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The pair separation model of Goto and Vassilicos �New J. Phys. 6, 65 �2004�� is revisited and placed
on a sound mathematical foundation. A direct numerical simulation of two-dimensional
homogeneous isotropic turbulence with an inverse energy cascade and a k−5/3 power law is used to
investigate properties of pair separation in two-dimensional turbulence. A special focus lies on the
time asymmetry observed between forward and backward separations. Application of the present
model to these data suffers from finite inertial range effects and thus, conditional averaging on scales
rather than on time has been employed to obtain values for the Richardson constants and their ratio.
The Richardson constants for the forward and backward case are found to be �1.066�0.020� and
�0.999�0.007�, respectively. The ratio of Richardson constants for the backward and forward cases
is therefore gb /gf = �0.92�0.03�, and hence exhibits a qualitatively different behavior from pair
separation in three-dimensional turbulence, where gb�gf �J. Berg et al., Phys. Rev. E 74, 016304
�2006��. This indicates that previously proposed explanations for this time asymmetry based on the
strain tensor eigenvalues are not sufficient to describe this phenomenon in two-dimensional
turbulence. We suggest an alternative qualitative explanation based on the time asymmetry related
to the inverse versus forward energy cascade. In two-dimensional turbulence, this asymmetry
manifests itself in merging eddies due to the inverse cascade, leading to the observed ratio of
Richardson constants. © 2009 American Institute of Physics. �DOI: 10.1063/1.3059618�

I. INTRODUCTION

Lagrangian pair separation statistics are the vital ingre-
dient necessary to calculate concentration fluctuations and
concentration covariances which is important for studying
pollution dispersal, combustion processes, and the spread of
contaminants in a liquid or gas.1,2

One of the fundamental quantities in turbulent particle
dispersion is the mean square separation of an ensemble of
particle pairs ��2�t��,2 which will be studied in this article.

Conversely, turbulent mixing, which is the convergence
of particles that were further apart at an earlier time due to a
turbulent flow, can be regarded as being equivalent to time
inverted dispersion. Therefore, the underlying quantity of
mixing processes is the so-called backward dispersion, that
is, the distribution of particle separations ��2�t�� at a time t
for a prescribed separation �0 at a later time t0� t.3–7

Let us denote the forward mean square separation at
time �the time refers to the lapsed time of the underlying
flow of the separation process; t=0 denotes the time when
the initial/finial separation �0 is fixed� t with an initial
separation �0 at t=0 by ��2�t� ��0�fwd. Equivalently, the
backward mean square separation shall be denoted by
��2�−t� ��0�bwd. Note that the use of −t means that the time
argument is actually positive, since for backward processes
t�0. For simplicity of notation in the backward case, the
minus sign shall be dropped henceforth, and it is understood
that time in the backward case always refers to times smaller
than the initial flow time t=0. For flows whose dynamics are
time reversible, like Gaussian flows or kinematic simulations

�KSs�, one could expect that the mean square separation of
the forward and backward cases coincides and indeed, this
has been shown for Gaussian flows and KS,4–6

��2�t���0�fwd = ��2�t���0�bwd. �1�

For other flows, such as, e.g., turbulent flows governed by
the Navier–Stokes equation, this equality cannot be assumed
and, indeed, it has been shown using Lagrangian stochastic
models,6,8 experiment, and direct numerical simulation9

�DNS� that in three-dimensional �3D� turbulence, backward
dispersion happens at a faster rate than forward dispersion.

In this article we extend and give a sound mathematical
foundation for the pair separation model as introduced by
Goto and Vassilicos �Ref. 10, shorthand GV04�. We start
with a short summary of the GV04 model and then go on to
refine and extend this model and explore its features and
similarities to Richardson’s distance neighbor function.11 Fi-
nally, we investigate the asymmetry between “forward” and
“backward” pair separations in a DNS of two-dimensional
�2D� homogeneous isotropic turbulence and compare the
findings to those in 3D turbulence.

