
Over-the-Air Machine Learning

at the Wireless Edge

Mohammad Mohammadi Amiri and Deniz Gündüz

Electrical and Electronic Engineering Department, Imperial College London, London SW7 2BT, U.K.

Email: {m.mohammadi-amiri15, d.gunduz}@imperial.ac.uk

Abstract—We study distributed machine learning at the
wireless edge, where limited power devices (workers) with lo-
cal datasets implement distributed stochastic gradient descent
(DSGD) over-the-air with the help of a remote parameter server
(PS). We consider a bandwidth-limited fading multiple access
channel (MAC) from the workers to the PS for communicating
the local gradient estimates. Motivated by the additive nature
of the wireless MAC, we study analog transmission of low-
dimensional gradient estimates while accumulating error from
previous iterations. We also design an opportunistic worker
scheduling scheme to align the received gradient vectors at the PS
in an efficient manner. Numerical results show that the proposed
DSGD algorithm converges much faster than the state-of-the-art,
while also providing a significantly higher accuracy.

I. INTRODUCTION

Many emerging technologies require collection and process-

ing of massive amounts of data. Current trend is to employ

centralized algorithms, where a powerful machine learning

technique, often a neural network, is trained on a massive

dataset collected and offloaded by edge devices. However,

in the case of wireless edge devices, sending such massive

amounts of data to a central processor in a reliable manner may

be too costly in terms of energy and bandwidth, and may not

meet the latency and privacy requirements of the underlying

application. With the current technology, communication is

typically more costly than processing; thus, a much more

desirable approach is to develop distributed machine learning

techniques that can utilize the local processing capabilities

of edge devices, and require only limited amount of com-

munications. In this paper, we consider machine learning at

the wireless edge, where distributed wireless devices (mobile

phones, tablets, IoT devices) with local datasets help jointly

train a learning model with the help of a parameter server

(PS), to which they connect through a shared wireless channel.

Machine learning problems often involve the minimization

of the empirical loss function F (θ) = 1
D

∑D
i=1 f (θ,ui),

where θ ∈ C
d denotes the model parameters to be optimized,

ui is the i-th training data sample, i ∈ [D] , {1, . . . , D},

and f(·) is the loss function defined by the learning model.

Minimization of F (θ) is typically carried out through iterative

stochastic gradient descent (SGD), in which the model param-

eters at iteration t, θt, are updated with a stochastic gradient

This work was partially supported by the European Research Council (ERC)
through project BEACON (No. 725731), and by the European Union’s Hori-
zon 2020 Research and Innovation Programme through project SCAVENGE
(No. 675891).

θt+1 = θt − ηtg (θt), which satisfies E [g (θt)] = ∇F (θt),
where ηt is the learning rate. SGD also allows parallelization

when the dataset is distributed across multiple computation

servers, called the workers. In distributed SGD (DSGD), at

each iteration, worker m computes a gradient vector based on

the global parameter vector with respect to its local dataset,

denoted by Bm, and sends the result to the PS, which updates

the global parameter vector according to

θt+1 = θt − ηt
1

M

∑M

m=1
gm (θt) , (1)

where M denotes the number of workers, and gm (θt) ,
1

|Bm|

∑

ui∈Bm
∇f (θt,ui), m ∈ [M]. While parallelism al-

lows exploiting the computing power of M workers, com-

munications becomes the main bottleneck [1]–[5]. This is an

even bigger hurdle in wireless edge learning due to stringent

bandwidth and energy constraints.

Numerous studies have focused on communication-efficient

DSGD schemes, where three main approaches are employed;

namely, quantization [1]–[3], sparsification [4], [6], [7], and

local updates [8], [9]. However, these works ignore the phys-

ical aspects of the underlying communication channel, and

focus on reducing the amount of data sent by each worker to

the PS.

In this paper, we consider DSGD over-the-air; that is, we

consider a wireless shared medium from the workers to the

PS, and treat each iteration of the DSGD algorithm as a

distributed over-the-air computation problem. We focus on

analog transmission from the workers to the PS [10]–[12],

which is shown in [12] to outperform the digital transmission

approach significantly for distributed learning applications

thanks to the signal-superposition property of the wireless

MAC. The authors in [10] study a distributed learning problem

over a fading MAC, where each entry of a gradient vector

is scheduled for transmission depending on its corresponding

channel condition. A SIMO wireless MAC with beamforming

is considered in [11] for distributed learning, where the goal is

to maximize the number of workers scheduled for transmission

with an acceptable quality for the retrieved signal.

