sin(z).

Non-Semantics Preserving Mutations

Unlike semantics preserving mutations, non-semantics preserving mutations do not have to main-
tain that the mutated programs exhibit the same runtime behaviour as the original, and therefore
they have much more freedom in the ways that they can transform a given program. They are
used with the aim of ensuring a generated program is valid and suitable for compiler testing, for
example by mutating it to avoid undefined behaviour.

Nagai et al. use this technique to avoid undefined behaviour in arithmetic expressions when
generating C programs — first by shortening the length of the expressions [14], and later using
heuristics [15]. These heuristics involved flipping operators of an expression to avoid overflow
(e.g. from + to —), or adding checks to ensure a denominator of a division cannot be zero.
By adding the heuristics, they were able to generate a wider variety of expressions which were
known to be free of undefined behaviour, thus able to detect more bugs.

2.3 Optimising Program Generation

Compilers are widely used and typically well-tested. Therefore, it can be hard to identify latent
bugs present in compilers, and long periods of testing time are typically required to identify even
a small amount of bugs. As a result of this, research is ongoing into ways in which this process
can be optimised. In particular, we want to be able to generate test programs which are diverse
and have high probability of triggering bugs.
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Diversity of generated test programs is important in optimising compiler testing since there is low
probability of an individual test program triggering a bug. Therefore, by covering more language
features and more areas of the compiler, the testing will have more value than generating tests
which all cover a similar part of the language. One approach to producing diverse test programs
is Swarm Testing [16], discussed in Section 2.3.1. There is also research ongoing into using
information about previously discovered bugs to determine language features which are more
likely to lead to bugs (Section 2.3.2).

2.3.1 Swarm Testing

Groce et al. introduce Swarm Testing [16] as an efficient way to increase diversity of generated
test programs. It is built on configuration-based testing, and involves creating a “swarm” of
different configurations corresponding to the language features used in test programs. With this
idea, test programs can be generated which may deliberately omit certain language features in
order to more intensely test a subset of the language.

Previous testing approaches generally showed adversity to language feature omission — they
would typically opt for a single “optimal” configuration, meaning an omitted language feature
would remain untested. Swarm testing overcomes this by using a range of randomly generated
configurations, with which it can typically produce a more diverse set of test progams than
previous approaches. Furthermore, some bugs are more likely to be found when using a smaller
subset of language features. Groce et al. [16] give the example of a stack with push and pop
operations — if there’s a capacity bug which only occurs when the stack has size 32, then we
need to have a minimum of 32 push operations. If each stack operation had equal probability
of being selected, then the probability to generate a test case triggering the bug would be 2%,
but if we used swarm testing to omit the pop operation, then the probability of triggering the
bug increases substantially.

2.3.2 Al-based Approaches

Recently, program generators using artificial intelligence-based approaches have been a popular
topic of research. They are generally implemented over a mutational fuzzing approach with
the aim of analysing the ability of Al to improve program diversity, commonly by optimising
compiler coverage or identifying language features which have a higher probability of triggering
a bug.

The evolutionary technique genetic programming can be used to target generation of uncommon
code fragments. IFuzzer [17] uses this approach to test SpiderMonkey, the Mozilla JavaScript
interpreter, taking as input a corpus of test programs and breaking these down into a pool of
fragments, from which it forms complete programs and evaluates them using the interpreter.
While genetic programming has had some success, neural network language models (NNLMs)
have been demonstrated to identify significantly more bugs. For example, Montage [7| uses an
NNLM to convert JavaScript test suites into fragment sequences, in order to learn the compo-
sitional relationships between them. The trained model selects fragments which are the best fit
for a given AST mutation context and inserts these to form new test cases.

Reinforcement learning techniques have also been investigated for optimising generation. This
involves an agent interacting with an environment to learn the best ways to optimise mutations of
an AST state for compiler coverage, through inserting/replacing/deleting code fragments. While
fuzzers using the approach, such as FuzzBoost [18], have achieved good compiler coverage, there
is little evidence of it being able to detect bugs effectively.
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2.4 Validity of Test Programs

Although there are a wide range of possible inputs for a compiler, a large number of these are in-
valid as they do not meet the syntactic or semantic requirements of the language. While it would
be possible to test a compiler front-end — parsing and syntax checking — using invalid inputs,
they would not be effective for checking for compiler miscompilation, for example. Therefore, in
order to test the entire compiler pipeline, an effective test program should be syntactically and
semantically valid, meeting the constraints imposed by the language. They need to execute in
a deterministic manner such that the produced output is meaningful and easily reproducible.

While it is relatively straightforward to avoid generating programs with syntax errors, it can be
a lot less trivial to avoid semantic errors, particularly implicit semantic constraints which the
compiler does not check for, but which cause errors or issues at runtime. In some languages
such as C, such runtime-level semantic errors are often cases of undefined behaviour, which refers
to program behaviour that has no explicit definition in the language specification. Examples
of undefined behaviour include accessing an out-of-bounds array index or dereferencing a null
pointer. Compilers make no formal guarantees about the runtime behaviour of code exhibiting
undefined behaviour, and are therefore allowed to generate arbitrary code for this case, making
the output of a program with undefined behaviour non-deterministic.

Even if a language specification contains no undefined behaviour, an effective test program
should still avoid runtime-level semantic errors as these often instead result in exceptions and
cause early termination of the program, possibly preventing the program from producing a
meaningful output which can be used to check its behaviour.

2.4.1 Structural Approach

An easy solution to ensuring validity would be to simply avoid generating the structures which
can lead to invalid test programs. For example, we could avoid generating array accesses (or
supporting array types), to ensure that programs have no out-of-bounds accesses. Quest [19]
takes this approach as it only focuses on testing a small part of the C language — testing C
calling conventions — and therefore has no need to worry about generating complex arithmetic
expressions, for example, which could lead to integer overflow. Taking the structural approach
helped Quest avoid solving unnecessary problems in its generator implementation, but this
approach limits the diversity and expressiveness of the generated programs, so it would not
scale well onto a larger context where a large portion of the language is being tested, as is the
case with fuzz-d.

2.4.2 Dynamic Checks

An alternative solution ensuring program validity at runtime is to implement a series of wrapper
functions. These can be called by a generated program to ensure operations with runtime-
dependent values are safe and meet implicit semantic constraints. For example, we can use a
wrapper function to ensure an arithmetic operation does not involve division by zero, demon-
strated in figure 2.4.

This approach was taken by Csmith [4], which uses wrapper functions and other similar heuris-
tics, such as applying modulo to array indexes, to ensure arithmetic operation safety and avoid
triggering undefined behaviour. Although CSmith uses this to great success and was able to
identify a large number of bugs using this technique, it applies the wrapper functions uncon-
ditionally and this was seen by Livinskii et al. [10] as heavy-handed and a limitation in the
expressiveness of generated programs. Even-Mendoza et al. [20] provide empirical evidence
that this may limit the bug-finding capabilities of Csmith and that it is possible to relax the
restrictions introduced by Csmith while maintaining freedom from undefined behaviour. They
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1 method Main() { 1 function method safeDiv(x: int, y: int): int {
2 var x := 5; 2 if (y =0) then x else x / y
3 3
4 var z := x / y; 4
5 } 5 method Main() {
6 var x := 5;
7
8 var z := safeDiv(x, y);
9 }

Figure 2.4: An example of using a wrapper function to protect against unsafe division in Dafny.

do so by instrumenting wrappers with print statements to identify required wrapper functions,
removing all others to increase expressiveness.

Recent work by Lecoeur et al. [21] introduces the technique “reconditioning” which decouples
program generation from the process of ensuring program validity. Whereas Csmith [4] annotates
generated programs with safety wrappers at generation-time, reconditioning instead transforms
this into a “just-in-time transformation” [21], done just before a generated program is tested.
Using reconditioning provides greater flexibility as it ensures that we always maintain validity
of a test program, even during test case reduction (Section 2.6). Figure 2.5 shows a workflow
for fuzzing using the reconditioning method.

Well-Defined st \DBug Fourd
Generator Program —> Reconditioner oroelined | Test Reducer
Program Oracle

Figure 2.5: A fuzzing workflow using reconditioning (inspired by [21])

Well-Defined,
Reconditioner }—» Reduced

Program

While reconditioning is able to ensure validity of programs, it still does not overcome the limi-
tations that safety wrappers impose upon the expressiveness of programs.

2.4.3 Generation-time Static Analysis

While dynamic analysis places checks on values at runtime to meet implicit semantic constraints,
we can instead use information available at generation time to ensure that constructs and val-
ues being generated are always valid, avoiding the need for dynamic wrapper functions. This
constitutes a form of static analysis, where the generator tracks the values of expressions (most
notably, identifiers) so it can ensure safety of generated arithmetic operations. For example, if
we want to generate x / y but know that y = 0, we can change this tox / (y + 1) to ensure
safety.

YARPGen [10] takes this approach to generating test programs, interleaving between code gen-
eration and analysis to efficiently generate valid code, without the expressiveness limitations of
CSmith. While static analysis is able to avoid redundant safety checks, it quickly becomes a
very complex and hard-to-solve problem, and this is demonstrated in YARPGen supporting a
much smaller portion of the C language than CSmith, notably without support for function calls
and classes (C++). Introducing support for function generation becomes increasingly difficult
as modelling the values of function parameters is a problem related to symbolic execution.

Comparing Program Validity Methods

Selecting a solution to the problem of test program validity marks a trade-off between imple-
mentation complexity and language expressiveness. For fuzz-d, it would be too complex to avoid
using any dynamic checks for the desired language features (classes, function calls, loops, heap
structures etc.), but where possible fuzz-d should avoid using redundant dynamic checks so as
not to obscure bug detection with unnecessary additional code. Therefore, fuzz-d will take an
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approach which uses dynamic checks to meet the implicit semantic constraints of Dafny, but
with the option of using advanced reconditioning to ensure that only necessary dynamic checks
are present in the final test case.

2.5 Test Oracles

The concept of the test oracle was introduced by Howden [22] and represents a way to check
a test’s output to determine if it is correct — a common example would be checking output
values are correct over a set of input values. With traditional manual testing approaches, a
developer is usually able to determine the expected behaviour and encode it into the test case.
However, for automated test cases this process is less trivial and introduces the test oracle
problem, encapsulating the idea of detecting/inferring a test’s output for a given input. There
are two approaches which can be taken towards solving the test oracle problem for testing
compilers: differential testing and metamorphic testing.

2.5.1 Differential Testing

McKeeman defines differential testing as a way to minimise the cost of evaluating test results
[23]. Tt involves taking at least two comparable programs, and comparing their results over the
same input. If one of the programs exhibits a different output, then a bug may have been found.

S
—> Compiler 1 —
-
G T W ( ) C All
enerate ‘Test . Execution ompare same
{ Program J Compiler 2 Results Outputs Bug Not Found
L J
> 1 different
S
L—> Compiler n — Bug Found

~

Figure 2.6: Workflow for fuzzing with differential testing

Figure 2.6 shows how this can be applied to compiler testing: a program is compiled in a number
of ways, the executables are run and outputs collected, and then the outputs are compared to
identify any differences. There are a number of variants in how the programs are compiled:

e (Cross-compiler — This is the most general version of differential testing on compilers, in-
volving compiling a generated program using multiple different compiler implementations,
e.g. using both Clang and GCC compilers for a C program. For this, multiple compilers
need to exist that are implemented using the same specification and language version.
This limits its applications to older, more popular programming languages as it is likely
newer programming languages will only have a single compiler.

e (ross-optimisation — A program is compiled using a single compiler across a number of
optimisation levels that are implemented within the compiler. This is the most widely
used strategy within compiler testing, but requires a compiler to implement flag-enabled
optimisations.

e (ross-Version — The program is compiled using different versions of the same compiler.
It is useful as it can help detect regressions between releases — bugs can be introduced
between compiler versions.

e (ross-Scenario and Cross-Architecture are less common and more case-specific versions
of differential testing using a single compiler. Cross-scenario focuses on obtaining results

12



Chapter 2 — Background

across different compilation scenarios, e.g. just-in-time compilation vs. compilation into
a machine-independent intermediate language. Cross-architecture compares results across
executables for the different architectures supported by the compiler, e.g. x86 vs ARM.

2.5.2 Metamorphic Testing

Metamorphic testing [24] involves taking a test program and using it to construct metamorphic
relations, describing how changes to the test program would affect its output. When applied
to compiler testing, instead of using multiple compilers as with differential testing, a program
is taken and metamorphic relations are used to construct a range of different programs whose
output we can analyse.

Mutated
Program 1

Program Mutated | |
Mutator Program n

N
{Generate Test Original (Compile &

Program Program L Execute
J

Compare
Outputs

Bug Not Found

> 1 different

Bug Found

Figure 2.7: Workflow for fuzzing with metamorphic testing

The most popular method used to construct metamorphic relations for compiler testing is us-
ing equivalence relations, which result in programs that exhibit the same behaviour (thus are
equivalent) after mutation. Equivalence modulo inputs (EMI) testing [12]| builds upon this idea,
using semantically equivalent transformations to generate mutated versions of the test program
which produce the same output on execution. Common examples of equivalence relations in-
clude inserting/removing code from unexecuted sections (dead code), or altering arithmetic and
boolean expressions using identities, e.g. we could replace x with true ? x : y [13].

Figure 2.7 details a workflow for compiler testing: a test program is generated and passed to
a mutator which uses equivalence relations (e.g. EMI) to produce mutated programs, whose
outputs are compared to identify any bugs. We can detect a bug via any difference in output
since the equivalence relations result in programs which should produce the same output.

2.6 Test Case Reduction

Once a bug has been identified using compiler testing, it can be submitted to compiler developers
so it can be fixed. However, since fuzzing generate programs randomly, interesting (buggy)
programs are often long and complex, thus it would be hard for developers to read the program
and understand where the issue lies. For example, Figure 2.8 displays an example code snippet
generated by the fuzz-d tool (presented in Chapter 4). It would be neither helpful nor appreciated
by the developers to submit such a complex program in a bug report.

Therefore, before a bug can be reported, the relevant test program should be reduced in order
to make it easier for a compiler developer to find the problem — the guidelines for submitting a
bug report for LLVM require that a test case is reduced [25]. For this, we want to identify the
smallest program possible which still exhibits the unexpected behaviour. A common solution
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1 match (if (v0) then v58 else fm2(v54.f8, 0x42ac, globalState)) {

2 case DC60(cf99, cfl100) =

3 globalState.f19 := (cf100 — —|v38]|) + (—cfl00 — v54.f108);

4 var v59 := DC128(fmO(v54.f8, v36[safelndex(v2, |v36|)], v54.f8,
globalState));

5 v54 .m3(v54.f8 = |{v54.f8, v54.f8}|, v59.cf198, cfl00, globalState);

6 globalState.fll := —safeDivisionlnt(v54.f8, cf100) + |"nyd"|;

7

s }

Figure 2.8: An example Dafny program generated using fuzz-d

to this problem is test program reduction which takes in the test program as input, along with
some interesting behaviour it should observe (i.e. a way to check for the bug), and then tries to
both simplify and shorten the program while ensuring it still contains the bug.

There exist a number of custom programs for automatically reducing a test program into a
simpler form. These can be implemented specifically for a particular language or domain, such
as glsl-reduce [26] which reduces programs in the GLSL language. Seq-Reduce [27] is another
example of a domain-specific reducer. It requires interaction with Csmith to run, using additional
internal modes and bypassing its pseudo-random number generator (PRNG) to randomly modify
and reduce programs.

Alternatively, automatic program reducers can be implemented in a more generic, language-
agnostic fashion. C-Reduce [27| takes a more generic approach to test case reduction, invoking
a series of “pluggable transformations” to reduce a given program until a global fixpoint is
reached. These transformations, such as removing unused functions/variables and inlining short
functions, aren’t specific to the C language and could easily be used for reducing programs in
other languages. Similarly, PERSES [28| takes a language-agnostic approach by applying more
generic transformations onto an internal AST representation. Whereas C-Reduce can enable
some reduce transformations specific to C/C++, PERSES can reduce programs in an arbritrary
language since it takes a language grammar as part of its input.

Typically, program-reduction needs to be language-specific in order to avoid introducing un-
defined behaviour into reduced programs. For example, Fast-Reduce [27] uses domain-specific
knowledge to avoid reducing C programs in such a way that invokes undefined behaviour. How-
ever, fuzz-d will instead take a language-agnostic approach to test case reduction, utilising a
reconditioning mechanism to ensure that reduced programs do not introduce invalid program
behaviour.

Bug Slippage

In both language-specific and language-agnostic test case reduction, it is possible for bug slippage
to occur, where reducing a program with one type of bug, «, could lead to it exhibiting another
bug, 5. This is undesirable as 8 may have already been identified and the test case reduction
could mask the discovery of new bug «. In order to mitigate the harmful effects of slippage and
harness it in a way which can be used to find more bugs, Holmes et al. [29] introduce the idea
of producing a set of reduced test programs, rather than a single result.
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3 The Dafny Language

Dafny is a verification-aware programming language created at Microsoft [30], and is currently
being used and researched within AWS [3, 31]. Its language is imperative in nature and of
very similar structure to other modern high-level languages, particularly those it compiles into.
Consequently, there are a lot of common language features which Dafny shares with other
languages, but it does also implement some more unique features which are less common, taking
inspiration from mathematical constructs and functional programming.

