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Abstract 

Spectral, diffusive and convective properties of one-dimensional pulse fields displaying a well-defined Kolmogorov capacity 
D 6 [0, 1 [ are investigated. 

The energy spectrum of fractal or spiral alternating pulse fields scales as k D. The energy spectrum of homogeneous fractal 
non-alternating pulse fields scales as k -D. Both these scaling laws hold in a range of wavenumbers between t/-1 and L -1, 
where ~7 is the smallest distance between pulses and L (>> 7) is a characteristic large scale of the structure. The space-filling 
geometry, which is quantified by the Kolmogorov capacity D, makes the field less autocorrelated (more singular) in the 
alternating case, whereas it makes it more autocorrelated (less singular) in the non-alternating case. 

Significant quantitative differences between the spectral properties of homogeneous fractals and of spirals exist. The energy 
spectrum of a spiral non-alternating pulse field scales as k-1 between XN 1 and L - l ,  where XN ~ ~ (L/tT)D >> ~ characterizes 
the inhomogeneity of the structure. The spectrum is flat outside this wavenumber range. 

When submitted to the action of molecular diffusion (molecular diffusivity v) the energy of these fields decays as follows. 
Energy decay is accelerated in the case of fractal or spiral alternating pulse fields: 

E(t) ~ for - -  << t << - - ,  
1) 1J 

and is delayed ("trapped") in the case of non-alternating homogeneous fractal pulse fields: 

E ( t ) ~  f o r - -  < < t < < - - .  
!J !a 

This energy trapping manifests itself in a different manner in the case of spiral non-alternating pulse fields. In this case energy 
decays only logarithmically for ~2/v << t << xZ /v ,  then decays like t - l / z  for longer times. 

When submitted to the combined action of convection and diffusion (Burgers equation) the energy of these fields of 
N pulses each of integral m >> v decays as follows. It is independent of D in the case of alternating pulse fields, and 
is delayed in the case of non-alternating pulse fields. For homogeneous fractal non-alternating pulse fields energy decays 
a s  

( mt ~ -(D-1)/(D-2) 172 L 2 
E ( t ) ~  I r /aJ  for ~ <<t<< N~"  
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For spiral non-alternating pulse fields energy decays as t -1/2 for x Z / N m  << t << L2 /Nm,  and the decay is much slower 
for t << x Z / N m .  This delay of energy decay is due to an anomalous collision rate between shocks which manifests itself 
differently according to whether the structure is homogeneous or not. © 1998 Elsevier Science B.V. 

1. I n t r o d u c t i o n  

Fields with a fractal or spiral geometry can have a power-law spectral signature with a non-integer exponent. 

Lundgren [ 13], in the framework of turbulence, pointed out that time-averaged strained spiral vortices have a k -5/3 

energy spectrum, and Moffatt [14] and Gilbert [8] showed that rolled-up scalar patches also display a spectrum 

with a non-integer exponent. Vassilicos and Hunt [20] generalized these results by showing that both fractal and 

spiral objects can have a well-defined Kolmogorov capacity, and that scalar fields displaying a sharp interface 

with well-defined Kolmogorov capacity have a power law energy spectrum the exponent of which depends on that 

capacity. In particular, it is observed that the larger the Kolmogorov capacity, the less steep the energy spectrum, 
so that the space-filling properties of  these fields make them more singular. For example, a one-dimensional signal 
displaying an isolated discontinuity is known to have a k -2 energy spectrum for large wavenumbers k, whereas a 

on-of f  signal with discontinuities distributed in a fractal or spiral manner, with Kolmogorov capacity D 6 [0, 1[, has 

a k D-2 energy spectrum for large wavenumbers [20]. This result is remarkable in that fractal and spiral distributions 

of discontinuities have identical spectral signatures, even if the scale-invariant properties of these two objects 
are qualitatively different. When submitted to a diffusive process, such fields have been shown to have remarkable 

properties due to the accumulation of their gradients [6,19]. Mainly, the energy decay of fractal or spiral distributions 

of  discontinuities is faster than the energy decay of an isolated discontinuity. Here also, both fractals and spirals 
have the same diffusive properties. 

In this paper we study the effects of  the fractal or spiral structure of a field of  pulses  (rather than discontinuities) 
on its evolution under either the linear diffusion equation 

OU O2U 
- v -  ( 1 )  

at Ox 2' 

or the nonlinear diffusion equation 

Ou Ou O2u 
O~ q- U OX = V OX2, (2) 

also called Burgers equation [3]. The quantity v represents a molecular diffusivity or a kinematic viscosity. 

There exists an enormous variety of  quantitatively different fractal and spiral fields. The studies of  Moffatt [14], 
Gilbert [8], Vassilicos and Hunt [20], Vassilicos [19] and Flohr and Vassilicos [6] concern fractal and spiral on-of f  

fields. In this paper we study one-dimensional fields consisting of a number N of pulses on a fractal or spiral set. 

These fields are expressed in terms of delta functions as follows: 

N 

uo(x)  = ~-~ mi~(x  -- xi) ,  (3) 
i=1 

where xi are points of a fractal or spiral set on a one-dimensional axis, and mi is the spatial integral of the pulse 

located at xi. The one-dimensional spiral sets of points we consider in this paper are such that xi ~ i -~  (el > 0), 

and correspond to a cut through a two-dimensional algebraic spiral of  equation p ~ ~b -c~ in polar coordinates 
(p, q~). The subscript 0 in Eq. (3) is used because in this paper we study the solutions of  Eqs. (1) and (2) with initial 
conditions uo(x)  given by (3). 
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The fractal or spiral property of the set of points xi is quantitatively introduced by assuming that the minimum 

number of segments of size r required to cover all the points xi depends on r as follows: 

Nboxes(r) ~ N for r < JT, (4) 

- o  
Nboxes(r) "~ N ~ for ~/<< r << L, (5) 

Nboxes(r) ~ 1 for L < r, (6) 

where D 6 [0, 1 [ is the Kolmogorov capacity of the set of points, N is the total number of points, 0 is the smallest 
separation between points and L is the overall length scale of the structure. In this paper we assume ~ << L. The 

closer D is to 1 the more space-filling is the set of points xi. Note also that the total number of points is such that 

N ~ (L/o) D and therefore increases with L/O in a way determined by D. 
It may be worth mentioning at this stage that the Hopf-Cole transformation [4,11 ] 

0 ( x , t ) = e x p  -2vv u(x , t )  dx , (7) 

0 
u (x, t) = - 2 v  ~xx log(0) (8) 

transforms the Burgers equation (2) into a linear diffusion equation for the Hopf-Cole variable 0: 

30 320 
- -  v -  ( 9 )  

Ot Ox 2' 

and that we are particularly interested in determining the energy decay, correlation length and diffusive length-scale 

of fractal and spiral fields evolving under the action of either the linear diffusion equation or the nonlinear Burgers 

equation. The energy of a field that is evolving under the action of a linear diffusion equation is given by 

E(t) = [ E(k, t) dk, (10) 
t Y  

0 

where 

E(k, t) = Eo(k)e -2vkzt, 

and Eo(k) is the energy spectrum of the initial fractal or spiral field. The diffusive length-scale 3(t) [19] is defined 

on the basis of the correlation length £( t )  which is given by the weighted average 

£(,) = f E(k, t) dk. ( 1 1 )  
E(t) 

Hence, in the case of linear diffusive decay, the time-dependencies of E(t), £(t)  and 3(0 can all be readily 

calculated provided that the energy spectrum Eo(k) of the initial fractal or spiral field is known. In Section 2 we 
derive the energy spectra of two qualitatively different types of fractal or spiral pulse fields (3), and in Section 3 
we spell out the consequences of these initial energy spectra for the decay of these fractal or spiral pulse fields by 
linear diffusion. We find that differences in the signs of pulses in the initial fractal or spiral pulse field (3) lead to 

dramatic qualitative differences in the nature of the decay, in one case (Fig. l(b)) an acceleration of diffusion, in 
another case (Fig. l(a)) a deceleration of diffusion and trapping of energy by the fractal or spiral structure. Also, 
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Fig. 1. Sketch of the field u 0 (x). Vertical arrows denote 8 functions. 

in contrast with the decay of fractal and spiral on-off fields, we find differences in the ways that fractal and spiral 
pulse fields decay. 

Following Gurbatov and Crighton [9], Section 4 is devoted to the analysis of the Burgers equation with initial 
data given by (3). We are particularly interested in deriving the convective properties of the field uo(x)  from the 
diffusive properties of its Hopf-Cole transformed field 00 (x). Indeed, in the limit of vanishing viscosity and for t 
sufficiently large, the field u (x, t) is characterized by triangular shocks moving on the x-axis, and likely to collide 
[12,17]. The rate of energy decay of the field u(x ,  t) strongly depends on the frequency of these collisions, which 
are known to delay the energy decay [12,17]. These strongly nonlinear events (shock formations, displacement and 
collisions) correspond to linear events in the Hopf-Cole transformed field 0 (x, t), and in the case of the field u0 
given by (3), Oo(x) also has fractal or spiral properties similar to those of u0. We observe that these geometrical 
properties can lead to remarkable diffusive properties in 0 (x, t), and therefore to remarkable convective properties 
in the field u(x ,  t). 

2. The energy spectra of fractal and spiral pulse fields 

The two cases of fractal or spiral fields (3) that we consider are: 
- the alternating case: mi ---= ( -1) i+lm for all i, 
- the non-alternating case: mi = m for all i. 
Examples of fields uo(x)  in the alternating and the non-alternating cases are shown in Fig. 1. 
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2. Sketch of the initial velocity potential, ~o(x) = j ;  uo(x) dx. In the alternating case O0(x) is a on-off function. In the Fig. 
non-alternating case it is a step function, and is often referred to as Devil staircase when the discontinuity points are located on a 
Cantor set. 