II. PAIR SEPARATION MODEL

The notion of pair separation as a process of burst-
like separation events has been discussed and related to the
streamline topology by Goto and Vassilicos10 using a
2D DNS with an inverse 5/3 energy cascade. We shall re-
mind the reader of the basic concept and introduce some
refinements.
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In 2D multiscale flows, the basic idea is that each par-
ticle in a fluid is on a so-called patron eddy. These patron
eddies are coherent structures which persist for a time that is
long enough to influence the dynamics of the fluid. They
exist at every scale present in the flow and can be visualized
by applying a coarse-graining filter on the velocity field with
an associated cutoff scale �c. Each such eddy has typically
an elliptic zero-acceleration point at its center. It is so called
because the velocity gradient tensor �u� /�x� takes a vortical
form around such a zero-acceleration point when one moves
in the frame where the zero-acceleration point is at rest. Be-
tween the patron eddies, one finds hyperbolic zero-
acceleration points which are locally surrounded by a strain-
ing velocity gradient tensor. Both elliptic and hyperbolic
zero-acceleration points are assigned an associated scale �c

corresponding to the filtering scale. In the following, this
scale �c will be referred to as the “size” of the vortex or
zero-acceleration point.

The GV04 model portrays the pair separation process as
a series of “bursts” to larger scales: Two distinct particles in
a fluid share at least one patron eddy at each time �e.g., they
always belong to the patron with the associated scale of
�c=L0 where L0 is the size of the system/box size/etc.�. Now
consider the common patron eddy with the smallest associ-
ated scale �c=� of a pair of particles at a particular time t.
As long as both particles belong to this patron, their separa-
tion will also be typically of the scale �. It is now possible
that at some time t+T����, one of the particles encounters a
hyperbolic zero-acceleration point of scale � which removes
it from the smallest common patron, where T��·� is some
function depending on the parameter �. After such an en-
counter, the smallest shared patron of the particle pair will be
of size �� where ��1. Hence, the typical pair separation
will also have increased.

While this picture strictly holds when locally moving
with the zero-acceleration points and in two dimensions, it is
possible to extend this notion to a more general context.
Given sufficient persistence of the streamlines, GV04 argue
that the presented arguments hold in a global reference frame
when considering the elliptic and hyperbolic velocity stagna-
tion points �i.e., points where the fluid velocity u� =0� instead
of the zero-acceleration points in the local frame�s�. This
picture is not as intuitive as the patron notion in the local
frames, however, it seems like the natural generalization to a
global frame. Hence, when considering sufficiently persistent
multiscale flows, also in three dimensions, one should be
able to assume that particles belong to structures �previously
called patrons� of a certain scale �c.

In three dimensions, these structures will not be flat ed-
dies �like the patrons in two dimensions� but rather some
kind of elongated eddies such as vorticity tubes or a patch of
straining region in the velocity field. Despite not knowing
the exact shape and properties of such persistent structures,
they have frequently been observed in turbulence experi-
ments and DNS.12,13 Therefore, one can assume that they are
present and have a typical scale �c which does not change
much during the lifetime of such a persistent structure.

A. Refined model

In the present work, we shall add to the model the pos-
sibility of two particles converging to a smaller characteristic
separation �. While, as it turns out, there seems to be no
practical benefit from this addition, it strengthens the deriva-
tion and mathematical foundation of the concept.

1. Notation and basic ideas

Let �n��n�0 be the separation of a particle pair with
initial separation �0 after a succession of separating and con-
verging burst events, where n is an integer. Such a burst
event can occur when at least one of the pair particles en-
counters a straining �hyperbolic� stagnation point. Note that �
is the characteristic ratio of successive separations following
a burst event, and as such is a constant that represents the
respective ratio for burst events of all individual pairs.