This chapter aims to describe the Dafny compiler workflow and introduce both the core and
verification-oriented features of Dafny which are implemented in fuzz-d, providing examples of
use in practice for those which are less common and more unique to Dafny. We also describe
some implicit semantic constraints which are not checked for by the Dafny compiler, but which
may cause runtime exceptions.

3.1 Dafny Compiler Workflow

Gt
AST
Dafny |frontend | Internal | resolver | Internal |SPC| Internal Java
Program AST AST AST AST

Internal AST
(verification)

\ Boogie

AST

Convert

Figure 3.1: Dafny Compiler Workflow, inspired by [32]

The Dafny compiler workflow is shown in Figure 3.1. A program first passes through the
compiler front-end and resolver (syntactic, semantic and type checks), resulting in an internal
representation of the program in the form of an abstract syntax tree (AST). After this, the
workflow splits and can be considered as two separate paths — one for verification and one
for compilation. The verification path transforms the internal AST from the resolver into one
for use in the verifier, which is then converted into an internal verification language (Boogie
[33]) and passed to a satisfiability modulo theories (SMT) solver. For the compilation path, a
single pass compiler (SPC) first transforms the resolver’s AST into a common internal AST for
compilation, before being converted into an AST targeted towards the specific output language —
“pretty printing” this final AST produces the output program by converting each AST construct
into its corresponding language representation.
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3.2 Core Language Features

3.2.1 Primitive Types

Dafny supports common primitive types, including booleans (bool), integers (int), characters
(char) and floating point numbers (real). It also supports a subset type for natural numbers
(nat), which represents the non-negative range of integers. Almost all arithmetic and logical
operators are supported over primitive types, notably extending the commonly supported logical
operators to include equivalence (<==>), implication (==>) and reverse implication (<==).

3.2.2 Value and Collection Types

Alongside primitive types, Dafny features a number of built-in collection types: sets, sequences
(ordered lists), strings, multisets and maps. In Dafny, a collection type represents a type which
stores information that does not depend on the state of the heap, and cannot be modified once
created — operations on them will result in a new copy of the collection. This distinction is
made against similar high-level programming languages, where a collection may be mutable and
dependent on values in the heap, so that the types can easily be used in specifications as well
as compiled code.

All collection types in Dafny support element membership, selection and element updates. Most
support a concept of union, difference and intersection, as well as comparison operations e.g.
subset (<=) and superset (>=). The functional-inspired feature of comprehensions is implemented
in Dafny for the creation of maps, sets and sequences, where a range and function are provided
for use in generating the elements. For example, Figure 3.2 uses a comprehension to create a
map for the numbers 0 to 99, storing whether or not they are even.

1 method Main() {
2 varm:=map i | 0 < i< 100 :: i := i %2=0;

3}

Figure 3.2: An example of instantiating a map using a comprehension.

3.2.3 User-Defined Datatypes

In Dafny, users can define two kinds of algebraic datatypes: inductive and co-inductive datatypes.
The difference between these is that Dafny evaluates constructors for co-inductive datatypes
lazily, allowing infinite structures. Both inductive and co-inductive datatypes are defined by a
list of constructors for the datatype, for example Nil and Node in the definition of a binary tree
in Figure 3.3. To make this a co-inductive datatype, we can replace datatype with codatatype.
We don’t necessarily have to pass parameters into the datatype constructors, and this can be
used to achieve enum types e.g. datatype Colour = Blue | Red | Green.

datatype BinaryTree<T> = Nil | Node(left: BinaryTree<T>, value: T, right: BinaryTree<T>)

Figure 3.3: An example of creating a datatype for a binary tree in Dafny.

3.2.4 Reference Types

Reference types in the Dafny specification refer to objects which are dynamically allocated space
in the heap upon creation. They can have multiple object members, which dereference the object
when they are accessed. Of these reference types, fuzz-d supports arrays, classes and traits.

Arrays are supported in Dafny in a very similar fashion to many other high-level programming

16



Chapter 3 — The Dafny Language

languages. They can have multiple dimensions (at least 1) and be of arbitrary length, although
fuzz-d always defines length on array initialisation for generation simplicity.

Classes form the basis of Dafny’s object-oriented features. A class can have multiple fields,
which can be constant or mutable, and member functions. They support multiple constructors,
of which a nameless constructor is considered the default constructor, and can be instantiated
using the new keyword, for example var ¢ := new C(args).

A class cannot yet extend other classes, but it can extend multiple traits, which behave in a
similar way to a Java interface or Scala traits. They define a number of fields, functions and
methods which a class extending the trait must implement, for example those extending Shape
in Figure 3.4 must implement the function method Area. Traits can optionally extend other
traits.

trait Shape {
function method Area(): real
}

class Rectangle extends Shape {
var sideLengthl: real, sideLength2: real;

constructor (sideLengthl: real, sideLength2: real) {
this.sideLengthl := sidelLengthl;
this.sideLength2 := sidelLength2;

= e
H O © 0N UA W

}

function method Area(): real {
sideLengthl % sidelLength2

= o= e
=W oN

15 }

16 }

17

18 method Main() {

19 var rect := new Rectangle(10.0, 12.0);
20 }

Figure 3.4: Example usage of classes and traits in Dafny.

3.2.5 Control Flow: Loops

1 method Main ()

2 var a := new int[10];

3 forall i | 0 < i < a.Length { a[i] := i; }
4}

Figure 3.5: Example usage of the forall parallel assignment construct in Dafny.

Both while loops and for-loops exist in Dafny, implemented similarly to other high-level lan-
guages. There also exists a speciall forall iteration construct, which can be used in executable
code for parallel assignment to array or object fields, although its role is more prevalent for quan-
tification in code annotations. Figure 3.5 shows an example of using Dafny’s forall construct to
assign values to an array.

3.2.6 Methods vs. Functions

Whereas most high-level languages only have one type of function, Dafny distinguishes between
methods and functions to make it easier for the verifier to reason about program behaviour.
Methods are represented by a list of statements which can freely read from and alter the program
state (variable/heap values), while functions are mathematical constructs consisting of a single
expression that can only read from the program state. This difference stems from Dafny’s
limitation on expressions — they cannot be effectful 1| and so are not allowed to mutate the
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program state in any way. This differs from many high-level programming languages where
side-effecting expressions are common, for example x++ in C or Java.

Since methods are able to mutate the heap, this makes them potentially effectful and conse-
quently they can only be called as a statement or as the right-hand-side of a declaration or
assignment, whereas functions can be called from anywhere within an expression since they are
side-effect-free.

3.3 Verification-Oriented Language Features

Verification of a Dafny program utilises modular verification, where verifying each independent
component of a program individually implies the correctness of the complete program. Dafny
therefore includes a number of specification constructs which are user-defined logical statements
corresponding to intended program behaviour. During verification, Dafny checks that these
constructs hold true over any possible program execution. This section will briefly cover some
of the core specification constructs which are implemented in fuzz-d.

3.3.1 Pre-conditions, Post-conditions and Invariants

Pre- and Post-conditions are used in Dafny to define a methods’s (or functions’s) specification,
which describes the logical constraints on a methods’s parameters and return values respectively.
Dafny uses these to reason about functions as Hoare triples - { P} C' {Q}, where post-conditions
@ are expected to hold when C' terminates, assuming pre-conditions P hold.

The keywords requires and ensures are used to represent pre- and post-conditions in Dafny.
For example, in Figure 3.6, the pre-condition on line 2 constrains the length of the input array,
while the post-conditions on lines 3 and 4 define that the output value is the minimum in the
array.

1 method Min(a: array<int>) returns (min: int)

2 requires a.lLength > 0;

3 ensures forall i :: 0 < i < a.Length = min < a[il];
4 ensures exists i | 0 < i < a.Length :: min = a[i]
5 {

6 min := a[0];

7

8 var i = 1;

9 while (i < a.lLength)

10 invariant 1 < i < a.length;

11 invariant forall j :: 0 < j < i = min < a[j]
12 invariant exists j | 0 < j < i :: min = a[j]
13 {

14 if(a[i] < min) {

15 min = ali];

16

17 i =i 4+ 1;

18 }

19 }

Figure 3.6: An example (annotated) Dafny program to calculate the minimum value in an array

Loop invariants are required in order for Dafny to be able to verify termination of a program
and prove that any specification constructs after the loop hold. In Figure 3.6 the invariant on
line 10 ensures termination by constraining i, while the invariants on lines 11 and 12 define min
as the minimum value in the array so far (up until i). Thus, we can see the post-condition will
hold after the loop terminates.
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3.3.2 Framing Constructs

Dafny uses a specification style based on dynamic frames for structuring the heap. This origi-
nates from the frame problem, which describes the problem of knowing which parts of a system
are/are not affected by a particular change [34]. Dafny uses this notion to define a dynamic
frame as a set of objects in the heap.

Alongside dynamic frames, Dafny uses the idea of footprints to represent the set of fields a
program or component is permitted to read or modify. A program or component’s footprint is
defined in its specification, using reads and modifies expressions. A reads expression is used
in a function to define heap objects which can be read by the function — the verifier enforces that
only those which are listed are read. Similarly, a modifies expression is used in a method to
define heap objects which can be altered by the method body, again enforced by the verifier. For
example, Figure 3.7 shows the use of modifies within a function that sets an array index to a
given value. Without the expression on line 2, the verification fails since we could be modifying
a heap structure unintentionally.

1 method SetValue(a: array<int>, i: int, value: int)

2 modifies a;

3 requires 0 < i < a.length;

4 ensures a[i] = value;

5 ensures forall k | 0 < k < a.Length :: k # i = old(a[k]) = a[k]
6 {

7 a[i] := value;

s}

Figure 3.7: An example Dafny program which swaps two elements into an array

3.3.3 Implicit Semantic Constraints

Although Dafny’s implementation and specification do not contain undefined behaviour, there
are a number of implicit semantic constraints which are only checked for by the verifier and not
the compiler. Since a Dafny program is only valid if it verifies successfully, it is acceptable for the
compiler to assume these constraints are met. Therefore, compiling programs which do not meet
these constraints does not generate any warnings or errors, but may lead to undefined behaviour
or runtime exceptions in the target backend — for example, x / 0 would be invalid since it
would trigger a divide-by-zero exception or arithmetic overflow, depending on the backend. It is
therefore important for programs generated by fuzz-d to avoid these behaviours, since it will not
be using the verifier when testing the compiler. A complete list of such behaviours is detailed
in Table 3.1.

Type Implicit Semantic Constraints
Division or modulo by zero
Arithmetic Arithmetic underflow/overflow

Negative sequence/array initialiser length
Out-of-bounds array/sequence access
Memory Access | Accessing an uninitialised identifier
Invalid Datatype Destructor

Infinite loops

Control Flow Unreachable code

Invalid for-loop range

Table 3.1: Summary of implicit semantic constraints by type in Dafny
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3.4 Existing Testing Mechanisms

Previous work on testing the Dafny verifier and compiler led to the creation of XDsmith [3], which
uses the fuzzing library Xsmith [35] to randomly generate annotated Dafny programs, testing
the soundness and precision of the Dafny verifier and the correctness of the Dafny compiler. Due
to the limitations of Xsmith, this is done using a subset of the Dafny language (XDafny) which
includes simple language features such as basic types and data structures (Booleans, integers,
strings, arrays, sets etc.), methods and functions, but omits more complex features such as loops,
recursion, inductive datatypes and object-oriented features.

XDsmith tests the Dafny verifier using heuristics to generate programs with a known verification
outcome, and the compiler is tested using differential testing. A generated program is compiled
into each of the supported target languages and the outputs of each of these are compared to
check for differences (which may possibly represent a bug).

In implementing fuzz-d, we aim to take inspiration from XDsmith since it lays good groundwork
for testing the Dafny workflow and was able to identify a range of different bugs across the
verifier and compiler. However, XDsmith is not without limitations and in particular we will
consider and aim to avoid the following:

e Due to the limitations of the underlying framework, XDsmith has left a large portion of
the Dafny language features untested, which the implementation of fuzz-d will be focused
towards, in particular object-oriented structures, heap mutation and loops.

e Dafny’s different compiler implementations for its 6 target languages all share a large pro-
portion of the codebase for the compilation workflow (Figure 3.1). As such, the differential
testing performed by XDsmith is unlikely to be able to identify bugs in stages prior to
the final, language-specific AST transformations. For example, if a bug were contained in
the SPC stage, all backends would include this behaviour and therefore the outputs would
not differ during differential testing. fuzz-d will use differential testing over Dafny’s back-
ends, but will also aim to identify mechanisms which overcome its associated limitations,
allowing fuzz-d to test stages throughout the compilation workflow.
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4 Design of fuzz-d

4.1 Overview

fuzz-d is a software tool intended for use in automatically testing the Dafny compilation workflow.
It is implemented in Kotlin due to its powerful blend of functional and object-oriented features,
and its concurrency APIs which prove useful in optimising the testing process.

The design of fuzz-d consists of six core components, each of which contribute towards two core
fuzzing workflows: one for testing the Dafny compiler and its backends (Figure 4.1), and another
for performing testing over the Dafny verifier (Figure 4.2).

The components can be summarised as follows:
e A program generator for randomly producing Dafny programs to be tested.

e A reconditioner for transforming generated programs into a form which meets the im-
plicit semantic constraints of the Dafny compiler. This includes an advanced recondi-
toner which can optionally be invoked to reduce the reconditioning transformations to
only those which are strictly necessary.

e A test harness which concurrently verifies, compiles and/or executes generated Dafny
programs, collecting and checking their outputs.

e An interpreter that simulates execution of a Dafny program to identify the expected
output for a program, used by the test harness as a reference oracle for the Dafny backends
and for filling in specification constructs with values in verifier testing.

e A mutator used to select and mutate specification constructs in an annotated program,
taking a verified program and transforming it into one which should fail verification.

e A Dafny parser which converts Dafny programs into the internal AST representation used
by fuzz-d. It can be used for reconditioning and interpreting arbritrary Dafny programs,
which is particularly useful during test case reduction.

In both workflows, the generator produces test cases which are then reconditioned. The recondi-
tioned program is passed to the interpreter to evaluate its expected output and also annotate the
program with print statements (compiler testing) or correct, verifiable specification constructs
(verifier testing). When testing the compiler, the test harness will differentially test the program
across the interpreter output and Dafny backends. When testing the verifier, it must first check
the original program verifies, since it is common for the Dafny verifier to be unable to verify
some programs without additional help. If it does verify, the mutator will be invoked to create
a number of invalidated programs which are equivalent except from one specification construct
which has been mutated such that it is no longer correct. The test harness is then reinvoked to
ensure that these programs do not verify.

This chapter will describe the design decisions involved in creating each of the above components,
and how these affect their role in the overall workflows of fuzz-d.
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Figure 4.2: fuzz-d — workflow for testing the Dafny verifier

4.2 Generator

4.2.1 Generation Approach

fuzz-d takes a grammar-aided generative approach to compiler testing. Its generator is capable
of randomly generating programs which are well-formed and well-typed, but may not be able to
meet Dafny’s implicit semantic constraints.

The design of the fuzz-d generator considers Dafny to be composed of four main types of language
feature: top level components (such as definitions for classes and datatypes, functions and
methods), types, expressions and statements. The generator selects from these language features
to build an abstract syntax tree (AST) in a top-down fashion, which can then be output to
a file by “pretty-printing” each AST element into its corresponding Dafny syntax, or further
transformed by other processes within fuzz-d.

Generation starts at the top level, creating a main function, then generating its body and so
on. It is separated into two core functions: one for generating statements and another for
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generating expressions. These use a context-aware selection manager which identifies available
productions, based on the current generation state, and performs a random weighted selection
from these, calling into the generation function for the corresponding selected production. Since
fuzz-d takes an on-demand approach to generation (Section 4.2.4), it is common for generation
to be paused at a particular point so required elements (such as class definitions, datatypes,
functions, identifiers etc.) can be generated on-demand when no suitable ones are available.

4.2.2 Generation Context

While building an AST, it is important to store the current generation state, including available
variables, functions, classes etc., so that the generator can easily access any needed information.
fuzz-d stores generation state in a generation context, which includes three symbol tables storing
variables, functions/methods and top-level structures respectively, as well as information about
program state which is useful for selection, such as statement /expression depth. The generation
context is immutable, changed only via its internal functions (e.g. increaseStatementDepth())
which return a new instance of the context with updated values, and is passed to all generation-
related functions in the core generator.

Symbol Table

fuzz-d uses a symbol table to store information about available variables, represented by a tree-
based structure where each node stores a table of variable information. As with compiler design,
symbol tables naturally fit the problem of random program generation since the tree structure
encapsulates the idea of program scopes. In Dafny, like most high-level languages, variables
initialised inside a scope do not exist in outer scopes, and therefore it is important for the
generator to have separation between scopes, as different variables will be available in different
scopes. To this extent, on entering generation in a new program scope (e.g. in an if/while
statement), fuzz-d will create a new symbol table with the current symbol table as the parent
node — once the scope is exited, the child symbol table can be discarded as any information
which would survive outside the inner scope is contained in the parent symbol table.

Internally, the symbol table stores variables in a map from types to a list of variables of that
type. This is the opposite to compilers which typically map from variable name to type, and
is done to easily support the generator queries. These are based on the required type, rather
than variable name: the generator will query for a particular type and then select randomly
from the list of variables which are returned. There is a special case for instances of classes,
traits and datatypes, for which the symbol table also stores related properties, such as available
class/datatype fields. During queries, these are combined with their respective instance to form
a list of compound variables (e.g. c¢.f) which is then searched over for the target type.

