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Abstract

The present work investigates numerically the statistics of the wall-shear stress fluctuations in

a turbulent boundary layer (TBL) and their relation to the velocity fluctuations outside of the

near-wall region. The flow data is obtained from a Direct Numerical Simulation (DNS) of a zero

pressure-gradient TBL using the high-order flow solver Incompact3D [S. Laizet and E. Lambal-

lais, J. Comput. Phys., 228, 5989 (2009)]. The maximum Reynolds number of the simulation

is Reθ ≈ 2000, based on the free-stream velocity and the momentum thickness of the boundary

layer. The simulation data suggest that the root mean-squared fluctuations of the streamwise and

spanwise wall shear-stress components τx and τz follow a logarithmic dependence on the Reynolds

number, consistent with the empirical correlation of R. Örlü and P. Schlatter, Phys. Fluids, 23,

021704 (2011). These functional dependencies can be used to estimate the Reynolds number de-

pendence of the wall turbulence dissipation rate, in good agreement with reference DNS data. Our

results suggest that the rare negative events of τx can be associated with extreme values of τz

and are related to the presence of coherent structures in the buffer layer, mainly quasi-streamwise

vortices. We also develop a theoretical model, based on a generalisation of the the Townsend-Perry

hypothesis of wall-attached eddies, to link the statistical moments of the filtered wall shear stress

fluctuations and the second order structure function of fluctuating velocities at a distance y from the

wall. This model suggests that the wall-shear stress fluctuations may induce a higher slope in the

turbulence energy spectra of streamwise velocities than the one predicted by the Townsend-Perry

attached-eddy model.
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I. INTRODUCTION

The mean wall shear stress, τw, is of obvious importance in turbulent boundary layers

and a fundamental variable for their scalings. For fluids with constant density ρ and for

sufficiently small wall-normal distances, the mean streamwise velocity profile u of a zero-

pressure gradient turbulent boundary layer follows a universal ”law of the wall” which is

typically believed to only depend on the friction velocity uτ =
√
τw/ρ (where τw is the

mean wall shear stress and ρ is the density of the fluid), the kinematic viscosity ν and the

wall-normal distance y [36].

However, the wall shear stress (and the resulting friction velocity) is actually a fluctuating

signal and the dynamics of some near-wall mechanisms may not only depend on its mean

value τw, but also on the statistics of its fluctuations. Even if this has little impact on the

non-dimensionalisation of u, for which the traditional ”inner” scaling based only on uτ and

ν may often provide a satisfactory collapse, it nevertheless has profound implications. For

instance, the Townsend-Perry attached-eddy model of fluctuating velocities [35, 43] may

need to be revisited, since its formulation is only based on the mean friction velocity uτ

with no information about the wall shear stress fluctuations. The intermittency of the shear

stress must surely affect the attached-eddy velocity fluctuations and this could modify the

structure functions and the power spectra of velocity in the range of wave-numbers associated

with the attached eddies.

While the mean skin friction coefficient has been measured experimentally for many years

and its Reynolds number dependence is well documented [6, 33], there has been much less

attention on the statistics and dynamics of the wall shear stress fluctuations. Only during the

last few decades, experiments and, later, numerical simulations have been able to measure

the instantaneous wall shear stress with enough temporal and spatial resolution. However,

an accurate estimation of the wall shear stress fluctuations is very important, as they are

main agents, for instance, in noise radiation, structural vibration, drag properties and wall

heat transfer mechanisms.

Early experiments [5, 11, 22, 28], measuring the root-mean squared (rms) fluctuations of

the streamwise wall shear stress, τx,rms, led to high discrepancies with values ranging within

0.06−0.40τw . Alfredsson et al. [2] noticed that this large uncertainty was mostly caused by

experimental errors, since the dynamic and static response of the hot-film/hot-wire probes
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can be different due to the large thermal inertia of the wall. These experiments suggested a

consistent value τx,rms = 0.4τw and a normalised skewness and flatness equal to 1.0 and 4.8

respectively. The authors also gave a preliminary estimation of the spanwise shear-stress

root mean-squared fluctuations (rms), τz,rms ' 0.2τw. Later experimental measurements

[13, 30, 32, 34, 39] obtained similar results.

In recent years, numerical simulations of wall bounded flows at moderate Reynolds num-

bers have confirmed the results obtained in experiments and have given further information

about the shear stress. In experiments, the spatial resolution of hot-films and hot-wires

decreases as the Reynolds numbers gets higher and this can lead to erroneously estimating

that τ+x,rms = τx,rms/τw decreases when increasing the Reynolds number. However, results

from recent Direct Numerical Simulations (DNS) [1, 15, 34] and laser-Doppler anemometry

experiments [12] suggest that τ+x,rms actually follows an increasing trend with the Reynolds

number, which can be fitted by a logarithmic function. A similar trend has also been pro-

posed for the magnitude of the inner peak found in the rms. profiles of the streamwise

velocity [14, 40]. Regarding the spanwise shear-stress fluctuations, there is much less discus-

sion in literature. While this quantity is difficult to obtain in experiments, it can be easily

extracted from DNS statistics. For channel flow, Hu et al. [15] also found an increasing

dependence of the rms fluctuations τz,rms on Reynolds number and suggested that the ratio

τx,rms/τz,rms stays bounded between 1.5 and 2.

The dependence of the shear stress fluctuations on the Reynolds number is very im-

portant from a fundamental point of view because it evidences a mixed scaling of inner

and outer units. Large scale structures, with size associated with the total boundary layer

thickness δ, may have a direct influence on shear stress fluctuations at the wall, possibly

through the attached-eddy mechanism proposed by Townsend [43]. Recent computational

and experimental studies have provided further evidence on the attached-eddy hypothe-

sis. For instance, the numerical investigations of [14] and [40] suggest that the spanwise

integral scale of velocities indeed grows linearly for increasing wall-normal distances y, in

accordance to the wall-attached eddy theory. [17] simulated the evolution of self-sustaining

wall-attached eddies at specific spanwise scales, proportional to y, revealing that their sta-

tistical and energy properties are in good agreement with those predicted by Townsend’s

theory. The numerical investigation of [9] suggest that if the wall-attached eddies, larger

than a given scale, are artificially removed, this may lead to an important reduction of the
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mean skin friction coefficient. Based on their results, these authors suggest that the wall-

attached eddies may not only contribute to the wall-shear stress fluctuations, but also be

responsible for a 20-30% of its total mean value at Reτ = 2000.

The histogram of the fluctuating streamwise shear-stress signal approximately fits a log-

normal distribution, which has an increased probability of extreme positive events [15, 34].

The shape of this distribution and the high kurtosis value are evidence that the wall shear

stress is a highly intermittent signal. While mixed scaling in a flow quantity does not

necessarily imply intermittency in the time signal, if a turbulent flow variable is intermittent,

this may indicate mixed scaling. For isotropic turbulence, Kolmogorov [23] proved, under

some appropriate hypotheses, that the intermittency of the dissipation rate ε introduces a

mixed scaling in the inertial range of the velocity structure function: 〈(u′(x+r)−u′(x))2〉 ∝

r2/3ε−2/3 (L/r)−a, where the operator 〈 〉 denotes spatial averaging, u′ is the fluctuating

velocity component in the x-direction, r is the spatial separation, L is the integral scale and

a is a constant associated with the filtered statistics of the dissipation rate. The last term in

the expression arises from the intermittency of the turbulence dissipation rate and introduces

a mixed scaling whereby the large scales influence the velocity fluctuations throughout the

inertial range of scales.