We calculate the energy spectrum Eo(k) of  uo(x)  in two steps. Firstly, we calculate the energy spectrum E~o(k) of 

the potential  ~0 (x) = f o  u 0 (x) dx (Fig. 2) and secondly we derive Eo (k) f rom ET, o (k) by  us ing Eo (k) = k a E~o (k). 

The points xi are discont inui ty  points of Oo(x) and will  hereinafter be  referred to as such. 

In the al ternating case Eg, o(k ) has been  obtained by Vassilicos and Hunt  [20] and their result implies that (see 

Appendix  A for Eo(k) where k << I lL)  

m 2 m 2 
Eo(k) ~ --E(N odd) or --~-(kL)2(N even),  k << l /L ,  (12) 

i i 

m 2 1 1 
Eo(k) ~ ~ - ( k L )  D, ~- << k << - ,  (13) 

m 2 1 
Eo(k) ~ - z - N ,  - << k, (14) 

/ _ ,  

both for fractal and spiral fields indiscriminately,  under  the sole condi t ion that (4)-(6)  are valid. 

In the non-al ternat ing case we first calculate the structure funct ion 

(~O2(r))  = ( (~0(x  + r)  - Oo(x)) 2) = 2(7to(x) 2) - 2(~P0(x + r)~o(x)),  

where the brackets (.) denote a spatial average, and then derive E~o(k) by operat ing a Fourier  t ransform 1 on 

(~o(x + r)¢o(x)).  

1 To avoid trivial averages in the non-alternating case, the spatial average is calculated over a finite domain of size L containing all 
points Xl . . . . .  XN. This definition of a spatial average, and therefore of (Tt0(x)Tt0(x + r)} and (uo(x)uo(x + r)}, leaves the relation 
Eo(k) = k2E¢o(k) unaffected in the limit k >> 1/L. Note that this truncation is also responsible for the behaviour of (3~2(r)) for r 
close to L (Figs. 3 and 6). 
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For a given distance r we observe that ap (x + r )  - g'0 (x) = mq (x, r), where q (x, r) is the number of discontinuity 
points lying in the segment [x, x + r]. Hence, 

+ o o  

( ~ 2 ( r ) )  = m 2  L f q(x,r)2dx. (15) 

--OG 

This relation is now used to derive (&pg(r)) and then E¢m(k). It turns out that the results are markedly different 
for homogeneous fractals and for spirals, in distinct contrast with the alternating case where fractal and spiral pulse 

fields have the same spectra. This difference stems from the sensitivity of the spectrum in the non-alternating case to 
the degree of fractal homogeneity of the set of discontinuity points, and spiral sets may be viewed as an extreme case 

of fractal non-homogeneity. In Section 2.1 we calculate the energy spectrum of homogeneous fractal non-alternating 

pulse fields. In Section 2.2 we calculate the energy spectrum of spiral non-alternating pulse fields. 

2.1. Energy spectrum of homogeneous fractal non-alternating pulse fields 

Given the minimum number of segments of size r needed to cover all the points of a set, this set of points is a 

homogeneous fractal when the number of points 0 (r) lying in any one of the segments of this minimal coverage is 

the same for all these segments (see [10]), Hence, for a homogeneous fractal set of points we must have 

N 
q ( r ) -  Nboxes(r)" (16) 

The Cantor set is an example of a homogeneous fractal (see Appendix B). 

For a set of discontinuity points that is homogeneous fractal, the dependence of q (x, r) on x is characterized by 

regions of high activity with a peak value of~ (r) interspersed between regions of low activity where q ix, r) --~ 0. The 

number of regions of high activity is given by Nboxes (r) and the integral in Eq. (15) can therefore be approximated 
as follows (see [15]): 

+ /  N 2 
q(x, r)Zdx -~ Z rq(r)2 = rq(r)2Nb°xes(r) ~- r - - ,  (17) 

- o c  boxes Nboxes (r) 

where ~boxes denotes a sum over the minimal number of segments of size r that is needed to cover the set of 
discontinuity points. Hence, by making use of (4)-(6) we obtain 

(~2(r)) ~ m 2 r g  fo r r  < ;7, (18) 
L 

(&po2(r) } ~ m2N2 (r)I+D \ ~ /  for i? << r << L, (19) 

(~02(r)} ~ m2rN 2 for L < r. (20) 
L 

This result can also be obtained by a different approach based on a statistical method which we present in 
Appendix C. Furthermore, the result can be generalized to structure functions of order p > 2, and in the range 
0 << r << L we have (ag~P(r)) ~ mPN;'(r/L) l+(P-1)D. Numerical calculations of the structure function (af, g(r)) 
are in good agreement with (18) and (19). An example of such numerical agreement is shown in Fig. 3 where the 
numerically calculated structure function (87* 2 (r)) is plotted for a triadic Cantor set of discontinuity points, together 
with prediction (18) and (19) for comparison. 
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Fig. 3. Structure function of the velocity potential (&~o(r)2), in the non-alternating case, for discontinuity points displayed on a triadic 
Cantor set (D = In 2/in 3 --~ 0.63). Dashed lines show the theoretical predictions (18) and (19). 

By a Fourier transformation of the autocorrelation function stemming from (18) - (20) we obtain E¢0 (k) which 
we multiply by k 2 to get 

m 2 1 
E o ( k ) ~ - - N  2, k<< (21) 

L L '  
m 2 1 1 

Eo(k) ~ - -N2(kL)  -D, -- << k << - ,  (22) 
L L 0 

m 2 1 
Eo(k) ~ --f N, - << k. (23) 

0 

We therefore obtain that E0 (k) ~ L (u0) 2 ~ m2N2/L for wavelengths much larger than the overall length-scale 

of the structure. For wavelengths smaller than the finest scale of the structure the spectrum is also constant, but its 
value rn2N/L as opposed to m2N2/L can be thought of as resulting from a random walk effect (see Appendix D). 

In Fig. 4 we plot the running averages of a numerically calculated Fourier spectrum of a fractal non-alternating pulse 

field which exhibit good agreement with our analytical prediction (22). Fig. 5 shows the corresponding wavelet 
spectrum, which can be shown to scale like the Fourier spectrum (Appendix E), but which is more smooth than the 

Fourier spectrum, due to the smoothing effect of the convolution operation in the wavelet transform. The wavelet 
we use is the second derivative of the gaussian ("mexican hat"). 

Comparing Eqs. (12)-(14) with Eqs. (21)-(23) we see that the difference between the spectra of alternating 
and non-alternating pulse fields is dramatic. In the range 1/L << k << 1/0, Eo(k) ~ k D for fractal (in particular 

homogeneous fractal) alternating pulse fields, whereas E0 (k) ~ k-D for homogeneous fractal non-alternating pulse 
fields. Hence, for a given Kolmogorov capacity D, a homogeneous fractal structure consisting of non-alternating 
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Fig. 4. Running averages of the energy spectrum of the fractal velocity field u(x) in the non-alternating case. Discontinuity points are 
positioned on a triadic Cantor set (D = In 2/In 3 -- 0.63). 

pulses is less singular than an isolated pulse, whereas a fractal structure consisting of alternating pulses is more 

singular than an isolated pulse. Furthermore, as D increases, fractal alternating pulse fields become more singular 

and therefore less autocorrelated, whereas homogeneous fractal non-alternating pulse fields become less singular 

and therefore more autocorrelated. 

Unlike the spectra of  alternating pulse fields which are the same for fractal and spiral sets, the spectra of non- 

alternating pulse fields are not the same for homogeneous fractal sets and for spiral sets. In the following section 

we calculate the energy spectrum of spiral non-alternating pulse fields. 

2.2. Energy spectrum o f  spiral non-alternating pulse fields 

A canonical example of a spiral set of points for which (4)-(6) are valid with a well-defined Kolmogorov capacity 

D 6 ]0, 1 [ is the algebraic spiral set of  points xi defined by 

xi = Li -~,  (24) 

where a > 0 and i = 1, 2, 3 . . . . .  Because there are N such points, the smallest separation between points of 

the spiral set is q = XN-1 -- XN ~-- L a N  -~-1  and D = 1/(o~ + 1) in the range of length-scales between q and 

x~ - x2 = L(1 - 2 -~ )  [20]. Note that in the limit 17 << L(1 - 2 -'~) (which therefore implies that q << a L  since 

o~ > 1 - 2-c~), 
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Fig. 5. Wavelet energy spectrum Ewo (see Appendix E) of the fractal velocity field uo(x ) in the non-alternating case. Discontinuity points 
are positioned on a triadic Cantor set. The wavelet transform of u0 has been squared and integrated over all positions x to obtain Ewo(l) 
(see Appendix E), where l denotes the scale parameter. We plot EwO(k)(~ Ewo(1) for k = 1/l) versus kL = L/l (in Fig. 4 we plot 
the Fourier spectrum Eo(k) versus kL = 27cL/l). Due to the smoothing effect of the convolution operator the wavelet spectrum is less 
irregular than the corresponding Fourier spectrum. 

We calculate the energy spectrum E0 (k) of a field u0 (x) consist ing of non-al ternat ing pulses that are posi t ioned 

on this spiral set of  points xi. Again,  we first calculate the structure funct ion (8 ~02 (r)) f rom which we deduce EO0 (k) 

and then Eo(k) = k2E,o(k). We do not  use the assumpt ion of  fractal homogenei ty  here; in fact the spiral may  be 

viewed as an extreme case of  fractal non-homogenei ty .  We now proceed with the calculat ion which leads to results 

(37)-(42).  