Function Symbol Table

Unlike variables, function (and method) definitions are not dependent on program scopes. How-
ever, since fuzz-d supports generation of object-oriented features, there are contexts where dif-
ferent functions may be visible, making functions context-dependent. fuzz-d stores functions in
a function symbol table, which is also in a tree-based structure: the root node stores functions
and methods at the top level of a program and each child node stores functions available inside
a particular class context. This separation is required since inside a class context, a class’s
functions are available to call by name, whereas outside a class context they are only callable
via a class instance (e.g. c.m()).
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Global Symbol Table

fuzz-d stores language structures which are not dependent on program contexts in a global
symbol table — this stores lists of available class, trait and inductive datatype definitions. Since
these definitions always exist in the top level of a program — they are globally available — there
is no need for the global symbol table to have a tree-based structure.

Program State Information

As well as information surrounding available structures, it is also necessary for the generation
context to store information about the current point the generation is at — this information is
used by the selection manager to make decisions about which productions are available in the
current context. This information includes:

e Statement and Expression Depth — Generated programs are constrained in size by
preventing statements and expressions from becoming too large. Therefore, if the current
statement /expression depth has reached the maximum permitted depth, then productions
cannot be chosen if they would increase this (e.g. binary expressions or if statements).

e Class Generation Depth — There exists an edge case within generation where class
generation, due to being on-demand, can become recursive and potentially infinite. This
happens when we are generating a method body within a class context, and decide to
generate a new class definition (where the same can happen again). By tracking the
depth of class generation, we can gradually reduce the probability of generating new class
definitions, thus constraining program size and avoiding potentially infinite generation.

e Generation Flags — There are some language features where generating within their
context requires disabling other language features to ensure validity. For example, Dafny’s
parallel assignments require that the right-hand-side is not allowed to be effectful. The
generation context uses these flags to track when such language features are being gener-
ated for, so that the selection manager can avoid selecting any productions which would
invalidate the program based on this context.

4.2.3 Context-Aware Selection Manager

Throughout the generation process, decisions need to be made in order to determine how the
generation should continue — we can consider the generation process as a decision tree, where
each point in the tree represents a selection from a number of generation options. Following the
semantics of Dafny, in some program contexts it would not be valid to make certain decisions — for
example, placing an effectful expression as the left-hand-side of a binary expression. Therefore,
these decisions need to be made in a context-aware fashion to ensure that they always result
in a valid program. Being context-aware also allows decisions to be made in such a way that
enforces the constraint of program sizes through maximum expression and statement depths.

fuzz-d implements the decision-making process through a context-aware selection manager,
which controls all generation-based decisions from selecting types, expression and statement
productions to choosing the size of a method body, the number of parameters in a function
signature or simply the value to place inside an integer literal. When a list of options is avail-
able, for example selecting the type of expression to generate, the selection manager performs a
random weighted selection, where some of the options are more likely than others following their
weightings. While selections could be made uniformly with each option having equal probability,
in practice this was found to lead to very large programs being generated that could not be com-
piled within a fixed time period — it was very likely to generate statements and expressions that
increase the depth, therefore often reaching the maximum constraints. This is problematic since
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decreasing the maximum depth in response makes programs less interesting. Using probabilistic
selection therefore allowed a decay to be introduced so that expressions and statements which
increase the depth could become gradually more unlikely as depth increased, such that program
interestingness is maintained while the maximum depth is rarely reached.

Probability Managers

Selection weightings are controlled internally by probability managers. This separates the se-
lection manager from the probabilities and makes the weightings easily configurable. Different
probability managers are implemented by fuzz-d to support a range of “modes”™:

e A BaseProbabilityManager is used by the standard generation approach, using a range
of production weightings which have been adjusted throughout testing and identified as
producing expressive, idiomatic programs.

e A RandomProbabilityManager which randomly assigns each production a random proba-
bility on instantiation, fixed for the duration of program generation. This is used by the
swarm testing flag (-sw). It aims for some language features to become significantly less
likely, therefore testing a smaller subset of the supported language in more detail. It can
also be provided with a list of productions to disable to further focus testing onto a smaller
subset of features.

e A VerifierProbabilityManager used for generating programs intended for testing the
verifier. This is provided with one of the two above types as a base, and overrides some of
their values to disable certain language features, such as classes and comprehensions, which
the verifier isn’t powerful enough to verify without additional lemmas and predicates.

4.2.4 On-Demand Generation

During generation, it is likely that a random program generator will come to a point where the
information it requires is not available — for example, if it tries to generate an int type identifier
when none have been declared so far. At this point, the generator can either fail and stop
generation, or pause and generate the missing production on-demand, inserting it somewhere
before the production currently being generated. Within fuzz-d, we take the latter approach as
it enables more flexible generation and greater language expressiveness. To do so, it makes a
number of accommodations within its generator.

The simplest on-demand case is when a top-level language structure (e.g. a class, function,
inductive datatype etc.) is required but not available. In this case, the generator will pause
in the current context, generate the required top-level structure and add this to the global
symbol table before resuming generation of the current production. The top-level structure is
automatically added to the AST at the end of the generation, since they are transferred directly
from the global symbol table onto the AST.

To handle missing variables, the generator first generates a declaration to create a variable of
the required type and adds this to the symbol table. The generator then aims to insert this
declaration directly above the current production in the program, and does so by considering each
generation not as generating a single AST element, but as generating an element of the required
type along with its dependencies (any productions the generator had to create on-demand for
this production). Functions generating an expression-type production therefore return a pair
containing the expression itself, and a list of its dependencies (which are always statements).
Similarly, functions generating statement-type productions return a list of statements, where
the last is the required statement production. Taking this approach allows the AST to easily be
built including any on-demand dependencies by concatenating the statement lists together.
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method Main ()
var x :=

{
1, 2, 3]; <— create on demand ——]|
var y : (

seq<int> type var required)) ——]|

=W N =

seq<int>

no
ilable? —){generateDeclaration(seq<int>)} ->{ var x := [1, 2, 3];
available?

—){generateldentiﬁer(seq<int>)

Pair(x,
list(var x := [1, 2, 3]))

Figure 4.3: An example of creating an identifier on-demand in fuzz-d.

Figure 4.3 shows an example of how an identifier might be created on demand with fuzz-d. It tries
to generate an identifier of type seq<int> on line 3, but such an identifier hasn’t been created yet.
Therefore, it generates the declaration var x := [1, 2, 3]; which makes available an identifier
of seq<int> type. The function generateIdentifier can then select x for the production and
returns it alongside a list containing the declaration of x as its dependencies.

4.2.5 Handling Top-Level Structures
Generating Functions and Methods

Generation of functions and methods is supported in fuzz-d with the aim of testing the mecha-
nisms behind function calls, such as evaluating and passing parameter references/values. During
generation, functions and methods are handled using their signature — they are seen as expres-
sions of a certain type, which require a number of expressions as parameters in order to obtain
the resulting value. With the exception of within traits and classes, they are generated entirely
on-demand when the generator selects a function call production. This is in order to minimise
test case size, avoiding generating functions which may ultimately not be called.

To generate a function/method, the generator will check if one is already available given the
current context — if not, it creates a signature on-demand. The bodies of functions and methods
are populated at the end of the generation process since this allows for increased program
expressiveness, where they have access to all other top-level structures.

method mO(p0 : int, pl : int, globalState: GlobalState) {

var v27 := ml(globalState); 0

var v34 := m2({v27}, globalState);
} / \
method ml(globalState: GlobalState) returns (r0: int) {...} ml m2

method m2(p0 : set<int>, globalState: GlobalState) returns
(r0: bool) {...}

Figure 4.4: An example showing how fuzz-d forms call graphs to avoid recursion and mutual recursion
in generated programs.

In order to ensure its generated programs will terminate, fuzz-d avoids generating functions

bodies that introduce recursion or mutual recursion between functions. When generating func-
tion bodies, therefore, the generator creates a dependency graph modelling the call structure
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between methods/functions, where a function is dependent on another when it calls that func-
tion. Functions are only available to be called from within a function body when that call does
not introduce a cycle into the call graph. Figure 4.4 demonstrates how a call graph would be
built for a generated program segment. Here, the bodies for m1 and m2 would not be able to call
to mO since this would introduce a cycle.

Generating Traits and Classes

Classes and traits were targeted as a feature to implement in fuzz-d due to their complexity,
particularly in that Dafny has to ensure class representations are consistent across backends.
Since they are stored on the heap, inconsistencies are possible in how they are referenced,
accessed and stored.

fuzz-d models classes and traits following their possible members, which can be any number of
fields, functions or methods — fuzz-d stores separate lists for each of these. The only difference
between the internal representations of classes and traits is that classes need to provide bodies
for functions and methods, whereas traits only store their signatures. Both can also optionally
ertend a number of traits, which for classes requires values to be passed for their fields on
instantiation.

Generation of classes and traits takes place in an on-demand fashion when a class instantiation
or object-type production is selected. The following process is repeated to generate the required
extended traits, functions, methods and fields:

1. Select the number of members to generate
2. Call into the corresponding generation function to create each member

3. If generating a class, populate the bodies of any member functions and methods while
class context information is available

Alongside class definitions, fuzz-d implicitly generates a default constructor which requires pa-
rameter values to be passed for all class fields and implemented trait fields on instantiation.

trait TO {
var f21 : int
function fm3(globalState: GlobalState): int

}

trait Tl extends TO {
var f19 : int
method mO(p0: int, globalState: GlobalState) returns (r0: multiset<bool>)

}

class Cl10 extends T1 {
var f28 : bool
constructor (f28 : bool, f21 : int, f19 : int) {

this . f28 := f28;
this . f21 := f21;
this.f19 := f19;

}

function fm3(globalState: GlobalState): int {...}
method mO(p0: int, globalState: GlobalState) returns (r0: multiset<bool>) {...}
method m8(p0: bool, pl: int, globalState: GlobalState) returns (r0: array<bool>) {...}

}

Figure 4.5: An example of two traits generated by fuzz-d, and a class which extends them (function
contents omitted due to size).

Figure 4.5 shows an abbreviated example from a program generated by fuzz-d, where class C10
extends trait T1, and therefore also extends TO. It provides definitions for their members, as
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well as its own members (e.g. m8 and £28) which don’t belong to the traits.

Generating Inductive Datatypes

Like classes and traits, inductive datatypes are a complex data structure which are non-trivial to
implement within a compiler, therefore it is possible that bugs may exist in their implementation,
particularly across Dafny’s backends. fuzz-d generates inductive datatypes in order to investigate
their correctness, since they are a core feature of Dafny’s rich type system. There are a lot
of features revolving around their use cases, yet they are noted by the developers as having
weaknesses in their implementation [32].

fuzz-d generates datatypes on-demand when the generator selects a datatype instantiation pro-
duction and none are available. It does so by producing a number of constructors, each of which
can have a number of generated fields (including 0). Since the power of inductive datatype
definitions lies in their ability to be recursive (for example inductive definitions of lists and
trees), fuzz-d implements a heuristic to allow for datatypes to be recursive. This is handled by
creating a datatype AST element with non-recursive constructors, and then optionally creating
a recursive constructor with a single field and appending it to the list of constructors. It is
necessary to do this after generating the other constructors to ensure that there is a base case
— a non-recursive constructor — and that the generator has access to the datatype construct for
creating the field. Figure 4.6 shows an example recursive inductive datatype created by fuzz-d,
where constructor DC17 is the recursive constructor created by the heuristic.

datatype D6 = DC16(cf34: int, cf35: bool, cf36: TO) | DC15(cf33: C1) | DC17(cf37: D6)

Figure 4.6: An example inductive datatype created by fuzz-d

Simulating Global State

Whereas some high-level languages support mutable global variables, in Dafny global variables
can only be constant. However, within fuzzing, having mutable global variables can be very
useful as they can be updated in all scopes, making it more likely that data from inner scopes
will reach the checksum (Section 4.3.2) at the end of the program. This data might otherwise
have been lost on exiting the progam scope if it was only assigned to variables local to that scope.
Consequently, mutable global variables can make it more obvious to identify miscompilation bugs
which occur in inner scopes.

Taking inspiration from CLsmith’s global struct concept [36], fuzz-d achieves a similar notion
to mutable global variables by utilising its support for classes to generate a global state class
which stores a number of fields of different types. The class definition is created at the start of
generation, and is initialised with a number of values at the start of the main function. This
instance is passed around the program as a parameter to function and method calls, such that
it is always available to be read from/written to. Figure 4.7 shows an example of a global state
class definition and how this is instantiated at the start of the main function.

4.2.6 Other Generation Techniques

While fuzz-d handles generating top-level structures in a more unique way compared to other
random program generators, its handling of generating statements and expressions is very sim-
ilar. Rather than go into depth discussing generation techniques for these language structures
which are already well-documented, the following sections will focus only on more unique aspects
of generation specific to how fuzz-d must handle expressions and statements.
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1 class GlobalState {

2 var fO : array<bool>

3 var fl : seq<bool>

4 constructor (fO : array<bool>, fl1 : seq<bool>) {
5 this.f0 := f0;

6 this . fl1 = f1;

7 }

s 3}

9

10 method Main() {

11 var v0: array<bool> := new bool[12];

12 var globalState := new GlobalState(v0, [false, false]);
13}

Figure 4.7: An example global state class definition/instantiation generated by fuzz-d

Handling Types

Being able to generate and select types randomly is important within fuzz-d since this forms the
basis of its expression generation: a target type is chosen randomly within a given context and
available expression-type productions are identified and consequently selected from using their
respective weightings.

fuzz-d supports the majority of Dafny’s core types, including ints, booleans and chars, as well
as more complex data structure types such as arrays, sequences, maps, sets and multisets. Data
structure types are selected recursively by the selection manager, which allows for multi-level
datatypes, for example map<map<int, bool>, seq<int>>. Like selection of expressions/state-
ments, these are limited by tracking type depth which reduces the selection probability of a data
structure type using a decay function. Due to differences in implementation across the backends,
particularly related to printing, fuzz-d omits real types and constrains character generation to
alphabetic values.

Type Inference in Declarations

In Dafny, declarations typically take the form var <identifier>: <type> := <expr>;. How-
ever, Dafny allows for the type annotation to be omitted, instead using its built-in type inference
to detect the type of the right-hand-side expression. Since omitting type annotations has proven
successful in detecting type inference bugs in popular JVM languages 37|, fuzz-d omits provid-
ing declarations with the expression type in order to test Dafny’s type inference capabilities. It
will only annotate a declaration with the type if it is known that Dafny will be unable to infer
it due to limitations in its implementation — this is particularly common for nested collection

types.

Inserting Assert Statements

Assert statements are required for testing the verifier, in order to ensure that the verifier can
check that certain logical statements hold throughout the program. To solve the problem of
determining where they should be placed in the program, they are treated like other statements,
inserted probabilistically during program generation when their production type is selected. fuzz-
d aims to generate assertion statements of the form assert(<expr> == <value>). It is easy
to generate an arbitrary expression for the left-hand-side; however, since the generator does not
track variable values (this is done by the interpreter), it cannot fill in the right-hand-side with
a value for which it knows the assertion would hold. Instead, it therefore places a temporary
right-hand-side which is the same as the left-hand-side to form assert(<expr> == <expr>),
and the right-hand-side is replaced by the interpreter (Section 4.3.3).
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Ensuring Termination of Loops

fuzz-d supports both for-loops and while loops in ways which are guaranteed to terminate.
This restriction is necessary since test cases which do not terminate cannot currently produce
meaningful results for fuzz-d — they would become meaningful if fuzz-d supported a heuristic
which could determine whether programs should terminate. Dafny’s for-loops require integer
bounds which ensures termination; however, there is no such guarantee for while loops with
arbitrary conditions. Therefore, to ensure termination of while loops, fuzz-d implements a loop
counter heuristic.

Each while loop generated by fuzz-d has an arbitrary boolean condition for maximum expres-
siveness, but alongside the loop, a counter is defined and incremented on each loop iteration. If
this loop counter exceeds some defined maximum value — i.e. the maximum allowed number of
iterations is reached — then the program exits the loop via a break statement.

var i5 := 0;
while (f22)

1
2

3 decreases 5 — i5
i {

5 if (i5 >5) {
6 break ;
7 }

8

9

0

1

i5 := i5 + 1;

1 // loop body

1

}

Figure 4.8: An example counter-limited while loop generated by fuzz-d (body omitted).

Figure 4.8 shows an example of how a terminating while loop would be generated by fuzz-
d — in this example we also supply a decreases clause which is provided for the verifier to
prove termination of the loop, alongside a small maximum number of iterations to enable the
interpreter to provide invariant annotations for each iteration of the loop (Section 4.3.3).

Pattern Matching

An important use case related to inductive datatypes is the ability to pattern match over them
and detect which constructor they are using. fuzz-d implements support for pattern matching
through match statements, which allow for a control flow path to be taken based upon a datatype
instance, and match expressions which select a value based upon the instance instead. fuzz-
d generates for these by identifying all possible constructors for the given datatype instance,
providing for each of these a sequence of statements (or expression) to be taken if the instance
matches that constructor. If the datatype contains fields, these are made available by the pattern
matching for use in the following scopes — this is demonstrated in Figure 4.9 on lines 3 and 4.