Along the lines of Kolmogorov [23], a similar mechanism could also be present in wall-

bounded turbulent flows, since the wall shear stress and velocity fluctuations inside the

boundary layer are linked by the wall-attached eddies. The intermittent fluctuations of the

wall shear stress could introduce a mixed scaling to the velocity structure function in the

attached-eddy range, thereby modifying the shape of these structure functions and their

associated energy spectra. All in all, the wall shear stress does not only present a mixed

scaling itself, it can also, via its intermittency, introduce a mixed scaling in the fluctuating

velocity field too.

In this article, we start by investigating the wall shear stress statistics using a Direct

Numerical Simulation (DNS) of a zero pressure-gradient boundary layer. Some extensive

computational studies of the fluctuating shear stress, including correlations, histograms

and spectra, are available for channel flows [15, 18], but there is little published on space-

developing boundary layers except by Örlü and Schlatter [34]. We present here our results on

both the streamwise and spanwise components of the shear stress, and compare them with

results found in channel flows. In this first part (Section III), we also study the influence

4



of the outer variables on the wall shear-stress statistics. In the second part (Section IV) we

develop a suggestion made by Vassilicos et al. [44] and propose a theoretical model which

relates the intermittency of the wall shear-stress fluctuations to the velocity fluctuations

away from the wall. We then use our simulation results to assess the validity of this model.

Numerical methods are introduced in in Section II and the main conclusions are summarised

in Section V.

II. NUMERICAL METHODS AND NOTATION

The full description of the high-order flow solver, Incompact3D1, can be found in Laizet

and Lamballais [24]. Incompact3D uses 6th order finite difference schemes to discretise

the incompressible Navier Stokes equations on a Cartesian mesh, with a pseudo-spectral

approach to solve the Poisson equation for the pressure. The current simulation’s solution

was computed with 4097×513×256 cell points inside a numerical box with size 480δ0×40δ0×

15δ0, where δ0 is the boundary layer thickness at the inlet. A laminar Blasius boundary layer

is prescribed at the inlet boundary condition in the streamwise direction x, with Reynolds

number Reθ = 270 based on the momentum thickness θ. At the end of the domain, where

the local Reynolds number reaches Reθ = 2200, a convective equation is solved for the

outlet boundary condition. In the spanwise direction z, the boundary conditions were set

to periodic. The computational domain is stretched in the wall normal direction and the

resolution, in wall viscous units (at Reθ = 1470) is: ∆x+ = 10.2, ∆z+ = 5.1 and ∆y+ = 0.42

at the wall and ∆y+ = 108.8 at the top of the domain where a homogeneous Neumann

condition is imposed to the three velocity components.

Turbulent conditions have been triggered with the tripping method designed by [38],

using the optimal parameters described by these authors. The tripping region is located at

x = 10δ0 and occupies the entire spanwise extent. In this region, a random volume forcing

is applied to the wall-normal momentum equation in the near-wall region. The authors of

[38] suggest that their tripping mechanism can be compared to a physical region with wall

roughness, which is typically used in experiments. According to them, the transition region

generated by his tripping method can be significantly shorter than those generated by other

(maybe more natural) mechanisms, such as Tollmien-Schlichting waves.

1 Code available at www.incompact3d.com.
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The simulation time-step is ∆t = 0.0035δ0/U∞ (∆t+ = 0.013). Mean quantities and

statistics were averaged over a period T = 3000δ0/U∞ (T+ = 11000), where δ0 is the

initial boundary layer thickness (defined at the end of this section) and U∞ is the free-

stream velocity. Time series of the three velocity components were collected in a 3-D array

of probing positions over a period T = 1600δ0/U∞ (T+ = 6000). To improve statistical

convergence, the variables were averaged along the spanwise direction, where the flow is

statistically homogeneous. In the current boundary layer simulation, the Reynolds number

based on the skin friction velocity and boundary layer thickness, Reτ = uτδ/ν, is related

to Reθ by the expression Reτ = 86.16 + 0.296Reθ within the range Reθ = 600 − 2000

(Reτ = 265− 680).

The present simulation results have been carefully validated against reference DNS of

turbulent boundary layers such as Jimenez et al. [21] and Schlatter and Örlü [37]. The

computed budget terms of the turbulence kinetic energy equation in Figure 1(a) compare

very well with Schlatter and Örlü [37] at Reθ = 1420. The residual (computed as P +

T − ε + ν∇2k − u · ∇k, where P is the production term, T is the turbulence transport

term, ε is the turbulence dissipation rate, u is the fluid mean velocity vector, and k is the

turbulence kinetic energy), which quantifies the deviation from statistical convergence and

the cumulative error of the different terms, stays under 1 % of the wall dissipation rate over

the entire domain.

The mean profiles of streamwise velocity and the root-mean squared fluctuations of

streamwise velocity have also been validated against the simulation data of Schlatter and

Örlü [37] and Jimenez et al. [21] and are plotted in Figure 1(b).

Regarding the symbol notation, we refer to the velocity components in the streamwise,

wall-normal and spanwise directions x, y, z respectively as u, v, w, or as xi and ui with i = 1

for streamwise, i = 2 for wall-normal and i = 3 for spanwise directions when using the

index notation. The wall shear stress components are defined as τx = ρν∂u(t)/∂y and

τz = ρν∂w(t)/∂y. The mean value of τx is expressed as τw. The fluctuating velocity and

wall shear-stress components are respectively written as u′, v′, w′ and τ ′x, τ
′
z, whereas the rms

values of the wall shear stress fluctuations are expressed as τx,rms and τz,rms. The inner region

scaling is based on the wall-viscous unit δν = ν/uτ , generally using the plus notation. The

outer region scaling is based on the boundary layer thickness δ, defined as the wall-normal

distance where the mean streamwise velocity reaches 99% of the free-stream value.
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FIG. 1. (a) Budget terms of the turbulent kinetic energy equation. Current simulation (lines)

compared to data from Schlatter and Örlü [37] (symbols). (b) Profiles of mean streamwise velocity

and root mean-squared streamwise velocity fluctuations for different Reynolds numbers. Symbols

from [37] and [21].

III. RESULTS

A. Statistics for the wall shear-stress fluctuations

The mean friction coefficient Cf = τw/(0.5ρU
2
∞), plotted in Figure 2(a) and directly

related to the mean skin friction velocity uτ = U∞
√
Cf/2, has been validated by comparison

to well-documented empirical correlations based on extensive experimental data [33], and

the error is below 4% for Reθ > 900. The root mean-squared fluctuations of the streamwise

shear stress, shown in Figure 2(b), are in good agreement with the correlation proposed by

Örlü and Schlatter [34]:

τ+x,rms = τx,rms/τw = 0.298 + 0.018 lnReτ , (1)

which is based on previous computational and experimental results and evidences the in-

fluence of the outer structures on the inner region. This expression also fits channel data

[15] with fair agreement. A relation between Reθ and Reτ , used in Figures 2(a) and 2(b),

is given in Section II. The peak found in Figure 2(b) is related to the turbulence transition

and the tripping method and is also present in the results of Schlatter and Örlü [38]. The
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transition effects on this variable do not seem to be of relevance for Reynolds numbers above

Reτ = 250.
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FIG. 2. (a) Reynolds number dependence of the mean friction coefficient compared against empiri-

cal correlations by Nagib et al. [33]. Dashed lines represent an uncertainty of ±4%. (b) Root-mean

squared fluctuations of the streamwise wall shear-stress τ+x,rms as a function of Reynolds number.