Here, we extend our previous work in [12] that focused

on DSGD over a Gaussian MAC to a fading MAC. We

will show that the proposed scheme, in which each worker

compresses its gradient estimate to a low-dimensional vector

while accumulating the error, outperforms the one studied in

[10] substantially.

Notations: R and C represent the sets of real and complex

values, respectively. For two vectors x and y with the same

dimension, x · y returns their inner product. We denote a

zero-mean normal distribution with variance σ2 by N
(

0, σ2
)

,

and CN
(

0, σ2
)

represents a complex normal distribution

with real and imaginary terms each distributed according

to N
(

0, σ2/2
)

. We let [i] , {1, . . . , i}. We denote the

cardinality of set A by |A|, and l2 norm of vector x by ‖x‖2.

II. SYSTEM MODEL

We consider distributed edge learning, where M nodes

(workers), connected to a remote PS through a wireless fading

MAC, employ SGD with the help of the PS. We denote the

set of data samples available at worker m by Bm, and the

stochastic gradient computed by worker m with respect to

local data samples by gm (θt) ∈ C
d, m ∈ [M]. At the t-th

iteration of DSGD algorithm in (1), the local gradient esti-

mates of the workers are sent to the PS over a wireless MAC

using s subchannels for a total of N time slots, where s ≤ d.1

We denote the length-s channel input vector transmitted by

worker m at the n-th time slot of the t-th iteration of the

DSGD by xn
m(t) = [xn

m,1(t) · · ·x
n
m,s(t)]

T ∈ C
s. The i-th

entry of channel output yn(t) ∈ C
s received by the PS at the

t-th iteration and n-th time slot, n ∈ [N], is given by

yni (t) =
∑

m∈Mn
i
(t)

hn
m,i(t)x

n
m,i(t) + zni (t), i ∈ [s], (2)

where Mn
i (t) ⊂ [M], hn

m,i(t) ∈ C is the i-th entry of the

vector of channel gains hn
m(t) from worker m to the PS, and

is assumed to be independent and identically distributed (i.i.d.)

according to CN (0, σ2
m), e.g., Rayleigh fading, and zni (t) ∈ C

is the i-th entry of complex Gaussian noise vector zn(t) and

is i.i.d. according to CN (0, 1). The channel input vector of

worker m at the n-th time slot of iteration t, n ∈ [N], is a

function of the channel gains hn
m(t), current parameter vector

θt, the local dataset Bm, and the current gradient estimate

at worker m, gm (θt), m ∈ [M]. We assume that, at each

time slot, the channel state information (CSI) is known by

the workers and the PS. For a total of T iterations of the

DSGD algorithm, the following total average transmit power

constraint is imposed at worker m:

1

NT

∑T

t=1

∑N

n=1
E
[

||xn
m(t)||22

]

≤ P̄ , ∀m ∈ [m], (3)

where the expectation is taken over the randomness of the

channel gains.

The goal is to recover 1
M

∑M
m=1 gm (θt) at the PS, which

then updates the model parameter as in (1) after N time slots.

However, due to the pre-processing performed at each worker

and the distortion caused by the wireless channel, the PS uses a

noisy estimate to update the model parameter. Having defined

y(t) , [y1(t)
T
· · ·yN (t)

T
]T , we have θt+1 = φ(θt,y(t)) for

1In many machine learning applications, d is extremely large, e.g., the
50-layer ResNet network has ∼ 26 million weight parameters, whereas the
channel bandwidth, measured by parameter s, is small due to the bandwidth
and latency limitations; for example 1 LTE frame of 5MHz bandwidth and
duration 10ms can carry only 6000 complex symbols.

some update function φ : Cd×C
Ns → C

d. The updated model

parameter is then multicast to the workers by the PS through

an error-free shared link, so the workers receive a consistent

parameter vector for their computations in the next iteration.

We note that the goal of the workers is to transmit their

local gradient estimates to the PS over the wireless channel,

which is a joint source-channel coding problem. Moreover, the

PS is not interested in the individual estimates of the workers,

but in their average; hence, we have a distributed computation

problem. We will consider an analog transmission approach,

where the gradients are transmitted simultaneously over the

wireless MAC in an uncoded fashion.