1 match v17 {

2 case DCO(cf0O, cfl, cf2, cf3) =

3 var v18: map<int, bool> := map[cf3 := cf2];
4 cfl := fm0O(—|v2|, 1) — cfl;

5 r0 := —wvl;

6 case DC1() =

7 r3 := v2[safeArraylndex(v0, |v2])];

s}

Figure 4.9: An example of a match statement generated by fuzz-d.
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4.2.7 Supported Language Features for Verification

Although the fuzz-d generator supports a number of language features, some currently cannot
be used in the verifier testing workflow. This is because Dafny is not powerful enough to be able
to perform verification over them without further assistance, for example needing additional
predicates, proofs or lemmas to verify such features. The complete list of features supported
by the generator but not the verifier testing workflow is shown in Table 4.1. fuzz-d aimed to
minimise this list by first generating verified programs with all supported generation features,
gradually removing those which could not be verified. While it may be possible to implement
proof constructs to assist Dafny in verifying these language features, it was not deemed within
the scope of this project, whose primary focus is testing the Dafny compiler.

Language Feature

Object-Oriented Features

Collection Comprehensions

Collection Binary Operators (e.g. subset, prefix)

Table 4.1: Language features currently supported for generation which cannot be verified without
additional help

4.3 Interpreter

Differential testing over the Dafny backends has a significant limitation that it can only detect
miscompilation bugs in the final, target-language-specific transformations over the AST, since
the rest of the codebase is shared between backends (Section 3.1). To overcome this, fuzz-
d implements an interpreter which independently evaluates the expected output of generated
Dafny programs. This acts as a reference oracle for the output of the backends with the aim that
even if all backends display the same behaviour, if the interpreter achieves a different output
then this could signify either a bug in the interpreter, or a miscompilation bug deeper in the
Dafny compiler.

While the interpreter is used primarily to evaluate the expected output of a program (Sec-
tion 4.3.1), its knowledge of runtime values of variables is useful for annotating programs with
meaningful print statements (Section 4.3.2) and filling in the template assert statements and
specification constructs produced by the generator (Section 4.3.3).

4.3.1 Evaluating Expected Output

The interpreter is implemented as a traversal over the given AST, utilising symbol tables to store
a map from variables to their values as it passes through the program’s methods and scopes.
Where variables are uninitialised, for example a method’s named return values are uninitialised
on entry, their value is stored as null.

Interpreting programs in fuzz-d follows common interpreter design, interpreting a program line-
by-line (starting with the main function), visiting the loop body on each iteration and method
bodies on each method call. However, fuzz-d treats functions and method calls on a class
instance (e.g. c¢.m()) slightly differently — it is necessary to carry around a class context, which
is used to make field values for that particular class instance (e.g. c) available to the interpreter.
Expression evaluation also follows common design, although Boolean expressions are evaluated
using short-circuit semantics, and division and modulus use Euclidean semantics following their
approach in Dafny.

31



Chapter 4 — Design of fuzz-d

4.3.2 Print Checksum

In order for a program to be able to be tested using differential testing, it needs to produce
a meaningful output. fuzz-d aims to produce meaningful output by printing the values of all
variables available in the top-level of the main function at the end of the program. As much as
possible, it aims to do this by printing the variable, i.e. print x for some variable x. However,
for array and collection types, printing in Dafny is not consistent across backends and therefore
this is not possible. To be able to check the values of these types, fuzz-d uses information
known about their values to generate a meaningful print statement. This therefore requires the
interpreter since the generator does not have this information available.

Print statements are generated by the interpreter after it reaches the end of the program, and
they are returned as a separate list alongside the expected output of the program. Although
most print statements are able to meet the form print x, those for array and collection types
require handling differently: for array types, it identifies the array indexes which have been
initialised and prints these individual indexes, and for collection types, it finds the expected
contents of the collection and uses a display expression to create a new instance of the collection
with these contents, printing whether or not this is equal to the original.

4.3.3 Filling in Specification Constructs

Providing valid specification constructs is key to being able to create a program which Dafny
is able to verify. fuzz-d uses the generator to insert template loop invariants, pre- and post-
conditions and assertions. However, these templates are trivial, simplifying to true, and may
not provide the Dafny verifier with enough information to be able to verify a program — for
example, a method post-condition which simplifies to true provides no information about the
method’s return values, therefore Dafny cannot reason about the values of any variables which
take the return values of a method call, since they could be taking any value. Consequently, the
interpreter implements heuristics to allow for specification constructs to be filled in with known
variable values, such that they should provide enough information for Dafny to be able to verify
resulting programs.

Most variables and expressions in a program generated by fuzz-d have a single known value,
and this allows most instances of template assertions (of form assert(<expr> == <expr>)) to
be completed by replacing the right-hand-side with the interpreted value of the left-hand-side
— Figure 4.10 shows two assertions whose left-hand-sides have a single known value, and thus
their right-hand-sides have been replaced with their evaluations.

1 method Main() {

2 var v0 := 386;

3 assert ((v0 + (v0O — 0x27c)) = 136);

4 var vl: multiset<seq<string>> := multiset{["w", "a"]};
5 assert ((v0 % (vO0O — |vl|)) = 148610);

6}

Figure 4.10: An example showing completed assertions for expressions with a single known value

However, in some program contexts, variables and consequently expressions can take multiple
values. In particular, variables within method bodies can take different values depending on
the parameters the method is called with, and similarly variables within loops can take different
values depending on how many times the loop body has been executed if they are evaluated using
members of the loop’s modset. Therefore, the interpreter must ensure that any specification
constructs within these contexts — including invariants, pre- and post-conditions and assertions
— are completed in a way which is dependent on the context.

To fill in specification constructs in these contexts, fuzz-d uses conjunctions of implies clauses:
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the left-hand-side of the implies clause places conditions on the variable values, and the right-
hand-side provides a condition expected to be true given these values. An implies clause is
created for each possible combination of variable values, with the expectation that one of them
will be met while those that aren’t can still be verified. Figure 4.11 shows how implies clauses are
used to annotate specification constructs in method contexts, where different parameter values
can lead to different conditions or condition outcomes.

1 method mO(p0: bool, pl: int) returns (r0: seq<bool>, rl: bool)

2 ensures (p0 = true A pl =16 = r0 = [true, false] A rl = false)

3 ensures (p0 = false A pl =16 = r0 = [false, false] A rl = false)
1 {

5 var v0: set<int> := if (p0) then {pl} else {0x2ac, pl, 546, pl + 43};
6 assert (p0 = true A pl =16 = (|v0| < 3) = true) A

7 (p0 = false A pl =16 = (|v0| < 3) = false);

8 r0 := [p0, false];

9 rl := pl > (pl + pl);

=
o

¥

Figure 4.11: An example of using implies clauses to verify in method contexts with multiple known
variable values.

Equally, Figure 4.12 demonstrates the use of implies clauses to construct loop invariants — note
that here, we only need a single invariant using this mechanism since the loop is never entered.

1 var i0 := 0;

2  while(false)

3 decreases 5 — i0

4 invariant (0 < i0) A (i0 < 5)

5 invariant (i0 = 0) = v14 = true A v13 = 709 A v4 = [false]
6 { ...}

Figure 4.12: An example of using implies clauses to verify in while loop invariants.

4.4 Reconditioner

Since the generator produces arbitrary programs which may not meet the implicit semantic
constraints of the Dafny compiler (Section 3.3.3), fuzz-d implements a reconditioner module
whose responsibility is to take generated programs and transform them such that they meet
these constraints. Transformations are applied to the following language features:

e Integer Division and Integer Modulo — in order to avoid division by zero
e Array and Sequence Indexing — in order to avoid out of bounds accesses

e Sequence Initialiser Length — ensuring the length provided to a sequence initialiser is
always positive
Avoiding these behaviours is important since programs exhibiting them can produce runtime

exceptions or inconsistent results across the Dafny backends.

Reconditioning is performed by fuzz-d in two ways: standard reconditioning (Section 4.4.1),
and advanced reconditioning (Section 4.4.2). The integration of both of these into the fuzz-d
workflow is shown in Figure 4.1.

4.4.1 Standard Reconditioning

Standard reconditioning transforms generated programs into a valid form by traversing the
AST recursively and inserting inline calls to safe wrapper functions for operations which can
introduce behaviour that would lead to runtime exceptions or inconsistent outputs. The aim
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of these functions is to take the parameters for these operations and analyse if performing the
operation would result in invalid program behaviour — if this is the case, a default or “safe” value
is returned, otherwise the operation is performed and the result returned. Figure 4.13 shows the
functions generated alongside each program which are used for these standard reconditioning
calls, and Figure 4.14 shows how these are applied to recondition a program segment. Here,
inline calls are made to safeIndex to ensure that the indexes into array v52 are valid.

By default, standard reconditioning applies the safe wrapper functions at all instances where
program behaviour may be invalid; however, the reconditioner is configurable and allows a list of
ids to be passed in so as not to generate the safe wrapper calls for these ids. This is particularly
useful for the final stage of advanced reconditioning — more detail is provided below.

1 function abs(x: int): int {

2 if (x < 0) then —1 % x else x

3

4

5 function safelndex(x: int, length: int): int

6 requires length > 0

r

8 if (x < 0) then 0 else if (x > length) then x % length else x
o }

10

11 function safeDivisionlnt(xl: int, x2: int): int {
12 if (x2 = 0) then x1 else x1 / x2

-
w

14

15 function safeModulolnt(x1l: int, x2: int): int {
16 if (x2 = 0) then x1 else x1 % x2

17

Figure 4.13: Safe wrapper functions used by fuzz-d for standard reconditioned programs

1 if (v48.f14 in v51) {

2 var v52: array<bool> := new bool[29];

3 v52[19] := v47 = fm3(v46, 0x389, globalState);
4 v45 := v52[19];

50}

(a) Program segment before reconditioning

1 if (v48.f14 in v51) {

2 var v52: array<bool> := new bool[29];

3 vb2[safelndex (19, v52.Length)] := v47 = fm3(v46, 0x389, globalState);
4 v45 := vb2[safelndex (19, v52.Length)];

5}

(b) Program segment after reconditioning

Figure 4.14: An example showing how reconditioning transforms a program segment

4.4.2 Advanced Reconditioning

Since standard reconditioning applies safe wrapper calls at all instances of possibly invalid pro-
gram behaviour, this can limit the expressiveness of the resulting program — it may unknowingly
obscure possible bugs by inserting a safe wrapper call in a place where the original behaviour was
valid and triggered a bug. For example, in Figure 4.14, the safe wrappers are called regardless
of the fact that the initial program is valid without them. Therefore, we take inspiration from
Even-Mendoza et al. [20] in implementing an optional advanced reconditioning workflow as an
extension to standard reconditioning. This performs dynamic analysis on generated programs,
aiming to only place safe wrapper calls where they are necessary, i.e. where if they were omitted,
the resulting program would be invalid.
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method requireSafetyld(id: string, advancedState: AdvancedReconditionState) {
if (-(id in advancedState.state) V -advancedState.state[id]) {
print id, "\n";
advancedState.state := advancedState.state[id := true];
¥
}

method advancedAbsolute(pl: int, advancedState: AdvancedReconditionState, id: string)
returns (rl: int) {
if (p1 <0) {
printSafetyld (id, advancedState);

rl := —1 % pl;
} else {
rl := pl;

}
}

method advancedSafelndex(pl: int, p2: int, advancedState: AdvancedReconditionState, id:
string) returns (rl: int) {
var bl, b2 := pl < 0, pl > p2;
if (b1 v b2) {
printSafetyld (id, advancedState);

rl := if (bl) then 0 else pl % p2;
} else {
rl := pl;

}
}

method advancedSafeModInt(pl: int, p2: int, advancedState: AdvancedReconditionState, id:
string) returns (rl: int) {
if (p2 = 0) {
printSafetyld (id, advancedState);
rl := pl;

} else {
rl := pl % p2;

¥
}

method advancedSafeDivIint(pl: int, p2: int, advancedState: AdvancedReconditionState, id:
string) returns (rl: int) {
if (p2 = 0) {
printSafetyld (id, advancedState);
rl := pl;

} else {
rl := pl / p2;

Figure 4.15: Advanced safe wrapper methods used by fuzz-d for advance-reconditioned programs

Advanced reconditioning is performed by fuzz-d in three stages. First, it transforms the gen-
erated program into a valid, intermediate AST which is instrumented with print statements,
enabling detection of exactly which safe wrapper calls are needed. It then uses the runtime out-
put of this intermediate representation to identify the wrappers which are needed, and finally
performs standard reconditioning to insert inline wrapper calls at the places where these occur
in the original AST.

Intermediate Transformation

In performing the intermediate transformation, fuzz-d aims to annotate the generated program
with calls to advanced safe wrapper functions (Figure 4.15) which replicate the behaviour of
standard reconditioning’s safe wrappers, except that in the case that the wrapper is needed —
i.e. the inputs would lead to invalid behaviour — then they should print a safety id which is
unique to that particular application of the advanced safety wrapper. If a safety id is printed,
therefore, this signifies that the wrapper application it refers to is required for the program to
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be valid.

Since the same wrapper applications can be reached multiple times, for example if they are
applied within loops, fuzz-d implements a heuristic to minimise the program output by only
printing safety ids which have not already been printed — it is only necessary for a safety id
to be printed once in order for that wrapper application to be required. This is achieved by
passing around an advanced recondition state which stores a map from safety ids to boolean flags
signifiying the id is required (which is true iff the safety id has been printed). The advanced safe
wrappers update this state each time an id is needed, by calling requireSafetyId in Figure 4.15
which handles both printing the id and updating the state. In order to facilitate this, the state
is passed around the intermediate program in a class instance: the definition of the advanced
recondition state class is shown in Figure 4.16, and is necessary in order to pass around the map
and perform updates on it by reference.

class AdvancedReconditionState {
var state : map<string , bool>
constructor (state : map<string , bool>) {
this.state := state;

¥
}

D Ut s W N

Figure 4.16: Class definition used in advanced reconditioned programs to track printed safety ids

Compared to the transformations applied by standard reconditioning, those required for the
intermediate transformation are a lot more intrusive to the original program. This is because
Dafny considers print statements to be effectful, therefore the advanced safe wrappers must
be represented by methods, not functions as with standard reconditioning. Consequently, the
wrappers can no longer be called inline within expressions, since Dafny does not allow calls to
methods within expressions. Instead, temporary variables must be created to store the results
of advanced safe wrapper calls, and these temporary variables are then inserted inline where the
wrapper functions would have otherwise been placed. Figure 4.17 shows an example of using
temporary variables to transform two index operations.

1 var tl56 := advancedSafelndex (188, v24.LlLength,
advancedState, "safetyl10");
2 var tl57 := advancedSafelndex(|v25|, |vO],
advancedState, "safetyl11l");
1 v24[188] := vO[|v25]]; 3 v24[tl56] := vO[tl57];
(a) Original statement (b) The same statement in the intermediate program

Figure 4.17: An example showing how advanced reconditioning transforms a program using temporary
variables for safe wrapper calls

Furthermore, since functions can potentially have calls to the safe wrappers, all functions in the
original program must be converted to a method of equivalent behaviour, so that they can call
the advanced safe wrappers. This is relatively straightforward and involves creating a method
with the same parameters and return type, assigning the function expression to the named
method return value. Any necessary advanced safe wrappers can then be inserted above the
return value assignment. Function call results are again assigned to temporary variables, which
are inserted inline where the function calls are in the original program.

By far the most intrusive transformation, however, is for comprehensions and set/array initialis-
ers. In order to replicate these in a way which supports calls to safe wrapper methods, they
must be converted into a while loop which builds an equivalent structure, where requiring use of
a safe wrapper in building the equivalent structure implies the original comprehension /initialiser
needs the safe wrapper call.
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Figure 4.18 shows how a map comprehension with potentially unsafe behaviour is transformed
into a while loop via advanced reconditioning. Since the original comprehension is over elements
in data structure v58, the loop must also iterate over these elements — it does so by creating a
clone of v568 (t84), which can be mutated in the update on line 10 to remove the visited element
without affecting the original data structure. The map starts as empty and is populated with
elements via the update on line 9.

var v64 := map[v2 := map v63 : int | v63 in v58 :: (v63 / v47[959]) := (v2)];
(a) Before advanced reconditioning

var t83 := map|[];

var t84 := vb8;

while (|t84| # 0)
decreases |t84|

{
var v63 :| v63 in t84
var t81 := advancedSafelndex (959, v47.Length, advancedState, "safety61");
var t82 := advancedSafeDivint(v63, v47[t81], advancedState, "safety62");
t83 := t83[t82 := v2];
t84 := t84 — {v63};

}

var v64 := map[v2 := t83];

(b) After advanced reconditioning

Figure 4.18: An example showing how comprehensions need to be transformed during advanced recon-
ditioning.

Collecting Intermediate Program Output

When the intermediate program is run, any live code in the program which requires a safe
wrapper call will result in corresponding ids being printed. These ids need to be collected and
parsed by fuzz-d in order to identify the wrappers which need to be inserted in the final stage
of the advanced reconditioning process.

The output of the instrumented intermediate program can be collected in two ways: using the
built-in interpreter (Section 4.3), or compiling and executing the program over one of Dafny’s
backends. fuzz-d opts to use its in-built interpreter to obtain the output for two reasons:

1. While executing a compiled Dafny program takes around the same amount of time as fuzz-
d would to interpret it, the compilation of the program itself is very time-consuming, often
taking around 15-30 seconds for an average generated program. By using the interpreter,
fuzz-d can avoid this time penalty, significantly reducing the time taken per test case.