The probability bn of encountering a straining stagnation
point of size �n must be inversely proportional to the char-
acteristic time T���n� between burst events for pairs with a
separation 	�n, as introduced by GV04,10 and therefore pro-
portional to the mean distance between hyperbolic stagnation
points ���n�=ns��n�−1/d,

bn � T���n�−1 ⇔ bn � u�ns��n�1/d, �2�

where the stagnation point density ns��n� is given by14

ns��c� = CsL−d 
 L
�c
�Ds

, �3�

and L is the largest scale in a multiscale flow �typically the
integral scale�, �c is the coarse-graining scale and cannot be
taken smaller than the smallest scale � of the flow below
which the power-law energy scaling fails �for this section’s
purposes, �c=�n�, d the dimension of the flow, Ds the fractal
dimension of the stagnation point distribution in space, and
Cs is the stagnation point number which is proportional to
the number of L-sized stagnation points per unit volume. We
assume a power spectrum E�k��k−�, 1���2 for Eq. �3� to
be valid,14 in which case Ds has been shown to obey the
relation14

Ds =
d�3 − ��

2
. �4�

For the purposes of this paper, we assume �=5 /3. Due to the
dependence on the stagnation point structure, one finds that
the probability of encounter, bn, mainly depends on the ex-
ponent of the energy spectrum �,

bn = CBCs
1/d u�

L��−1�/2�n
��−3�/2 = B�n

−2/3 �5�

for �=5 /3, and

B = CBCs
1/du�/L1/3. �6�

CB is a proportionality constant for the probability of a par-
ticle pair to encounter a stagnation point.

When a particle pair with separation �n encounters a
straining stagnation point of size �n, it is assumed to separate
further with a probability p�1, resulting in a separation of
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scale �n+1 �separating burst�. Alternatively, the pair can re-
main at the same scale of separation with probability 1− p.
This is the burst process described in GV04,10 although the
probability p was effectively absorbed into the coefficient B
of Eq. �5� and not discussed by them.

The converging burst process can be initiated when a
particle pair with separation �n encounters a straining stag-
nation point which is of smaller scale than the separation of
the pair, i.e., �n−1. As mentioned previously in Sec. II, both
straining and elliptical stagnation points have an associated
coarse-graining scale �c. Between the eddies or structures of
scale �c=�n, and their elliptical stagnation points lie hyper-
bolic straining stagnation points of the same scale, which can
act as a “gateway” into or out of a coherent structure of equal
scale as shown in Fig. 1. Hence, a particle pair of typical
separation �n needs to encounter a straining stagnation point
of scale �n−1 to experience the converging burst process
bringing them together to a separation of �n−1.

Hence, a particle pair with separation �n encounters a
straining stagnation point of scale �n−1 with probability bn−1,
and then can converge to a separation of scale �n−1 with a
probability called q.

2. Derivation of PDF of pair separation

Analogously to GV04,10 the probability density function
�PDF� of pair separation can be derived as follows.

Let Qn�t� be the probability for a particle pair to have a
separation between �n and �n+1 at a certain time t and n is
any integer. Qn will then evolve according to the probabili-
ties bn, bn−1, p, and q as given by the following evolution
equation:

d

dt
Qn = pbn−1Qn−1 − �pbn + qbn−1�Qn + qbnQn+1, �7�

which is illustrated by Fig. 2. Here, we have made use of the
locality-in-scale hypothesis2,10 which suggests that an in-
crease or decrease in Qn can only originate from the neigh-
boring separation intervals associated with the probabilties

Qn�1, but not from separation intervals that are further away,
such as, e.g., the ones associated with Qn�i with i	2.