W h e n  r < ~7, segments  of  size r either cover one discont inui ty  point  or none,  but  nowhere  more than one. Because  

there are exactly N discont inui ty  points,  f+_~ q(x, r )  2 dx = rN, and from (15) it follows that 

(8~2(r)) = m 2 r N  for r < 7, (26) 
L 

which is identical  to the result  (1 8) in the fractal non-al ternat ing case. 

To calculate (8~02(r)} for r >> 77 we notice that q(x, r)  = 0 outside ]XN -- r, L[ and split the space integrat ion in  

(15) in the fol lowing three parts: 

Moo x N 

fq x,r,2dx=f 
- o o  xN--r  

XNc L 

q(x, r)2 dx + f q(x, r)2 dx + f q(x, r)2 dx, 

XN x ~  

~ ( r )  ~ ( r )  ~ ( r )  
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where Nc = Nc(r) is defined such that r = XNo -- XNo+l. This definition is possible because ~ << r, and if Nc(r) is 

large enough, 

No(r) --~ = , (27) 

which is valid in the range 0 << r << aL .  

The term T3 (r) is readily calculated if we notice that in the region of space XNc < x < L, segments of size 

r cannot cover more than one discontinuity point and therefore q (x, r) = 1 where there is a discontinuity point 

between x and x + r and q(x ,  r) =- 0 where there is no such point between x and x + r. Because there are Nc 

discontinuity points between XNo and L, 

( r  ~I-D 
T3(r) ~- r Nc(r)  ~-- otL \ - - ~  / (28) 

in the range 0 << r << c~L. 

To calculate T2(r) we write 

N xi - i  

r2(r) = ~ f q (x ,  r )2dx,  

i=Nc+l xi 

and because q(x ,  r) = i - ni (r) with xni ~- xi + r for x c ]xi, x i - I  [, 

N 

T2(r) ~ Z (xi-1 - x i ) ( i  - hi) 2 (29) 
i=Nc+l 

with 

r ~-l/c~ 
ni ~ { \ i  -c~ + -£/  . (30) 

Inthelimit  wherer  << o~L, Nc is much larger than 1 andxi-1-xi ~--o~Li -~ -1  for/  > Nc. Moreover, i f ( r / L ) U  << 1 

for all i < N, a condition that is satisfied when r << xu ,  we have 

q(x ,  r) = i - n i ( r )  ~-- r-f-i ~+1. (31) 
oiL 

It follows that 

N 

Ta(r)~--o~L Z i l - ~ ( r - f - - U ] 2 .  (32) 
\o iL  / 

i=Nc+l 

The sum in (32) can be replaced by an integral, and we therefore obtain 

o/L 
( ~ ) 2 N 2 + C ~  for o < < r  < < X N ,  (33) T2(r) ----- ct q- 2 

where the upper limit of the range is xN because XN << ~L  in the limit ~ << oeL. In Appendix F we calculate T2 (r) 

in the range xN << r << o~L and find that T2 << T1 in that range. 

To calculate T1 (r) we write 

N xi-1 

i=nN+l xi 
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which implies 

N 

Tl(r) ~ ~ ( Y i - 1  - x i ) ( N +  1 _ i )2 .  (34) 
i=nN+l  

Note that nN = nN(r)  ~ (N  -c~ q- r / L )  -1/~ and T1 (r) can further be approximated by 

N 

Tl(r) "~ otL Z i-l-C~(N q- 1 - i)2. (35) 
i=nN+l  

The sum in (35) can be replaced by an integral, and in the limit where x u  << r (and therefore nN << N) the dominant 
contribution to T~ (r) turns out to be 

T1 (r) ~ NZr for x u  << r << aL.  (36) 

In Appendix F we show that in the limit where ~ << o~L, T2 >> T1, T3 in the range ~ << r << XN and TI >> T2, T3 
in the range XN << r << o~L. Hence, from (26), (33) and (36): 

( ~ 2 ( r ) )  --- m Z r N  for r < 7, (37) 
L 

(37rg(r)) --~ ~(oe + 2) for 0 << r << XN, (38) 

(302(r)) --~ m 2 r N  2 forxN << r << ~L. (39) 
L 

Numerical calculations of the structure function (6~2(r)) are in good agreement with (37)-(39). An example of 
such numerical agreement is shown in Fig. 6. 

The energy spectrum Eo(k) of the spiral non-alternating pulse field can now be deduced: 

m e 1 1 
E o ( k )  ~ - - N  2, - -  << k << - - ,  (40) 

L (oiL) X u 

m 2 1 1 
Eo(k) ~ - - N 2 + ~ ( k L )  -1, - -  << k << - ,  (41) 

L XN 

m 2 1 
Eo(k) ~ ~ - N ,  - << k. (42) 

In Fig. 7 we plot numerically calculated spectra of spiral non-alternating pulse fields which exhibit good agreement 
with our analytical predictions. 

Unlike the energy spectra of alternating pulse fields and of homogeneous fractal non-alternating pulse fields, the 
energy spectrum of spiral non-alternating pulse fields is not scale-invariant in the asymptotic wavenumber range 
kL  -+ oo, ko --+ 0. A characteristic length-scale exists between r/and L which is XN, and which represents the 
length-scale of non-homogeneity of the spiral pulse field. This is because the dependence on x and r of q(x,  r), 
the number of discontinuity points in [x, x + r], is qualitatively different for r << xN and for r >> XN. This 
qualitative difference manifests itself in the above calculations at the stages where ni (r) (Eq. (30)) is linearized, 
leading to different expressions for Te and T1 in the cases r << XN (Eqs. (33) and (F.1)) and r >> x u  (Eqs. (F.3) and 
(36)). 
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Fig. 6. Structure function of the velocity potential (~g,o(r) 2) in the non-alternating case, for discontinuity points displayed on a spiral. 
The Kolmogorov capacity of each spiral is D. The scale r = ~/is the same for the three spirals. The range of scales ~ << r << XN over 
which (8~0(r) 2) ~ r 2 increases with D. 

The energy spectra of alternating pulse fields are not sensitive to the fractal homogeneity or non-homogeneity 

of the field; their wavenumber dependence is uniquely determined by the Kolmogorov capacity D of the fractal 

or spiral set of discontinuity points xi. However, the energy spectra of non-alternating pulse fields are sensitive to 

whether the field is homogeneously fractal or not. The energy spectrum (22) is obtained for a homogeneous fractal 
non-alternating pulse field, and the energy spectrum (40)-(42) is obtained for a spiral non-alternating pulse field. 

Spiral sets of points may be conceived as extreme cases of non-homogeneous fractals and the length-scale x x  is 

characteristic of this non-homogeneity. 
Nevertheless, within the range 1/(aL)  << k << l/t/, there exist two separate ranges of wavenumbers, where the 

energy spectrum is scale-invariant: the range 1/(o~L) << k << 1/XN, where Eo(k) is independent of k and the range 
1/xN << k << l/t/, where Eo(k) ~ k -1 . The scaling exponents of these scale-invariant spectra (respectively 0 and 

- 1 )  do not depend on D but the ranges over which either scaling law is valid do depend on D. As D increases the 

range 1/XN << k <~ I/t / increases at the expense of the range 1/(oeL) << k << 1/XN which decreases. Hence, as 
D increases, it is the range over which E0 (k) ~ k-1 that increases at the expense of the range over which E0 (k) is 
independent of k. This means that the more space-filling the spiral, the less singular and therefore the more autocor- 

related is the spiral non-alternating pulse field. A similar conclusion holds for homogeneous fractal non-alternating 
pulse fields but because of a qualitatively different reason; because the energy spectrum of homogeneous fractal 

non-alternating pulse fields steepens as D increases over a range of wavenumbers that is not affected by D. 
Next, we use the energy spectra Eo(k) obtained in this section to investigate the linear diffusive decay of fractal 

and spiral pulse fields, and in particular to calculate the time dependencies of their energy E(t) and length-scales 

L;(t) and 6(t) using Eqs. (10) and (11). 
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3. Accelerat ion and deceleration of  diffusion 

For wavenumbers k >> 1/~, the energy spectrum Eo(k) is the same in all cases: it is Eo(k) ~ (m2/L)N for all 
pulse fields considered here, whether fractal or spiral, alternating or non-alternating. This high wavenumber part of 

the spectrum Eo(k) determines the linear diffusive decay of pulse fields at very small time t, namely 0 < t << rl2/V. 
For such short times, Eq. (10) simplifies to 

1/q +oc 
# 

e(t) _~ [ E0(k)d~ + [ E0(k)e -2~kat dk. 
t l  

0 1/~ 

By setting E~ = fg/~ Eo(k) dk (which approximates the energy of the signal at t --~ ~2/v) and using Eo(k) 
(m2/L)N for k >> 1/~ we get 

E(t)-- E~ ~ --EN(vt)-'/~ ~ + 0  f o r 0 < t < < r l 2 / v .  