2. Using the interpreter instead of one of the Dafny backends increases the scope for being
able to find bugs. For example, a latent bug might exist in one of Dafny’s earlier AST
transformations before the backends. This could cause the wrong control flow branch to
be taken at one point in the program, and since the bug is in an earlier transformation, all
backends would therefore exhibit the same behaviour. If the interpreter was used instead
of one of the backends to collect the safety ids, it would hopefully take the correct branch
instead. Therefore, the branch taken by the backends would be dead, thus no safety ids
for the branch would be output and it would not be annotated with safe wrappers. When
the backends would run the final advance-reconditioned program, they would take the
incorrect branch and any invalid code would cause easily identifiable runtime exceptions.
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Minimising Safe Wrappers with Safety Ids

Once the safety ids have been collected from the output of the intermediate program, they are
passed to the standard reconditioner, along with the original generated AST. The reconditioner
will, for each possible instance of invalid behaviour, check if its associated safety id is contained
in the given list — if it is, it will generate the required safe wrapper call, otherwise leaving the
AST element unchanged. The output of this recondition pass is the final, advance-reconditioned
AST.

4.5 Mutator

Within the verifier testing workflow, if a program is able to be successfully verified by the Dafny
verifier, it is then passed to the mutator. This takes the verified program and recursively traverses
over the AST, randomly selecting one annotation to make invalid, with the aim of ensuring that
the Dafny verifier can identify the invalid assertion. Our motivation for invalidating programs
is that it is much more impactful to identify programs which Dafny incorrectly verifies, rather
than programs which Dafny is unable to verify — these could just be due to limitations in the
verifier.

Annotations are made invalid either by flipping the equality sign of the condition, from <expr>
== <value> to <expr> != <value>, or instead replacing the condition with false. Once an
annotation has been invalidated, the rest of the AST is returned in the original, unmutated
form, and the mutated program is cross-checked against the verifier using the test harness to
check that Dafny can successfully detect the invalid assertion.

1if (vl) { 1if (vl) {
2 vO0 := if (true) then v0 else —1; 2 v0 := if (true) then v0 else —1;
3 var v10 := multiset{—v0}; 3 var v10 := multiset{v0};
4 assert (v10 = multiset{—1983}); 4 assert (v10 # multiset{1983});
5 } 5 }
(a) Before mutation (b) After mutation

Figure 4.19: An example showing how the mutator invalidates assertions

Figure 4.19 shows how the mutator can apply invalidations to generated programs — here, the
assertion on line 4 is inverted such that == becomes !=.

4.6 Test Harness

The test harness in fuzz-d is responsible for taking a reconditioned program and either checking
that it verifies, or compiling and executing it in order to run differential testing. It utilises con-
currency as much as possible, running compilation/verification/execution commands in parallel
to reduce the time taken to test each program.

The compilation/execution workflow is shown in Figure 4.20, which splits into threads where
for each thread, the program is first compiled to the corresponding target language, and if the
compilation is successful, the output compiled program is executed. For both of these stages,
the outputs of standard input and standard error are collected and these, along with the exit
codes for each stage, form the test result for the backend. Once this process has been completed
for all backends and the threads are joined, the results are analysed to identify any crashes
during compilation or execution, and differential testing is run over all backends for which the
execution terminated successfully. The overall results are output to a log file, fuzz-d.log which
contains the individual test results for each backend and overall conclusions from the analysis
and differential testing.
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Figure 4.20: fuzz-d test harness workflow for testing the Dafny compiler backends

A similar approach is used when verifying the mutated programs generated in the verifier-testing
workflow, shown in Figure 4.21. It takes the list of mutated programs, on successful verification
of the original program, and passes each of these to a thread which runs the Dafny verifier on it,
collecting the standard input/error and exit code to form a verification result. After the threads
are joined, it analyses these verification results for each program to identify if any successfully
verified when they should have failed from the mutation. Like the compiler workflow, the results
are output to fuzz-d.log, including the outputs for each mutated program and whether any
incorrectly verified.

start () join()

Mutated . Verification
Program 1 : { Verify Result ]

: ~ :
Mutated : . Verification | : Detect Successful
—> Verif; ——>
Program 2 : { ey Result : Verification
: J :

Mutated . Verification
Program n : { Verify Result o

Figure 4.21: fuzz-d test harness workflow for testing the Dafny verifier with mutated programs

4.7 Parser

Since fuzz-d takes a language-agnostic approach to test case reduction, it is possible that during
the reduction process, invalid program behaviour is introduced. To avoid a reduced program
containing invalid program behaviour, therefore, it is important to recondition programs as they
are reduced to ensure that reduced programs are always valid. In order to support reconditioning
during the reduction process, fuzz-d therefore implements a parser, overloading a generated
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ANTLR visitor. This allows it to parse arbitrary Dafny programs (using the same language
subset) into its internal AST representation, which can then be transformed via reconditioning.
This also allows programs to be re-interpreted during reduction in cases where the interpreter
output is important to the interestingness test result.

| £ 5 |

IS N :
Interesti Reduced : R ditioned, : i eTess
nteresting Reducer educed | Parser Reconditioner econditione: SN Interestingness
Program Program : Reduced Program | : Test
Global Fixpoint Reached fuzz-d
Final
Test Case

Figure 4.22: Workflow for reducing a program, maintaining validity through reconditioning

Figure 4.22 shows how the fuzz-d parser can be used for reconditioning a program within a
reducer workflow. Note that reconditioning is performed on each reduced program, rather than
reconditioning a reduced program, since this makes it much easier to ensure program validity
and avoids the reducer interfering with reconditioning constructs.

Additionally, the ANTLR grammar used to generate the parser visitor is also used to integrate
with PERSES [28], allowing for language-agnostic program reduction. With this, we can reduce
Dafny programs using more language-specific transformations based on the ANTLR grammar,
optimising reduction and making it much more likely to reach a test case’s minimal form, com-
pared to more general, language-inspecific transformations applied by other language-agnostic
reducers such as C-Reduce [27].
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5} Evaluation

The success of the project will be evaluated following the research questions detailed below.
Where relevant, we will draw comparison to existing testing mechanisms for Dafny, such as
XDsmith and Dafny’s regression test suite, to identify both potential areas of improvement in
fuzz-d and areas of weakness in the existing mechanisms.

RQ1 — Is fuzz-d effective in identifying bugs in Dafny’s compilation workflow?
RQ2 — What level of coverage of the core Dafny compilation source code is fuzz-d able to achieve?

RQ3 — What level of mutation coverage can fuzz-d achieve over the source code for the core
compilers?

RQ4 — How effective is advanced reconditioning in assisting fuzz-d’s compiler testing?

RQ5 — Is the verifier testing workflow a valuable addition to fuzz-d?

5.1 RQ1: Evaluating fuzz-d’s Ability to Identify Bugs

We performed consistent testing with fuzz-d in a largely uncontrolled manner throughout de-
velopment, over multiple versions of Dafny. As of the current version of fuzz-d, each test case
takes approximately 20-40 seconds, depending on its size and included language features.

From its testing, fuzz-d has identified a range of bugs across components of Dafny’s compilation
workflow. These include both compile-time crashes and miscompilations, where an executable
was produced by the compiler but it exhibited unexpected runtime behaviour (either crashing
or producing an incorrect output).

Component Crash | Miscompilation | Total Backend | Miscompilation
Parser 1 0 1 C# 5
Resolver 3 0 3 Java 12
Verifier 2 1 3 Python 4
Compiler 1 27 28 Go 3
Total 7 28 35 JavaScript 3
Total (Deduplicated) 5 13 18 Total 27

Table 5.1: Summary of bugs identified by fuzz-d across Table 5.2: Distribution of Compiler
Dafny’s core components Miscompilations across Backends

Table 5.1 summarises the bugs found by fuzz-d over Dafny’s components, and Table 5.2 further
expands on how the compiler miscompilations were distributed over the backends. Overall,
fuzz-d identified 35 instances of unexpected behaviour relating to a particular language feature.
However, a large proportion of these individual unexpected behaviours were related, either from
the same issue existing across multiple backends, or different errors in a single backend relating
to the same implementation detail. Therefore, it is necessary to perform deduplication, shown
in Table 5.1, after which fuzz-d found 18 unique, unrelated bugs. Of these, 4 were identified as
already reported, thus a total of 14 reports [38] were submitted to Dafny developers.

These reports are summarised in Table 5.3. Of the bugs reported, one was labelled a duplicate
of another bug (originally identified by XDsmith) and the parser crash was labelled as an error-
reporting issue instead of a bug. All others are either confirmed or awaiting confirmation, with
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Issue | Status Type Component Description

#4061 | Unconfirmed | Invalid Code Compiler (Java) Generated code with invalid use of variables

#4011 | Unconfirmed | Wrong Code (Soundness) | Compiler (C#) Incorrect equality of multisets with O-cardinality elements
#4007 | Fixed Invalid Code Compiler (Python) Invalid syntax in generated code

#3988 | Confirmed Invalid Code (Soundness) | Compiler (C#) Runtime cardinality limit for multisets

#3988 | Fixed Invalid Code (Soundness) | Compiler (Python) Runtime cardinality limit for multisets

#3987 | Unconfirmed | Invalid Code Compiler (Python, JS) Referencing undeclared variable in generated code

#3969 | Confirmed Crash Verifier Assertion failure during translation

#3950 | Confirmed Incorrect rejection Resolver Incomplete type checking for multiset operations

#3932 | Won’t Fix Error Reporting Parser Handling of a clash in the grammar

#3910 | Unconfirmed | Invalid Code Compiler (Java, Go, C#) | Multiple issues using variables in pattern matches

#3906 | Unconfirmed | Crash Verifier Boogie — Internal translation error

#3874 | Fixed Invalid Code (Soundness) | Compiler (Python) Multiset equality issues

#3873 | Confirmed Invalid Code (Soundness) | Compiler (JS) Type representation issues for maps with array keys
#3856 | Duplicate Wrong Code (Soundness) | Compiler (JS, Go) Incorrect internal representation of maps

#3854 | Confirmed Invalid Code Compiler (Java) Multiple issues related to type representation and class casting.

Table 5.3: Summary of bugs reported to Dafny developers

three Python backend miscompilations having been fixed. The following sections will highlight
some examples of these bugs.

All Backends: Forall Expression Inside Match Statement

Of the language features tested by fuzz-d, pattern-matching-related features were among those
which caused the most issues. The case where a forall parallel assignment was inserted inside a
match statement was particularly problematic, causing issues across all 5 backends: in 3 backends
(C#, Java and Go), Dafny produced invalid code that caused exceptions during compilation by
the relevant backend, while for the interpreted backends (Python and JavaScript), this resulted in
runtime exceptions. This was the only identified miscompilation bug which affected all backends,
and since the bug affects all backends, it is likely it is contained in an earlier compiler stage.

1 datatype D=A | B

2

3 method Main() {

4 match A {

5 case A =

6 var a: array<int> := new int[24](il = il);
7 forall i2 | 0 < i2 < a.Length {
8 ali2] = i2;

9

10 case = {}

11 }

Jun
N

}

Figure 5.1: Test case inserting a parallel assignment inside a match statement. Taken from [39]

Previous bugs found pointed to backends not being able to correctly handle variable use inside
match expressions and statements [40], and this particular combination of features (shown in
Figure 5.1) emphasises this. Dafny will translate the above program correctly until line 7, where
for a.Length, it uses an invalid reference for a in what seems to be an error in its naming
mechanism. This results in all backends producing a form of undeclared variable exception, for
example in JavaScript this causes the exception ReferenceError: _2_a is not defined (the
JavaScript generated code is available in Appendix A.1 for correlation).

This bug was detected during an 8 hour testing campaign on the most recent version of Dafny
(at the time of testing), and it currently remains possible to replicate on the newest commit of
Dafny at the time of writing. fuzz-d was able to identify it as a result of its support for pattern
matching over datatypes, and parallel assignment over array indexes. The reduced test case was
able to be created manually since the error clearly signposts where the issue occurs, thus it took
less time to understand the issue and write a reduced case than it would have done to run the
reducer.
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C# and Python Backends: Runtime Cardinality Limit of Multisets

An interesting edge case in the C# and Python implementations of multisets was identified by
fuzz-d. When trying to take the modulus of a multiset whose size is greater than the maximum
supported integer value, runtime exceptions are thrown due to an arithmetic overflow from
trying to fit the modulus into an integer type. The other three backends are able to handle
this case using Dafny’s BigInteger implementation, which allows Dafny to have (theoretically)
unbounded integer values, therefore this is clearly a missed implementation detail in the C#
and Python backends.

1 method Main() {

2 var x: multiset<int> := multiset {};
3 x = x[1 := 18446744073709551616];
4 print |x|;

5

Figure 5.2: Test case for demonstrating runtime cardinality limit of Python multisets. Taken from [41]

Figure 5.2 shows the test case which caused this error for Python — it sets multiplicity of the
value 1 in multiset x as 264, which is greater than the maximum allowed value for an index-type
integer. Consequently, when the test case was run, the error OverflowError: cannot fit
’int’ into an index-sized integer was thrown.

Like the case above, this error was identified during a testing campaign and consequently reduced
using PERSES. Once the reduced test case made it clear how the error was happening, some
manual reduction was performed to further simplify the test case — previously, a while loop was
responsible for creating such a large multiset and not a single update. The GitHub issue [41] was
originally tracking both backends, but Dafny developers split the issue so as to fix the Python
implementation [42], while the C# implementation is confirmed and awaiting a fix.

Java Backend: Incompatible Types

As seen in Table 5.2, the Java backend was by far the most affected by miscompilation errors.
A lot of these were related crashes during compilation of the jar executable, and could be con-
tributed to weaknesses in the type and class definitions surrounding the Java code generation
implementation. In particular, conversions between internal type representations would fail and
result in a crash often labelled as error: incompatible types. Of the 12 Java miscompila-
tions identified, three result in the above error, and another test case was identified as being
related (4 total).

1 method Main() {

2 var x := new int[22];
method Main () { 1 method Main() { 3 var y := if (true) then
var x := {map[0 := 1]}2 var x := new int[10]; multiset{x} else
+ {map[l := 1]}; 3 var y := {{x}}; multiset{x};

} i} i}
(a) (b) (c)

Figure 5.3: Three test cases which crash with a unique incompatible types error when compiled to
Java. Taken from [43]

Figure 5.3 shows three test cases causing the three instances of the incompatible types error.
Each of these involves operations with nested collections, and crashes with an error message
involving wildcard generics corresponding to the nested collection type. They were detected
during an 8 hour campaign and reduced entirely with PERSES, and were able to be detected
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thanks to fuzz-d supporting a multitude of collection types and their operations. The bugs have
been confirmed on the GitHub issue [43]| but have yet to be fixed.

Boogie Internal Translation Error

Alongside several miscompilations across the Dafny backends, fuzz-d was also able to identify
crashes in the resolver, verifier and compiler. Figure 5.4 shows an example of a test case which
identified a miscompilation bug in the verifier, triggering an internal translation error related to
Boogie. The program is able to be translated into Boogie (.bpl) files, but these fail Boogie type
checking at the comparison between the two sets ({1} !'= {1}) and consequently the internal
translation error is thrown. Although it was possible that this issue was related to Boogie,
investigating different possible similar test cases and related Dafny source code suggested that
the issue is more likely to be related to the Dafny verifier.

1 method Main() {

2 while (true A ({1} # {1})) { }
3}

Figure 5.4: Test case causing an internal Boogie translation error. Taken from [44]

This test case was the simplest identified among the bugs reported, and highlights the effective-
ness of the reduction process to produce a reduced test case in its smallest possible form.

Summary

The above examples taken from the selection of reported bugs clearly demonstrate, in response to
RQ1, that fuzz-d is effective in identifying bugs in both the Dafny compiler and verifier, capable
of generating a diverse range of programs which combine language features in interesting ways
to capture multiple new edge cases in the Dafny language. Naturally, there will remain latent
bugs within Dafny which fuzz-d has so far been unable to detect, either from not implementing
those language features, or from its random decision causing generation to move away from these
bugs. However, given the number of bugs fuzz-d has been able to detect in such a short time
frame using only a small subset of the language’s features, there is promising evidence to suggest
that for testing over a longer time period, with a greater subset of the Dafny language, fuzz-d
would be able to further increase its ability for generated programs to find bugs.

5.2 RQ2: Evaluating Coverage Achieved by fuzz-d

A key part of evaluating the ability of fuzz-d to test Dafny lies in understanding how much (and
which parts) of the Dafny source code fuzz-d is able to test. In order to do so, we analysed the
coverage which test cases generated by fuzz-d were able to achieve over the Dafny source code,
in particular the core module (DafnyCore) which contains the majority of the source code for
both the compiler and verifier — other Dafny modules are not relevant to this project.

5.2.1 Experimental Setup

Being able to measure code coverage requires having access to an instrumented version of the
Dafny compiler source, and this was possible using the coverlet tool [45] which instruments
Dafny’s .NET binaries to calculate line and branch coverage over a particular run, optionally
combining results over multiple runs. Coverlet-generated reports of the cobertura format can
be converted into html using the reportgenerator tool to provide easily viewable results.