In addition, the current simulation data suggest that the spanwise mean shear-stress

fluctuations τ+z,rms satisfy a similar logarithmic dependence on the Reynolds number. The

only difference between the expressions fitting τ+x,rms and τ+z,rms seems to be a constant

displacement, as seen in Figure 3(a):

τ+z,rms = 0.164 + 0.018 lnReτ . (2)

The dependence of τx,rms and τz,rms on Reynolds number seen in Figure 3(a) suggests

that the influence of the outer motions is similar on τ+x,rms and τ+z,rms, as the curves have the

same logarithmic slope. On the other hand, the different constants, 0.298 in Equation ((1))

and 0.164 in Equation ((2)), suggest that the baseline levels of skin friction fluctuations are

not the same in the x and z directions, since the near-wall flow field is considerably different

for the streamwise and spanwise instantaneous velocity components, u and w respectively.

The expression for the time-averaged turbulence dissipation rate ε = ν
∂u′i
∂xj

∂u′i
∂xj

simplifies

at the wall, due to the no-slip and incompressibility conditions, to become a function only of

the wall shear stress fluctuations: ε+ =
(
τ+z,rms

)2
+
(
τ+z,rms

)2
(see book of Pope [36]), where
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the plus notation refers to inner variable scaling. It is clear from this relation that the wall

shear stress fluctuations could have never been zero. Furthermore, the Reynolds number

dependencies ((1)) and ((2)) of the mean squared wall shear-stress fluctuations can be used to

write an expression for the mean wall dissipation rate. Figure 3(b) compares this expression

with DNS data from turbulent channel and boundary layer flows, and shows that it remains

accurate within 5% error, at least for the available moderate Reynolds numbers lower than

about Reτ = 4000. The dispersion of the ε values from the simulation data is higher than

the dispersion of τx,rms and τz,rms because of the square operator in the relation between

dissipation and shear stress components. It is important to remark that this dispersion is

not related to the previous simplification made to the dissipation expression, which is exact

at the wall. An algebraic dependence on Reτ for the wall dissipation rate can be of relevance

to turbulence modelling in order to improve the boundary condition prescription for ε.
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FIG. 3. (a) Root-mean squared fluctuations of the streamwise and spanwise shear stress at the wall.

In dashed lines, correlations in the form τ+rms = C + 0.018 lnReτ where C is 0.298 for τx and 0.164

for τz. The symbol legend can be found in the right Figure. (b) Dissipation on boundary layers and

channels. The shaded area represents an uncertainty of ±5% from the expression ε+ = τ ′2x + τ ′2z

using the previous correlations.

The shape of the histograms of the fluctuations of τx, τz shows important differences

between them. While the signal of τx is highly (positively) skewed and partly follows a

log-normal distribution, the fluctuations of τz are not preferentially positive or negative.

Alfredsson et al. [3] provide a detailed discussion on the log-normal probability distribution
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of τx. The kurtosis of τz, normalised with the root-mean squared fluctuations, presents high

values around K = 7−8 (a normal Gaussian distribution has K = 3), meaning that extreme

events have an increased probability. The numerical value of the statistical moments are

included in Table I. The current statistical convergence does not allow to establish a clear

dependence of skewness and kurtosis on the Reynolds number. Additionally, the last probe

station (Reθ = 1820) seems to be affected by the outlet, which may lead to an under-

prediction of the distribution higher moments.

Reθ Reτ S(τ ′x) K(τ ′x) K(τ ′z) σ(ψτ ) K(ψτ ) P (τx < 0)

1090 409 0.94 4.40 7.20 15.14 13.89 4.71× 10−4

1280 465 0.98 4.62 8.29 15.40 18.75 6.21× 10−4

1470 521 0.98 4.47 7.10 15.16 14.00 4.02× 10−4

1650 574 1.03 4.90 8.94 15.35 17.18 5.28× 10−4

1820 625 1.02 4.84 7.99 15.20 13.36 4.38× 10−4

[Channel] Reτ = 720 1.02 4.97 9.57 - - 6.23× 10−4

TABLE I. Statistical properties of the wall shear-stress components τx, τz and yaw angle ψτ : skew-

ness S(·), kurtosis K(·) and standard deviation σ(·). The last row presents results, for comparison

purposes, from the channel flow simulation of Hu et al. [15].

The probability distribution function (PDF) of these variables (Figures 4 and 5) suggest

that the probability of extreme events becomes higher with increasing Reθ, as the probability

density in the distribution tails becomes higher, in accordance with previous studies. To

eliminate the Reτ effects on the variance, the PDF can be normalised by subtracting the

mean and dividing by the rms value (Figures 4(b) and 5(b)). This provides a better collapse

of the tails but there is still some dependence on the Reynolds number, especially for the

extreme positive events of τx, suggesting that the higher moments increase even further with

Reθ.

Insufficient resolution of experimental data has sometimes led to suggest that there are

no flow reversals at the wall, τx < 0 [8, 46]. However, the present results confirm a small

non-zero probability for extreme events where τx < 0, in the order of 5× 10−4, as shown in

Table I, which is consistent with previous numerical studies [15, 25].
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(a) (b)

FIG. 4. (a) Probability distribution function of the streamwise shear-stress for different Reynolds

numbers. The PDF of τ+x is compared to a log-normal distribution. (b) PDF of the streamwise

shear-stress fluctuations, made non-dimensional using the rms value, which produces a better

collapse of the curves.

(a) (b)

FIG. 5. (a) Probability distribution function of the spanwise shear-stress for different Reynolds

numbers. The PDF of τ+z is compared to a Gaussian distribution. (b) PDF of the spanwise shear-

stress fluctuations, made non-dimensional using the rms value, which produces a better collapse of

the curves

The relation between the components of the instantaneous shear stress vector ~τ(t) =

[τx(t), τz(t)] can provide an estimation of the yaw angle of the inner layer fluctuations. In
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channel flows, Jeon et al. [18] found that events with shear-stress yaw angles outside the

range −45◦ to 45◦ have a very small probability. Indeed, the probability distribution of the

shear-stress yaw angle ψτ (t) = atan(τz(t)/τx(t)), shown in Figure 6(a), confirms that the

probability of events with angles above 45 degrees is small, below 7 × 10−4 (see Table I).

However, the normalised kurtosis of this distribution is very high, around 18, meaning that

the wall shear stress signal is dominated by rare events with extreme angle values, explaining

the occurrences of τx < 0. Since the probability density of ψτ > 120◦ is much smaller than

the probability of ψτ ≈ 90◦, the negative values of the streamwise shear stress fluctuations

may be associated with high spanwise fluctuations τz. These results are consistent with the

findings of [25] in turbulent channel flows.

