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Abstract
For decaying homogeneous turbulence, we present two assumptions about the
energy spectrum and one on the dissipation rate coefficient Cε which, in a high
inlet/initial Reynolds number limit, imply that a wide range of wavenumbers
exists where the interscale energy flux is dependent on inlet/initial Reynolds
number, is negative (kinetic energy is on average transferred from small to
high wavenumbers) and is independent of wavenumber but not necessarily of
viscosity. Our assumptions about the energy spectrum are not unusual, one
concerns the finite nature of the energy and the other its time dependence, and
our assumption about Cε is inspired by recent wind tunnel and water channel
measurements of turbulence generated by fractal and regular grids. We then
present a direct numerical simulation of fractal-generated turbulence where the
second-order structure function in time exhibits a well-defined 2/3 power law
over more than a decade at a position close to the grid where the local Reynolds
number Reλ is only about 30 and where there is neither average production of
enstrophy nor of strain rate. The Q–R and Qs–Rs diagrams do not have their
usual appearance at this position but develop it gradually as the flow progresses
downstream and the wide 2/3 power law of the second-order structure function
is eroded. It is believed that this is the first time that the spatial development of
Q, R, Qs and Rs statistics is obtained for a spatially developing turbulent flow.

(Some figures may appear in colour only in the online journal)
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1. Introduction

Recent wind tunnel and water channel experiments by Seoud et al (2007), Mazellier and
Vassilicos (2010), Valente and Vassilicos (2011, 2012), Gomes-Fernandes et al (2012) and
Discetti et al (2013) have revealed that a substantial region of well-developed decaying
turbulence exists in the lee of space-filling fractal square and regular grids where the ratio
of the integral length scale L to the Taylor microscale λ remains approximately constant as
the turbulence and the Reynolds number Reλ ≡

u′λ
ν

decay (u′2 is a measure of the turbulent
kinetic energy and ν is the kinematic viscosity).

Taylor (1935) introduced the dimensionless dissipation constant Cε defined by ε =

Cεu′3/L , where ε is the kinetic energy dissipation rate per unit mass. With ε ∼ νu′2/λ2

(Taylor 1935), it follows that L/λ ∼ Cε Reλ. The usual assumption that Cε = Const at high
enough Reynolds number (Batchelor 1953, Townsend 1956, Tennekes and Lumley 1972,
Frisch 1995) implies that L/λ ∼ Reλ, i.e. L/λ and Reλ decay or grow together. The discovery
of a substantial region in the lee of some fractal square and regular grids where L/λ remains
constant while Reλ decays implies that Cε ∼ 1/Reλ in that region, in stark contrast with the
assumption Cε = Const referred to by Tennekes and Lumley (1972) as ‘one of the cornerstone
assumptions of turbulence theory’. This is a region of well-developed turbulence in the sense
that the statistics of turbulent fluctuating velocities (e.g. their streamwise component u)
are approximately Gaussian and energy spectra have well-defined power-law shapes with
exponents close to −5/3 over at least one decade of wavenumbers (see references mentioned
above).

Many classical measurements of u′ and L along the centreline of various turbulent
free shear flows (such as mixing layers and various types of jets and wakes, summarized,
for example, in Tennekes and Lumley 1972) can be made to collapse on L/λ ∼ Reλ if
the high Reynolds number assumption is made that Cε = Const. In fact, this assumption
applied to these measurements implies that L/λ and Reλ have the same dependences on inlet
Reynolds number ReI and streamwise downstream position x − x0, i.e. L/λ ∼ R1/2

I f ( x−x0
Lb

)

and Reλ ∼ R1/2
I f ( x−x0

Lb
) with the same function f of streamwise position, although f can vary

from flow to flow (see Mazellier and Vassilicos 2010, Valente and Vassilicos 2011 for details).
The inlet Reynolds number ReI is based on a characteristic inlet mean flow velocity or mean
velocity cross-stream variation U∞ and on a characteristic cross-stream length scale Lb of the
inlet (e.g. a mesh or nozzle of bluff body size), i.e. ReI =

U∞ Lb
ν

. The behaviour discovered
by Seoud et al (2007), Mazellier and Vassilicos (2010), Valente and Vassilicos (2011, 2012),
Gomes-Fernandes et al (2012) and Discetti et al (2013) is very different. What they found is a
region of well-developed decaying turbulence that is significantly extended in the streamwise
direction and where L/λ is independent of x − x0 even though Reλ decays with increasing
x − x0. They also found that the value of L/λ which remains constant along x − x0 is set
by the inlet Reynolds number ReI and is an increasing function of ReI as in all boundary-
free turbulent flows. Modelling this ReI-dependence by L/λ ∼ Reβ/2

I (β > 0) and using the
generally valid relation L/λ ∼ Cε Reλ, their results imply that Cε ∼ Reβ/2

I /Reλ ∼ Reβ
I /ReL

where ReL =
u′ L
ν

. George (1992) had anticipated that L/λ may be independent of local
Reynolds numbers Reλ and ReL, but nevertheless an increasing function of global Reynolds
number ReI, e.g. proportional to Re1/2

I , about two decades earlier, but for homogeneous
decaying turbulence, not specifically for a particular region downstream of fractal square and
regular grids.

For more generality and greater sweep of concepts, we introduce one more exponent
α and refer to relations such as Cε ∼ Reβ

I /Reα
L (α, β > 0) in this paper. Valente and
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Vassilicos (2012) find good fits for β = α = 1 in the flow region mentioned above, but a
possibility, of course, remains that these two exponents are not exactly equal to 1 and not
necessarily equal to each other either. Batchelor (1953) provides evidence from grid-generated
turbulence which seems to suggest that Cε is independent of both ReI and streamwise distance
x − x0, i.e. independent of both global Reynolds number and local turbulence Reynolds
number ReL and therefore α = β = 0. He interprets this observation as being a ‘demonstration
that changes in ν which will be accompanied by changes in the motion associated with the
dissipation range of wave-numbers, have no effect on the rate of transfer of energy from the
lower wavenumbers’.