Hence for finite times t much shorter than rl2/v, pulse fields, whether fractal, spiral, alternating or non-alternating, 
decay like isolated pulses and the value of E(t) - E~ for a field of N pulses is simply N times the value of E (t) - E~ 

for one isolated pulse. 
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For times t >> tl2/v, the integral fl+/~ Eo(k)e-2~k2t dk is negligible and (10) becomes 

1/0 

E(t) ~-- f Eo(k)e -2vk2t dk, 

0 

and in the intermediate time-range tl2/v << t << L2/v, (43) can be approximated as follows: 

1/L 1/7 

E(t) ~_ f E0(~)dk + f E0(/c)e -2~2' dk for O2/v << t << L2/v. 
o 1/L 

(43) 

(44) 

3.1. Linear diffusive decay of alternating pulse fields: accelerated diffusion 

The energy spectrum Eo(k) of alternating pulse fields, whether fractal or spiral, is given by (12)-(14). The first 
integral in Eq. (44) equals m2/L 2 if N is odd and ½m2/L 2 if N is even. Hence, 

m 2 m 2 /'1/° 
E(t) ~ ~ -  4- --£- J (kL)De -2~2t dk 

1/L 

for t i m e s  L2/v ~ t >> t / 2 / v .  By writing the above integral in terms of the incomplete gamma function (see 
Appendix G), and by expanding it for ~ >> 7, we obtain 

--0 + O((tffL) l+o) for v << t << --,v (45) 

N 
mi e_(X_Xi)2/4vt ' 

u(x, t) = ~ 24%-~ 
i=1 

(46) 

which is the well-known solution of Eq. (1) with initial data given by (3), where mi ----= (-1) i+lm.  From (45) we 
conclude that the more space-filling the set of points supporting the pulses, the larger the value of D and therefore the 
faster the decay of the alternating pulse field in the intermediate time-range O2/v << t << L2/v. This acceleration 
of diffusion by the fractal or spiral structure of the field has already been observed in on-off fields by Vassilicos 
[19] and in scalar fields evolving in a vortex by Flohr and Vassilicos [6]. 

We now show that non-alternating pulse fields have diametrically opposite diffusive properties: the space-filling 
property of non-alternating pulse fields has a decelerating rather than accelerating effect on diffusion. We also show 
that, unlike fractal and spiral alternating pulse fields, the diffusive properties of spiral and fractal non-alternating 
pulse fields are distinct. 

2 2 I÷D 1TD 1 D where we have made use of E ,  ~ (m /L )(L/r]) .ThetermO(0/ /L)  ' ) is negligible in front of ( ~ / ~ / ) -  - 
because t << L2/v. The classical t -U2 result is recovered when D = 0, that is when the structure is either not 
fractal, not spiral or spiral with D = 0 (such as in the case of a logarithmic spiral, see [20]) The prediction (45) is 
confirmed numerically (see Fig. 8) by computing the energy of 
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Fig. 8. Energy decay of u(x, t) in the alternating case, computed in the time-range ~72/v < t < L2/v. The last point on each curve 
corresponds to t = L2/v. Dashed lines show the asymptotic result (45) valid for both fractal and spiral alternating pulse fields. 

3.2. Linear diffusive decay of non-alternating pulse fields: energy trapping 

3.2.1. Homogeneous fractals 
The energy spectrum of homogeneous fractal non-alternating pulse fields is given by (21)-(23), and therefore 

1/7 
f q2 L 2 (mN)2 (raN)2 (kL)-Oe -2vkzt dk for - -  << t << - - .  

E(t) L ~ + ~ v v 
UL 

By noting that Eo = fo/~ Eo (k) dk ",, ( (mN)Z/L 2) (L/tl) I - °  and by expanding the above integral (Appendix G) 
we are led to 

E~ + O((o/L)  ~-D) for --v << t << L2/v (47) 

in the limit where q/L --+ O. The term O(@/L) l -D)  is negligible in front of (x/~//q) - I+D because t << LZ/v. 
Again, the classical t -1/2 result is recovered when D = 0. However, comparing (47) with (45), the space-tilling 

property of fractals has exactly opposite effects on the decay of alternating and non-alternating pulse fields. The 
energy of homogeneous fractal non-alternating pulse fields decays slower for larger values of D. The more space- 
filling the fractal distribution of non-alternating pulses, the slower the structure decays. We call this effect "energy 

trapping" because the energy is trapped as a result of the space-filling property of the non-alternating pulse field. 
For larger Kolmogorov capacities D and therefore more space-tilling fractals, non-alternating pulse fields are more 

autocolTelated (because Eo(k) ~ k - °  in the range 1/L << k << l /q)  and therefore decay more slowly; whereas 
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Fig. 9. Energy decay of u (x, t) in the non-alternating case, for the Cantor set. Computation is performed in the time-range r/2/v < t < L 2/v. 
The last point on each curve corresponds to t = L2/v. Dashed lines show the asymptotic result (47) valid for fractal non-alternating pulse 
fields only. 

alternating pulse fields are less autocorrelated (because Eo(k) ~ k D in the range 1/L << k << 1/7) and therefore 
decay faster. A low degree of autocorrelation reflects high irregularity in the field (for example a large number of 
high gradients) and, vice versa, a high degree of autocorrelation reflects high regularity in the field. The less regular 
the field, the faster it decays by diffusion, and this is why fractal non-alternating pulse fields with low Kolmogorov 
capacity D decay faster than fractal non-alternating pulse fields with high Kolmogorov capacity D. 

The energy decay (47) is confirmed numerically by computing the energy of u(x, t) from Eq. (46) (Fig. 9). 

3.2.2. Spirals 
The energy spectrum of spiral non-alternating pulse fields is different from that of homogeneous fractal non- 

alternating pulse fields and is given by (40)-(42). The calculation of the energy is performed using the same method 

as above. We have 

-coo r/-1 

f (Nm)2 (NLm)2xN1 f k - l e - 2 v k Z t d k  E(t) = E(k, t )  dk ~-- L XN1 + 

0 XN 1 

f~7 1 Eo(k) dk = ((Nm)2/L)x~v 1 [1 + ln(xN/tT)], it follows in the time-range tl2/v << t << x2/v .  Because E~ = Jo 

that 

1 -~- £~_11 k - l e  -2vk2t dk 
E(t) 
E~ 1 + ln(xN/~) 
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in this time range. The integral f ~ l  k_~e_2Vk2 t dk may be approximated by l n ( x N / ~ )  (see Appendix G), and 
/ v  

therefore, 

E(t) ln(xN/~/-~) ( ( ~ _ ) )  rl 2 x 2 
Erl . ln(xN/rl) + O 1/In for --v << t << --.v (48) 

For times t >> x~v/v, 

XN 1 
m2N 2 

E(t) ~ ~ f E0(k)e -2vk2~ dk ~ ( ~ -  4- o(exp(-2vt/x~))) .  (49) 

0 

In Fig. 10 we plot the results of a numerical computation of energy from Eq. (46) with mi = m, confirming the 
laws (48) and (49). 

Energy trapping is dramatically more effective by spiral rather than homogeneous fractal non-alternating pulse 
fields, but over a reduced time-range. The energy of a spiral non-alternating pulse field decays only logarithmically, 
and therefore at a dramatically slower rate than the energy of a homogeneous fractal non-alternating pulse field 
of any Kolmogorov capacity D. However, the energy of a spiral non-alternating pulse field decays logarithmically 
only over the reduced time-range rl2/v << t << x~/v.  Note, however, that this time-range increases as D increases, 
whereas the logarithmic decay of the energy as such remains unaffected. This is a reflection of the idiosyncratic 
way in which a spiral non-alternating pulse field becomes more autocorrelated as D increases. For times longer 
than x~v/v, the time-dependence of the energy decay is given by (49) and is the same as that of one isolated pulse 
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trapping is reflected in the slower scale-invariant energy decay from ~2/v to L2/v. 

with "mass" (f u dx) approximatively equal to the total mass of the structure (Nm). This corresponds to the fact 

that during the time range ~2/v << t << X~u/V the merging of pulses located in the vicinity of the accumulation 

point have produced a "large" pulse containing almost all the mass of  the initial structure. Fig. 11 shows a sketch 

of the energy decay in the spiral and fractal non-alternating cases. 

Energy trapping is an effect of the non-alternating property that fractal and spiral fields can have, as the merg- 

ing of neighbouring non-alternating pulses delay their energy decay. But spiral energy trapping is different from 

homogeneous fractal energy trapping. 

3.3. Correlation length and diffusive length-scale 

To achieve a more complete understanding of accelerated diffusion, Vassilicos [19] (see also [6]) calculated the 

time-dependence of the correlation length/2(t) of fractal and spiral on-off  fields. The integral 

o o  

E(t) = f t) 
E(t) 

o 

- -  d k  ( 5 0 )  

is finite in the case of  fractal and spiral on-off  fields or alternating pulse fields. Vassilicos [19] defined the "diffusive 
length scale" 8(t) as 

~ ( t )  = z ; ( t )  - ~ ( 0 ) ,  ( 5 1 )  
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which can be thought of as the scale over which the effects of diffusive attrition are appreciable [19]. In the non- 
alternating case the integral defining E(t) is low-wavenumber divergent at all times because Eo (k) ~ (m2/L)N 2 > 
0 for small Lk. To avoid this low-wavenumber divergence, we redefine E(t) by integrating the weighted scale 
k - l E  (k, t) dk /E  (t) over the wavenumber range [L-~, +ec[  instead of [0, +oc[, so that E(t) only contains infor- 
mation about the energy-containing scales below the overall length-scale of the structure. Moreover, by redefining 

£(t)  = lira f£2ll_/k-lE(k' t) dk, 
l--+0 j -l t) 

we avoid an indefinite E(0), and in fact/2(0) ---- 0 for both homogeneous fractal and spiral pulse fields, in agreement 
with the fact that the thickness of delta functions is zero. 