To evaluate coverage of test cases generated by fuzz-d, we performed a controlled experiment,
running testing campaigns using fuzz-d over a coverage-instrumented version of the Dafny com-
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piler. These ran for a fixed 12 hour period against the latest Dafny commit at the time of testing,
and were repeated two additional times to handle (to some extent) the random nature of com-
piler testing. The campaigns were run on Linux virtual machines with x86 64 architecture, 4
cores, 8GB RAM and running Ubuntu 20.04.

Alongside fuzz-d, we ran the same experiment using XDsmith, the results of which act as a
baseline for fuzz-testing Dafny, and we also calculated the coverage of the Dafny integration test
suite for comparison, highlighting possible areas of improvement for fuzz-d, and possible areas of
weakness in the Dafny test suite. Since Section 5.5 focuses on evaluating verifier testing, these
experiments focus only on compiler testing, i.e. they do not involve the Dafny verifier. For the
Dafny integration test suite, this therefore involved filtering the test cases to avoid those which
do not use the compiler.

5.2.2 Results

Table 5.4 shows the line and branch coverage measured using the experiments detailed above.
Note that branch coverage is calculated with respect to line coverage, thus it is not necessarily
comparable across tools. We compare and contrast these results below, comparing first fuzz-d
and XDsmith, then fuzz-d and the Dafny integration test suite.

Run | Line (%) | Branch (%) Run | Line (%) | Branch (%)
1 32.56 30.58 1 46.40 40.56
32.58 30.58 2 46.46 40.40 | | Line (%) | Branch (%)
3 32.56 30.55 3 46.30 40.06 75.46 40.74
Avg 32.57 30.57 Avg 46.39 40.34

(c) Coverage Results for Dafny
(a) Coverage results for XDSmith  (b) Coverage results for fuzz-d Integration Tests

Table 5.4: Coverage experiment results, showing line and branch coverage percentages

Evaluating fuzz-d against XDsmith

The results across the coverage experiments for fuzz-d and XDsmith show that, on average,
fuzz-d was able to achieve 13.82% higher line coverage than XDsmith, marking an increase of
42.43%.

Inspection of the coverage report (summarised in Appendix B) revealed that fuzz-d is generally
able to cover a larger and more diverse range of language features when compared to XDsmith.
The largest differences between the two fuzzers stem from features which fuzz-d generates for
while XDsmith does not. For example, fuzz-d is able to cover 510 of the 842 lines related to
pattern matching (60.61%) on average, while XDsmith covers just 34 (4.04%) — Table 5.5 shows
the difference between the two over these files.

File Missing Lines | Coverage Difference (%)
DafnyCore/AST /Expressions/NestedMatchCase.cs -7 -+100.00
DafnyCore/AST /Expressions/NestedMatchCaseExpr.cs —16 +94.11
DafnyCore/AST /Expressions/NestedMatchCaseStmt.cs —28 +82.35
DafnyCore/AST /Expressions/NestedMatchExpr.cs —48 +75.00
DafnyCore/AST /Expressions/NestedMatchStmt.cs —69 +78.41
DafnyCore/CompileNestedMatch /MatchAst.cs —86 +40.95
DafnyCore/CompileNestedMatch /MatchFlattener.cs —263 +53.56

Table 5.5: Coverage comparison between fuzz-d and XDsmith for pattern matching constructs
The impact of increased language support is not only evident in the AST files for the features

themselves, but its impact also accumulates into fuzz-d covering significantly more of the core
compiler files than XDsmith. These files are responsible for interacting with, transforming and
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File Missing Lines | Coverage Difference (%)
DafnyCore/Compilers/Python/Compiler-python.cs —287 +23.35
DafnyCore/Compilers/CSharp/Compiler-Csharp.cs —618 +27.74
DafnyCore/Compilers/Java/Compiler-java.cs —737 +23.41
DafnyCore/Compilers/GoLang/Compiler-go.cs —639 +24.61
DafnyCore/Compilers/JavaScript /Compiler-js.cs —388 +21.16
DafnyCore/Compilers/SinglePassCompiler.cs —1014 +27.43

Table 5.6: Coverage comparison between fuzz-d and XDsmith over core compiler files

outputting AST elements for all types of language features, and in total fuzz-d was able to
average 3683 more lines covered across these files, which represents around 4.65% of the entire
DafnyCore module — Table 5.6 shows how this difference was distributed over the compiler files.

While fuzz-d has generally achieved higher coverage than XDsmith, there remain areas where
it can improve, and where XDsmith was able to cover which fuzz-d could not. These areas of
weakness are summarised by Table 5.7. Perhaps the largest area of weakness visible is that
fuzz-d does not support arrow types, which are used by Dafny to represent both partial and
total functions, while XDsmith does.

File Missing Lines | Coverage Difference (%)
DafnyCore/AST /Types/ArrowType.cs +25 —37.88
DafnyCore/Compilers/CSharp/CsharpBackend.cs +7 —6.36
DafnyCore/Compilers/Java/JavaBackend.cs +24 —18.75

Table 5.7: Coverage comparison between fuzz-d and XDsmith over files where fuzz-d was weaker

Interestingly, while fuzz-d achieves much higher coverage for the individual compiler files, it
appears to have weaker coverage over the backend files, which are responsible for producing
an executable for the target language. Further inspection showed this difference is related to
errors while compiling the executable resulting in control flow paths being missed. For the Java
backend, there is a missing path related to successful compilation, and since fuzz-d never took it
this means the compilation of every jar file resulted in errors (possible bugs). On the contrary,
for the C# backend there is a missing path corresponding to a compilation crash, meaning that
all its programs successfully compiled into an executable for fuzz-d while at least one resulted
in a crash or error for XDsmith. In the case of the Java backend, this result might suggest
that there is a fuzz blocker (or multiple) which occurs so frequently that it prevents observing
the runtime behaviour of the Java compiler — this could be resolved by identifying the fuzz
blocker(s) and adjusting generation probabilities so as to avoid generating them when testing
the Java backend.

Evaluating fuzz-d against the Dafny Integration Tests

Although fuzz-d was able to achieve coverage improvements over XDsmith, it is clear that there
is still a lot more the tool could achieve, demonstrated by the Dafny integration test suite
achieving 29.07% higher line coverage. A large portion of this difference follows from additional
language features covered by the integration suite having impact across the codebase. The
features which made the largest impact on the difference were related to Dafny’s type system,
including newtypes, bitvectors and co-inductive datatypes (which fuzz-d currently omits due to
their limited functionality in executable code). It is also likely that some of the difference comes
from the Dafny test suite having annotated programs, while fuzz-d does not annotate programs
for compiler testing — although the programs were not verified, there remains portions of code
in the compilers for handling annotations.

While it is interesting to identify missing language features as areas of improvement/future
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directions for fuzz-d, in terms of evaluation it is much more useful to analyse the coverage
differences over the features which were supported by both test mechanisms. Generally, fuzz-
d is able to achieve a similar level of coverage for the language features that it does support
— for example, the AST files related to for-loops, match statements/expressions and multiset
displays all have the same coverage across both. There are, however, instances where the Dafny
integration tests are able to have higher coverage for a particular feature, as a result of particular
edge cases being accounted for in the tests but not fuzz-d. Consequently, areas have been
highlighted where features are perhaps under-implemented in fuzz-d. An example of this is
related to forall constructs, which have a variety of edge cases including allowing parallel
assignment over class members for arrays of class instances, or calls to ghost methods (although
the latter is verification only). Since fuzz-d does not implement for these edge cases, some
blocks are consequently uncovered in related code (ForallStmtRewriter). A minimal program
showing this uncovered edge case is demonstrated in Figure 5.5.

1 class C {

2 var f : int

3 constructor(f: int) { ... }
i}

5 method Main() {

6 var ¢ := new C(1);

7 var arr := new C[1l][c];

8 forall i | 0 < i < arr.Length {
9 arr[i].f := i 4+ 1;

10 }

11}

Figure 5.5: Minimal program demonstrating the omitted forall edge case.

On the other hand, a small number of instances have been identified where fuzz-d is able to cover
code which the Dafny integration tests do not — these could signify weaknesses in the test suite.
The full report showing these is available on Gist and summarised in Table 5.8. Overall, fuzz-d
achieved greater coverage than the integration tests for two files, related to shallow equality of
expressions, and 23 files were identified across DafnyCore where at least one line was covered by
fuzz-d and not the integration tests. In the following paragraphs we analyse the root causes of
some of the cases of lines missed.

DafnyCore/AST/ComprehensionExpr.cs: Cloning of Sequence/Multiset Bounded Pools
This file is responsible for representing comprehensions in the Dafny internal ASTs. They are
considered by Dafny as being formed of three parts: a list of bound variables, a range which
confines these variables to a finite range of values, and a term which represents the expression
used to evaluate the comprehension’s elements. The range can take multiple different forms,
and each of these results in the possible range values being represented as a bounded pool —
for example, providing an int range (e.g. 0 <= i < 10) results in an IntBoundedPool while
providing a data structure (e.g. x in [1, 2, 3]) results in a bounded pool corresponding to
that data structure. The lines omitted by Dafny’s integration suite result from an edge case
related to the bounded pools for sequences and multisets.

Each bounded pool implements a function Clone() providing a deep copy of itself. This is
necessary since the Dafny internal AST representation is mutable, meaning that if the current
AST state needs to be cached or maintained for later use, it must be cloned so as not to be
changed by later transformations. However, the Dafny integration tests omit testing the clone
functions for comprehensions bounded by the contents of sequences or multisets. This is covered
fuzz-d following its support of match statements and comprehensions, and a reduced test case
obtained from fuzz-d covering cloning of sequence bounded pools is shown in Figure 5.6.

DafnyCore/Compilers/Python/Compiler-py.cs: Non-Sequentialisable Forall
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File Coverage Difference (%) | Lines Missed
DafnyCore/DafnyOptions.cs +3.47% 4
DafnyCore/AST /Cloner.cs +40.14% 1
DafnyCore/AST /Expressions/ComprehensionExpr.cs +19.34% 6
DafnyCore/AST /Expressions/Expressions.cs +20.63% 1
DafnyCore/AST /FreeVariablesUtil.cs +8.27% 2
DafnyCore/AST /Grammar/Printer.cs +34.54% 14
DafnyCore/AST /Statements/Statements.cs +18.77% 3
DafnyCore/AST/Substituter.cs +27.06% 11
DafnyCore/AST /Types/Types.cs +23.88% 5
DafnyCore/Resolver /NameResolutionAnd Typelnference.cs +28.03% 6
DafnyCore/Resolver /Resolver.cs +44.20% 4
DafnyCore/Resolver /TailRecursion.cs +30.80% 6
DafnyCore/ Verifier / Translator.cs +37.18% 37
DafnyCore/Verifier / Translator. ExpressionTranslator.cs +23.66% 13
DafnyCore/Parser.cs +42.84% 1
DafnyCore/Scanner.cs +23.53% 2
DafnyCore/Triggers/ TriggerExtensions.cs —3.69% 47
DafnyCore/Triggers/TriggersCollector.cs —0.35% 12
DafnyCore/Compilers/DatatypeWrapperEraser.cs +20.00% 1
DafnyCore/Compilers/Java/Compiler-java.cs +32.08% 8
DafnyCore/Compilers/JavaScript /Compiler-js.cs +40.02% 10
DafnyCore/Compilers/Python/Compiler-python.cs +30.27% 3
DafnyCore/Compilers/SinglePassCompiler.cs +29.40% 4

Table 5.8: Comparison between fuzz-d (baseline) and the Dafny integration test suite, showing the
number of lines covered by fuzz-d that were missed by the test suite

1 method Main() {

2 var a := [1, 2, 3];

3 match true {

4 case = var b := map x
5 }

6}

| x in a :: x (= x x x;

Figure 5.6: Smallest test case covering cloning of the SeqBoundedPool class

Although fuzz-d omitted some edge cases related to forall statements which the integration tests
could cover, the inverse is also true: fuzz-d is able to cover non-sequentialisable forall statements
within the Python compiler while the integration tests do not.

A non-sequentialisable forall statement is one where executing the assignments in a sequential
order would result in a different outcome to executing the assignments in parallel. Figure 5.7
demonstrates a simple non-sequentialisable forall obtained from fuzz-d, where executing the
assignments in parallel always takes a[0] as its initial value 2, but executing them sequentially
would update a[0] to value 4 on the first iteration, after which the results would be different.

1 method Main() {

2 var a := new int[3][2, 3, 4];
3 forall i | 0 < i < a.Length {
4 al[i] (= i % a[0];

5

6}

Figure 5.7: Smallest test case covering non-sequentialisable forall statements in the Python compiler

DafnyCore/Compilers/SinglePassCompiler.cs: Missed Binary Operators
A number of the files identified to have missed lines were as a result of missing cases for bi-
nary operators, notably for explies (<==), iff (<==>) and map/multiset not equals (!=). The
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SinglePassCompiler omits the last three of these in the function CompileBinOp (), and because
of the significance of this function in the compilation flow, this means that that no programs
testing the compiler in the integration test suite use these binary operators. Analysing back-
wards through the workflow, looking at the missing lines in the Resolver further reveals that the
binary operators for explies and map not equals never even reach the resolver, thus no seman-
tically valid programs in the integration tests contain these operators. Missing these operators
could be argued as a potential weakness in Dafny, since binary operators are among the most
commonly used language features and therefore it is important the tests are able to identify any
compile issues related to all possible types. Figure 5.8 shows a simple test case where each line
would introduce coverage for one of the above operators.

1 method Main() {

2 print true <= false;

3 print true <= true;

4 print map[l := 1] # map[l := 2];
5 print multiset{1} # multiset {2};
6}

Figure 5.8: A small test case with statements to achieve coverage for missing binary operators

5.2.3 Summary

To answer RQ2, we have demonstrated in this section that fuzz-d is able to average 46.39%
line coverage over the DafnyCore module when testing only the Dafny compilers, including over
50% line coverage in all core compiler files. As a result of using a highly flexible generational
approach to enable the support of more complex language features, fuzz-d raises the bar over
existing compiler testing mechanisms for Dafny; however, there naturally remains a large gap
between fuzz-d and the overall coverage standard set by the Dafny integration test suite.

As with any compiler testing, it is inevitable that additional improvements can be made to
fuzz-d by supporting more language features, in comparison to both XDsmith and the Dafny
integration tests. By comparing fuzz-d to these over its supported features, however, we have
also found more specific improvements that could be made, identifying edge cases which have
resulted in certain features being under-implemented. Despite this, fuzz-d is still able to cover
multiple areas of the DafnyCore module which the Dafny integration tests are unable to reach,
highlighting potential weaknesses in Dafny’s built-in testing mechanisms which we recommend
are looked into by the Dafny developers.

5.3 RQ3: Evaluating Mutation Coverage Achieved by fuzz-d

In order to further understand the effectiveness of testing Dafny with fuzz-d, we performed
mutation testing experiments over the Dafny compiler source code. Mutation testing is used
to measure the quality of a given test suite by analysing its ability to detect small, functional
changes in the system under test. Therefore, we formed a test suite of programs generated by
fuzz-d and compared it to a similar process run over the Dafny tests and an XDsmith test suite.

5.3.1 Experimental Setup

We used a C# mutation testing tool, Stryker [46], to perform three fixed experiments eval-
uating mutation coverage using fuzz-d, XDsmith and the Dafny integration test suite respec-
tively. Stryker identifies and injects mutations — including arithmetic, logical, initialisation and
assignment-based — into the Dafny codebase, with the test suite then being invoked to see if it
can kill the mutant (i.e. at least one test fails). Due to the compute-intensive nature of mutation
testing — Stryker generates over 80,000 mutants over all of DafnyCore — it is necessary to limit
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the scope of the experiment to mutations affecting only the core compiler files. This generates
13,390 mutations — any more would be computationally infeasible to test. Furthermore, we
performed this experiment in a best effort approach as it was infeasible to repeat the runs in the
limited time frame of this project (each run takes upwards of 7 days).

Generating Test Suites

Since compiler testing does not naturally involve working with test suites, it was necessary for
us to use fuzz-d and XDsmith to form test suites representative of the capabilities of each tool.
These consist of programs generated by the tool and their expected output over each backend.
To make this as fair as possible in comparison with the Dafny integration test suite, we allowed
the fuzzers to generate for the time taken to execute the Dafny tests, with the aim of all three
test suites therefore having approximately the same amount of time to test Dafny.

5.3.2 Results

Table 5.9 shows the mutation results for each test suite, displaying the number of mutants which
were either killed, survived or timed out, where the injected mutation caused the tests to run
much slower than their initial, unmutated run.

Test Suite Killed | Survived | Timed Out
fuzz-d 2335 0 11,055
XDsmith 13,335 0 55
Dafny Integration Tests | 13,346 44 0

Table 5.9: Mutation coverage results for all three test suites

Test Suite Killed | Survived | Timed Out
fuzz-d 0 0 2967
XDsmith 2925 0 42
Dafny Integration Tests 2923 44 0

Table 5.10: Mutation coverage results for all three test suites over SinglePassCompiler

Overall, we can see that the Dafny integration tests were able to kill almost all mutants, except
for a handful which all lie in the SinglePassCompiler (Table 5.10). These survivors are located
in functions relating to the compilation of function call expressions and direct comparisons of
integer types with zero, which is handled as a special case within Dafny’s bool-type expres-
sions. Surviving mutations included string-based mutations which would invalidate the output
program, and therefore it is likely that no Dafny compiler tests covering these functions target
trying to create and run an executable, since these mutations would then be easily detectable.
This is further backed by XDsmith being able to kill two of these string-based mutants, while
the Dafny tests could not, as a result of the XDsmith test suite performing comparisons over
the program output.