Note, firstly, that the recently discovered region where both α and β are rather close to 1 is
very short and very close to the grid for the particular regular grids which were used to obtain
the evidence presented in Batchelor (1953). This region is very significantly lengthened when
some fractal grids and some unusual regular grids are used (see Valente and Vassilicos 2012),
which explains why it had been missed till 2007 when fractal square grids were introduced for
the first time. Secondly, the quote from Batchelor (1953) at the end of the previous paragraph
suggests that if α − β 6= 0, then viscosity may have an effect on the rate of interscale energy
transfer at high Reynolds number.

The well-known Richardson–Kolmogorov cascade requires that an intermediate inertial
range of wavenumbers exists where the energy flux

∫ k ′

0 T (k) dk is negative (i.e. from
wavenumbers smaller to wavenumbers larger than k ′) and independent of both k ′ and ν (see
Batchelor (1953), Sagaut and Cambon (2008) for a definition of the transfer function T (k)).
This is what Batchelor (1953) is referring to in his quote above. What Kolmogorov proved
in this regard for high Reynolds number homogeneous isotropic turbulence by effectively
assuming that α − β = 0 is that an intermediate range of length scales r exists where
〈δu3(r)〉 ≈ −

4
5εr (δu = u(x + r) − u(x), where u is the fluctuating velocity component in

the same direction as r and the brackets are an average over realizations and/or space x).
As shown in Frisch (1995), this relation is equivalent to

∫ k ′

0 T (k) dk ≈ −ε in the respective
intermediate range of wavenumbers and therefore implies the point made by Batchelor (1953),
namely ‘that changes in ν which will be accompanied by changes in the motion associated
with the dissipation range of wave-numbers, have no effect on the rate of transfer of energy
from the lower wavenumbers’, provided, of course, that α − β = 0 and ε is independent of
ν for high enough Reynolds number. In fact,

∫ k ′

0 T (k) dk ≈ −ε also proves that energy is on

average transferred from lower to higher wavenumbers because it implies that
∫ k ′

0 T (k) dk

is negative. And it also proves that the energy flux
∫ k ′

0 T (k) dk is independent of k ′ in the
intermediate range of wavenumbers k ′ often referred to as inertial equilibrium or simply
inertial range. These are central properties of the Richardson–Kolmogorov cascade.

The high Reynolds number scaling ε ∼ u′3/L which results from setting Cε = Const,
i.e. α = β = 0 (stronger than setting α − β = 0), is also often seen as a consequence of
the Richardson–Kolmogorov cascade’s dominance over the mechanism of turbulent energy
dissipation because it presupposes that the characteristic time required to dissipate the kinetic
energy u′2 is independent of viscosity and equal to the time needed for the energy to cascade
down the scales. The thinking is then that the cascade time can only depend on the remaining
fluctuating velocity characteristics, i.e. u′ and L , and must therefore be proportional to L/u′,
thus leading to ε ∼ u′2/(L/u′) = u′3/L .

In summary, the universal equilibrium inertial range theory starts from the assumption
that α − β = 0 and then deduces that, in this range, the energy flux is directed towards the
smaller scales and is independent of viscosity and scale/wavenumber. This theory is also
often used to argue that α = β = 0. It also imposes dimensional constraints which lead to

3
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the well-known −5/3 power-law energy spectrum of turbulent velocity fluctuations in the
inertial range. It is important to appreciate that this theory and its consequences are not
meant to apply to strictly homogeneous turbulence only. Quoting from Batchelor (1953), ‘the
statistical quantities determined by the equilibrium range are independent of the properties of
the large-scale components of the turbulence and do not require the turbulence to be accurately
homogeneous’.

Derivations of 〈δu3(r)〉 ≈ −
4
5εr in an intermediate inertial range of scales r have been

proposed for (i) statistically stationary homogeneous isotropic turbulence forced at the large
scales (see Frisch 1995), under the high Reynolds number assumption that Cε = Const, i.e.
α = β = 0; (ii) decaying homogeneous isotropic turbulence (Lundgren 2002, 2003) under the
same high Reynolds number assumption that Cε = Const, i.e. α = β = 0; and (iii) decaying
homogeneous isotropic turbulence by Tchoufag et al (2012) under the assumption that the
spectral transfer term T (k) is sufficiently small in the assumed inertial range.

In section 2 we offer a re-examination of the assumptions required to obtain cascade
properties such as those of the Richardson–Kolmogorov cascade where

∫ k ′

0 T (k) dk is negative
and independent of both k ′ and ν in an intermediate range of wavenumbers k ′. We show that
T (k) is vanishingly small for decaying homogeneous turbulence in an intermediate range
of scales under the high Reynolds number assumptions that (i) kinetic energy and its time
derivative are finite and that (ii) the ratio of an outer length scale to the Taylor microscale is
large enough. We then briefly discuss the consequences of loosening these assumptions and,
in particular, how different behaviours of Cε impact on the second assumption concerning the
range of scales.

Having obtained T (k) → 0 in a high Reynolds number limit and in a specified range of
wavenumbers in section 2, in section 3 we derive 〈δu3(r)〉 ≈ −

4
5εr in a rigorously defined

sufficient intermediate range of scales r by using the relation

〈δu3(r)〉 = 12r
∫ +∞

0
g5(kr)T (k) dk (1)

of Tchoufag et al (2012) where g5(kr) =
3(sin kr−kr cos kr)−(kr)2 sin kr

(kr)5 . Note that this relation
relies on large- and small-scale statistical isotropy of the turbulence. Our proof is a rigorous
and detailed implementation of the approach first introduced and sketched in Tchoufag
et al (2012).