Let us now make use of the results for Eo(k) and E(t) obtained in this paper's previous sections. We are led to 
the following leading order results: 
- Alternating pulse fields, whetherfractal or spiral: 

( 6(t) "~ ~ - ~ + 0  L for ~2/v << t << L2/v. (52) 

- Non-alternating homogeneous fractal pulse fields: 

~(t) ~ 4~-TNboxes(~v/~) + O(vC~ -) for ~2/v << t << L2/v. (53) 

- Non-alternating spiralpulsefields: 

XN ( V/~ ) for O2/v << t << xZ /v  (54) 
6(t) ln(xu/ ,v /~  ) + 0 \ l n ( xN /  F~7) 

and 

3(t) ~ ~ in ~-~ + O(1) for X2N/V << t << L2/v. (55) 

3.4. Phenomenology 

Because the growth of the correlation length Z;(t) is caused by diffusion, we interpret the diffusion length-scale 
defined by (51) in the same way that it was interpreted by Vas silicos [ 19]: as a measure of the distance over which the 
effects of molecular diffusion are appreciable on the spatial structure of the field at time t. The diffusive length-scale 
of alternating pulse fields is not affected by the geometry of the structure, whereas the diffusive length-scale of 
non-alternating pulse fields is. This difference may be explained by noticing that two neighbouring pulses with 
same sign (and same strength) diffuse into a single pulse and that this process affects the diffusion length-scale, 
whereas two pulses with opposite sign (and same strength) never merge into a single pulse, so that the diffusive 
length-scale is only affected by the increase of the thickness of individual pulses, which is given by v/~ .  

Also of note, the diffusive length-scale of fractal and spiral non-alternating pulse fields is larger than ~ in an 
intermediate range of times. This is in agreement with the fact that the presence of accumulation points enhances the 
merging of pulses, but this effect is very sensitive to the homogeneity of the structure. In the case of homogeneous 
fractal pulse fields, a(t) ~ ~/~Nboxes ( ~ ' - ~  ~" (vt/L2) (l-D)~2 in the time-range ~2/~/<< t << LZ/v, which means 

that during this time-range the diffusive length-scale a(t) is proportional to the total length of the fractal covering 
by segments of size v /~ .  In the case of spiral pulse fields, 8(t) ~ xN/ln/v~-[) for as long as t/ << ~ << XN. This 
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is due to the fact that the merging of pulses located near the single accumulation point of the spiral structure have 
produced a large pulse with a scale much larger than the scale of pulses located far from the accumulation point. 

We now use the expressions obtained for the diffusive length-scale 8 (t) in a short-cut phenomenological argument 
which leads to and sheds some additional light onto the laws of energy decay of Sections 3.1 and 3.2. The integral 
f u (x, t) dx is conserved in time by the linear diffusion equation (1). By virtue of our interpretation of 8 (t), for both 
alternating and non-alternating pulse fields we may estimate that 

f u(x, t) dx U(t)8(t), 

where U (t) is a positive characteristic value of the pulse field u (x, t), for example a typical maximum absolute value 
of pulses. For alternating pulse fields, f u(x, t) dx ".~ m and for non-alternating pulse fields, f u(x, t) dx ~ Nm. 
H e n c e ,  

m 
u ( t )  ~ - -  

~(t) 

for alternating pulse fields, and 

Nm 
u(t) 

~(t) 

for non-alternating pulse fields. 

The energy E(t) is given by ( I /L)  f u2(x, t) dx and we estimate that 

f u2(X, t) dx ~ U2(t)~r~Nboxes(~¢/-~) 

for alternating pulse fields, whereas 

f u2(x, t) dx ~ U2(t)6(t) 

for non-alternating pulse fields. It follows that 

m 2 

E (t) ,~ - -  ~/~Nboxes ( ~ )  (56) 
L62(t) 

for alternating pulse fields and that 

N2rn 2 
E(t) (57) 

L~(t) 

for non-alternating pulse fields. By inserting the expressions for 8(t) obtained in Section 3.3 into (56) and (57) we 
recover the laws of energy decay (45), (47)-(49). 

4. Anomalous collision rate in the Burgers equation 

We now show how the anomalous diffusive properties investigated above have remarkable effects on the 
diffusion/convection problem. We study the decay of alternating and non-alternating one-dimensional fractal or 
spiral velocity fields u 0 (x) (Eq. (3) with m i = ( -  1 ) i + 1 m or mi = m ,  and Fig. 1), when submitted to convective and 
diffusive transport according to Eq. (2). If uo(x) is an isolated pulse with integral f uo(x) dx = m it is interesting 
to consider the ratio m/v, which may be thought of as the Reynolds number of the pulse. 
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When m/v  >> 1, convective transport dominates over viscous diffusion, and instantly leads to the formation of a 

shock moving on the x-axis [2,12,16,17]. I f  the initial pulse has a length 1 the shock appears when t >> 12/m. After 

shock formation the energy of  the isolated one-signed pulse decays as 

23/2 m3/2 
E(t) = (58) 

3L t 1/2" 

When there are many shocks, they are likely to collide, and these collisions are known to delay the energy decay 

[9,12,17]. In Section 4.1 we write the solution of  the Burgers equation corresponding to the field u0 defined in (3), 

then we analyse the effect of  collisions on the evolution of  u(x, t). 

4.1. Solution of the Burgers equation 

The solution of  the Burgers equation for an initial field equal to one delta function has been given by Benton and 

Platzman [2], and can be easily generalized to a sum of delta functions u0 (Eq. (3)). The Hopf-Cole transformed 

field of  uo(x) is defined by 

O0(x) = e -(1/2v)p°(x), 

where 7r0 is the integral of  u0. If  we assume that xl < x2 < -- • < xx,  it follows from (3) that 

j(x) 

~O(X) = ~-~ mi f o r x  > Xl, 
i = 1  

where the index j ( x )  is defined by Xj(x) < x < Xj(x)+l, and ~0(x) = 0 for x < Xl. Hence, 

Oo(x) = e-(1/2v} E{(~ )mi f o r x  > xl, 

Oo(x) = 1 for x < x~, and 00 is a step function which can be written as 

N 

O0(x) = 1 + ~ ( e  -(1/2v)Mi - e -(1/2v)Mi l )H(x  - xi), 
i = 1  

where Mi = Y~j= 1 mj and Mo = 0. H denotes the Heaviside function. Because 00 is submitted to a linear diffusive 

process, the evolution of  each Heaviside function is given by an error-function, so that 0 (x, t) reads 

O(x, t) = 1 + Z ( e  -(1/2u)Mi - e -(1/2v)Mi-l) erf k , ~ - J  + 1 (59) 

i = 1  

for all times t, positions x, viscosity v, discontinuity points ( X i ) i =  1 .. . . .  N and "masses" Mi. The velocity field is then 

obtained from Eq. (8). The fact that gradients turn into universal shocks if the Reynolds number is sufficiently large 

makes it convenient to analyse the Burgers equation in the limit v << m in terms of the creation, displacement and 

collisions of shocks [12,17]. However, in this paper, we use 0(x, t) as given in (59) to predict the time when shocks 

interact, by noticing that collision events in u (x, t) correspond to diffusion events in 0 (x, t). 

4.2. Energy decay for large Reynolds number 

4.2.1. Alternating pulse field 
When N is even and the first pulse is positive, every pulse in u (x, t) collides with its neighbour, and because 

every two pulses have the same strength, they eventually form a single shock which does not move on the x-axis. 
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Thus, the total energy of the signal decays like t -2 [17] after the first collision. When N is even and the first pulse 

is negative, the first shock and the last shock move freely on the x-axis, and the energy decays like t-1/2. When N 
is odd, the first or last pulse moves freely on the x-axis, and its energy therefore decays like t -1/2. In both cases N 

even and N odd, the law of energy decay is independent of the Kolmogorov capacity of the points (xi). 

4.2.2. Non-alternating puIse field 

We see from Eq. (59) that the gradient field O0/ax is a sum of initially delta-functions gradually smoothed into 

gaussian functions (see Fig. 12). Each gaussian in O0/Ox corresponds to one single shock in u. It two consecutive 

shocks of index i and i + 1 do not interact, O0/Ox displays a plateau between the gaussian centred around xi and the 
one centred around xi+l (Fig. 12). Interaction between the two shocks corresponds to the gaussian centred around 

xi being no more negligible in the vicinity of Xi+l in comparison to the gaussian centred around xi+l,  and a collision 
between the two shocks corresponds to the merging of the two gaussians. From this observation we extract two 

important smoothing times for O0/Ox. The first one is the time when the two closest pulses in O0/Ox are smoothed 

by diffusion. The distance between these pulses is 

0 = i=~min, x-1 (Xi+I -- Xi)  : XV+I  --  X y • 

We define tn as the time when the gaussian centred around xy is of the order of the gaussian centred around xy+[ 
at x = x×+l, which means that the plateau between these two pulses has vanished. By making use of (59) we get 

( e - (1 /2v )M× _ e - ( l / 2 v ) m y  1) e x p  - - ~ v t ~  ~ e - ( t / 2 v ) M Y + l  --  e - ( l / 2 v ) M ' / '  

and by noticing that Mi = i m we get 

02 
t~ - ~ m  (6o) 

In terms of shocks in u, t, 7 is the time when the interaction between the two closest shocks starts, and result (60) 

is in agreement with the fact that an isolated positive shock moves like (2mt)l/2 [ 16,17]. Another important time 

scale is the time when all the pulses in O0/Ox are smoothed out by diffusion, say tL. From (59) we get 

1 (X N - -Xl )  2 1 L 2 
tL 2m N - 1 -- 2m N "  (61) 

In terms of shocks in u, tL can be thought of as the time when all the collisions have been completed. Note that if 

the structure has a well-defined Kolmogorov capacity D we have N ~ ( o / L )  -D  and 

r/2 ( 0 )  D-2 
tL ~ ~tn -L (62) 

In the following we calculate the energy decay of u(x,  t) in the time range t~ < t < t L for non-alternating 
homogeneous fractal and spiral pulse fields. 