In the limit of continuous separation �, we find that

�n → ��n� = �n�0. �8�

Defining 
� ln �, we arrive at

Qn =
d�

dn
P��n� = 
�P��� , �9�

where P��� is the PDF of continuous separation �.
If one assumes that 
 is a small parameter, it is possible

to Taylor expand all Qn and bn in Eq. �7�, which results up to
second order in 
 in

1

B

�P

�t
= �− 
�p − q� +

2

3

2q
 �

��
��1/3P�

+ 
2 p + q

2

�

��
��

�

��
��1/3P�
 . �10�

The index n has been dropped for legibility. This result re-
verts to the equation found by GV04 �Ref. 10� when q=0
and p=1. This partial differential equation has four param-
eters, B, p, q, and 
. However, either p or q can be absorbed
into B, leaving only three free parameters. In fact, the equa-
tion takes a tidier form if the rescaled time � is introduced,

� = 2
9B
2�p + q�t , �11�

along with the renormalized probabilities

p� =
p

p + q
and q� =

q

p + q
. �12�

Therefore the equation now reads

�P

��
= �−

9

2

p� − q�



+ 3q�
 �

��
��1/3P�

+
9

4

�

��
��

�

��
��1/3P�
 , �13�

under the constraint p�+q�=1, leaving effectively only two
free parameters �e.g., q� and 
�. The third free parameter has
been absorbed into the time variable and is therefore implic-
itly still present.

This form highlights the influence of the model param-
eters on the shape of the PDF. The two free parameters occur

straining

point of size
∆n−1

stagnation

coherent structure of scale ∆n−1

FIG. 1. Diagram illustrating the pair convergence process. Shown is a par-
ticle pair and their trajectories. Their separation before encountering the
stagnation point is �n. Reversing all arrows gives the figure for the separa-
tion process. Note that the scale of the stagnation point and of the associated
coherent structure is always the same, no matter whether one considers the
converging or separating process.

∆n+1

q bn−1

p bnq bn

p bn−1

∆n ∆n

∆n−1

∆n+1

∆n

∆n−1

FIG. 2. Diagram explaining the burstwise pair separation and convergence
process. Note that if the arrows were reversed �“time reversal”�, the only
resulting difference would be that p and q are interchanged. If an encounter
with a hyperbolic stagnation point does not result in a burst or convergence
event, the separation of a pair remains unchanged.

015106-3 Turbulent pair separation Phys. Fluids 21, 015106 �2009�

Downloaded 09 Oct 2009 to 129.31.219.13. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



as a combination in the PDF, hence it will not be possible to
determine both parameters from the shape of the PDF. This
becomes even more obvious when the equation is written in
the following form:

�P

��
= k0�−2/3P + k1�1/3 �P

��
+ k2�4/3 �2P

��2 , �14�

where

k0 = −
3

2

p� − q�



+ q� +

1

4
, �15�

k1 = 3�k0 + 1� , �16�

k2 = 9
4 . �17�

It is now clear that the solution P�� ,�� in our model is solely
determined by k0=k0�q� ,
� for a given initial condition. The
solution P�� , t�, with time t rather than the scaled time �, is
then given by an additional rescaling of the time axis. It is
therefore apparent that even if it is possible to completely
determine P�� , t� by experiment or DNS, this can only lead
to the determination of two parameters. It will not be pos-
sible to determine all three model parameters 
, q�, and B
from fitting data to this PDF.

3. PDF of pair separation for arbitrary �

While the assumption 
�1 from Sec. II A 2 leads to a
compact formulation for the time evolution of the PDF of
pair separation, it is a very restrictive assumption which ba-
sically states that the burst processes described earlier hap-
pen in a more or less continuous fashion, thus suggesting that
there may be no bursts.

We shall now present an argument that the PDF evolu-
tion of the form �14� is valid for all positive 
, albeit the
coefficients k0,1,2 will be more complicated in terms of the
model parameters 
, p, and q.

First note that the sum over all probabilities is constant
in time,

�

�t
�

n=−





Qn = 0, �18�

as can easily be verified from Eq. �7�. Substituting the series
with infinite number of terms

Qn�1 = �
j=0



��1� j

j!

� j

�nj Qn = 
�
j=0



��
� j

j!

�

�

��
� j

��P� ,

�19�

bn−1 = B�−2/3�
j=0



1

j!