The considerations presented in section 2 rely on the Lin equation for homogeneous
although not necessarily isotropic turbulence (see Batchelor 1953, Sagaut and Cambon 2008)

∂

∂t
E(k, t) = T (k, t) − 2νk2 E(k, t), (2)

which is no more than an energy budget equation (E(k, t) is the turbulence energy spectrum at
time t). The derivations that we present in section 2 are no more than the consequences of our
assumptions concerning this budget. Our assumptions concern kinetic energy and dissipation
and their dependence on Reynolds number, properties which really result from the nonlinear
and non-local terms of the Navier–Stokes equations, in particular vorticity and strain-rate
dynamics such as vortex stretching and strain-rate amplification (see Tsinober 2009). The
spectral transfer term T (k, t) is also strongly influenced by vorticity and strain-rate dynamics,
and the formula

〈ω · sω〉

〈ω2〉3/2
=

∫
∞

0 k2T (k) dk

(
∫

∞

0 k2 E(k) dk)3/2
, (3)

4
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which holds for homogeneous isotropic turbulence (see Batchelor 1953), is but one aspect of
the intimate relation between vortex stretching and interscale transfer (ω is the vorticity vector
and s is the strain-rate tensor). In section 4 we present results concerning vorticity, strain and
production rates of vorticity and strain obtained from direct numerical simulations (DNS) of
grid-generated turbulence. There are statistical inhomogeneities in such turbulent flows and
the turbulent fluctuating velocity field u is a solution of

∂

∂t
u + u · ∇u = −∇ p/ρ + ν∇

2u +
1

ρ
f, (4)

where
1

ρ
f = u · ∇u +

∂

∂xk
〈uku〉 − u · ∇u (5)

in terms of the mean flow field u, the turbulent fluctuating pressure p and the fluid density ρ

(these equations result from a Reynolds decomposition applied to the Navier–Stokes equation
and the brackets symbolize an average over time). In section 4 we report on properties of the
vorticity and strain rate of the fluctuating velocity, i.e. ω ≡ ∇ × u and si j ≡

1
2 ( ∂

∂xi
u j + ∂

∂x j
ui ),

in spatially developing grid-generated turbulent flows.

2. The interscale energy flux

We focus in this section on decaying homogeneous turbulence. Integrating the Lin equation
and making use of the total energy K =

∫ +∞

0 E(k, t) dk and the total energy dissipation rate
ε = 2ν

∫ +∞

0 k2 E(k, t) dk, we obtain that

d

dt
K =

∫ +∞

0
T (k, t) dk − ε. (6)

As energy is lost only by dissipation from viscous forces in homogeneous turbulence, i.e.
d
dt K = −ε, ∫ +∞

0
T (k, t) dk = 0. (7)

We now explore the consequences of the following first assumption: an outer length scale
lo(t) exists which is such that, for k ′lo � 1,∫ k ′

0
E(k, t) dk ≈ K (8)

(assumption 1a) and∫ k ′

0

∂

∂t
E(k, t) dk ≈ −ε (9)

(assumption 1b).
Integrating the Lin equation (2) from k = 0 to k ′ and applying assumption 1b yields

− ε ≈

∫ k ′

0
T (k, t) dk − 2ν

∫ k ′

0
k2 E(k, t) dk. (10)

Note that 2ν
∫ k ′

0 k2 E(k, t) dk < 2νk ′2
∫ k ′

0 E(k, t) dk and that, on the basis of assumption 1a,

2νk ′2
∫ k ′

0 E(k, t) dk ≈ 2νk ′2 K (assumption 1a is effectively that K is finite which would,

5
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alternatively, allow us to use 2νk ′2
∫ k ′

0 E(k, t) dk 6 2νk ′2 K < ∞ without changing our

conclusions). The term 2ν
∫ k ′

0 k2 E(k, t) dk in (10) can then be neglected compared to ε if
ε � 2νk ′2 K and it can then be concluded that

− ε ≈

∫ k ′

0
T (k, t) dk (11)

in the range l−1
o � k ′

� ( ε
2νK )1/2, provided, of course, that such a range exists, which it

does if

lo �

(
2νK

ε

)1/2

. (12)

The consequence of our assumptions and of (12) is that the interscale energy flux∫ k ′

0 T (k, t) is negative and is also independent of k ′ in the range l−1
o � k ′

� ( ε
2νK )1/2. This

is very much like the Richardson–Kolmogorov cascade where
∫ k ′

0 T (k, t) is negative (energy
cascades down the scales) and independent of k ′ (at a constant interscale energy flux) in
the inertial range. However, the range l−1

o � k ′
� ( ε

2νK )1/2 is not the usual inertial range
because it does not involve the Kolmogorov microscale. It does, however, involve the Taylor
microscale λ ∼ (2νK/ε)1/2. We stress that our analysis does not lead to the Kolmogorov
microscale which would require further arguments, usually of a phenomenological nature.

The scaling of λ−1 is determined by the scaling of ε. Our second assumption is that
Cε ≡ εL/K 3/2 scales similarly to the general way indicated by the grid-generated turbulence
experiments in the introduction, i.e. (assumption 2)

Cε ∼ ReL(0)β/Reα
L, (13)

where α, β > 0, ReL = ReL(t) ∼ K 1/2L/ν and where this Reynolds number at time t = 0
plays the role of the inlet Reynolds number ReI in grid-generated turbulence. Hence the range
l−1
o � k ′

� λ−1 becomes

l−1
o � k ′

� L−1 ReL(0)β/2 Re(1−α)/2
L . (14)

It is natural to expect lo ∼ L , in which case ReL(0)β/2 Re(1−α)/2
L � 1 is enough to

imply that this wavenumber range exists and is wide. This range and ReL(t) decrease with
time together when α < 1. However, when α = 1 this range remains constant as ReL(t)
decreases, which is close to the new regime observed by Seoud et al (2007), Mazellier and
Vassilicos (2010), Valente and Vassilicos (2011, 2012), Gomes-Fernandes et al (2012) and
Discetti et al (2013) as mentioned in the introduction.