III. ANALOG DSGD

Analog DSGD is motivated by the fact that the PS is

only interested in the average of the gradient vectors, and

the underlying wireless MAC can provide the sum of the

gradients if they are sent without any coding. We first present a

generalization of the analog computation approach introduced

in [10], referred to as the entry-wise scheduled analog DSGD

(ESA-DSGD) scheme, and then propose our scheme, built

upon our previous work [12], referred to as the compressed

worker-wise scheduled analog DSGD (CWSA-DSGD) scheme.

A. ESA-DSGD

With the ESA-DSGD scheme in [10], each worker sends

its gradient estimate entirely after applying power allocation

to satisfy the average power constraint. At the t-th iteration

of the DSGD, worker m, m ∈ [M], transmits its local

gradient estimate gm (θt) ∈ C
d over N = ⌈d/s⌉ time

slots of the available s subchannels. We define gn
m (θt) ,

[gm,(n−1)s+1 (θt) · · · gm,ns (θt)]
T , n ∈ [N], m ∈ [M], where

gm,i (θt) is the i-th entry of gm (θt), and we zero-pad

gm (θt) to have dimension Ns. At the n-th time slot of

the t-th iteration of the DSGD, worker m, m ∈ [M], sends

xn
m (t) = βn

m(t) · gn
m (θt), where βn

m(t) ∈ C
s is the power

allocation vector, which is set to satisfy the average power

constraint. Thus, after N time slots, each worker sends its

gradient estimate, of dimension d, entirely. The i-th entry of

the power allocation vector βn
m(t) is set as follows:

βn
m,i(t) =

{

λ(t)
hn
m,i

(t) , if
∣

∣hn
m,i(t)

∣

∣

2
≥ he

th(t),

0, otherwise,
(4)

for some λ(t) ∈ R, where he
th(t) is chosen to satisfy the

average power constraint. According to (4), each entry of a

gradient vector is transmitted if its corresponding channel gain

is over a threshold. The set of workers selected to transmit the

i-th entry of the channel input vector at the n-th time slot is

given by, i ∈ [s], n ∈ [N],

Mn
i (t) =

{

m ∈ [M] :
∣

∣hn
m,i(t)

∣

∣

2
≥ he

th(t)
}

. (5)

By substituting xn
m (θt) and βn

m(t) into (2), it follows that,

for i ∈ [s], n ∈ [N],

yni (t) =λ(t)
∑

m∈Mn
i
(t)

gm,(n−1)s+i(θt) + zni (t). (6)

The PS has perfect CSI, and hence, knows set Mn
i (t). Its

goal is to recover 1

|Mn
i
(t)|

∑Mn
i (t)

m=1 gm,(n−1)s+i (θt), which is

estimated as

ĝe(n−1)s+i (θt) =
yni (t)

λ(t) |Mn
i (t)|

, for i ∈ [s], n ∈ [N]. (7)

Estimated vector ĝ
e (θt) , [ĝe1 (θt) · · · ĝ

e
d (θt)]

T is then used

to update the parameter vector as θt+1 = θt − ηtĝ
e (θt).

Remark 1. We remark here that the scheme in [10] imposes a

stricter constraint P̄ per iteration of the DSGD, i.e., at worker

m we should have

1

N

∑N

n=1
E
[

||xn
m(t)||22

]

≤ P̄ , ∀m ∈ [M], ∀t. (8)

For fairness we generalize the scheme in [10] by defining the

average power constraint per worker over iterations as in (3).

Algorithm 1 CWSA-DSGD

1: Initialize θ1 = 0 and ∆1(0) = · · · = ∆M (0) = 0
2: for t = 1, . . . , T do

• Workers do:

3: for m = 1, . . . ,M in parallel do

4: Compute gm (θt) with respect to ui ∈ Bm

5: gec
m (θt) = gm (θt) +∆m(t− 1)

6: gsp
m (θt) = sparsek (g

ec
m (θt))

7: ∆m(t) =

{

gec
m (θt)− gsp

m (θt) , if m ∈ M(t),

gm (θt) , if m /∈ M(t)
8: g̃m (θt) = Agsp

m (θt)
9: xm (t) = αm(t) · g̃m (θt)

10: end for

• PS does:

11: if |M(t)| 6= 0 then

12: ĝ
w (θt) = AMPA

(

y(t)
γ(t)|M(t)|

)

13: θt+1 = θt − ηtĝ
w (θt)

14: else

15: θt+1 = θt

16: end if

17: end for

B. CWSA-DSGD

As opposed to ESA-DSGD, which aims to transmit all the

gradient entries to the PS at each iteration, i.e., N = ⌈d/s⌉,

the CWSA-DSGD scheme proposed here applies gradient

sparsification with error accumulation followed by a linear

transformation to compress the gradients at each worker. The

CWSA-DSGD scheme is designed for N = 1, i.e., the

parameter vector is updated after each time slot. For ease of

presentation, we drop the time slot parameter n. Algorithm 1

presents the CWSA-DSGD scheme.

At each iteration the workers sparsify their gradient es-

timates as described below. In order to retain the accuracy

of their local gradient estimates, workers employ error accu-

mulation [2], where the accumulated error vector at worker

m until iteration t is denoted by ∆m(t− 1) ∈ C
d, where

we set ∆m(0) = 0, ∀m ∈ [M]. After computing gm (θt),
worker m updates its estimate with the accumulated error

as gec
m (θt) , gm (θt) + ∆m(t− 1), m ∈ [M]. Next, the

workers apply gradient sparsification: worker m sets all but

k elements with the highest magnitudes of vector gec
m (θt) to

zero, and obtains a sparse vector gsp
m (θt), m ∈ [M]. This

k-level sparsification is represented by sparsek in Algorithm

1, i.e., gsp
m (θt) = sparsek (g

ec
m (θt)). Worker m, m ∈ [M],

then updates ∆m(t) as follows: ∆m(t) = gec
m (θt)− gsp

m (θt)
if worker m is scheduled, and ∆m(t) = gm (θt) if worker

m is not scheduled (we will describe the worker scheduling

scheme of CWSA-DSGD later). To transmit the sparse vectors

over the limited-bandwidth channel, workers employ a random

projection matrix, similarly to compressive sensing.

Assuming identically distributed datasets across the work-

ers, the local gradient estimates will also follow identical

distributions, and hence, will have similar sparsity patterns.

A pseudo-random matrix A ∈ R
s×d, with each entry i.i.d. ac-

cording to N (0, 1/s), is generated and shared between the PS

and the workers. At iteration t, worker m computes g̃m (θt) ,
Agsp

m (θt) ∈ C
s, and sends xm (t) = αm(t) · g̃m (θt), where

αm(t) ∈ C
s is the power allocation vector, which is set to

satisfy the average power constraint, m ∈ [M]. The i-th entry

of power allocation vector αm(t) is set as follows:

αm,i(t) =







γ(t)
hm,i(t)

, if min
i∈[s]

{|hm,i(t)|
2} ≥ hw

th(t),

0, otherwise,
(9)

for some γ(t) ∈ R, where hw
th(t) is chosen to satisfy the

average power constraint. According to (9), at each iteration

t, only the workers whose channel gains are over a fixed

threshold participate in the learning task. The selected set of

workers for transmission at the t-th iteration is given by

M(t) =
{

m ∈ [M] : mini∈[s]{|hm,i(t)|
2} ≥ hw

th(t)
}

. (10)

Worker m is declared as scheduled at iteration t if m ∈ M(t).
By substituting xm (θt) and αm(t) into (2), it follows that

y(t) = γ(t)A
∑

m∈M(t)
gsp
m (θt) + z(t). (11)

The PS wants to recover 1
|M(t)|

∑M(t)
m=1 gsp

m (θt) from its noisy

observations in (11). For this, using its knowledge of matrix

A and the CSI, PS employs the approximate message passing

(AMP) algorithm [13]. The AMP algorithm is represented by

the AMPA in Algorithm 1. If |M(t)| 6= 0, the estimate

ĝ
w (θt) = AMPA

(

y(t)

γ(t) |M(t)|

)

(12)

is used to update the parameter vector as θt+1 = θt −
ηtĝ

w (θt). On the other hand, if |M(t)| = 0, the previous pa-

rameter vector is simply used as the new one, i.e., θt+1 = θt.