To further investigate this, Figure 6(b) shows the joint PDF of the vector magnitude

and angle of ~τ(t) = [τx(t), τz(t)], which presents very interesting features. In first place,

the probability of events with very low shear-stress magnitude ||τ || is negligible, supporting

the view that the zero and negative events of τx must be associated with a non-negligible

spanwise fluctuation τz. Secondly, the relative maximum of the PDF for high values of |ψτ |

is related to a value of ||τ || which is close to its mean value. The probability of finding high-

magnitude fluctuations is maximum when the shear-stress vector is aligned with the mean

flow direction, |ψτ | = 0. Recently, a similar analysis on micropillar imaging measurements

of the wall-shear stress was performed in [4], which also suggest that the probability of high

magnitude events decreases dramatically when the yaw angle is higher than 10− 20◦. The

total probability of backflow events ( |ψτ | > 90◦ ) reported by these authors, about 0.05%,

is in the order of the values found in our DNS (shown in Table I). It is also interesting

to compare the analysis presented here for a zero pressure-gradient boundary layer with

the results of [45] for a wing section, which presents a strong adverse pressure gradient.

These authors suggest that the probability of finding backflow events is much higher in

adverse pressure gradient conditions. Moreover, for increasing values of the adverse pressure

gradient, their wind rose histograms predict a statistically weaker alignment of the wall

shear-stress vector with the streamwise direction.

The yaw angle statistics and the wall dynamics may be related to each other via the

turbulence coherent structures found in the inner and buffer regions. The holographic mi-

croscopy study of Sheng et al. [39] suggested that the most probable coherent structure

occurrences in the near-wall region are pairs of counter rotating streamwise vortices. In our
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(a) (b)

FIG. 6. (a) Probability distribution of the angle formed between the shear-stress vector and the

streamwise direction. The PDF of ψτ is compared to a Gaussian distribution for reference. (b)

Two-dimensional probability density function of the norm and angle absolute value of the wall

shear-stress vector.

simulation, iso-contours of the λ2 criterion [19], with λ+2 = −0.01 restricted to the region

y+ < 100, suggest that this region is mainly populated by streamwise vortices, as shown

in Figure 7(a). A streamwise vortex induces velocity fluctuations in the y and z directions

and, if the vortex is attached to the wall, this may have an imprint on the spanwise com-

ponent of the shear-stress. Indeed, Figure 7(a) suggests that the location of vortices might

be correlated with regions with high |ψτ |. In an arbitrary cross plane y − z at Reθ = 1500,

an example of which is shown in Figure 7(b), the fluctuating velocity field reveals locally

high near-wall spanwise velocity fluctuations w′ in locations below the centre of attached

streamwise vortices. If these passing quasi-streamwise vortices are tilted with respect to the

x direction, they can induce small negative fluctuations to the streamwise component of the

wall shear-stress. These kind of structures, also suggested by Lenaers et al. [25], may explain

the negative events of τx and the yaw angle statistics.

We close this section with temporal energy spectra of the wall shear-stress components

Eτx , Eτz , presented in Figure 8 as functions of the variable ω = 2πf , where f is the time

frequency. The time resolution is approximately ∆t+ = 0.12, which gives a maximum

Nyquist frequency of ω+
max = 26. In order to improve the statistical convergence of the

energy spectra, the time period T+ = 6000 was split and windowed in 16 intervals with
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(a) (b)

FIG. 7. (a) Iso-contours of λ+2 = −0.01 in the region y+ < 100 superimposed on contours of

the wall shear-stress yaw angle, plotted in the x− z plane, showing good correlation between the

structures and regions with high local yaw angle. (b) Contours in a y − z plane of λ2 against a

planar velocity vector field at Reθ = 1500. One can see that high magnitude of spanwise velocities

close to the wall are due to the presence of quasi-streamwise vortices.

50% overlap, which results in a frequency resolution of ∆ω+ = 8.2× 10−3. Additionally, the

energy spectra were computed and averaged over 64 positions in the spanwise direction.

In the curves of shear-stress energy spectra, the medium and high frequency regions

are in good collapse for different Reynolds numbers when using inner variables (uτ and

ν), as seen in Figure 8. In the plots, the power spectra have been pre-multiplied by the

frequency variable ω to give them squared energy dimensions. Örlü and Schlatter [34] also

found that these curves collapse for medium and high frequencies but suggested that the low

frequency region contains more energy when the Reynolds number increases. This trend is

very slow and, for the limited range of Reynolds numbers covered in our simulations, this

dependence is not well captured in Figure 8, due to the limited low frequency resolution of

the spectra. The mean statistics were averaged over a longer period and, in particular, the

rms fluctuations τx,rms and τz,rms, equal to the integral of the corresponding energy spectra

in Figure 8, increase logarithmically with Reτ , as seen in Figure 3(a). This increasing trend

is not manifest in the low frequencies of the energy spectra in Figure 3(a) because the time

series which have produced them are shorter by a factor of 2 than the time series that we

used to estimate τx,rms and τz,rms. Additionally, the statistics τx,rms and τz,rms were averaged

over all the nodes in the spanwise direction, while we only used 64 temporal probes equally

spaced in the z direction to average the energy spectra.
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(a) (b)

FIG. 8. Temporal energy spectra of (a) τx and (b) τz for several Reynolds number.

Hutchins and Marusic [16] suggest that the peak of the premultiplied energy spectra of

the streamwise velocity is related to the size of the streamwise streaks which populate the

inner region of the boundary layer. Since E11ω has energy dimensions, the peak frequency

ωmax may be an indicator of the most energetic turbulence scales, presumably linked to the

velocity streaks which dominate the inner region dynamics. The peak frequencies for the

spectra of the shear-stress components are ω+
x = 0.07, ω+

z = 0.26. Using the convection

velocity of the streamwise component of the wall shear stress, computed in Appendix A,

these peak frequencies can be related to the following streamwise wavelengths Λ = 2πUc/ω:

Λ+
τx ≈ 1030, Λ+

τz ≈ 300 and Λ+
pw ≈ 240. As expected, for the streamwise wall shear-stress, the

energy-containing scale Λ+
τx is much larger than those of the spanwise wall shear-stress and

wall pressure. Its value, around 1000 plus units, is consistent with those found in previous

studies, as Hutchins and Marusic [16].

IV. MODEL FOR THE VELOCITY FLUCTUATIONS DEPENDENCE WITH

THE WALL-SHEAR STRESS

A. Theoretical description

In the previous section, we have investigated the wall shear stress fluctuations and their

mixed scaling. Now, the focus of the study is how the intermittency of the wall shear stress
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fluctuations may modify the structure function of fluctuating velocities inside the boundary

layer and may induce a mixed scaling for the velocity fluctuations due to the attached-eddy

mechanism. We propose an analogy with the theoretical study of Kolmogorov [23], who

suggested that the dissipation rate fluctuations in free-shear turbulence could affect the

inertial range of turbulence energy spectra. In the case of turbulence boundary layers, as

suggested in Vassilicos et al. [44], the wall shear stress fluctuations are correlated with the

turbulence fluctuations at a distance from the wall by wall-attached eddies, according to

Townsend’s hypothesis. Therefore, the intermittent fluctuation statistics of the former can

be related to the energy spectra of the latter, in the same way that Kolmogorov [23] derived

the effect of the dissipation rate’s intermittency on the turbulence energy spectra.