The mechanism responsible for (13) in this section’s setting or for Cε ∼ Reβ
I /Reα

L in
grid-generated turbulence is also responsible, when ReL(0)β/2 Re(1−α)/2

L � 1, for the existence
and breadth of the wavenumber range (14). This mechanism must somehow depend on
the flow dynamics near the inlet/initial conditions judging from the presence of ReL(0) in
formula (13). In turn, the existence of such a broad range directly implies a forward cascade of
the type (11) if (8) and (9) hold at k ′lo � 1. However, this cascade may be viscosity dependent
as this is not a range where the interscale energy flux is independent of viscosity except in the
particular case where α = β because of Cε ∼

ReL(0)β

Reα
L

.
In conclusion, the picture that emerges from the adoption of assumptions 1 and 2 is that

something may happen near the inlet/initial conditions causing assumption 2 to materialize
and that if this happens with a sufficiently high inlet/initial Reynolds number and α 6 1,
then ReL(0)β/2 Re(1−α)/2

L is large enough to immediately ensure the existence of a wide

6
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range of wavenumbers where energy cascades down the scales at a rate ε. This cascade
will persist for as long as ReL(t) is large enough to keep ReL(0)β/2 Re(1−α)/2

L � 1 and it
is such that the interscale energy flux is independent of wavenumber but not necessarily of
viscosity. Unlike the usual Richardson–Kolmogorov cascade, this flux depends on inlet/initial
conditions through its dependence on ReL(0) or ReI.

An immediate consequence of our conclusion is the converse statement that if
ReL(0)β/2 Re(1−α)/2

L is large enough for assumptions 2 and 1a to imply the existence of the
wide range of wavenumbers l−1

o � k ′
� ( ε

2νK )1/2 but the interscale energy flux does not equal
−ε in that range, then assumption 1b must be wrong. This is an eventuality which would
invalidate the usual attempts to obtain the Kolmogorov energy spectrum from dimensional
arguments based on the interscale energy flux because it would imply that the rate of kinetic
energy loss does not equal that flux. As a result, the dimensional analysis would need to
consider two independent variables with the same dimensions (

∫ k ′

0 T (k, t) dk and ε), one
of which would not be guaranteed to be independent of k and would therefore not be able
to imply E(k) ∼ k−5/3 and, equivalently, 〈δu2(r)〉 ∼ r2/3 in the appropriate ranges of scales
without additional assumptions.

In section 4, alongside our study of velocity gradient invariants which underpin
fundamental dissipation properties, we also offer a preliminary test of the idea that the
existence of two widely separated length scales (one large/outer and one small/inner) may
precede and perhaps even contribute to the appearance of a k−5/3 energy spectrum. We do
this in a grid-generated turbulent flow as this is where dissipation laws such as (13) have been
discovered so far. The turbulence in these flows is inhomogeneous and anisotropic near the
grid and so we are transferring an idea which came out of our study of decaying homogeneous
turbulence in this section to inhomogeneous turbulence in section 4.

In the following section, we show how to obtain 〈δu3(r)〉 ≈ −
4
5εr for decaying

homogeneous isotropic turbulence from the results derived in this section on the basis of
assumptions 1 and 2. We leave the generalization of this derivation to homogeneous not
strictly isotropic turbulence for a future study.

3. The third-order structure function

We pick two wavenumbers ko and ki such that l−1
o � ko � ki � l−1

i where li ∼ λ and
decompose equation (1), which holds for strictly homogeneous isotropic turbulence, into three
terms as follows:

〈δu3(r)〉

12r
=

∫ ko

0
g5(kr)T (k) dk +

∫ ki

ko

g5(kr)T (k) dk +
∫ +∞

ki

g5(kr)T (k) dk. (15)

For separations r � k−1
o , g5(kr) ≈ 1/15 for any k 6 ko, which means that∫ ko

0
g5(kr)T (k) dk ≈

1

15

∫ ko

0
T (k) dk. (16)

In the limit ReL(0)β/2 Re(1−α)/2
L � 1 and for kolo � 1 under assumptions 1 and 2, we have

seen that
∫ ko

0 T (k) dk ≈ −ε for strictly homogeneous isotropic turbulence. Hence,∫ ko

0
g5(kr)T (k) dk ≈ −ε/15 (17)

in this limit and for rko � 1.

7
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Figure 1. Plot of the function g5 appearing in equation (1) against kr .

Now for the second term ST ≡
∫ ki

ko
g5(kr)T (k) dk, we define T+ ≡ sup[T (k), 0] and

T− ≡ inf[T (k), 0] and note that

ST = ST+ + ST−, (18)

where ST+ ≡
∫ ki

ko
g5(kr)T+(k) dk and ST− ≡

∫ ki

ko
g5(kr)T−(k) dk. The function g5(kr) is such

that −
1

100 < g5(kr)6 1
15 (see figure 1); hence

−
1

100

∫ ki

ko

T+(k) dk < ST+ 6
1

15

∫ ki

ko

T+(k) dk (19)

and

−
1

15

∫ ki

ko

T−(k) dk < ST− 6
1

100

∫ ki

ko

T−(k) dk. (20)

We have seen that T (k) → 0 in l−1
o � k � l−1

i in the limit ReL(0)β/2 Re(1−α)/2
L � 1,

i.e. T+(k) and T−(k) are also vanishingly small in that same range and limit. We can
therefore expect the upper and lower bounds of ST+ and ST− to tend to 0 in the limit
ReL(0)β/2 Re(1−α)/2

L � 1, which leaves us with∫ ki

ko

g5(kr)T (k) dk ≈ 0 (21)

for any r as long as ReL(0)β/2 Re(1−α)/2
L � 1 and l−1

o � k � l−1
o .

We must finally treat the third and final term,
∫ +∞

ki
g5(kr)T (k) dk. This term is

approximately equal to −
∫ +∞

ki

sin(kr)

(kr)3 T (k) dk in the limit rki � 1. Hence, it can be written as

−
1

(kir)3

∫ +∞

ki

sin(kr)

(k/ki)3
T (k) dk (22)

which tends to 0 in the limit rki � 1.

8
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Figure 2. Q–R diagram obtained from a DNS of periodic statistically stationary turbulence
(courtesy of Dr R Onishi, see Onishi et al (2011) for details of this DNS). The vertical/horizontal
axes are for Q/〈tr(s2)〉 and R/〈tr(s2)〉3/2, respectively, and the plot is of isovalues of the
probability density function of (Q, R) (we use seven different colours for seven different isovalues
between 0.4 for green and 0.0125 for orange. The same isovalues are used for the same colours in
figures 6–19). In the case of this DNS the statistics are taken over all space for a single time shot.