Remark 2. With ESA-DSGD, each worker transmits only the

entries of its estimated gradient whose corresponding channel

conditions are sufficiently good. Thus, the gradient vector is

inherently sparsified, but only based on the channel gains,

regardless of the importance of the gradient entries. Then

the entire gradient vector is sent over the bandwidth-limited

wireless MAC over orthogonal time periods. On the other

hand, with CWSA-DSGD, each worker sends only k ≤ s
important gradient entries, where the magnitude of each entry

is regarded as the importance metric, by projecting the sparse

gradient vector to a low-dimensional vector of length s. A

worker is scheduled if all its channel gains are sufficiently

good. We further highlight the error accumulation technique

incorporated into CWSA-DSGD, whereas with ESA-DSGD,

entries of the gradient vectors that are not sent are forgotten.

C. Average Transmit Power Analysis

The average transmit power at worker m of the ESA-DSGD

scheme in time slot n of iteration t based on (4), is given by

P̄ e,n
m (t) , E

[

||xn
m(t)||22

]

=
∑s

i=1
E

[

∣

∣βn
m,i(t)

∣

∣

2 ∣
∣gm,(n−1)s+i(θt)

∣

∣

2
]

. (13)

We highlight that the entries of the gradient vector gn
m(θt) do

not depend on the channel gains hn
m,i(t), ∀i, n,m. It follows

that, for n ∈ [N], m ∈ [M],

P̄ e,n
m (t) =

∑s

i=1

∣

∣gm,(n−1)s+i(θt)
∣

∣

2
E

[

∣

∣βn
m,i(t)

∣

∣

2
]

. (14)

Note that
∣

∣hn
m,i(t)

∣

∣

2
follows an exponential distribution with

mean σ2
m, ∀i, n,m. Thus, we have

E

[

∣

∣βn
m,i(t)

∣

∣

2
]

=
λ(t)

2

σ2
m

E1(h
e
th(t)), (15)

where E1(x) ,
´∞

x
e−τ

τ dτ . It follows that, m ∈ [M], n ∈ [N],

P̄ e,n
m (t) =

λ2(t)

σ2
m

E1(h
e
th(t))P

n
g,m(t), (16)

where we defined Pn
g,m(t) , ‖gn

m (θt)‖
2
2. To satisfy the

average power constraint, we set
{

P̄ e,n
m (t), ∀m,n, t

}

, such that

max
m∈[M]

{

1

NT

∑T

t=1

∑N

n=1
P̄ e,n
m (t)

}

≤ P̄ . (17)

We follow a similar procedure to obtain the average transmit

power of each worker of the proposed CWSA-DSGD scheme:

P̄w
m(t) , E

[

||xm(t)||22
]

=
∑s

i=1
E

[

|αm,i(t)|
2 |g̃m,i(θt)|

2
]

=
∑s

i=1
|g̃m,i(θt)|

2
E

[

|αm,i(t)|
2
]

, (18)

where g̃m,i(θt) is the i-th entry of vector g̃m (θt). The power

allocation αm(t), given in (9), yields

E

[

|αm,i(t)|
2
]

=
γ2(t)

σ2
m

E1(h
w
th(t))e

−(s−1)hw

th
(t)/σ2

m . (19)

Thus, we have, for m ∈ [M],

P̄w
m(t) =

γ2(t)

σ2
m

E1(h
w
th(t))e

−(s−1)hw

th
(t)/σ2

mPg̃,m(t), (20)

0 20 40 60 80 100 120 140
Normalized time, Nt

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80

Ac
cu
ra
cy

CWSA-DSGD, M=200, B=500
CWSA-DSGD, M=100, B=4000
CWSA-DSGD, M=100, B=1000
ESA-DSGD, M=200, B=500
ESA-DSGD, M=100, B=4000
ESA-DSGD, M=100, B=1000

Fig. 1: Training accuracy of the ESA-DSGD and CWSA-

DSGD algorithms for different M and B values.

TABLE I: Final test accuracy for schemes in Fig. 1.

ESA-DSGD, (M,B) = (100, 1000) 0.717
ESA-DSGD, (M,B) = (100, 4000) 0.718
ESA-DSGD, (M,B) = (200, 500) 0.729

CWSA-DSGD, (M,B) = (100, 1000) 0.818
CWSA-DSGD, (M,B) = (100, 4000) 0.82
CWSA-DSGD, (M,B) = (200, 500) 0.827

where Pg̃,m(t) , ‖g̃m (θt)‖
2
2. We set

{

P̄w
m(t), ∀m, t

}

such

that max
m∈[M]

{

1
T

∑T
t=1 P̄

w
m(t)

}

≤ P̄ .