The main motivation for this model is to write a simple functional relation which can

illustrate how the intermittency of the wall shear-stress can modify the structure function

of the velocity fluctuations far away from the wall. Such hypothesis arises from recent

observations by Vassilicos et al. [44], who pointed out that the slope of the streamwise

energy spectra E11 may deviate from the scaling k−11 predicted by Townsend [43] (where k1

is the streamwise wavenumber) and may follow a slighlty steeper slope. A model based on

the fluctuating wall-shear stress statistics could therefore extend the theory developed by

Townsend [43] and Perry et al. [35] and take in account the intermittent flutuations of the

wall shear-stress in its formulation. The corrections to the energy spectra predicted by our

functional model can complete the modified Townsend-Perry spectra model developed by

Vassilicos et al. [44].

According to the Townsend-Perry attached-eddy hypothesis [35, 43], in the wall-normal

range δν � y � δ of the boundary layer, the turbulence energy spectra are dominated

by ”attached” eddies of wall-normal size r varying in the range y < r � δ. If the skin

friction is constant, the attached-eddy region of the energy spectra would only depend on

u2τ and k1, so that E11(k1, y) ∼ u2τk
−1
1 for

1

δ
� k1 <

1

y
, or an equivalent structure function

〈(u′(x+ r, y)− u′(x, y))2〉 ∼ u2τ ln(r). However, since the shear stress is an intermittent

signal, its fluctuation statistics may also appear in the formulation of the energy spectra.

Following Kolmogorov [23], to account only for the streamwise scales greater than a given

length r, a filtered signal u2∗ can be defined by applying the following scale-dependent filter

to the wall shear stress τx/ρ (see Figure 9(a)):
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u2∗ (x, z, r, t) =
1

2r

∫ x+r

x−r
ν
du(x, z, t)

dy

∣∣∣∣
wall

dx . (3)

In Appendix A, we show that the temporal and spatial scales of the wall shear stress

τx can be related by a flow convection velocity, U+
c ≈ 11, relatively constant for all wave-

numbers. The analysis developed here can therefore be applied indiscriminately to both

frequency and streamwise wavenumber spectra for wavenumbers k1 � 1/δ given that, al-

though the turbulent boundary layer is a spatially developing flow, local homogeneity can

be assumed as a good approximation in a region of size similar to δ. The filtering operator

defined in Equation (3) for streamwise spatial separations r can also be written in terms of

a time filter width τ = r/Uc. Structure functions of velocity can also be formulated in terms

of time separations τ which are equal to the spatial separation r divided by the local con-

vection velocity of the streamwise velocity fluctuations. This different convection velocity is

approximately equal to the local mean flow velocity at distances higher than y+ ≈ 40 from

the wall [10].

For filtering times τ or lengths r large enough to neglect the statistical effect of negative

wall-shear stress events, the probability distribution function (PDF) of u2∗ can be assumed

to be log-normal, at least for the low-order moments. Therefore, if we define ξr = ln (u2∗/u
2
τ ),

the PDF of this variable is taken to be:

P (ξr) =
1√

2πσr
e−(ξr−µr)

2/2σ2
r , (4)

where µr and σr are the mean and standard deviation (i.e. rms fluctuations) of the log-

normal variable, with µr = σ2
r/2 to satisfy the constraint 〈u2∗〉 = u2τ . For small filter widths,

the PDF of the filtered wall shear-stress, shown in Figure 9(b) for τ = 0.7ν/u2τ , deviates

from the log-normal distribution because of the small yet non-negligible presence of negative

events. Nevertheless, the negative event contribution becomes smaller as the filter width

increases and Figure 9(b) shows that, for sufficiently high filter times, the PDF becomes

approximately log-normal, which validates the hypothesis behind Equation (4). Still, the

log-normal distribution overestimates the value of the PDF for very high positive events, but

these are rare intense events with a combined probability of occurrence that is less than 1%

and which therefore has little impact on the lower order moments. Also, the probability of

extreme positive events may increase with Reτ , as suggested in Figure 4, and, thus, the PDF

may become more similar to the log-normal distribution for increasing Reynolds numbers.
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FIG. 9. (a) Filtered time signal with different filter-width τ for a given x, z, at Reθ = 1420. The

first line τ < u2τ/ν represents the unfiltered signal from the simulation. (b) Probability distribution

model for the signal at Re = 1420 filtered over the time-lengths τ = τ1 = 7.8δν/Uc (τ1 = 0.7ν/u2τ )

and τ = τ2 = 220δν/Uc (τ2 = 21ν/u2τ ). Dotted lines represent the log-normal distributions with

the same standard deviation than the previous cases: for τ1, σ
2
τ = 0.152 and for τ2, σ

2
τ = 0.114.

Additionally, we can assume, as Kolmogorov [23] did, that the standard deviation σ2
r

decays logarithmically with the filter width δ/r, i.e. σ2
r = A + µ ln(δ/r) when the filtering

operator is applied in space, or equivalently σ2
τ = A+ µ ln

(
δ
Ucτ

)
when it is applied in time.

The parameter µ is positive and, by hypothesis, constant for different Reynolds numbers and

the parameter A can therefore depend on the macrostructure of the flow [23]. Given that

large eddies are attached and therefore feel the wall, A can depend on the Reynolds number

Reτ . The parameters A and µ which fit the DNS curves at each Reynolds number have

been obtained by minimising the least-square error in the interval 100 < τUc/δν < 1100.

Alternatively, a power-law decay was considered, but the fit of the simulation data was

considerably worse.

The optimal value obtained for µ is the same for both Reynolds numbers, suggesting that

the hypothesis of constant µ can be accepted as a good approximation. For the available

set of data at Reθ = 1090 and Reθ = 1470, it turns out that σ2
τ = A + µ ln

(
δ
Ucτ

)
does

not collapse our data if A does not vary with Reτ . For these moderate Reynolds number

conditions, if we write σ2
τ = A + µ ln (Reτ ) + µ ln

(
δν
Ucτ

)
, which follows directly from the
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FIG. 10. (a) Dependence of the variance of the filtered shear stress fluctuations, σ2τ , on the filter

time-length τ . (b) Deviation between the moment 〈
(
u2∗
)n〉 and the nth raw moment of a log-normal

distribution with same στ , for several values of n. Reynolds numbers: Reθ = 1090 (dashed line)

and Reθ = 1470 (solid line).

previous expression and δ/δν = Reτ , then the form σ2
τ = A′ + µ ln

(
δν
Ucτ

)
does fit and

collapse the data in the range 100 < τUc
δ
< 1100 with A′ = 0.331 and µ = 0.041, as seen

in Figure 10(a). The relation between A and A′ is therefore given by A = A′ − µ lnReτ .

For higher Reynolds numbers, the scaling for the parameter A is expected to change, since

the current one can predict non-physical negative values of σ2
τ for large values of τUc/δν if

the Reynolds number is sufficiently high. Therefore, the parameter A′ may be in general a

function of both inner and outer scales, δν and δ and vary away from A′ = 0.331 at values

of Reθ very different from Reθ = 1090 and Reθ = 1470.