4.2.2.1. Non-alternating homogeneousfractal  pulse fields. The case of pulses on a Cantor set has been treated by 
Gurbatov and Crighton [9] who observe that the delay of energy decay increases with D. Here we show that the 
law of energy decay found by these authors can also be obtained for any homogenous fractal non-alternating pulse 
field under the assumption that the energy decays in a scale-invariant manner between t, 1 and tc. 
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Fig. 12. Sketch of the non-alternating pulse field u (x, t), and of the derivative of its Hopf-cole transformed field Ox (x, t) = O0/Ox. Solid 
lines show both fields at t = 0. Ox is a sum of delta-functions located at Xl . . . . .  XN. The strength of the pulses of Ox decays exponentially 
with the index of the position. As Ox undergoes a diffusive process, its delta-functions turn into gaussian pulses (dashed line, lower graph) 
which correspond to shocks in u (dashed line, upper graph). When two gaussian pulses in Ox overlap the two corresponding shocks 
interact in u, and the merging of two consecutive gaussians in Ox corresponds to a collision between two consecutive shocks in u. Due to 
the space-filling feature of the (xi), the smoothing of Ox is very fast, and induces an anomalous collision rate in u (x, t), and therefore a 
huge delay in the energy of u(x, t). 

Before the first col l is ion (t < t0) the energy of the signal evolves as 

23/2 m3/2 

E( t )  = N x 3L  t l /2  ' t < t o ,  

since the signal is made of  N isolated (i.e. non-interact ing)  shocks. For t > tc the velocity field is made  of  a single 

shock the integral of  which  is N m. The energy of  the signal is then 

23/2 (Nm)3/2  
E ( t )  -- 3~-  t l / ~  ' t > tL. 

At this stage let us conjecture that for non-a l ternat ing  homogeneous  fractal fields of pulses of  equal strength m the 

energy decays in a scale-invariant  m a n n e r  be tween  t o and tL: 

E ( t )  ~-- E(to)  , t o < t < tL. 

By making  use of  Eqs. (60) and (62), and by not ic ing that 

23/2 m3/2 23/2 (Nm)3/2  
- - . 1 / 2  and E ( t L ) -  3~- .I/------T--' E(t~)~_ N × 3L ~o ~L 
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we obtain the exponent fi, and therefore the law of energy decay 

{ 2 m t ' ~  (D.-l)/(D-2) 
E ( t )  ~ E ( t , )  k ~ - ]  , t ,  < t < rE. (63) 

This is the law obtained by Gurbatov and Cfighton [9] who investigated the decay of a Cantor set of triangular 
pulses. Note that this law only requires the assumptions of scale-invafiant geometry (5) and of scale-invariant energy 

decay. This law is not expected to hold for inbomogeneous fractal pulse fields, because scale-invariant decay is not 

expected to hold there. 

4.2.2.2. Non-al ternat ing spiral pu lse  fields. In the case of non-alternating pulse fields we again observe significant 
differences between homogeneous fractals and spirals, due the strong inhomogeneity of spirals. Here also, the scale 

x x  plays an important role, as shown in Fig. 13, where we have plotted the curve Y = ~0(X),  together with the 

parabola 

PA : Y = A - (X  - x ) 2 / ( 2 t ) ,  

which enables to determine the velocity potential ~ (x, t) for t > 0 (see for example [7,12,17]). Briefly, for all x and 

t, O(x,  t) is given by the maximal A such that the parabola Pa lies below the curve Y = G0(X). The point (X, Y) 

corresponding to this maximum is interpreted as the first contact point of the curve Y = 7t0(X) and the parabola. 

The spiral investigated in this paper is given by xi = L i - %  and therefore the shape of ~0 is 

aPo(X) = f uo(x )  dx ~ m ( N  - p)  "~ m N - 

o 

(64) 

where N - p is the number of discontinuity points lying between 0 and X. Clearly, ~P0(X) is zero for X < XN 

(Fig. 13). For a fixed position x between x u  and L,  one can notice that if t is small enough, the first contact 

point (X, Y) is close to (x, ~P0(x)), whereas for t larger than some critical time r (x) ,  PA will intersect the curve 

lit (x,t) 

Y 

Y =  
i 

,"  I ', I 

. . . . . . . . . . . . . . . . . . . .  .-. 7;-" . . . . . .  :V " - .  I 

/ . ' "  : ', 

/ " "  : " "1"" . .  p 

; X X 
" ' x  N : 1 

(b) (a) 

X ' -  

Fig. 13. Sketch of the initial velocity potential ~0 together with the parabola PA: (a) t < r(x); (b) t > r(x). 
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Y = O0(X) at X = xx, and this point will remain the first contact point for all t > r(x).  It is at this stage that the 

inhomogeneity of the spiral manifests itself, in a way determined by the scale Xu. By writing that XN ~ PA we get 

(XN -- X) 2 
!)(x, t) -- for t > r(x) ,  

2t 

so that the velocity potential for t > r (x)  does not depend on ~P0, and therefore does not feel the spiral geometry 

of  the structure. The critical time r (x)  is such that gt0(x, T(x)) --~ ~0(x), and therefore reads 

( x u  - -  x) 2 
r (x) "~ (65) 

2mN(1 - (X/XN)-l/~) ' 

which can be shown to be the time required for the smoothing of  the pulses of  O0/Ox located between XN and x. 

r (x) is therefore the time when the first shock reaches the position x, so that the spiral structure of the field u (x, t) 

is no more visible between XN and x. It is convenient to inverse eq. (65) to obtain the critical position Xc(t) where 

PA intersects the curve Y = lP0(X) at X = XN, for a given time t. If  (Xc(t)/XN) -1/~ << 1, which is verified if 

Xc(t) >> xu, we have 

Xc(t ) ~" XN + 2~/~mt. 

Therefore the integral of gt (x, t) over the whole structure can be written 

L XN+ 2 X / ~  L 

f f  i f  1 1 (XN - -  x) 2 dx -[- ~0(x) dx, 
(~) = ~ 7t(x, t) dx "" ~ 2t 

0 xN XN+ 2 ~ / ~  

where the LHS integral is performed over the points x for which the parabola has already reached xu(x < xc(t)), 

and the RHS integral is performed over the points x for which the parabola has not yet reached xx(x  > Xc(t)). By 

integrating Eq. (2) we get 

E ( t ) -  d(~p) 1 ~/Nm 1 (Nm) 3/~ 
- -  ~ ~- OO(XN 4;- 2.~.~N~mt) 

dt L - - -  3L 

Finally, for ~ >> XN we can expand ~o(xn + 2v~N~)  by making use o f E q  (64), and we get 

E(t) ~-- 3 ~  t l / ~  0 , x2 /Nm << t << tc ~ L2/Nm. (66) 

ix  xN / ] 

Hence, the energy decay for t >> X2N/Nm is at leading order similar to the decay of  an isolated pulse (E (t) ~ t -  1/2). 

This is surprising in that collisions still occur in the time range x 2 / N m  << t << L2/Nm, but these collisions seem 

to have very little effect on the energy decay. 

Fig. 14 shows the energy decay for a spiral with D = 0.7, computed from the analytical solution of  Eq. (2) in 

the limit v -+  0 [12]. Note that the energy displays a plateau for r12/m << t << x2 /Nm,  in agreement with the 

fact that the collision rate is huge in this time range. Also of  note, the waves visible on this curve for t >> x 2 / N m  
correspond to collisions which have almost no effect on the energy decay. 

4.2.3. Phenomenology: smoothing of O and collisions in u 
The laws of  energy decay calculated in Sections 4.2.1 and 4.2.2 can be understood in terms of  the collision rate 

between shocks [17]. Here we draw a parallel between this collision rate and the speed of  the smoothing of  O0/Ox. 
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Fig. 14. Energy decay (Burgers equation) of non-alternating pulses distributed in a spiral manner, for v << m. Like for the linear diffusion 
equation, some energy trapping is observed on a time range fixed by the inhomogeneity scale XN. L2/(Nm) is the time of the last collision. 

4.2.3,1. Alternating pulse field. Because mi = m ( - 1 )  i+1 we have Mi = 0 if i is even and Mi = rn if  i is odd, 

and from Eq. (59) we conclude that 30o/3x is an alternating pulse field, the strength of  the pulses being constant 

in absolute value (and equal to exp ( - m / 2 v ) ) .  The diffusive length-scale 6o (t) of O0/Ox can be thought of  as the 

characteristic scale of the gradients of  30/3x ,  so that the growth of 3o (t) corresponds to the smoothing of  these 

gradients, and therefore to the disappearance of  the shocks in u(x,  t). From Section 3 we know that 30(0 grows 

independently of  D. Hence, the collision rate between the shocks of u is independent of  D. This is in agreement 

with the fact that the energy decay has been found to be independent of D in this case (Section 4.2.1). 

4.2.3.2. Non-alternating homogeneous fractal pulse field. In this case gaussian pulses in O0/Ox (Fig. 12) will merge, 

leading to a single gaussian pulse, and therefore to a single shock in u. The time-range over which all the collisions 

occur can be approximated by 

t~ < t < tL, 

and the mean collision rate in this time range is therefore 

mean collision rate - 
N - 1  ~ __2m ( L ) 2 ( 1 - D )  

tL -- t~ r] 2 

For D = 0 the collision rate is 2 m / L  2. It corresponds to a collision occurring between two pulses separated by 

a distance L. As D ~ 1 the collision rate tends to 2m/tl  2 = l / t ,  which is much larger and corresponds to one 

collision every "small" convective time. The space-filling properties of the structure are therefore responsible for an 
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"anomalous collision rate" between shocks, and therefore to a significant delay of the energy decay, in agreement 

with the law (63). 

4.2.3.3. Non-alternating spiral pulse field. A phenomenology similar to the one of the linear diffusion equation can 
be applied here. Indeed, for ~2/m << t << x 2 / N m  collisions occur very often in the vicinity of the accumulation 

point. This large collision rate is responsible for a significant delay of the energy decay in this time range, and 

produces a big shock containing an important fraction of the "mass" ( f  u dx) and of the energy of the whole 
structure. For t >> x 2 / N m  the mass of this shock is such that new collisions have no more effect on it, and this 

shock decays like an isolated shock. 