2

3

� j

= B�−2/3e2
/3 �20�

as well as Eqs. �5� and �9� into Eq. �7� leads to the following
evolution equation for the continuous PDF:

1

B

�P

�t
= �p − q��−2/3P�e2
/3 − 1�

+ �−5/3�
k=1



�− 1�kpe2
/3 + q

k!

k
�

�

��
�k

��P� , �21�

which can be cast into the form

1

B

�P

�t
=

�

��
��

k=0




Ck�
k+1/3 �k

��k P���
 , �22�

where the first coefficient is given by

C0 = 3�
k=1




k

k!
�p
−

1

3
�k

+ q�1 − 
2

3
�k
� , �23�

and the remaining coefficients can be determined from the
recursive relation

Cn =
1

n + 1/3��
k=n




k

k!�p�
j=0

k−n 
k

j
��− 1�k−j
2

3
� j�k − j + 1

n + 1
�

+ q�k + 1

n + 1
�
 − Cn−1� , �24�

with

�n

k
� = �

j=1

k

�− 1�k−j jn−1

�j − 1�!�k − j�!
=

1

k!�j=0

k

�− 1�k−j
k

j
� jn

�25�

being the Stirling numbers of the second kind. The first two
coefficients,

C0 = − 
�p − q� +

2

6
�p + 5q� −


3

54
�p − 19q�

+

4

648
�p + 65q� − ¯ , �26�

C1 =

2

2
�p + q� −


3

18
�5p − 11q� +


4

216
�21p + 85q� − ¯ ,

�27�

agree with Eqs. �15�–�17� up to second order in 
. Note that
truncation after any k term in Eq. �22� preserves the property

�

�t
�

0




P��,t� = 0, �28�

which is the continuous-� form of Eq. �18�. Furthermore,
Eq. �22� can also be rearranged as follows:

1

B

�P

�t
= �

m=1




Dm
�m

��m ��m−2/3P���� , �29�

where the Dm are given by the recursive relation

Dm = Cm−1 − �
k=m




Dk+1
 k

m − 1
�
m +

1

3
��k−m+1�

, �30�

with

015106-4 T. Faber and J. C. Vassilicos Phys. Fluids 21, 015106 �2009�

Downloaded 09 Oct 2009 to 129.31.219.13. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



�x��n� = x�x + 1��x + 2� ¯ �x + n − 1�

=
��x + n�

��x�
=

�x + n − 1�!
�x − 1�!

�31�

being the Pochhammer symbol or “rising factorial.” Again,
the first two coefficients,

D1 = − 
�p − q� −

2

6
�3p − q� −


3

18
�3p − q�

−

4

648
�27p − 5q� − ¯ , �32�

D2 =

2

2
�p + q� +


3

6
�3p − q� +


4

72
�21p + 5q� + ¯ , �33�

agree with Eqs. �15�–�17� up to second order in 
, and trun-
cation after any m term in Eq. �29� preserves the property
�28�.

One can now examine the time evolution of the second
moment of P���. Using Eq. �29� and two integrations by
parts, one finds

d

dt
��2� = �

0




�2�P���
�t

d�

= − 2�
0




D1�4/3Pd� + 2�
0




D2�4/3Pd� �34�

− 2�
0


 �

��
��

m=3




Dm
�m−3

��m−3 ��m−2/3P�
d� �35�

=2�D2 − D1���4/3� , �36�

provided that all derivatives of P��� involved in the third
integral of Eq. �35� vanish sufficiently fast for �→
,

∀u � �0,1, . . . ,
�: lim
�→


�u+7/3�uP���
��u = 0. �37�

The conclusion to be drawn from this equation is that the
complete evolution of ��2�, and thus ��2� itself, depends
only on the first two terms in Eq. �29� and, therefore, can be
determined from a Richardson-type equation such as Eq.
�13�. Hence, truncating the infinite series of Eq. �29� after the
second term leads to an evolution equation for the PDF,
which contains the zeroth, first, and second derivatives of
P��� and gives the correct first and second moments only.
Higher order moments of separation will require higher de-
rivative terms to be included. Of course, the coefficients
k0,1,2 of Eq. �14� will be functions of D1 and D2, and thus of
the model parameters B, p, q, and 
. Determining these four
model parameters from the three accessible coefficients k0,1,2