The main hypothesis of the current model is a generalisation of the Townsend-Perry

attached-eddy hypothesis as follows: the normalised second order structure function of

streamwise velocity at a position y, 〈(u′(x+ r, y, t)− u′(x, y, t))2〉/〈(u′(x, y, t))2〉, is a func-

tion of u2∗ (x, r, t) /u2τ , at the same separation and filter scale r as long as y � r � δ.

In the most general way, the non-dimensional structure function

〈(u′(x+ r, y, t)− u′(x, y, t))2〉/〈(u′(x, y, t))2〉 can be expressed as an arbitrary non-

dimensional function of all the statistical moments of the distribution of u2∗ (x, r, t).

However, we assume that the low order moments dominate, for which the probability
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distribution can be approximately assumed log-normal (up to the 5th moment). Since the

moments of a log normal distribution can be related to each other by an analytical algebraic

expressions, the non-dimensional function, f , can therefore be simplified to depend on a

single moment n:

〈(u′(x+ r, y, t)− u′(x, y, t))2〉
〈(u′(x, y, t))2〉

= f

(〈[
u2∗ (x, r, t)

u2τ

]n〉)
. (5)

The left hand side contains information exclusively on the fluctuating velocity statistics at

y and the right hand side is a function of the filtered wall shear-stress fluctuations only. The

time-average operation eliminates the time dependence and, if the flow may be considered

locally homogeneous in a streamwise distance of the order of δ, then the dependence on

x disappears too. For a spatially developing boundary layer, one could argue that the

space dependence of the Reynolds number Reτ is weak compared to the range of interest

y < r � δ, and the equivalence between time and space averages, using the convection

velocity, still holds locally.

Under the assumption of a log-normal distribution for the filtered wall shear-stress, a

simple integration provides an exact expression for the nth moment of the distribution. If

σ2
r = A+µ ln(δ/r) as previously suggested, with A = A′−µ lnReτ (where A′ is approximately

a constant), the expression for the moments satisfies the following scaling:

〈[
u2∗ (x, r, t)

u2τ

]n〉
=

∫ ∞
−∞

ξnP (ξ)dξ = e
n(n−1)

2
σ2
r ∼ (r/δ)−µ

n(n−1)
2 , (6)

where the proportionality coefficient depends on the Reynolds number because A is a func-

tion of Reτ . If the function f in equation (5) can be chosen to be a power law with exponent

q, which means that one value of n will be best adapted for this, then the resulting expression

is:

〈(u′(x+ r, y, t)− u′(x, y, t))2〉
〈(u′(x, y, t))2〉

= βs

(〈[
u2∗ (x, r, t)

u2τ

]n〉)q
∼
(r
δ

)−µq n(n−1)
2

. (7)

This expression can be written in an equivalent way using the temporal filter τ , since

the spatial and temporal scales on the left-hand side are related via the convection veloc-

ity by τ = r/Uc(y). This relation for the structure function is different from the relation

τ = r/Uc,wall for u2∗. However, if Equation (6) holds, the difference in the convection veloci-

ties only affects the proportionality coefficient in Equation (7) without affecting the power
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exponent. Indeed, if the left hand side is written as a function of τ = r/Uc(y), the value

of τ for which the right hand side is evaluated must be scaled with the factor Uc(y)/Uc,wall.

In accordance with Equation (6), this just introduces a new factor
(

Uc(y)
Uc,wall

)−µq n(n−1)
2

on the

right hand side of the equation which can be absorbed in the proportionality coefficient as

follows:

〈(u′(x, y, t+ τ)− u′(x, y, t))2〉
〈(u′(x, y, t))2〉

= βt

(〈[
u2∗ (x, τ, t)

u2τ

]n〉)q
∼ τ−µq

n(n−1)
2 , (8)

where βt = βs

(
Uc(y)
Uc,wall

)−µq n(n−1)
2

. In Equation (8), the filtering operator in the definition of u2∗

(see Equation (3)) is now applied in time, with time filter width τ . The factor Uc(y)/Uc,wall

is always higher than 1 and reaches a maximum value of Uc(y)/Uc,wall ≈ 2 at δ.

Let’s assume there exists a particular pair n = nopt, q = qopt which provides the optimal

fit for relation (8). According to Equation (7), if the distribution of the filtered shear-stress

fluctuations is log-normal, other pairs n = n∗, q = q∗ can provide the same optimal prediction

as long they satisfy the relation:

q∗n∗(n∗ − 1) = qoptnopt(nopt − 1) . (9)

It is reasonable to choose n to be larger than 1 (which means that q must be strictly

negative), as we expect the powerful events to have more of a say than the weak ones. We

cannot choose n = 1 as
〈
u2∗
uτ

〉
= 1 2, but we can try n > 1 and q < 0. If the present model

holds, the relation between structure function and filtered shear-stress signal would modify

the slope in the streamwise energy spectrum in the relevant range of wave-numbers. An

inverse relation q = −1, with n > 1, predicts E11(k1, y) ∼ k
−1−µn(n−1)

2
1 (where 1+µn(n−1)

2
> 1)

for 1
δ
� k1 � 1

y
.

Summarizing, our model is a generalisation of the attached-eddy hypothesis in the form

of a relation between a particular nth moment of the filtered wall-shear stress fluctuations

and the structure function of fluctuating velocity at a position y, where the filter width

and the structure function separation length r are equal. Based on simple mathematical

assumptions, the model suggests that the shear stress fluctuations may modify the slope of

the energy spectrum predicted by the Townsend-Perry theory [35, 43] in the attached-eddy

range.

2 There is a mistake at this point in Section 5 of Vassilicos et al. [44].
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B. Validation of the model

The proposed validity range y < r � δ for the model in the previous subsection’s analy-

sis needs to take into account the fact that the wall structures are highly anisotropic. It is

therefore necessary to find an appropriate way to compare the streamwise separation scale

r = τu(y), and the wall-normal distance y. Figure 11(a) shows the temporal cross-correlation

function between fluctuating wall shear-stress and streamwise velocity fluctuations at dif-

ferent y locations and temporal separations τ . The cross-correlation curves were computed

using the time-probe signals described in Section II and the results were averaged over time

and the spanwise direction. This cross-correlation has a well-defined peak which is located

at an increasing time-lag τ for increasing values of y. Figure 11(b) and previous author’s

data [29, 31] suggest that the time lag of the correlation maximum, τpeak, scales as y/ū(y).

Indeed, the inclination angle θL = atan [y/ (τpeakū(y))] is found to be approximately con-

stant in our simulation, within the range 12-14 degrees, and was estimated to be about 14.1

degrees by Mathis et al. [31]. Although θL may or may not represent an actual physical

angle of the instantaneous organised motions, the factor 1/ tan(θL), in our model, allows to

relate wall-normal distance with the streamwise wavenumber or time frequency, revising the

attached-eddy range to cot(θL)y � τu(y)� cot(θL)δ.