4.3. Energy decay for low Reynolds number 

When m << v diffusive effects are expected to overwhelm convective effects. Here we apply results of Section 3, 

together with the simple phenomenology developed in Section 3.4, to show how the space-filling properties of the 

signal can turn the linear decay into a nonlinear decay. 

4.3.1. Homogeneous fractals 
As the field diffuses, u(x, t) is characterized by pulses with thickness ~ and typical velocity U(t), and their 

individual Reynolds number can be defined as 

8(t)v~ 
Re(t) -- - -  

lJ 

Note that in the non-fractal case U(t) decays like t -1/2, so that Re(t) remains unchanged. We estimate U(t) by 

applying conservation of f u(x, t) dx (Section 3.4). For short times we have Re(t) << 1, so that we can make use 
of the expressions for g (t) obtained in Section 3.3 (diffusion equation). This leads to 

m 
Re(t) ~ -- << l 

P 

for alternating pulse fields, and 

Re( t )~  Nm ( - ~ )  D v  

for non-alternating pulse fields. As a result, the Reynolds number of individual pulses remains small for alternating 

pulse fields, but increases for non-alternating pulse fields, so that the linear decay can turn into a strongly nonlinear 
decay. Note that for t = rl2/v we recover Re ~ m/v since N "~ (rl/L)-D. This increase of the individual Reynolds 

number, which is a consequence of the scale-invariance of the structure, has been used by Gurbatov and Cfighton 

[9] to justify the use of the inviscid hypothesis for pulses displayed on a Cantor set. Note that it requires Nm/v  >> 1. 

The critical time tc when the transition between the linear and the nonlinear decay occurs corresponds to Re ~ 1 
and reads 

fc ~ -  
V 

Fig. 15 shows the energy decay corresponding to a Cantor set of pulses, calculated from the analytical solution (59) 
with m/v = 1 and N = 1024. It confirms the occurrence of a transition at t = to. 
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Fig. 15. Energy decay (Burgers equation) of non-alternating pulses distributed on a Cantor set of points, for v > m, calculated from the 
exact analytical solution of the Burgers equation (Eqs. (59) and (8)). Linear decay is observed for short times, then a transition occurs 
after the time tc predicted by the theory. The analytical solution quits the linear law at t --~ tc, then blows-up after a decade, due to loss 
numerical accuracy. The run is continued with an inviscid solver for longer times. 

4.3.2. Spirals 

The case of  spiral alternating pulse-fields is similar to the case of  fractal alternating pulse-fields, as a consequence 
of their similar spectral properties. In the spiral non-alternating case pulses will start diffusing, as v >> m. This 

merging will produce a strong pulse in the vicinity of XN, with typical velocity U(t )  and thickness ~(t) which are 

much larger than those of other pulses (see Section 3.3). Accordingly, the individual Reynolds number of  this pulse is 

U(t )S ( t )  
Re ( t )  -- - -  

1) 

for early times, and momentum conservation implies U (03  (t) ~ N m ,  so that we get 

N m  
R e ~  

U 

Hence, provided N m / v  >> 1, the Reynolds number of this pulse will be large for t >> rl2/v, and a nonlinear regime 

corresponding to the decay of an isolated shock with integral of order N m  will start. 

5. Condusion 

We have analysed spectral, diffusive and convective properties of one-dimensional fractal and spiral pulse 
fields with alternating signs (lower graph of Fig. 1) and non-alternating signs (upper graph of Fig. 1). The in- 
tegral of the alternating pulse field is an on-of f  function the spectrum and diffusive properties of  which have 



J.R. Angilella, J. C. Vassilicos / Physica D 124 (1998) 23-57 51 

been investigated by Vassilicos and Hunt [20] and Vassilicos [19]. Such an on-off function may be obtained by 
performing a one-dimensional cut through a two-dimensional scalar field characterized by sharp interfaces with 
well-defined Kolmogorov capacity [20]. From a similar viewpoint, the non-alternating pulse field may correspond 
to a one-dimensional cut through a two-dimensional scalar field uniformly distributed along a fractal or spiral 
line. 

The energy spectrum of the altemating pulse field scales like k D for L -1 << k << ~-~ [20], for both fractal and 

spiral distributions of pulses. The energy spectrum of the non-alternating pulse field is found to scale like k -D for 

- ~7-1 r1-1 L -1 << k << 7 -1 in the homogeneous fractal case, and like k -1 for XN 1 ~ (rl/L) D << k << in the spiral 

case. In all cases the spectrum is flat over other wavenumber ranges. We therefore observe that the space-tilling 
properties of the pulse field make it more regular (more autocorrelated) in the non-alternating case, whereas they 
make it more singular (less autocorrelated) in the alternating case. Moreover, the energy spectrum is very sensitive to 
the homogeneity of the structure in the non-alternating case, leading to differences between homogeneous fractals 
and spirals, whereas homogeneity does not matter in the alternating case. The scale XN is characteristic of the 
inhomogeneity of the spiral set. 

We have analysed the diffusive properties of these structures and observe that space-filling properties accelerate 
the energy decay of alternating pulse fields, in agreement with previous works by Vassilicos [19] and Flohr and 
Vassilicos [6]. However, space-filling properties are observed to delay the energy decay of non-alternating pulse 
fields, in such a way that energy is "trapped" during a time range fixed by the characteristic scales of the structure. 
The energy of both fractal and spiral distributions of alternating pulses decays in a scale-invariant manner between 
the time scales ~2/v and L2/v,  the power-law of this decay being entirely determined by the Kolmogorov capacity 
D. In contrast, the energy decay of non-alternating pulse fields is sensitive to the inhomogeneity of the structure. 
Indeed, the energy of spiral non-alternating pulse fields is almost constant (decays only logarithmically) in the time 
range/72/P << t << X 2/V,  then decays like t -  1/2 for longer times. This is a direct consequence of the inhomogeneity 

of the structure, as pulse merging is important in the vicinity of the isolated accumulation point and tends to form 
a huge pulse containing an important fraction of the "mass" ( f  u dx) and of the energy of the spiral structure. The 
emergence of this large pulse therefore breaks the scale-invariance of the structure. This energy trapping is different 
from the one observed in homogeneous fractal non-alternating pulse fields, where the decay is slowed-down in a 
scale-invariant way over the whole range O2/v << t << L2/v.  

The evolution of the diffusive length-scale brings in useful information about anomalous diffusion. The diffusive 
length-scale of alternating pulse fields is not sensitive to the space-filling properties of the structure and scales as 4'b-t, 
whereas the diffusive length-scale of non-alternating pulse fields is significantly larger than ~v-7. This difference 
can be explained by noticing that pulse merging is a strongly correlating mechanism which is enhanced by the 
space-filling properties of the structure in the non-alternating case, whereas in the alternating case the correlation 
length-scale is mainly affected by the growth of individual pulses. 

The diffusive length-scale is very sensitive to the inhomogeneity of the structure in the non-alternating case. 
Indeed, for r12/P << t << L2/v  we have &(t) ~ ~/-~Nboxes(~)  for homogeneous fractal pulse fields, as already 
observed for fractal or spiral on-off functions [19], whereas for spiral pulse fields 6 (t) growths only logarithmically 
(and 3(t) >> ~ /~)  for qZ/v << t << X2N/V, then growths like ~ .  These differences are in agreement with the fact 
that the structure is smoothed out in the same way everywhere on the homogeneous fractal, whereas pulse merging 
on spirals quickly produces a large pulse in the vicinity of the accumulation point, the characteristic scale of which 
is much larger than the scale of isolated pulses. 

When submitted to a diffusive/convective process (Burgers equation) non-alternating pulse fields are observed 
to have interesting properties linked to their geometry. In contrast, in the inviscid limit, the decay of alternating 
pulse fields is not sensitive to the Kolmogorov capacity of the structure. However, as already shown for the Cantor 
set by Gurbatov and Crighton [9], the energy decay of non-alternating pulse fields in the inviscid limit strongly 
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depends on D. We notice that the law of energy decay of these authors can be established for any homogeneous 
fractal pulse field, assuming that the energy decay of such fields is scale-invariant. In contrast, the energy decay 

of spiral non-alternating pulse fields is not scale-invariant from the time of the first collision (02/m) to the time 
of the last collision ( L 2 / N m ) ,  as it is roughly constant from rlZ/m to X2N/Nm,  then decays like for an isolated 

shock for longer times. The phenomenology involved in this process is very similar to that of the diffusion problem. 

Indeed, shock collisions in spirals occur very often in the vicinity of the accumulation point, whereas they occur 

with the same probability "everywhere" in a homogeneous fractal. In both cases, the huge delay of energy decay 
is a consequence of the large collision rate between shocks and is due to the space-filling feature of the structure. 

This "anomalous collision rate" is to be linked with the fact that the gradients of the Hopf-Cole transformed field 

undergo an accelarated diffusive smoothing. 
We have investigated the Burgers equation with large viscosity (v >> m) and observe that for non-alternating pulse 

fields the space-filling geometry can turn the linear decay into a nonlinear decay, as already noted by Gurbatov and 
Crighton [9]. Indeed, the merging of pulses, together with the scale-invariant feature of the structure, is responsible 

for a transition from the law of energy decay (47) (Section 3) to the law (63) (Section 4). 
Finally, we stress that spectral, diffusive and convective properties of spiral non-alternating pulse fields are 

characterized by three scales, namely 17, xN, and L, whereas the spectra and dynamics of spiral alternating pulse 

fields (and spiral on-off fields) are not sensitive to the inhomogeneity length-scale XN and are similar to the spectra 

and dynamics of homogeneous fractals. 
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Appendix A. Low-wavenumber energy spectrum in the alternating case 

The Fourier transform of u o ( x )  (Eq. (3)) in the alternating case is 

N 

= m ~ ~ ( - - 1 ) J + l e  ikxj , ; to(k) (A.1) 

j = l  

N 
= meikX~ Z ( _ l ) J + l e i k ( x  j xl), (A.2) 

j 1 

where i 2 ---- - 1 .  For all j we have Ik(x  i - xl  )1 < k L ,  so that for k L  << 1 the exponential term in Eq. (A.2) can be 

expanded as 

e ik(xj X1) ~ "  1 -5 i k (x j  - Xl) ÷ O(k2). 