IV. EXPERIMENTS

Here we compare the performances of the ESA-DSGD and

CWSA-DSGD schemes for the task of image classification.

We run experiments on MNIST dataset [14] with D = 60000
training and 10000 test samples, and train a single layer

neural network with d = 7850 parameters utilizing ADAM

optimizer [15]. Since the data consists of real numbers, we

treat the real and imaginary components of the channel as

two independent parallel channels. A random set of B training

data samples is assigned to each worker at the beginning of

training. We consider σ2
m = 1, ∀m ∈ [M], and for any number

of channel uses s, we set k = ⌊s/2⌋. We note that the t-
th iteration of the CWSA-DSGD scheme is equivalent to the

(t−Ns ⌊(t− 1)/Ns⌋)-th time slot of the (⌊(t− 1)/Ns⌋+1)-
th iteration of the ESA-DSGD scheme, where Ns , ⌈d/s⌉.

Thus, for fairness, we consider, m ∈ [M],

maxm∈[M]{P̄
w
m(t)} =

maxm∈[M]

{

P̄ e,t−Ns⌊(t−1)/Ns⌋
m (⌊(t− 1)/Ns⌋+ 1)

}

, (21)

where P̄ e,n
m (t) and P̄w

m(t) are given in (16) and (20), respec-

tively. We also consider λ(⌊(t− 1)/Ns⌋ + 1) = 1, and we

find γ(t) according to (21), ∀t. The performance is measured

as the accuracy with respect to the training dataset versus

normalized time Nt, and the final accuracy with respect to

0 20 40 60 80 100
Normalized time, Nt

0.40

0.45

0.50

0.55

0.60

0.65

0.70

0.75

0.80
Ac

cu
ra
c

CWSA-DSGD, ̄P̄ ̄P2
CWSA-DSGD, ̄P̄ ̄P1
ESA-DSGD, ̄P̄ ̄P2
ESA-DSGD, ̄P̄ ̄P1

Fig. 2: Training accuracy of the ESA-DSGD and CWSA-

DSGD algorithms for different P̄ values.

TABLE II: Final test accuracy for schemes in Fig. 2.

ESA-DSGD, P̄ = P̄1 0.689
ESA-DSGD, P̄ = P̄2 0.691

CWSA-DSGD, P̄ = P̄1 0.814
CWSA-DSGD, P̄ = P̄2 0.815

the test samples, i.e., test accuracy, based on the parameter

vector obtained after a total of NT time slots.

In Fig. 1, we compare the performances of ESA-DSGD

and CWSA-DSGD algorithms for different (M,B) pairs,

(M,B) ∈ {(100, 1000), (100, 4000), (200, 500)}. We con-

sider s = d/10, which results in N = 10 for ESA-DSGD,

and we set hw
th(t) = 10−3, and he

th(t) = 3.2 × 10−2, ∀t.
We consider NT = 150 time slots in total, and the resultant

average transmit power for both ESA-DSGD and CWSA-

DSGD schemes is P̄ = 0.36. We present the final test

accuracies for the settings under consideration in Table I. As it

can be seen, CWSA-DSGD performs significantly better than

ESA-DSGD. The main reasons for the degradation of the ESA-

DSGD over CWSA-DSGD are i) scheduling gradient entries

for transmission only based on the channel gains; ii) sending

the entire gradient vectors of relatively huge dimensions; iii)

ignoring the gradient entries which have not been sent due to

bad channel conditions. By comparing the cases (M,B) =
(100, 1000) and (M,B) = (200, 500), we observe that the

performance of both schemes improve by increasing M while

keeping the total size of the dataset, MB, constant. This is

because increasing M provides additional power introduced

by each worker and increases the robustness of the estimation

against noise. For M = 100, the improvement of both schemes

is negligible by increasing B from B = 1000 to B = 4000,

and both schemes perform better with (M,B) = (200, 500)
compared to (M,B) = (100, 4000), despite 4 times reduction

in MB.