Putting together these three asymptotic behaviours of the three terms adding up to 〈δu3(r)〉

12r ,

we are left with the following first-order asymptotic result as ReL(0)β/2 Re(1−α)/2
L → ∞:

〈δu3(r)〉

12r
≈ −ε/15 (23)

in the range k−1
i � r � k−1

o . This range increases as ReL(0)β/2 Re(1−α)/2
L → ∞ because

lo/ li → ∞ in that limit so that there is more and more room for ki/ko to grow towards infinity
too.

This concludes our derivation of the −4/5 law

〈δu3(r)〉 ≈ −
4

5
εr (24)

for decaying homogeneous isotropic turbulence in the appropriate intermediate range of scales
r and the appropriate Reynolds number limit under assumptions 1 and 2.

4. DNS of turbulent flows generated by a fractal square grid

Assumptions about turbulence dissipation (such as assumptions 1 and 2) and their
consequences for interscale energy transfer are reflections of deeper turbulence dynamics
involving vorticity and strain-rate interactions. Indeed, ε = 2ν〈tr(s2)〉, and T (k) is closely
related to vortex stretching, for example via (3) in homogeneous isotropic turbulence. One
way to obtain some insight into turbulence vorticity and strain rate statistics is in terms of the
Q–R diagram (Tsinober 2009) where Q ≡

1
4 (ω2

− 2 tr s2) and R ≡ −
1
3 (si j s jkski + 3

4ωi si jω j ).
This diagram has the tear drop shape shown in figure 2 in many turbulent flows: turbulent
boundary layers, mixing layers, grid turbulence, jet turbulence (see Tsinober 2009). This
has led Tsinober (2009) to advance the idea that this tear drop shape may be one of the
qualitatively universal features of turbulent flows. This potentially universal tear drop is such
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that points in the flow dominated by strain rather than vorticity, i.e. regions where Q < 0, are
also regions where the production rate of 1

2 tr(s2) is greater than the production rate of 1
4ω2,

i.e. regions where R > 0.
To the best of our knowledge, there are no data in the literature on the spatial

development of the Q–R diagram in spatially developing turbulent flows, either from
laboratory experiments or from computer simulations. The picture suggested by our analysis
in section 2 is one where, at high enough inlet Reynolds number and relatively close to the
inlet of a grid-generated turbulence, a flow phenomenon may occur which is linked to a
dependence of dissipation on Reynolds numbers such as Cε ∼ Reβ

I /Reα
L and directly causes a

wide separation between outer and inner scales. This then induces a particular type of cascade
(rather than the other way around) which persists for a significant distance downstream and
at most as long as the local Reynolds number has not decayed too much. An energy cascade
towards the small scales implies a positive value of T (k) at very high wavenumbers (see
equation (7)), which in turn implies a positive value of 〈ωi si jω j 〉 in homogeneous isotropic
turbulence by direct application of (3). For homogeneous/periodic turbulence, it can also be
proven that 〈Q〉 = 0 and 〈R〉 = 0 (Batchelor 1953, Tsinober 2009). Hence the production
rate of 1

2 tr s2, namely −si j s jkski −
1
4ωi si jω j , is on average equal to the production rate of

1
4ω2, namely 1

2ωi si jω j , and for a forward cascade both these averages are positive, i.e.
〈−si j s jkski −

1
4ωi si jω j 〉 =

1
2 〈ωi si jω j 〉 > 0 (see Tsinober 2009). The Q–R diagram’s tear-drop

shape adds the information that the production rate of 1
2 tr s2 is nevertheless greater than the

production rate of 1
4ω2 at those places where Q < 0.

It is therefore meaningful to investigate how the statistics of ωi si jω j and si j s jkski develop
downstream of a turbulence-generating grid if we want to acquire some insight into how
a cascade is set off, with what properties it is set off, how these properties evolve and
whether this happens before or after the appearance of a wide range of excited length scales.
We address this question by a DNS of grid-generated turbulence and offer results on the
streamwise evolution of the Q–R diagram and of averages of ω2, tr s2, ωi si jω j and si j s jkski

in spatially developing flows.
We consider two turbulence-generating grids, one regular and one fractal (see figure 3)

of the same blockage ratio σ = 0.507 (the ratio of the area blocked by the grid to the area T 2

of the channel/tunnel square section), the same thickness in the streamwise direction (normal
to the grid) and the same effective mesh size Meff =

4T 2

LG

√
1 − σ , where LG is the total length

of the grid when it has been stripped of its thickness (Hurst and Vassilicos 2007). The concept
of an effective mesh size was defined and introduced by Hurst and Vassilicos (2007) and given
an interpretation in terms of the turbulent flow by Laizet and Vassilicos (2012); in the case of
regular grids, Meff equals M , the actual mesh size (see figure 3). The fractal grid is a four-
iteration space-filling fractal square grid with thickness ratio tr = 8.5 (see figure 3 and Hurst
and Vassilicos (2007) for definitions of ‘space filling’ and tr ).

4.1. Flow parameters and numerical method

Each grid is placed in a computational domain with streamwise length L x and spanwise
extents L y = L z = T . For the fractal grid, L x = 1152tmin and T = 144tmin where tmin is the
spanwise thickness of the smallest bars on the grid (see figure 3). For the regular grid,
L x = 576b and T = 36b where b is the spanwise thickness of the bars on the grid (see
figure 3). The streamwise thickness of both grids is 3tmin and the boundary layers are laminar
at the grid, resulting in boundary layer thicknesses smaller than 0.5tmin; also b = 2tmin and
Meff = 6.5tmin.
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a)

b)

c)

Figure 3. (a) Regular (mesh size M and bar thickness b) and fractal monoplanar grids of the
same σ , Meff and streamwise thickness. Four iterations of bar lengths Ln = 2−n T/2 (Lmin = L3)
and thicknesses tn = (2.041)3−n tmin, n = 0, 1, 2, 3 on the fractal grid. (b) Three-dimensional (3D)
visualization of a computational domain with grids and a downstream streamwise velocity field.
(c) Two-dimensional (2D) (x, y) cuts through the streamwise velocity field. Top, for regular
grid. Then locations 1,2,3 for fractal grid where different size wakes are visible. The locations
corresponding to figures 6–19 are indicated as F6–F19. In all these plots, the colours are gradations
of the streamwise fluid velocity component in units where U∞ = 1.