-2 -1 0 1 2 3 4 5
τU∞/δ99

0

0.2

0.4

0.6

0.8

1

ρ
x
x
(y

0
,y
)

y/δ = 0.01
y/δ = 0.03
y/δ = 0.06
y/δ = 0.08
y/δ = 0.11
y/δ = 0.14
y/δ = 0.18
y/δ = 0.27
y/δ = 0.53

(a)

0 0.2 0.4 0.6 0.8 1
y/δ99

0

5

10

15

20

θ
L
[d
eg
]

Reθ = 783
Reθ = 992
Reθ = 1190
Reθ = 1379
Reθ = 1470
Reθ = 1560
Reθ = 1650
Reθ = 1820

(b)

FIG. 11. (a) Cross-correlation between the shear stress and the streamwise velocity fluctuations

at a distance y from the wall in a turbulent boundary layer at Reθ = 1470. (b) Delay angle

θL = atan (y/τpeaku(y)) for different heights and Reynolds numbers.
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Figure 12 gives evidence that for the straightforward choice q = −1 there exists an

optimal value of n∗ in 1 < n <∞ which can produce an approximately constant region for〈[
u2∗(x,τ,t)

u2τ

]n〉
〈(u′(x, y, t+ τ)− u′(x, y, t))2〉, as per Equation (8), over the range cot(θL)y <

τu(y) � cot(θL)δ. The expected range of validity is indicated in Figure 12 with vertical

dotted lines. The lower bound is located at τu(y)/y = 4 since cot(θL) ≈ 4 for θL ≈ 14 deg.

The validity of the Townsend-Perry hypothesis is expected to fail in the outer region of the

flow, which may be assumed to start around y/δ ≈ 0.3− 0.4 [20, 36]. Therefore, the upper

bound for the model can be estimated at τu(y)/y = 0.4 cot(θL)δ/y, which takes different

values depending on the y position and Reτ .

The optimal value of the model coefficient n∗ for each y and Reτ , with fixed q = −1,

can be computed by finding the best fit for Equation (8) in the range of validity described

above. Figure 13(a) shows that the exponent n∗ which provides the best fit for the model

when using q = −1 is always between 3 and 3.5 and that it is reasonably constant for several

y positions and the two Reynolds numbers Reθ = 1090 and Reθ = 1470. Such values of

n for q = −1 are very close to the one (n = 3) inferred by recent PIV measurements of

E11(k1) [41] and our DNS value µ = 0.041. However, as already mentioned, the statistics

of the filtered shear-stress fluctuations are approximately log-normal, at least for the lower

moments, meaning that Equation (9) is expected to be satisfied within good approximation.

Therefore, for any other value of q = q∗∗ < 0, the corresponding optimal value of n = n∗∗ is

approximately related to n∗ by n∗∗(n∗∗ − 1) = −n∗(n∗ − 1)/q∗∗ and the model relation (8)

would remain equally well satisfied.

The multiplicative factor βt in Equation (8) remains approximately constant for the

available range of y and Reθ, as seen in Figure 13(b). For the current results, βt is bounded

in the interval βt ∈ [2.4, 2.6]. The highest values found correspond to the positions y+ = 150

(at Reθ = 1090) and y+ = 295, both locations where y/δ > 0.35 and where the validity of

the model may consequently not hold. Otherwise, for all the other cases, the value of βt was

found to be within ±4% of βt = 2.45.

In summary, the constant region produced by the curves in Figure 12 suggests that the

model works well over the range 1.2 cot(θL)y < τu(y) < 0.4 cot(θL)δ, consistently with

Townsend’s wall-attached eddy range. Furthermore, fixing q∗ = −1, the model parameter

n∗ in Equation (8) is found to be approximately constant between 3 − 3.5 for several wall-

normal positions and two Reynolds numbers, Reθ = 1090 and Reθ = 1470 (see Figure
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FIG. 12. Structure function multiplied by F = 1 (red) and F =
(〈[

u2∗(x,τ,t)
u2τ

]n〉)−q
(blue), with

q = −1 and optimal n (the optimal value of n is given in Figure 13(a)). Profiles at y+ = 100 (solid

line) and y+ = 150 (dotted line), for Reθ = 1090 (left) and Reθ = 1470 (right). The constant

region shown by the model suggest a validation of the theory in the wall-attached range. Vertical

lines bound the region between τ = cot(θL)y/u(y) = 4y/u(y) (- - -) and τ = 0.4 cot(θL)δ/u(y) =

1.6δ/u(y)(—).

13(a)). Our model implies that the slope of the energy spectra in the wall-attached eddy

range is modified by the shear stress fluctuations to E11(k1) ∼ k
−1+qµn(n−1)

2
1 . In particular,

with q = −1 and n ≈ 3, the model suggests that the energy spectra may take a form

close to E11(k1) ∼ k−1.121 . It is not realistic to check this prediction with our DNS data as

Reθ is not sufficiently high to have a clearly defined attached-eddy region in our spectra.

However, PIV measurements at much higher values of Reθ do seem to report such spectra

in the log-layer region of turbulent boundary layers [41]. These authors have recently found

a wavenumber exponent between -1.1 and -1.2 in the energy spectra of boundary layers with

Reθ = 8000− 20000.

V. CONCLUSION

In this article, we have studied and extended the mixed scaling of the wall shear-stress

fluctuations and we have investigated the relation between filtered wall-shear stress fluctu-
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FIG. 13. (a) Optimum model parameter n for the case q = −1. Values computed for different

y positions and different Reynolds numbers. (b) Value of the model parameter βt for different y

positions and different Reynolds numbers when using the previous optimal value of n∗.

ations and fluctuating velocities inside the boundary layer. As a result, we have proposed a

model which extends the wall-attached eddy theory of Townsend [43] and Perry et al. [35]

to take into account the wall shear-stress fluctuations.

The root mean-squared fluctuations of the wall shear-stress streamwise component are

in good agreement with the correlation proposed by Örlü and Schlatter [34], τx,rms =

0.245 + 0.018 lnReτ . Moreover, the current results do not only support this correla-

tion, but suggest that it can also be extended to the spanwise component as follows:

τz,rms = 0.164 + 0.018 lnReτ . These estimations can be combined into an explicit corre-

lation for the wall turbulence dissipation rate ε+w(Reτ ). This correlation has been found to

be in good agreement with extensive reference data from both turbulent boundary layers

and channel flow. An accurate prediction of εw, as a function of Reτ , may be very useful in

some turbulence models which require the specification of wall boundary conditions for the

turbulence dissipation rate.

The probability distribution function (PDF) of τx and τz suggests that the extreme events

of the wall shear-stress may have higher probability for increasing Reynolds numbers. Also,

the PDF curves collapse better if they are scaled using the standard deviation instead of

the mean value. In our DNS dataset, the occurrence of negative events of τx has a non-

negligible probability which may seem to increase with increasing Reτ , although the current
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data are not sufficient to conclude about this trend. When the streamwise wall-shear stress

fluctuations are filtered in time, the probability of negative values of τx rapidly decreases

for increasing filter times, since these negative values are associated to very extreme events.

The PDF of the filtered signal approximates a log-normal distribution in better agreement

than the unfiltered one and the variance of the time-filtered wall shear-stress fluctuations

decays as a logarithmic function of the filter width τ .