The Fourier transform of u0 therefore reads 

~o(k) -- me ikx~ ( -1 )  j+l ÷ ik Z ( - 1 ) J + l ( x j  - Xl) -t- O(k2). (A.3) 
"= j = l  

If N is odd the first sum in Eq. (A.3) is equal to 1, so that the energy spectrum Eo (k) = L -  112o (k) l 2 reads at leading 

order 
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m 2 
Eo(k) L ' kL  << 1. 

If N is even this sum is equal to 0, and we obtain at leading order 

m 2 
Eo(k) ~ --7-(kL) 2, k L  << 1. 

L 

53 

Appendix B. Calculation of ~(r) for the Cantor set 

We construct a triadic Cantor set by dividing an initial segment of width L in three parts, and by repeating this 

operation M times on the resulting segments. The Cantor set consists of the points xi at the boundaries of each 
segment of the fractal structure. We perform a covering of the points with boxes of width r. The minimum number of 

boxes needed for this covering is Nboxes ~ 2 n, where n 6 [1, M] is the index of the subdivision for which segments 
have a length of order r, i.e. 3-n L --~ r. Note that the number of points per covering box of size r is the same in 
each box, and is equal to 

~(r) = 2 m+l-n.  

Hence 

g(r)  ~-- 2M+l /Nboxes(r) = N/Nboxes(r),  

where N = 2 M+I is the total number of points of the structure, demonstrating the homogeneous fractal property of 
the Cantor set. 

Appendix C. Calculation of (a~pZ(r)) by statistical method 

Here we adapt the statistical method of Vassilicos and Hunt [20] to the calculation of the spectrum of a homoge- 
neous fractal pulse field in the non-alternating case. 

In this appendix let us interpret averages (.) to mean ensemble averages rather than space averages, in which 
case, following [20], 

( ~ 2 ( r ) )  --~ E ( m q )  2 × P(q,  r), (C.1) 
q 

where P(q,  r) is the probability of having q discontinuity points in a compact segment of size r. The probability 
P (q, r) is an integral over all situations where discontinuity points are concentrated on a small part of the segment 
or scattered over the whole segment. This integral is 

F 

P(q,  r) -= / nq(l) dl, 

0 

where nq (l) is the probability of having exactly q points in a segment of width l, the distance between the first and the 
last such points being equal to 1. Vassilicos [18] has shown that nq (l) ~ I -D independently of q for homogeneous 
fractals, so that 

P(q,  r) ~ r 1-D. (C.2) 
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Nevertheless, P(q,  r) does depend on q, and the dominant contribution to the right-hand side of (C.1) comes from 

q = ~-(r), so that by using results (16) and (C.2) we get 

(3~pg(r)) ~ r D+I, (C.3) 

in agreement with (19). 

Appendix D. The small-scale energy spectrum 

The energy spectrum of u0 for k >> l / r /can be calculated by applying the method of Moffat [14] and Gilbert [8]. 

The Fourier transform of the field u0 given by Eq. (3) is 

N 

uo(k) = ~ rnje il~x/, 

j = l  

and k >> l /r / implies that kxj >> kxj+l for all j ,  so that fi(k) is a sum of N complex numbers with effectively 

random phases and moduli [ml. In the complex plane, this sum can be seen as the result of a random walk with 

constant steps. The modulus of 20 (k) therefore scales like , /N ,  and 

1 12 m 2 
Eo(k) = _--[fi0(k) ~ - - N  fork >> 1/rl, 

L L 

which is the value we obtain in both the alternating and non-alternating cases, for both fractal and spiral distributions 

of pulses (Eqs. (14), (23) and (42)). 

Appendix E. Use of the wavelet transform 

In order to avoid high-frequency oscillations in the Fourier transform we make use of the wavelet transorm of 

u0(x): 
+ o o  

{to(l, b) = ~ 4 9  uo(x) dx, (E.1) 

--OO 

where 4) denotes the wavelet, with scale I and position b. We define the wavelet spectrum as (see also [5]) 

+ c o  

Ecoo(1) = f I~o(1, b)12db. (E.2) 
-- (X) 

By Fourier transforming Eq. (E. 1) and using the Plancherel identity we get 

+ c o  

Eo)o(1) = 1g f [~)(Ik)12Eo(k) dk, (E.3) 

--00 

where Eo(k) = (1/L)[uo(k)l 2 is the Fourier energy spectrum. It follows that when Eo(k) ~ k p in a range k~ << 

k << k2, we obtain 

Eo)o(l) ~ for 1/k2 << l << 1/kl ,  
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so that in a log-log plot the slope of  the wavelet spectrum is also the slope of  the Fourier spectrum. In Fig. 5 and 7 

we use the notation Eo~o(k) with k = 1/I  rather than Eo~o(l) for easiest comparison with Eo(k). 

Appendix F. Calculation of (6~2(r)) for spiral non-alternating pulse fields 

Let us first note that in the limit where rl << a L  we have N >> 1, ~ << XN and x N <<5. aL .  In this appendix we 

prove that in the limit O/(aL)  --> O, Tz(r) >> Tl(r),  T3(r) in the range ~ << r << XN and Tl(r) >> T2(r), T3(r) in 

the range x u  << r << aL .  

The asymptotic limits T3(r)/T2(r)  ---> 0 in the range 0 << r << x x  and T3(r) /T l ( r )  --> 0 in the range XN << 

r << a L  follow, respectively, from (28) and (33) and from (28) and (36). Use must be made of  N "- (otL/o) D, 

D = 1/(oe + 1) and ~ << aL .  

To show that Tl (r ) /T2(r )  --+ 0 in the range 0 << r << xN we start from (34) where we can replace the sum by 
an integral and obtain (for oe # 1, 2, but the cases c¢ = 1 and o~ = 2 can be treated similarly) 

N 2_C~ N2 N 2_Cg n N2-C~ 2N2_Ce 
T l ( r )~ - -aL  - - - - + - - n N  ~ +  - -  

ct ot 2 - o ~  2 - o l  1 - ~  

2 N  1-~] 
- -  q- ~ n  N ] " 

When r << XN, nN ~ N(1 + ot-2r /xN)  and therefore 

T1 (r) = o~LN2-C~O , (E l )  

which implies, by using (33), that Tl (r ) /T2(r )  << 1 when */<< r << XN. 

To show that, when ~/(oeL) --+ 0, T2(r ) /T l ( r )  --+ 0 in the range xN << r << o~L, we start from (29). The 

condition XN << r guarantees that I defined by ( r / L ) U  --~ 1 is such that I << N. In fact I << Arc because r << aL .  

Hence, 

( r s -1 / c~  
q(x ,  r) = i - ni(r)  --~ i - \ ~ /  , (F.2) 

and 

T2(r)~--~L E i1-~ 1 -  7 ~ f o r x N < < r < < o t L ,  (F.3) 
i=Nc+l 

and upon replacing the sum by an integral, 

oeL (N2_C~ 2-o~ 2 a L  ( L ) - I / ~ ( N I _ C ~  Nc ) 1-~ - - N  c ) f o r x N < < r < < o t L  T2(r) • 2 -- o~ i-77z 

where we have assumed oe # 1, 2 (the cases o~ = 1 and ~ = 2 can be dealt with similarly). It then follows using 

(36) and the conditions ~ << XN << r << oeL that T2(r ) /T l ( r )  << 1 in the range XN << r << otL. 

Appendix G. Asymptotic expansion of energy and correlation length scale 

The integrals involved in the calculation of  the energy (Eq. (10)) and of  the correlation length scale (Eq. (11)) of  
the linear diffusion problem (Section 3) can be written in terms of  the incomplete gamma function. Indeed, these 
integrals are of  the form 
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1/12 

I = f k~e  -2vkat, 

1/11 

where 11 and 12 are characteristic scales of the structure, and fl depends on D. By performing the change of variables 

y = 2vkZt  we get 

2vt/l 2 

' f I = ~ ( 2 v t )  -(~+~)/2 y(/~+l)/2-1e-Y dy, 

which can be written 

l = s t z ~ t )  F 2 ' ll 2 ] - r  2 ' 12 } J '  

where F(ee, x) denotes the incomplete gamma function. In all cases the time t is such that v t / l  2 << 1 << vt /12,  so 

that the gamma functions in the above equation can be expanded as (see [1]) 

F(ol, x )  = F(ol)  -- Xe~/Ol ÷ O(x°~+l), X -+ 0, (G.1) 

and 

F(et,  x)  = x ~ - l e  - x (1  + O(1/x)) ,  x -+ +oc.  

The asymptotic development (G. 1) is valid for c~ ~ 0, - 1 ,  - 2  . . . . .  which is the case in all our calculations, except 

in Section 3.2.2 where fl = - 1 ,  so that o~ = 0. In Section 3.2.2 we expand the gamma function as 

F(0 ,  x ) = - y - l n ( x ) ÷ O ( x ) ,  x - + 0 ,  

where V ~ 0.577 is Euler's constant. 
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