We assume a fluid of uniform density and kinematic viscosity ν and inflow/outflow
boundary conditions in the streamwise direction with a uniform fluid velocity U∞ without
turbulence as inflow condition and a one-dimensional convection equation as outflow
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condition. The boundary conditions in the two spanwise directions are periodic. Defining
x ≡ (x, y, z) to be spatial coordinates in the streamwise (x) and two spanwise directions,
the inflow is at x = −14Meff and the grid is placed at x = 0. The inlet Reynolds number
ReI ≡

U∞ Meff
ν

is 1950 for both the grid cases. Our initial condition for the velocity field is
u ≡ (u, v, w) = (U∞, 0, 0) everywhere (u is the streamwise velocity component and (v, w)

are the two spanwise velocity components corresponding to (y, z)).
We solve the incompressible Navier–Stokes equations on a Cartesian mesh with our

numerical code Incompact3d which is based on sixth-order compact schemes for spatial
discretization and a third-order Adams–Bashforth scheme for time advancement. To treat the
incompressibility condition, a fractional step method requires solving a Poisson equation. This
equation is fully solved in spectral space, via the use of relevant 3D fast Fourier transforms
(FFTs). The pressure mesh is staggered from the velocity mesh by half a mesh, to avoid
spurious pressure oscillations. With the help of the concept of modified wave number, the
divergence-free condition is ensured up to machine accuracy. The modelling of the grids is
performed by an immersed boundary method, following a procedure proposed by Parnaudeau
et al (2008). The present method is a direct forcing approach that ensures the no-slip boundary
condition at the grid walls. It mimics the effects of a solid surface on the fluid with an
extra forcing in the Navier–Stokes equations. Full details of the code, its validations and its
application to grid-generated turbulence can be found in Laizet and Lamballais (2009) and
Laizet and Vassilicos (2011).

In terms of the Kolmogorov microscale η (the smallest length scale of the turbulence), the
spatial resolution is at worst 1x = 1y = 1z = 4η for the fractal grid and 8η for the regular
grid (where the turbulence is at its most intense and η ≈ 0.125tmin for the fractal grid and
≈ 0.0625tmin for the regular grid) and at best 1x = 1y = 1z =

4
3η for the fractal grid and 7

4η

for the regular grid (at the end of the computational domain where the turbulence has decayed
and η ≈ 0.375tmin for the fractal grid and ≈ 0.286tmin for the regular grid). The time step is
0.01tmin/U∞ (low enough for the CFL to be 0.75) and resolves the smallest time scales of our
flows which are η/U∞. Statistics are collected and averages taken over 125 000 time steps at
various points in the flow along the centreline normal to either grid; and along a line normal
to the fractal grid and crossing its biggest bar at the middle.

For the fractal grid flow the Cartesian mesh has 2881 nodes in the streamwise direction
and 360 × 360 nodes in the other two directions, i.e. about 374 million mesh nodes in total,
and is split into 8100 computational cores. For the regular grid flow, the Cartesian mesh has
2881 nodes in the streamwise direction but 180 × 180 nodes in the other two directions, i.e.
about 93 million mesh nodes in total, and is split into 7200 computational cores. The size of
the present simulations are such that we have no alternative but to use the parallel version of
this code (Laizet and Li 2011). Based on a highly scalable 2D decomposition library and a
distributed FFT interface, it is possible to use the code on thousands of computational cores
(more details of this efficient parallel strategy can be found in Laizet and Li 2011). We ran it
on HECToR’s Cray XE6 system (based on six-core processors; HECToR is the UK’s national
supercomputing facility).

4.2. DNS results

Figures 3(b) and (c) illustrate our two turbulent flows including snapshots of instantaneous
streamwise velocity fields at the different (x–y) planes. For the fractal grid, there is a clear
presence of wakes of four different sizes, corresponding to the four fractal iterations of the
grid. The interactions between these wakes give rise to the wake interaction length scale
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Figure 4. (Left) Centreline Reλ as functions of streamwise coordinate normalized by the wake-
interaction length scale x∗. (Right) Reλ versus x/x∗ along the centreline of the fractal grid and
along a line normal to the fractal grid and crossing its biggest bar at the middle.
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Figure 5. Plots along the centreline for the fractal grid. (a) Qw , Qs and Q as functions of x/x∗.
(b) Rw , Rs and R as functions of x/x∗.

x∗ introduced, generalized and discussed by Mazellier and Vassilicos (2010) and Gomes-
Fernandes et al (2012). As shown by these studies, the wake interaction length scale is
appropriate for scaling the downstream development of grid-generated turbulence along the
centreline. In figure 4(a) we plot Reλ as a function of x/x∗ along the centreline of both the
regular and the fractal grid-generated turbulent flows. This local Reynolds number peaks close
to 0.4x∗ or 0.5x∗ for both flows, although not at exactly the same point. The value of Reλ

is everywhere below 40 for the regular grid but reaches above 150 for the fractal grid. In
figure 4(b) we plot the development of Reλ along two different streamwise straight lines. In
view of the much higher Reynolds numbers achieved by the fractal grid along the centreline,
we concentrate our attention on fractal grid results in the remainder of this paper.

Defining Qw ≡
1
4ω2, Qs ≡ −

1
2 si j si j , Rw ≡ −

1
4ωiω j si j and Rs ≡ −

1
3 si j s jkski , in figure 5

we plot 〈Qw〉, 〈Qs〉 and 〈Q〉 = 〈Qw + Qs〉 as functions of x/x∗ as well as 〈Rw〉, 〈Rs〉

and 〈R〉 = 〈Rw + Rs〉 as functions of x/x∗ along the centreline for the fractal grid. Firstly,
we note that 〈Q〉 = 0 and 〈R〉 = 0 throughout the domain along the centreline. This is
not a trivial result because this turbulence is not homogeneous, particularly at x < x∗ (see
Seoud et al 2007, Mazellier and Vassilicos 2010, Laizet and Vassilicos 2011, Valente and
Vassilicos 2011). Secondly, we note the remarkable region 0 < x/x∗ < 0.16 where 〈Rw〉 =

〈Rs〉 = 0 but 〈Qw〉 and 〈Qs〉 are not zero. Then something happens around x/x∗ ≈ 0.16 which
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Figure 6. (a) 〈δu2(τ )〉/U 2
∞ versus τU∞/tmin, (b) Q–R diagram and (c) Qs–Rs diagram at

x/x∗ = 0.052.

sets off non-zero values of average enstrophy and strain-rate production rates. At this point,
〈Rw〉 and 〈Rs〉 start growing in magnitude (with opposite signs to keep 〈R〉 = 0) and reach a
peak where the local Reynolds number peaks (see figure 4). 〈Qw〉 and 〈Qs〉 peak at the same
point. Further downstream, 〈Rw〉, 〈Rs〉, 〈Qw〉, 〈Qs〉 and Reλ continuously decay together.