In Fig. 2, we compare ESA-DSGD and CWSA-DSGD algo-

rithms for different average transmit power values P̄1 = 0.36
and P̄2 = 0.59. Values P̄ = P̄1 and P̄ = P̄2 are the results

of setting hw
th(t) = 1.25 × 10−3 and he

th(t) = 3.2 × 10−2,

∀t, and hw
th(t) = 5 × 10−4 and he

th(t) = 4.9 × 10−3, ∀t,
respectively. We consider s = d/10, M = 200, B = 500,

and NT = 100. The final test accuracies of different schemes

under consideration are presented in Table II. We highlight

the significant superiority of CWSA-DSGD over ESA-DSGD.

Observe that reducing the power slightly degrades the perfor-

mance; however, the degradation of CWSA-DSGD with power

is marginal, due to a more efficient use of the available power

to transmit only the more important elements of the gradient

vectors by the workers.

V. CONCLUSIONS

We have studied distributed machine learning at the wireless

edge, where M workers with limited datasets communicate

with the PS over a fading MAC to minimize a loss function

by performing DSGD. The PS updates the parameter vector,

and shares it with the workers. We considered an analog

transmission approach from the workers to the PS. We have

proposed gradient sparsification with error accumulation fol-

lowed by compressive sensing to reduce the typically very

large parameter vector dimension to the limited channel band-

width at each worker. We have designed a power allocation

scheme to align the received vectors at the PS while satisfying

the average power constraints. This analog approach allows a

much more efficient use of the limited channel bandwidth, and

benefits from the “beamforming effect” of superposed signals.

Numerical results have shown significant improvements in the

performance compared to the state-of-the-art.

REFERENCES

[1] D. Alistarh, D. Grubic, J. Z. Li, R. Tomioka, and M. Vojnovic,
“QSGD: Communication-efficient SGD via randomized quantization and
encoding,” in NIPS, Long Beach, CA, Dec. 2017, pp. 1709–1720.

[2] F. Seide, H. Fu, J. Droppo, G. Li, and D. Yu, “1-bit stochastic gradient
descent and its application to data-parallel distributed training of speech
DNNs,” in INTERSPEECH, Singapore, Sep. 2014, pp. 1058–1062.

[3] S. Gupta, A. Agrawal, K. Gopalakrishnan, and P. Narayanan, “Deep
learning with limited numerical precision,” in ICML, Jul. 2015.

[4] N. Strom, “Scalable distributed DNN training using commodity gpu
cloud computing,” in INTERSPEECH, 2015.

[5] M. M. Amiri and D. Gündüz, “Computation scheduling for distributed
machine learning with straggling workers,” arXiv:1810.09992 [cs.DC].

[6] A. F. Aji and K. Heafield, “Sparse communication for distributed
gradient descent,” arXiv:1704.05021v2 [cs.CL], Jul. 2017.

[7] F. Sattler et al., “Sparse binary compression: Towards distributed deep
learning with minimal communication,” arXiv:1805.08768v1 [cs.LG].

[8] H. B. McMahan et al., “Communication-efficient learning of deep
networks from decentralized data,” in Proc. AISTATS, 2017.

[9] T. Chen et al., “LAG: Lazily aggregated gradient for communication-
efficient distributed learning,” arXiv:1805.09965 [stat.ML], May 2018.

[10] G. Zhu, Y. Wang, and K. Huang, “Low-latency broadband analog
aggregation for federated edge learning,” arXiv:1812.11494 [cs.IT].

[11] K. Yang, T. Jiang, Y. Shi, and Z. Ding, “Federated learning via over-
the-air computation,” arXiv:1812.11750 [cs.LG], Jan. 2019.

[12] M. M. Amiri and D. Gündüz, “Machine learning at the wireless edge:
Distributed stochastic gradient descent over-the-air,” arXiv:1901.00844

[cs.DC], Jan. 2019.
[13] D. L. Donoho, A. Maleki, and A. Montanari, “Message-passing algo-

rithms for compressed sensing,” Proc. Nat. Acad. Sci. USA, vol. 106,
no. 45, pp. 18 914–18 919, Nov. 2009.

[14] Y. LeCun, C. Cortes, and C. Burges, “The MNIST database of hand-
written digits,” http://yann.lecun.com/exdb/mnist/, 1998.

[15] D. P. Kingma and J. Ba, “Adam: A method for stochastic optimization,”
arXiv:1412.6980v9 [cs.LG], Jan. 2017.