is generally not possible.
Note that the coefficients k0,1,2 contain infinite series of

m-terms 
m /m!, and thus one can expect that these series
will converge for arbitrary 
. To avoid unnecessary compli-
cation of the notation, we shall use the k0,1,2 from Sec. II A 2,
obtained under the assumption 
�1 for the remainder of

this article. Note that this does not change the validity of the
results, as they only depend on the finiteness of k0,1,2, and not
on their dependence on the model parameters.

4. Time reversal in the new model

The caption of Fig. 2 might hint that an exchange of the
parameters p and q might be sufficient to account for a pos-
sible time asymmetry of pair separation. This, however, is
misleading.

The present model does not explicitly contain any dy-
namic features: all assumptions made can be satisfied by a
Gaussian velocity field or a kinematic simulation, which is
known not to exhibit the sought time asymmetry.4–6 Hence,
there is no reason to expect this model to account for the
observed asymmetry.

Instead, if one examines a velocity field which does ex-
hibit the time asymmetry of mean square separation, it would
imply that the model describes this situation as two separated
cases with two sets of model parameters, one for forward
separation and one for backward separation. It therefore can
describe the asymmetry, but not explain it.

Furthermore, one can consider the following mathemati-
cal argument. From experimental observations of the PDF of
separation, one expects the solution P�� , t� to be “melting,”
i.e., initial sharp peaks should flatten and spread out as time
advances �in both the forward and backward cases�. This
behavior is only observed when k0�0. However, Eq. �15�
can only be negative if p��q�. Hence, assuming that
p��q� in the forward case, k0�0 in the backward case �or
vice versa�.

5. Comparison between the PDFs derived
by Richardson, GV04, and the present work

All three models10,11 can be represented by an equation
of the form �14�, where the time variable has been suitably
normalized to satisfy k2=9 /4. Then, k1 shows the same de-
pendence on k0 in all three models and the k0 are given by
the following.

For present,

k0 = −
3

2

1 − 2q�



+ q� +

1

4
, �38�

for GV04,

k0 = −
3

2

1


GV
+

1

4
, �39�

and for Richardson,

k0 = − 3
4 �d − 1� . �40�

The difference between the Richardson model and the other
two is that for a given dimension of the problem �i.e., d=2 or
d=3�, the Richardson model predicts k0. Both other models
do not predict the value of k0, but instead allow deviations
from Richardson’s PDF. GV04 showed that their 2D DNS
data are best fitted by 
GV	1.3, whereas Richardson’s PDF
would predict 
GV=1.5.

Furthermore, for arbitrary 
, we have shown in Sec.
II A 3 that higher derivate corrections are necessary for
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higher separation moments. This could potentially explain
deviations from Richardson’s law for higher moments,
should they be sufficiently resolved in experiments in the
future.

6. Richardson limit as guideline for expected
parameter values for q and �

So far, data have been reasonably fitted with Richard-
son’s form of the pair separation PDF.9,10,15 One can there-
fore use the k0 value in the Richardson case as a guideline for
the expected parameters 
 and q �or q�; we shall use the ratio
q / p instead of q� / p� purely for legibility�. By equating Eqs.
�38� and �40�, one can find a constraint on the parameters q
and 
 to match the pair separation PDF as introduced by
Richardson,10,11

q

p
=

q�

p�
=

1 − 

d

2
−

1

3
�

1 + 

d

2
+

1

3
� . �41�

One can invert Eq. �41� to find an expression for 
,


 = 6
p − q

p�3d − 2� + q�3d + 2�
, �42�

which leads to the following form for two and three dimen-
sions:


 =
3

2

p − q

p + 2q
for d = 2, �43�


 =
6

7

p − q

p + 11
7 q

for d = 3. �44�

Note that for q=0 this matches the values found by GV04.10

7. Analytical solution for vanishing initial separation
�0=0

Equation �34� of GV04,10 is an exact solution for Eq.
�14�, which we formulated here in terms of k0. It is valid for
all three cases discussed here,

P��,�� =
2/3

��3/2 − 2k0�
�−3/2
�2/3

�
�−2k0

exp�−
�2/3

�

 .