The negative sign of 〈Rw〉 throughout the region where it is non-zero implies positive
enstrophy production which would imply a creation of increasingly small scales (perhaps a
cascade of sorts) in the sense that fluctuating velocity derivatives on average increase. No
such behaviour seems to exist in the region 0 < x/x∗ < 0.16. The increase and then decrease
of enstrophy along the centreline in this region may have to do with enstrophy being advected
from nearby and then left to decay as it is swept downstream for as long as enstrophy
production has not yet started.

There seems to be a flow phenomenon here which triggers a sudden production of
increasingly small-scale velocity fluctuations at a finite distance from the inlet. The picture
suggested in section 2 is one where a flow phenomenon occurs near the inlet and causes a
wide separation between inner and outer scales, which, in turn, causes some kind of cascade.
This cascade persists for a significant distance downstream similarly to the centreline positive
production of enstrophy which is initiated near x/x∗ = 0.16 and which persists for as long
downstream as our simulation goes. To complete the parallels with the picture of section 2 we
now need to find where the range of scales is greatest in fractal-generated turbulent flow along
the centreline and where it is initiated. The scale-range diagnostic we use for this task is the
second-order structure function in time, i.e. 〈δu2(τ )〉 where δu(τ ) = u(x, t) − u(x, t + τ) in
terms of the streamwise fluctuating component u(x, t) at point x on the centreline at time t .
The average defining 〈δu2(τ )〉 is taken over time; and 〈δu2(τ )〉 is a function of x and τ .

We now document the downstream development of 〈δu2(τ )〉 in parallel with a
documentation of the downstream development of the Q–R diagram. It is of interest to see
how the Q–R diagram obtains its tear-drop shape which is suspected by some authors to be
universal (Tsinober 2009). Figures 6–19 provide plots of 〈δu2(τ )〉/U 2

∞
versus τU∞/tmin and

Q–R diagrams at different positions x/x∗ along the centreline. The vertical/horizontal axes
on the Q–R diagrams are for Q/〈tr(s2)〉 and R/〈tr(s2)〉3/2, respectively, and the plot is of
isocontours of the probability density function of (Q, R), statistics having been taken over
time. We also report Qs–Rs diagrams normalized in the same way as our Q–R plots. Values
of the (Qs–Rs) pair always fall under the zero-discriminant line 27

4 Q3
s + R2

s = 0 in the Qs–Rs

diagram simply because Qs and Rs are the second and third invariants of the strain-rate tensor
which is a real symmetric matrix.

The main observation to make from these figures is that, towards the end of the region
in which there is no vortex stretching and no positive production of enstrophy, quite suddenly
〈δu2(τ )〉 adopts a well-defined power-law shape over more than a decade with a scaling
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Figure 7. (a) 〈δu2(τ )〉/U 2
∞ versus τU∞/tmin, (b) Q–R diagram and (c) Qs–Rs diagram at

x/x∗ = 0.105.
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Figure 8. (a) 〈δu2(τ )〉/U 2
∞ versus τU∞/tmin, (b) Q–R diagram and (c) Qs–Rs diagram at

x/x∗ = 0.157.
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Figure 9. (a) 〈δu2(τ )〉/U 2
∞ versus τU∞/tmin, (b) Q–R diagram and (c) Qs–Rs diagram at

x/x∗ = 0.210.
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Figure 10. (a) 〈δu2(τ )〉/U 2
∞ versus τU∞/tmin, (b) Q–R diagram and (c) Qs–Rs diagram at

x/x∗ = 0.262.

exponent very close to 2/3, the very exponent predicted by Kolmogorov for second-order
structure functions in space. We leave the discussion concerning the correspondence between
structure functions in space and in time for future work and simply concentrate on the fact
that, quite clearly, there is a wide power-law range of excited scales at x/x∗ = 0.157 even
though the Q–R diagram has not yet adopted its tear-drop shape and the production rates of
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Figure 11. (a) 〈δu2(τ )〉/U 2
∞ versus τU∞/tmin, (b) Q–R diagram and (c) Qs–Rs diagram at

x/x∗ = 0.315.
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Figure 12. (a) 〈δu2(τ )〉/U 2
∞ versus τU∞/tmin, (b) Q–R diagram and (c) Qs–Rs diagram at

x/x∗ = 0.367.
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Figure 13. (a) 〈δu2(τ )〉/U 2
∞ versus τU∞/tmin, (b) Q–R diagram and (c) Qs–Rs diagram at

x/x∗ = 0.420.
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Figure 14. (a) 〈δu2(τ )〉/U 2
∞ versus τU∞/tmin, (b) Q–R diagram and (c) Qs–Rs diagram at

x/x∗ = 0.525.

enstrophy and strain rate are both zero. It is remarkable that the local Reynolds number Reλ is
only about 30 at x/x∗ = 0.157. We mention here that such a behaviour was observed neither
on the centreline of the regular grid nor along a line normal to the fractal grid and crossing its
biggest bar at the middle. Note that in the regular grid case, the centreline crosses one of the
grid’s bars, so there may be an important distinction to be made between being inside a wake
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Figure 15. (a) 〈δu2(τ )〉/U 2
∞ versus τU∞/tmin, (b) Q–R diagram and (c) Qs–Rs diagram at

x/x∗ = 0.735.
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Figure 16. (a) 〈δu2(τ )〉/U 2
∞ versus τU∞/tmin, (b) Q–R diagram and (c) Qs–Rs diagram at

x/x∗ = 0.893.
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Figure 17. (a) 〈δu2(τ )〉/U 2
∞ versus τU∞/tmin, (b) Q–R diagram and (c) Qs–Rs diagram at

x/x∗ = 1.208.
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Figure 18. (a) 〈δu2(τ )〉/U 2
∞ versus τU∞/tmin, (b) Q–R diagram and (c) Qs–Rs diagram at

x/x∗ = 1.366.

of a bar or in a region between wakes. This is also a potentially important point which will
need a careful and detailed study in the future.