For both XDsmith and fuzz-d, we see that no mutants survived; however, the tests for some
timed out — this is particularly an issue for fuzz-d where over 80% of all mutants timed out.
This was caused by the timeout not being lenient enough, consequently we cannot get accurate
coverage data for these mutants; however, given that XDsmith killed a similar number of mutants
to Dafny, and that fuzz-d supports more language features, there is strong evidence to suggest
that we could expect the results for fuzz-d to be at least as high as those for XDsmith.

Although it was infeasible to re-run the tests for fuzz-d in order to obtain more representative
results over all compiler files, it was feasible for us to perform another mutation coverage run over
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the SinglePassCompiler (2967 mutations). This is most interesting as it allows for comparison
to the mutants which survived for the Dafny integration tests.

Test Suite | Killed | Survived | Timed Out
fuzz-d 2960 1 6

Table 5.11: Mutation coverage results for fuzz-d over SinglePassCompiler with an increased timeout

Re-running the mutation testing over SinglePassCompiler (Table 5.11) showed that fuzz-d is
able to kill a much larger number of mutants than the Dafny integration tests. In particular,
fuzz-d is able to kill all but one of the mutants which survived in Dafny’s case — those which
timed out were in unrelated parts of the codebase to the survivors. This further supports how it
is likely the Dafny integration tests do not test the behaviour or output from functions relating
to function calls and integer comparisons with zero — while reports from Section 5.2 show that
these functions are covered during testing, mutation survivors suggest that they are not directly
tested.

5.3.3 Summary

The above results show that, in response to RQ3, fuzz-d is effective in killing mutants, consisting
of small, functional changes in the core Dafny compiler file, SinglePassCompiler. Despite
obtaining inconclusive results for fuzz-d over the remaining compiler files due to experimental
configuration issues, we have been able to show that fuzz-d can kill mutants which survive when
tested with the Dafny integration test suite, thus identifying potential edge cases which have been
missed by Dafny’s built-in testing. As fuzz-d only supports a subset of Dafny’s language features,
there will remain some mutants which it cannot currently kill. However, there is already strong
evidence (even from limited testing) to suggest that with increased language support, fuzz-d
would become even more effective in identifying and killing mutants in the Dafny codebase.

5.4 RQ4: Evaluating the Effectiveness of Advanced Recondition-
ing

In evaluating the advanced reconditioning component of fuzz-d (Section 4.4.2), we aim to identify
whether this novel development adds value to the testing performed by fuzz-d. We perform this
evaluation in two stages:

(a) Surveying the extent to which advanced reconditioning increases the ability of fuzz-d to
identify bugs.

(b) Measuring the coverage which fuzz-d with advanced reconditioning enabled is able to
achieve over the DafnyCore source, comparing this to the standard tool.

5.4.1 Evaluating Bug-Finding with Advanced Reconditioning

Since the advanced reconditioning option builds upon the existing tested mechanisms for stan-
dard reconditioning, running fuzz-d with advanced reconditioning is therefore able to identify all
bugs which are identified by the standard tool (detailed in Section 5.1). However, the advanced
reconditioning mechanism was unable to identify any bugs which could not be found in programs
generated with the standard tool. This is likely as a result of the Dafny compiler applying very
few optimisations during AST transformations and code generation, unlike optimising compilers
(such as the C compiler in the case of [20]) where removing the safe wrapper calls and replacing
them with their corresponding expressions could trigger more optimisations.
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Although running fuzz-d with advanced reconditioning enabled was unable to identify any fur-
ther bugs, it made bugs which result in a wrong value much easier to detect and reduce than
if the same bug only existed in a program generated by the standard tool. Since advanced re-
conditioning ensures that live code is annotated with safe wrappers (Section 4.4.2), when these
wrong values resulted in a different control flow branch being taken (which should have been
dead without the bug), invalid code along that branch would cause an exception. It is much
easier to create an interestingness test to avoid bug slippage during reduction when there is a
program crash versus a different output, therefore these bugs were much easier to reduce to a
final test case.

5.4.2 Evaluating Coverage Achieved Using Advanced Reconditioning

Coverage using advanced reconditioning was measured using the same experiment detailed in
Section 5.2. The results are shown in Table 5.12.

Run | Line (%) | Branch (%)
1 46.43 40.59
46.44 40.54

3 46.39 40.66
Avg 46.42 40.60

Table 5.12: Coverage results from running fuzz-d for 12 hours with advanced reconditioning enabled

The coverage results show that running fuzz-d with advanced reconditioning enabled achieved
very similar results to the standard tool (Table 5.4). While the average branch coverage may
suggest a slight improvement over those for fuzz-d in Table 5.4, analysis of the coverage reports
does not indicate that the increase is as a direct result of the advanced reconditioning. The
difference is more likely to result from the random decision making performed by fuzz-d covering
more branches in these runs.

5.4.3 Summary

The above two sections demonstrate that, while running fuzz-d with advanced reconditioning
does not decrease its effectiveness, it does not necessarily add value to it in terms of coverage
achieved or new bugs identified. However, while the advanced reconditioning may not add
measurable value to fuzz-d, it has been demonstrated to make identifying and reducing wrong
value bugs easier when they are involved in the control flow of a program, and this could help
make it more likely that future bugs in Dafny will be identified compared to using the standard
tool. This, alongside the minimal impact that running advanced reconditioning has on the overall
time taken for a test case (thanks to the interpreter), indicates that advanced reconditioning may
therefore add value to fuzz-d after all. Moreover, fuzz-d currently supports only a limited subset
of the Dafny language, thus it is possible that with additional supported language features,
advanced reconditioning may be able to identify some bugs that the standard tool cannot.

5.5 RQ5: Evaluating the Verifier Testing Workflow

Similarly to how we evaluated advanced reconditioning, we use bug-finding and coverage metrics
as a means to evaluate the effectiveness of fuzz-d’s verifier testing workflow.
5.5.1 Evaluating Bug-Finding with Verifier Testing

Bug finding with the verifier testing workflow was performed throughout development in the
form of 8-hour testing campaigns. So far, no verifier bugs have yet been identified using this
testing mechanism, and we attribute this to the combination of the following reasons:
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Enhancement

Reasoning with binary operators on sets/multisets
Reasoning with the prefix operator for sequences
Reasoning about collection values defined within a comprehension

Table 5.13: Verifier enhancements identifiable using fuzz-d

e The verifier testing workflow was the most recent addition to fuzz-d, thus the total testing
time with this workflow is less than one month. More time may be required for the random
decision making to generate programs which trigger bugs in the verifier.

e Since fuzz-d primarily aims to test the compiler, it does not support an extensive set of
Dafny’s verification-oriented features, for example omitting object-oriented features such
as classes and traits. Those it does support are arguably more common and therefore more
likely to be well-tested, compared to generating programs using Dafny’s more experimental
verification features.

While the workflow has not yet identified any bugs, the development pattern used to create the
supported Dafny subset has been useful in identifying potential enhancements for the Dafny
verifier, represented by language features which the verifier is currently not powerful enough
for. These are listed in Table 5.13 and surround operations related to collection-types — proving
specifications using these requires additional axioms which Dafny does not currently implement.

5.5.2 Evaluating Coverage Achieved with Verifier Testing

To measure the coverage of the verifier testing workflow over DafnyCore, we will use the same
experiment setup as in Section 5.2; however, since we are now testing a different part of Dafny,
we must disable the compiler and all backends (using the /compile:0 flag) and instead enable
the verifier to run for each program.

Run | Line (%) | Branch (%) Run | Line (%) | Branch (%)
1 24.46 21.32 1 26.60 22.35
2452 21.35 2 26.53 2227 | | Line (%) | Branch (%)
3 24.54 21.37 3 26.53 22.25 58.83 37.85
Avg 24.51 21.35 Avg 26.55 22.29

(c) Coverage Results for Dafny
(a) Coverage results for XDSmith  (b) Coverage results for fuzz-d  Integration Tests

Table 5.14: Coverage experiment results, showing line and branch coverage percentages

Table 5.14 shows the coverage measured from verifier testing over XDSmith, fuzz-d and the
verification-related Dafny integration tests. We will use the below sections to compare fuzz-d to
both XDsmith and the Dafny integration tests.

Evaluating fuzz-d against XDsmith

The coverage results show that fuzz-d is able to achieve a marginal improvement over XDsmith
in covering the DafnyCore module with verifier testing — an average line coverage improvement of
2.04%. Similarly to the compiler coverage results (Section 5.2), fuzz-d is able to make significant
coverage improvements to XDsmith over code related to pattern matching features. However,
this is largely located in the same AST files as previously, and it is more interesting to consider
key code related to verification.

When analysing coverage over verifier files within the DafnyCore module (Table 5.15), it is
evident that fuzz-d is able to achieve higher coverage over data types, statement translation
and proof descriptors; however, it is slightly weaker in comparison for expression translation.

o3



Chapter 5 — Evaluation

File Coverage Difference (%)
DafnyCore/Verifier / Translator.DataTypes.cs +17.25%
DafnyCore/Verifier / Translator. ExpressionWellformed.cs —2.88%
DafnyCore/Verifier / Translator. TrStatement.cs +14.67%
DafnyCore/Verifier / Translator. ExpressionTranslator.cs —1.42%
DafnyCore/Verifier /ProofObligationDescription.cs +5.84%

Table 5.15: Coverage comparison between fuzz-d and XDsmith over core compiler files

Compared to XDsmith, fuzz-d supports verification over match statements and while state-
ments (including break clauses) and this led to higher coverage in both TrStatement and
ProofObligationDescription. The latter file handles proof descriptions for ensuring program
validity and termination, and the while statement invariants generated by fuzz-d are therefore
handled there, used to check program termination. As well as statements, fuzz-d achieves higher
coverage over types, in particular following from its support of inductive datatypes: axioms
are required in order to verify inductive datatypes with collection-type fields, and consequently
higher coverage is achieved for DataTypes.

Analysing the weakness of fuzz-d over expression translation reveals that this difference also
generally follows from the two tools supporting differing sets of language features. For example,
both ExpressionWelformed and ExpressionTranslator contain considerable amounts of code
relating to arrow-type expressions, which fuzz-d does not generate for. However, there are
some instances missed by fuzz-d which likely result from the reduced Dafny subset it uses for
verification, which it should ideally be able to cover. In particular, in ExpressionWellformed
there is functionality for checking well-formedness of collection-type comprehensions which were
coverable with XDsmith. Since fuzz-d currently omits this feature for verification, although it is
capable of generating such expressions for compiler testing, this could suggest that fuzz-d may
have unnecessarily over-reduced the size of the Dafny subset which it supports.

Evaluating fuzz-d against the Dafny Integration Tests

Overall, the verifier-oriented Dafny integration tests were able to achieve 31.98% higher line
coverage than tests generated by fuzz-d, comprehensively covering a significantly larger pro-
portion of language features, in particular more powerful verification features. These include
ghost members, lemmas and predicates, and also more experimental verification features such
as two-state functions which allow for comparison between two heap states, and witness clauses
which are used alongside type definitions to define the default case such that the type is always
non-empty. The coverage difference over verifier files is shown in Table 5.16.

File Coverage Difference (%) | Lines Missed
DafnyCore/Verifier / Translator.BoogieFactory.cs +37.48%
DafnyCore/ Verifier/ Translator.ClassMembers.cs +58.12%
DafnyCore/Verifier / Translator.cs +56.08% 25
DafnyCore/Verifier / Translator.DataTypes.cs +29.82%
DafnyCore/ Verifier / Translator. ExpressionWellformed.cs +58.10%
DafnyCore/ Verifier/ Translator. TrStatement.cs +62.86%
DafnyCore/ Verifier/ Translator. Expression Translator.cs +40.74%
DafnyCore/Verifier /ProofObligationDescription.cs +39.39%

Table 5.16: Comparison between fuzz-d (baseline) and the Dafny integration test suite over verifier
testing coverage

Comparing the two results over the features supported by fuzz-d identified the same issue as
XDsmith in that the language set supported for verification may have been over-reduced in
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size — the integration tests are able to cover features related to collection-types, such as com-
prehensions, which arguably fuzz-d should be able to support. However, the tests also cover
a lot of error cases which we should not necessarily expect fuzz-d to handle. For example, in
ProofObligationDescription there are functions forming Boogie queries to check for missing
pattern match cases, valid array initialisation size etc. Due to the nature of fuzz testing and
the importance of program validity, fuzz-d doesn’t naturally generate programs that can check
Dafny handles these cases correctly, It is generally not the responsibility of fuzz-d to cover such
error cases, although they do provide useful insight into how the mutator could further invalidate
programs.

While the Dafny test suite was able to cover significantly more of the verifier-related code, there
remain a number of lines which were coverable by fuzz-d, but not the tests — these are sum-
marised by Table 5.16. Unfortunately, we are unable to provide detail into such cases as making
interpretations on the verifier codebase requires levels of expertise beyond the requirements for
this project.

5.5.3 Summary

In response to RQ5, we have shown that, even in its current limited form, fuzz-d’s verifier
testing workflow is able to offer an improvement in coverage over XDsmith. Although we have
so far not been able to identify any bugs using the mechanism, we have been able to find areas
of the language that are not yet well-supported for verification, and which could be suggested
as enhancements for future language versions. There is evidently still much more we could do
to expand the verifier testing, shown by the difference in coverage to Dafny’s regression tests;
however, given that fuzz-d can increase the current random verifier testing standard with a
potentially over-reduced language subset, there is clearly potential for this testing to further
raise the bar once more language features are supported.
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6 Conclusion and Future Work

In this project, we have introduced fuzz-d and demonstrated its ability to successfully test the
Dafny compiler in an automated fashion, through randomly generating programs using a gener-
ational approach and performing differential testing to identify discrepancies over the backends.
Alongside the core generation module of fuzz-d, we have implemented a number of additional
modules. Firstly, we have effectively utilised the reconditioning approach to ensure validity of
generated programs, introducing a novel extension to this — advanced reconditioning — which
uses runtime information to limit the expressiveness constraints from applying reconditioning
to programs. Additionally, we have developed an independent Dafny interpreter which resolves
limitations in bug detection via differential testing solely over Dafny’s backends (Section 3.4),
and further integrate it into a workflow which generates annotated programs in order to identify
soundness issues in the Dafny verifier.

From the results we have collected in the evaluation studies, it is evident that fuzz-d has effec-
tively achieved its primary aim of identifying bugs within Dafny. So far, we have used fuzz-d to
identify 35 issues (Section 5.1), resulting in 14 bug reports being made to Dafny developers on
GitHub [38], of which five are confirmed and three are fixed. Moreover, fuzz-d has been shown
to raise the standard for covering Dafny via compiler testing (Section 5.2), achieving over 13%
higher line covering than XDsmith — the current compiler testing tool for Dafny — and notably
covering over 50% of Dafny’s core compiler files. Although the Dafny integration tests can cover
a wider range of features than fuzz-d, we have been able to identify a number of weak spots
in their coverage, in particular relating to missing tests for four binary operators. We further
identified weaknesses in the Dafny integration tests via mutation testing, showing that there
were some mutations which fuzz-d could kill but the Dafny tests could not. While the addition
of advanced reconditioning and verifier testing did not lead to any additional bugs being found,
they still provide additional value to fuzz-d, and there is much scope for increasing the value
they add in the future.

In conclusion, our results demonstrate the success of testing campaigns using fuzz-d to identify
weaknesses in Dafny, both in the form of bugs and through finding weaknesses in the integration
test suite. However, Dafny is constantly evolving and therefore there remains more research
which could be undertaken to more extensively test the programming language as new, experi-
mental features are added.

6.1 Future Work

Although fuzz-d has proved successful in identifying bugs in Dafny, it is not without weaknesses,
and we would like to consider making the following improvements in the future:

e Increased Language Support
When comparing coverage of fuzz-d to Dafny’s testsuite, its largest shortfall was in having
less ability to test a diverse range of language features. In particular, while fuzz-d supports
a range of different types, it still omits key type-system features such as newtypes, coin-
ductive datatypes, arrow types and bitvectors. Implementing for these language features
would be a priority in moving towards increased language support in fuzz-d.

e More Powerful Annotations
Currently, the verifier testing performed by fuzz-d is limited in the amount of language
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features it can support since a lot of them require additional specification mechanisms. Im-
plementing heuristics to enable fuzz-d to annotate programs using these language features
would help significantly improve the power of its verifier testing.

e Automating Test Case Reduction

Throughout development and testing, the process of selecting programs triggering inter-
esting behaviour, creating an interestingness test and passing them to a reducer was very
much done manually. Naturally, there is a limit to the number of times this process can
be repeated manually in a given time frame, as well as the manual approach simply being
more error-prone, thus it would be extremely helpful to create an automated system which
takes interesting programs and produces a reduced test case, possibly run alongside the
testing campaigns in a producer-consumer workflow.

e Investigating Dafny’s Command-Line Options
Dafny’s command-line interface offers a host of options, particularly corresponding to
different optimisations which can be taken in the verifier, yet testing performed by fuzz-d
currently utilises very few of these. It would be beneficial for fuzz-d to better utilise these
options, since they may result in the internal ASTs being transformed in more interesting
ways that could ultimately lead to more bugs being triggered.

e Experimenting with Fuzzing Techniques

fuzz-d performs generation of test programs using a generational technique. This provides
a good basis for other fuzzing techniques to build on — for example, we could investigate
using equivalent transformations in a mutational approach (Section 2.2.2) to produce a
number of different, but equivalent programs. These may exercise AST transformations
in more diverse ways and consequently reveal latent bugs. In particular, it would be
interesting to apply this to verifier testing, since Dafny or the SMT solver may perform
different levels of optimisation based on the mutations applied.