�45�

Note that this is only a valid solution when k0�0 as is it
satisfied by, e.g., Richardson and GV04. ��·� is the gamma
function.

This analytical solution �see Fig. 3� has the initial con-
dition P�� ,0�=2���� �with ��·� being the Dirac delta func-
tion� and, hence, is not directly applicable to comparison
with experiments as the �initial� separation between two
physical particles is usually always �0. However, if one as-
sumes that after a certain time, the separation process will
have “forgotten” the value of its initial state �0, for ��0 Eq.
�45� can be compared to experiments with �0�0. This is
frequently done in the literature,9,10,15 and deviations from a
fit are usually not discussed with sufficient care.

This solution leads to the familiar t3-law for the mean
square separation, irrespective of the parameter k0, which
only contributes to the coefficient G�,

��2���� = �
0




�2P��,��d� = G��
3, �46�

where

G� = �� + 7
2��� + 5

2��� + 3
2� , �47�

and �=−2k0 for brevity. More generally, one can find a for-
mula for arbitrary moments of � with n�−�1+ 2

3��,

��n���� =
��� + 3

2 + 3
2n�

��� + 3
2� �3/2n. �48�

Furthermore, normalizing the PDF of separation with its rms
separation leads to a time-independent self-similar PDF,10

P̃��̃� =
2�G�

�+3/2�1/3

3��� + 3/2�
�̃2�/3 exp�− G�

1/3�̃2/3� , �49�

where

P̃��̃� = ���2�t��P��,t� and �̃ = �/���2�t�� . �50�

See Fig. 4.
The n-moments of this self-similar PDF are constants

that only depend on �,

�b� probability density P, k0 � �3�2
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FIG. 3. PDF of pair separation �45� with k0=−3 /4 �a� and k0=−3 /2 �b�.
Note that the PDF with k0=−3 /2 spreads faster with respect to the scaled
time �. See Fig. 4 to compare the shape of both PDFs in �-direction.
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��̃n� =
��n�

��2�n/2 =
��� + 3

2 + 3
2n�

��� + 9
2�n/2��� + 3

2�1−n/2 . �51�

Provided one accepts the assumption 
�1, one can expect
these time-independent moments to be a good indicator of
the validity of the presented model: the more moments we
can fit to the data for a given �, the closer this model repre-
sents what is going on. For arbitrary 
, this relation is only
valid for the first and second moments, as has been argued in
Sec. II A 3.

Since experimental data or data from numerical simula-
tions cannot be obtained for �0=0, we need a means of
understanding what happens for finite initial separations.

III. 2D DNS STUDY

While the effect of time asymmetry of pair separation
has been reported for 3D experiments and DNS,8,9 there are
no published results about this asymmetry in 2D turbulence.

In this section, we shall present findings from the DNS
run with a resolution of N=3072. We used the DNS scheme
described in Ref. 10 with the parameters given in Table I and
typical scales given in Table II. Please refer to Ref. 10 for
more details about this DNS, as reiterating the details would
lengthen this article unnecessarily. All data were collected
using 50 000 particle pairs which were initially placed
evenly distributed at random in the entire DNS domain. The
distance between pair member particles is fixed at the dis-
tance �0 to give a delta function initial state of the pair
separation PDF P�� ,0�=���−�0�. The spatial orientation of
the separation vector was chosen at random.