The Qs–Rs diagram acquires its well-known shape (e.g. Soria et al 1994) favouring
positive values of Rs and negative values of Qs just under the zero-discriminant line
27
4 Q3

s + R2
s = 0 only progressively and after the appearance of the 2/3 power law for 〈δu2(τ )〉.
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Figure 19. (a) 〈δu2(τ )〉/U 2
∞ versus τU∞/tmin, (b) Q–R diagram and (c) Qs–Rs diagram at

x/x∗ = 1.733.
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Figure 20. Energy spectra in the frequency domain at different x/x∗ = 0.0, 0.1 and 0.2.
Frequencies are non-dimensionalized by U∞/tmin on the horizontal axis. The same simulation
as for figures 4(b) and 5–19 but run for ten times more time steps so as to collect ten times more
data.

This agrees with our observation that the Q–R diagram also acquires its well-known tear-drop
shape progressively after the appearance of this 2/3 power law quite close to the grid where
the local Reynolds number is still low. Clearly, the sequence of events reported in figures 6–19
bears some resemblance to the picture which emerged from the analysis in section 2.

We close this section with some final observations concerning the very near-field region
06 x/x∗ 6 0.2 along the centreline of the fractal grid-generated turbulent flow. Figure 20 is a
plot of energy spectra (in the frequency domain) at three very near-field positions, x/x∗ = 0,
x/x∗ = 0.1 and x/x∗ = 0.2 on the centreline. In agreement with figures 8(a) and 9(a), the
energy spectrum exhibits a well-defined −5/3 power-law shape over between one and two
decades at x/x∗ = 0.2 even though the local Reλ is only about 30 at this point! At x/x∗ = 0,
however, the energy spectrum is dominated by two excited frequencies, one being the
shedding frequency of the big bar wakes and the other characterizing the secondary instability
of the shear layers. These frequencies differ by a factor of about 40 which is comparable
with Reβ/2

I Re(1−α)/2
L if β = α = 1 as in Valente and Vassilicos (2012). The range over which

the −5/3 spectrum develops is determined by these two frequencies rather than by Reλ and
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its extent is set by their ratio 40. This is therefore a spectrum where the range of length
scales is directly set by inlet conditions and does not obviously relate to Kolmogorov scalings.
The spectrum then develops its −5/3 power-law shape within this pre-determined range of
frequencies. There are analogies here with our results of section 2 even though they concern
a different type of flow.

5. Conclusion

We have shown under assumptions 1 and 2 in section 2 that, for decaying homogeneous
turbulence, a wide range of wavenumbers exists where the interscale energy flux depends on
inlet/initial Reynolds number, is negative (kinetic energy is on average transferred from small
to high wavenumbers) and is independent of wavenumber but not necessarily of viscosity.
The picture that seems to emerge from these assumptions is that something may be happening
near the inlet/initial conditions causing assumption 2 to materialize, which then, if the
inlet/initial Reynolds number is large enough, immediately triggers the existence of a wide
range of wavenumbers. The very existence of two widely separated, one large and one small,
length scales then gives rise itself to an average energy cascade down the scales at a rate
ε. This cascade persists for as long as the local Reynolds number ReL(t) is large enough
to keep ReL(0)β/2 Re(1−α)/2

L � 1 and it is such that the interscale energy flux is independent
of wavenumber but not necessarily of viscosity. Unlike the usual Richardson–Kolmogorov
cascade, this flux depends on inlet/initial conditions through its dependence on ReL(0)

or ReI.
We then presented results from a DNS of fractal-generated turbulence. We found that

〈Q〉 = 0 and 〈R〉 = 0 throughout the domain along the centreline, which is not trivial as the
turbulence is not homogeneous, particularly at x < x∗ (see Seoud et al 2007, Mazellier and
Vassilicos 2010, Laizet and Vassilicos 2011, Valente and Vassilicos 2011). In the centreline
region 0 < x/x∗ < 0.16, 〈Rw〉 = 〈Rs〉 = 0 even though 〈Qw〉 and 〈Qs〉 are not zero. Close to
the end of this near-field centreline region the second-order structure function in time exhibits
a well-defined 2/3 power-law over more than a decade even though the local Reynolds number
Reλ is only about 30. Then something happens around x/x∗ ≈ 0.16 which sets off non-zero
values of average enstrophy and strain-rate production rates, and 〈Rw〉 and 〈Rs〉 start growing
in magnitude with centreline downstream distance (with opposite signs so as to keep 〈R〉 = 0).
These two quantities as well as 〈Qw〉 and 〈Qs〉 reach a peak where the local Reynolds number
peaks (see figure 4). Further downstream, 〈Rw〉, 〈Rs〉, 〈Qw〉, 〈Qs〉 and Reλ continuously decay
together.

The Q–R and Qs–Rs diagrams do not have their usual appearance in the centreline region
0 < x/x∗ < 0.16 but develop it gradually as the flow progresses downstream and the wide 2/3
power law of the second-order structure function is eroded.

This work highlights areas requiring future investigation. Assumption 1b needs to be
assessed by future laboratory and computational data as there are important consequences
if it is not true. It is also important to study structure functions in space and their relations
to structure functions in time. These two avenues of research are related as they both touch
upon two-point statistics in space and require a dedicated study. Equally if not even more
important will be the study of the near-field region 0 < x/x∗ < 0.16 and the investigation of
the flow phenomena/instabilities responsible for the rather unexpected properties that we have
observed there. We are currently working along these directions and hope to be able to report
in the not too distant future.
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