6.2 Ethical Considerations

This project develops a tool which is used to help improve the reliability and stability of Dafny.
Part of this process involves identifying bugs in the software it tests; reporting such bugs to the
compiler developers could help achieve greater correctness in Dafny programs which are compiled
using the software. However, bugs also represent weaknesses in a particular piece of software
and malicious users attempt to exploit these in an attack. With compilers being such critical
and widely-distributed pieces of software, there could be severe and large-scale consequences if
a malicious user is able to identify and exploit a bug, therefore it is important that bug-finding
tools such as fuzz-d are used appropriately and only for the benefit of the users of the software
it tests. While there is risk of exploitable bugs being found without such tools being used, their
existence makes this prospect far more likely.

When bugs are found using this tool, there involves an aspect of communication and collabo-
ration in delivering the reports to the compiler developers such that they can be fixed. It is
important that reports for critical bugs are delivered in a timely manner to minimise time taken
to resolve the issue, but it would be bad practice and poor collaboration to continue to submit
multiple bug reports in a short time period as this would overwhelm developers. It is important
to validate bugs locally as much as possible prior to report submission, and submitting pull
requests for smaller bugs might help maintain a positive relationship and ensure the developers
are receptive to submissions.
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A

Generated Code for Dafny Bugs

A.1 Forall Expression Inside Match Statement

static Main(_ _ noArgsParameter) {
let source0 = module.D.create A();
if (_source0.is A) {

}
}

let 0 a;

let init0 = function (_1 il1) {
return 1 il;

i

let nw0 = Array((new BigNumber(24)).toNumber());

for (let _i0_ 0 = 0; _i0_0 < new BigNumber(_nwO0.length); _i0_ 0++) {
~nwO[ i0 0] = init0O(new BigNumber( i0 0));

0 a = _nwO0;

for (const guard loop 0 of _dafny.IntegerRange( dafny.ZERO, new BigNumber((_2 a

). length))) {
let 3 i2 = guard loop O;

if ((true) A (((_dafny.ZERO).isLessThanOrEqualTo( 3 i2)) A ((_3_i2).
isLessThan (new BigNumber((_0 a).length))))) {
(_O_a) [( _3_i2)] = 3 i2;

else {

return;
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B Summarised Coverage Results

. XDSmith uzz-d Dafny Tests
DafnyCore File Avg. Line (%) Avg.f Line (%) Line (%)
DafnyOptions.cs 0.0 0.0 59.81
Rewriters/ConstructorWarning.cs 0.0 0.0 0.0
GeneratedFromDafny.cs 0.0 0.0 0.0
DooFile.cs 16.15 16.15 8.07
Compilers/Python/Compiler-python.cs 100.0 100.0 92.81
AlphaConvertingSubstituter.cs 0.0 0.0 13.33
AST/AstVisitor.cs 58.13 75.19 92.63
AST /BuiltIns.cs 92.63 91.05 100.0
AST/Cloner.cs 52.42 66.23 61.6
AST /DafnyAst.cs 46.15 46.15 85.29
AST /Expressions/ComprehensionExpr.cs 31.14 42.62 62.82
AST /Expressions/DisjunctivePattern.cs 0.0 0.0 88.46
AST /Expressions/Expressions.cs 22.87 31.12 71.52
AST /Expressions/ExtendedPattern.cs 0.0 47.82 36.95
AST /Expressions/IdPattern.cs 0.0 64.1 89.74
AST /Expressions/LetExpr.cs 45.83 50.0 87.15
AST /Expressions/LitPattern.cs 0.0 0.0 97.06
AST /Expressions/MemberSelectExpr.cs 40.66 56.0 85.66
AST /Expressions/NestedMatchCase.cs 0.0 100.0 100.0
AST /Expressions/NestedMatchCaseExpr.cs 0.0 94.11 94.11
AST /Expressions/NestedMatchCaseStmt.cs 0.0 82.35 82.35
AST /Expressions/NestedMatchExpr.cs 0.0 74.54 90.0
AST /Expressions/NestedMatchStmt.cs 0.0 80.51 81.81
AST /Expressions/OldExpr.cs 0.0 0.0 81.81
AST /Expressions/QuantifierExpr.cs 23.25 48.83 55.81
AST /Expressions/StaticReceiverExpr.cs 56.66 80.0 87.5
AST /Expressions/UnchangedExpr.cs 0.0 0.0 78.12
AST /ExtremeCloner.cs 0.0 0.0 63.15
AST /ExtremeLemmaBodyCloner.cs 0.0 0.0 83.63
AST /ExtremeLemmaSpecificationSubstituter.cs 0.0 0.0 81.63
AST /FreeVariablesUtil.cs 49.62 67.66 75.93
AST /Function.cs 49.8 51.35 68.24
AST/Grammar/IndentationFormatter.cs 0.0 0.0 0.0
AST/Grammar/ParseErrors.cs 100.0 100.0 100.0
AST/Grammar/Printer.cs 30.52 45.7 79.92
AST /Grammar/SourcePreprocessor.cs 37.73 37.73 18.86
AST/Grammar/TokenNewIndentCollector.cs 0.0 0.0 0.0
AST/Grammar/TriviaFormatterHelper.cs 0.0 0.0 0.0
AST /IncludeHandler.cs 84.61 84.61 100.0
AST /TteratorDecl.cs 0.0 0.0 52.4
AST /MemberDecls.cs 50.0 54.0 82.15
AST /Method.cs 54.14 51.38 68.09
AST /Statements/AlternativeLoopStmt.cs 0.0 0.0 77.57
AST /Statements/AlternativeStmt.cs 0.0 0.0 84.06
AST /Statements/AssertStmt.cs 0.0 0.0 64.88
AST /Statements/AssignOrReturnStmt.cs 0.0 0.0 35.78
AST /Statements/AssignStmt.cs 49.09 72.72 70.42
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AST /Statements/AssignSuchThatStmt.cs 0.0 0.0 74.23
AST /Statements/AssumeStmt.cs 0.0 0.0 56.67
AST /Statements/BlockStmt.cs 22.22 22.22 22.22
AST /Statements/BreakStmt.cs 0.0 53.84 76.92
AST /Statements/CalcStmt.cs 0.0 0.0 65.33
AST /Statements/CallStmt.cs 46.15 80.76 96.15
AST /Statements/ConcreteUpdateStatement.cs 69.56 69.56 69.56
AST /Statements/DividedBlockStmt.cs 0.0 29.41 29.41
AST /Statements/ExpectStmt.cs 0.0 0.0 88.46
AST /Statements/ForallStmt.cs 0.0 67.27 62.34
AST /Statements/ForLoopStmt.cs 0.0 36.58 68.29
AST /Statements/IfStmt.cs 52.5 52.5 84.17
AST /Statements/LoopStmt.cs 0.0 52.38 80.47
AST /Statements/ModifyStmt.cs 0.0 0.0 76.85
AST/Statements/OneBodyLoopStmt.cs 0.0 21.56 60.13
AST /Statements/PredicateStmt.cs 0.0 0.0 54.54
AST /Statements/PrintStmt.cs 76.0 76.0 88.0
AST /Statements/ReturnStmt.cs 25.0 25.0 100.0
AST/Statements/Statements.cs 40.67 45.76 68.9
AST /Statements/UpdateStmt.cs 62.39 72.07 38.46
AST /Substituter.cs 33.49 51.63 86.56
AST /SubstitutingCloner.cs 0.0 100.0 100.0
AST /Tokens.cs 0.0 0.0 44.5
AST /TopLevelDeclarations.cs 67.81 67.81 68.38
AST /TupleTypeDecl.cs 98.11 94.33 100.0
AST/Types/ArrowType.cs 86.36 48.48 95.45
AST/Types/Types.cs 59.45 58.47 79.2
AST /VisibilityScope.cs 81.81 81.81 95.45
BigIntegerParser.cs 77T 77T 100.0
CompileNestedMatch /MatchAst.cs 0.0 35.48 52.1
CompileNestedMatch/MatchFlattener.cs 7.74 58.76 84.05
ConcreteSyntax/ConcreteSyntaxTree.cs 89.93 91.94 91.94
ConcreteSyntax/ConcreteSyntaxTreeUtils.cs 86.76 95.58 95.58
ConcreteSyntax/FileSyntax.cs 100.0 100.0 100.0
ConcreteSyntax/ICanRender.cs 100.0 100.0 100.0
ConcreteSyntax/LineSegment.cs 100.0 100.0 100.0
ConcreteSyntax/NewLine.cs 100.0 100.0 100.0
ConcreteSyntax/Verbatim.cs 100.0 100.0 100.0
DafnyConsolePrinter.cs 16.86 16.86 16.86
DafnyFile.cs 39.75 39.75 19.88
DafnyMain.cs 0.0 0.0 68.81
Feature.cs 0.0 0.0 76.31
Generic/BatchErrorReporter.cs 95.23 95.23 100.0
Generic/ErrorRegistry.cs 0.0 0.0 7.83
Generic/Name.cs 55.95 55.95 66.66
Generic/Node.cs 17.64 18.3 63.66
Generic/Reporting.cs 0.0 0.0 68.62
Generic/SccGraph.cs 58.43 63.0 73.78
Generic/SinglyLinkedList.cs 0.0 73.33 74.67
Generic/Util.cs 33.43 36.07 50.27
JsonDiagnostics.cs 0.0 0.0 40.0
LegacyUiForOption.cs 22.85 22.85 22.85
MergeOrdered.cs 0.0 0.0 0.0
Options/BoogieOptionBag.cs 61.03 61.03 61.03
Options/CommonOptionBag.cs 87.78 87.78 90.45
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Options/DeveloperOptionBag.cs 93.75 93.75 93.75
Options/ICommandSpec.cs 97.05 97.05 97.05
Options/ProjectFile.cs 0.0 0.0 0.0
Plugin.cs 0.0 0.0 19.23
Resolver / Abstemious.cs 15.78 15.78 56.14
Resolver /BitvectorOptimization.cs 100.0 100.0 100.0
Resolver /BoundsDiscovery.cs 0.0 45.84 95.44
Resolver /NameResolution And Typelnference.cs 45.51 57.82 90.94
Resolver /Resolver.cs 29.91 38.35 72.33
Resolver /TypelnferenceChecker.cs 100.0 85.71 93.65
Resolver /CallGraphBuilder.cs 62.96 74.07 97.42
Resolver /ClonerButIVariablesAreKeptOnce.cs 0.0 0.0 0.0
Resolver /ExpectContracts.cs 0.0 0.0 0.0
Resolver /ExpressionTester.cs 45.07 49.01 91.0
Resolver /GhostInterestVisitor.cs 24.77 50.44 87.27
Resolver /InferDecreasesClause.cs 40.93 44.29 96.64
Resolver /PreType/PreType.cs 0.0 0.0 0.0
Resolver /PreType/PreTypeResolve.cs 0.0 0.0 0.0
Resolver /PreType/PreTypeToType.cs 0.0 0.0 0.0
Resolver /PreType/UnderspecificationDetector.cs 0.0 0.0 0.0
Resolver /PrintEffectEnforcement.cs 37.68 37.68 57.97
Resolver /ResolutionContext.cs 79.48 92.3 94.87
Resolver /ResolutionErrors.cs 100.0 100.0 100.0
Resolver /ResolverBottomUpVisitor.cs 100.0 100.0 100.0
Resolver /RunAllTestsMainMethod.cs 0.0 0.0 0.0
Resolver /Scope.cs 82.53 87.3 88.88
Resolver /SubsetConstraint GhostChecker.cs 40.62 54.68 79.55
Resolver /TailRecursion.cs 36.28 51.05 81.85
Resolver/TypeConstraint.cs 52.57 51.88 97.94
Rewriters/AutoContractsRewriter.cs 4.33 4.33 66.18
Rewriters/AutoGenerated Token.cs 50.0 50.0 62.5
Rewriters/AutoReqFunctionRewriter.cs 5.35 5.35 5.35
Rewriters/ForallStmtRewriter.cs 100.0 100.0 91.63
Rewriters/IncludedLemmaBodyRemover.cs 75.0 75.0 100.0
Rewriters/InductionHeuristic.cs 0.0 0.0 86.86
Rewriters/InductionRewriter.cs 34.32 34.32 85.82
Rewriters/IRewriter.cs 95.0 95.0 95.0
Rewriters/JavadocLikeDocstringRewriter.cs 0.0 0.0 0.0
Rewriters/LocalLinter.cs 100.0 100.0 90.74
Rewriters/OpaqueMemberRewriter.cs 23.71 23.71 91.75
Rewriters/PluginRewriter.cs 0.0 0.0 0.0
Rewriters/PrecedenceLinter.cs 100.0 100.0 96.29
Rewriters/ProvideReveal AllRewriter.cs 19.04 19.04 100.0
Rewriters/QuantifierSplittingRewriter.cs 100.0 100.0 100.0
Rewriters/Refinement Transformer.cs 25.0 41.66 74.59
Rewriters/TimeLimitRewriter.cs 33.33 33.33 89.74
Rewriters/TriggerGeneratingRewriter.cs 76.92 100.0 100.0
TestGenerationOptions.cs 20.0 20.0 20.0
Triggers/ExprSubstituter.cs 0.0 0.0 82.69
UndisposableTextWriter.cs 0.0 0.0 0.0
Verifier /BoogieStmtListBuilder.cs 82.75 89.65 96.55
Verifier/CaptureStateExtensions.cs 31.57 31.57 31.57
Verifier /FreshldGenerator.cs 100.0 100.0 100.0
Verifier /FunctionCallSubstituter.cs 0.0 0.0 92.0
Verifier /PrefixCallSubstituter.cs 0.0 0.0 100.0
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Verifier / Translator.BoogieFactory.cs 60.61 68.83 86.23
Verifier/ Translator.ClassMembers.cs 38.04 65.8 88.37
Verifier /Translator.cs 38.87 52.72 84.95
Verifier /Translator.DataTypes.cs 51.37 68.62 98.44
Verifier /Translator. ExpressionWellformed.cs 42.69 51.21 93.61
Verifier/ Translator. TrStatement.cs 16.13 48.51 89.26
Verifier / Translator. ExpressionTranslator.cs 53.25 66.04 89.7
Parser.cs 34.54 43.7 33.36
Scanner.cs 64.13 64.13 69.16
Verifier /ProofObligationDescription.cs 0.0 0.0 30.23
Triggers/QuantifiersCollection.cs 0.0 100.0 97.75
Triggers/QuantifiersCollector.cs 42.55 78.72 100.0
Triggers/QuantifierSplitter.cs 28.26 67.39 92.66
Triggers/TriggerExtensions.cs 0.0 100.0 80.13
Triggers/TriggersCollector.cs 0.0 90.0 78.93
Triggers/TriggerUtils.cs 0.0 72.83 96.45
Plugins/DocstringRewriter.cs 0.0 0.0 0.0
Plugins/IExecutableBackend.cs 73.33 73.33 80.0
Plugins/PluginConfiguration.cs 54.54 54.54 54.54
Plugins/Rewriter.cs 0.0 0.0 0.0
Compilers/CompilerErrors.cs 0.0 0.0 0.0
Compilers/Coveragelnstrumenter.cs 33.33 33.33 39.21
Compilers/Cplusplus/Compiler-cpp.cs 0.0 0.0 0.0
Compilers/Cplusplus/CppCompilerBackend.cs 7.5 7.5 10.0
Compilers/CSharp/Compiler-Csharp.cs 29.63 57.31 96.81
Compilers/CSharp/CsharpBackend.cs 65.45 59.09 66.36
Compilers/CSharp/Synthesizer-Csharp.cs 3.78 3.78 3.78
Compilers/Dafny /Compiler-dafny.cs 0.0 0.0 0.0
Compilers/Dafny/DafnyBackend.cs 12.0 12.0 16.0
Compilers/DatatypeWrapperEraser.cs 48.0 78.67 98.0
Compilers/ExecutableBackend.cs 49.59 49.59 50.4
Compilers/GoLang/Compiler-go.cs 34.63 58.91 91.06
Compilers/GoLang/GoBackend.cs 43.8 43.8 46.66
Compilers/InternalCompilersPluginConfiguration.cs | 100.0 100.0 100.0
Compilers/Java/Compiler-java.cs 34.16 57.44 89.07
Compilers/Java/JavaBackend.cs 48.43 29.68 49.21
Compilers/JavaScript/Compiler-js.cs 30.36 51.32 88.27
Compilers/JavaScript/JavaScriptBackend.cs 69.81 69.81 73.58
Compilers/Library/LibraryBackend.cs 6.25 6.25 8.33
Compilers/Python/PythonBackend.cs 33.84 33.84 36.92
Compilers/SinglePassCompiler.cs 36.28 63.64 88.06
Auditor/Assumption.cs 0.0 0.0 0.0
Auditor/Auditor.cs 30.5 30.5 30.5
Auditor/AuditReport.cs 0.0 0.0 0.0

Table B.1: Summary of results from the compiler coverage experiment
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