The angle ψτ formed between the instantaneous wall shear-stress and the streamwise

direction x follows a quasi-normal distribution with high kurtosis. Consequently, it is ex-

tremely unlikely to find events with a value of ψτ much higher than 90 degrees. This result

indicates that the instantaneous negative events of τx are essentially associated with high

instantaneous values of spanwise wall shear-stress. Vortex visualisations using the negative

isocontours of λ2 and instantaneous velocity vector fields suggest that the high angle events

may be related to occurences of quasi-streamwise vortices passing over the wall. If these

vortices are tilted with respect to the streamwise orientation, they may induce negative

values of τx, which could explain the statistical findings.

Finally, a theoretical model following section 5 in Vassilicos et al. [44] was proposed

to relate filtered skin friction fluctuations at the wall and fluctuating velocities inside the

boundary layer. This study is inspired by the theoretical analysis of Kolmogorov [23]. The

theoretical model was initially formulated using spatial correlations and spatial averaging

operators. However, the temporal and spatial wall-shear stress fluctuations can be related

by defining a convection velocity Uc (see Appendix A), which was found to be approximately

constant for all time-separations. This way, the model validation could be performed using

time averaging and temporal correlations instead of spatial ones.

The proposed functional model suggests that a particular moment of order n > 1

of the distribution of filtered skin friction fluctuations is related to the non-dimensional

second order structure function of fluctuating velocities, satisfying 〈(u′(x,y,t+τ)−u′(x,y,t))2〉
〈(u′(x,y,t))2〉 ∼(〈[

u2∗(x,τ,t)
u2τ

]n〉)q
with q < 0 for equal time-filter scales τ and time separations τ . This

relation is a good approximation in the range 1.2 cot(θL)y < τu(y) < 0.4 cot(θL)δ, where

θL ≈ 12− 14◦ is a delay angle which relates the wall-normal and streamwise statistic scales

in the near-wall region. The optimal value found for n when q = −1 is constant for several

y positions and two different Reynolds numbers, Reθ = 1090 and Reθ = 1470. For q = −1,

the optimal values of the parameter n are bounded within the range 3 to 3.5 for all values

26



of y and Reθ examined. The proportionality constant in the model relation, βt ≈ 2.45, is

also approximately constant for the different y and Reτ cases.

As suggested by Vassilicos et al. [44], the influence of the wall-shear stress fluctuations on

the fluctuating velocities of the boundary layer via attached-eddies can modify the slope of

the turbulence energy spectra. In particular, the results found for our range of y ∼ 100−150

and Reτ ∼ 1000 − 1500, with µ ≈ 0.04 and n ≈ 0.3, suggest that the streamwise energy

spectra might scale approximately as E11 ∼ k−1.121 (instead of −1) in the wall-attached

eddy range, where k1 is the streamwise wavenumber. The slope −1.12, instead of the

slope −1 predicted by the theory of Townsend [43] and Perry et al. [35], agrees with recent

PIV experiments of turbulent boundary layers by Srinath et al. [41]. This experimental

study suggests that the slope of the spectra takes values between −1.1 and −1.2 for Reθ =

8000 − 20000. Therefore, the intermittency of the wall shear-stress may indeed effectively

modify the energy spectra of the velocity fluctuations in the boundary layer.
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Appendix A: Convection velocity of the wall shear stress

According to the Taylor-hypothesis of frozen-turbulence [26, 27, 42], the spatial and tem-

poral evolution of the turbulent structures are correlated due to the mean-flow convection.

This way, the frequency variable ω can be related to a spatial wave-number in the stream-

wise direction kx by using a convection velocity Uc = ω/kx, presumably constant for all

wave-numbers and frequencies. Since the velocity at the wall is identically zero, Taylor’s

hypothesis is not valid in a rigorous sense, and the existence of a convection velocity for the

wall shear-stress must be further investigated. The convection velocity can be computed
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as the ratio between spatial separations rx and temporal lapses rt which maximises the

two-dimensional cross-correlation function ρ(rx, rt):

r∗x = Ucrt −→ ρ(r∗x, rt) =
u′(x+ r∗x, t+ rt)u′(x, t)

u′(x, t)u′(x, t)
is maximum for a given rt (A1)

Alternatively, it can be computed as the ratio between ω and kx which maximises the

power spectral density in the 2-D cross-spectra E(kx, ω). DNS data of Del Alamo and

Jimenez [10] suggest that, while the convection velocity of the small scales is similar to the

mean velocity above y+ ≈ 10 − 15, the convection velocity of the big scales is close to the

free-stream velocity even in the near-wall region and this results in a non-zero value for

the averaged convection velocity at the wall. Jeon et al. [18] and Choi and Moin [7] used

space-time autocorrelations and 2-D spectra in a turbulent channel at Reτ = 180 to confirm

the validity of Taylor’s hypothesis, and show that τx is convected with Uc = 0.53U∞.

In our DNS simulation, the convection velocity for the streamwise component of the wall

shear-stress was computed using Equation A1. The instantaneous value of τx was probed

at the whole wall plane over a period T = 1120δ99,0/U∞, with temporal resolution equal

to ∆t = 0.35δ99,0/U∞. The averaging operator defined in Equation A1 can be applied over

the total time-period but special caution must be taken when averaging over space, since

the boundary layer is a spatially developing flow. The results included here were averaged

over time, over the spanwise width and over an interval x+ ≈ ±1000 around every Reynolds

number position. The anal ysis was limited to the region Reθ = 800− 1800: lower Reynolds

number locations are still affected by the turbulence transition and the statistics of higher

Reynolds numbers positions are affected by the outlet. The convection velocity was only

computed for the streamwise shear stress component because, in the current simulation,

τx was the only variable collected simultaneously over time and space in the whole plane

y = 0. However, Jeon et al. [18] obtained similar convection velocities for the spanwise and

streamwise components of the shear-stress: Uc,τz = 0.57U∞ and Uc,τx = 0.53U∞.

Figure 14(a) shows 2-D contours of the space-time autocorrelation at Reθ = 1490, indi-

cating a clear trend for the maximum position r∗+x (r+t ). While the maxima are not exactly

following a straight line, the hypothesis of constant convection velocity for the wall-shear

stress seems to be a good approximation. The convection velocity, defined as Uc = r∗x/rt for

every rt, is shown for different Reynolds numbers in Figure 14(b), made non-dimensional
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(a) (b)

FIG. 14. (a) 2-D space-time autocorrelation of the streamwise component of the wall-shear stress,

at Reθ = 1500. (b) Convection velocity Uc as a function of the temporal separation rt, for different

Reynolds numbers.

using outer and inner velocities. For all the curves, there is a global minimum at r+t = 12

(r+x around 138), which may indicate that, in the inner region, these are the turbulence

scales advected at the lowest speed. Above r+t > 12, the convection velocity monotoni-

cally increases, at least up to r+t ≈ 70 − 80. This is consistent to the evidence reported

by Del Alamo and Jimenez [10], who suggested that the large scales in the inner region

were advected with a Uc similar to the free-stream velocity. Figure 14(b) suggests that

the collapse of the convection velocity curves for different Reynolds number collapse better

using the inner velocity uτ instead of the free-stream velocity U∞. However, the collapse

is not satisfactory and a clear decreasing trend with the Reynolds number is noticeable. A

mean convection velocity can be defined for every Reθ as the average over all the separa-

tion scales, and this averaged convection velocity slowly decreases with Reynolds numbers,

approximately as U
+

c = 12.18− 5× 10−4Reθ in our limited range of Reθ.
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