There are 20 runs in total: 10 for the initial separations,

�0 � �� f

16
,
� f

8
,
� f

4
,
� f

2
,� f,2� f,4� f,8� f,16� f,32� f� , �52�

for both forward and backward separations in time. The par-
ticle trajectories are obtained by integrating the DNS veloc-
ity field u��x��t� , t�,

x��t� = x�0 + �
0

t

u��x��t��,t��dt�, �53�

using a second order predictor-corrector scheme16 for 39 150
consecutive time steps �the number 39 150 arose from hard
disk constraints� of the DNS which are stored on the hard
drive. In the backward case, the sequence of velocity field
time frames is inverted and the velocity field negated to ac-
count for the reversed particle motion.

A. Validity of model assumptions

Before comparing the DNS data to the model presented
earlier, it is necessary to check which part of the data actu-
ally satisfies the assumptions made in the model, namely, the
presence of a multiscale stagnation point topology which en-
compasses scales smaller and larger than the separation scale
of the particle pairs under observation.

Figure 5 shows that the PDF of pair separation is rapidly
spreading to larger separations, as would be expected from
the exponential tail of the analytical solution �45�. To quan-
tify the time when many pairs leave the inertial range, we
introduce the threshold time tL which is defined as the time
when P�L , t� crosses an arbitrary threshold for the first time,

P�L,tL� = 10−3. �54�

Note that the order of magnitude of tL and its dependency on
�0 do not change significantly if a different threshold is cho-
sen between 10−5 and 10−2. The threshold times for all given
�0 show the expected decreasing trend in Fig. 6. For com-
parison, the Batchelor time,

tB = 
�0
2

�
�1/3

, �55�

indicating the end of the ballistic regime,9 is shown in the
same figure. The dissipation rate � has been estimated from
the constant energy flux of the DNS velocity field, as de-
scribed in Ref. 10.

Summarizing, tL marks the time at which approximately
0.1%–1% of pairs have a separation larger than the integral
scale L and therefore have left the inertial range. The
Batchelor time tB marks the time when initial separation ef-

TABLE II. All quantities are given in DNS units and will be used to non-
dimensionalize where appropriate. Note that TL	3560 timesteps and,
hence, the DNS covers approximately 11 integral timescales.

Integral length L 0.24

Smallest length scale in �5/3 intertial range � f =2� /kf 9.2�10−3

Outer versus inner length scale L /� f 26

rms velocity fluctuation u�=��u� ·u�� /2 1.1

Integral timescale TL=L /u� 0.221 2 3 4 5
separation

�
������������������
�rms

0.2

0.4

0.6

0.8

1

probability density P
�

FIG. 4. Self-similar PDF P̃��̃� for vanishing initial separation. k0=−3 /4
�solid� and k0=−3 /2 �dashed� are what Richardson �Ref. 11� predicts, re-
spectively, for 2D and 3D turbulence.

TABLE I. Parameters used in the numerical scheme as described in Ref. 10:
the number of grid points in the dealiased scheme N2, forcing wavenumber
kf, ratio of forcing wavenumber range �, magnitude of fixed Fourier com-
ponent of vorticity �̃0, time increment of temporal integration dt, hypervis-
cosity coefficient �, and its exponent m1, hyperdrag coefficient 
, and its
exponent m2 �Ref. 10�.

N2 kf � �̃0 dt � m1 
 m2

30722 680 1.00147 0.525 6.1�10−5 1.43�10−44 8 2.5 1
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fects are assumed to have ceased15,17 and after which the
Richardson �� t3 law is expected. Also, separations below
the forcing length � f are outside the inertial range.

Therefore, the presented model is strictly only valid for
data with the following.

• � f ��0�L, i.e., initial separation within the inertial
range.

• t� tL, i.e., enough pairs remain within the inertial
range.

Furthermore, the Richardson t3 law can only be expected
for t� tB. In conclusion, the resolution of N=3072 does not
provide an inertial range that is wide enough to be able to
observe the Richardson t3 law.9,18,19 When comparing the
data with the present model, it is therefore necessary to dis-
cuss the influence of these adverse effects in sufficient detail.

The same applies when one wishes to compare the ana-

lytical solution �45� with no initial separation to DNS data:
At the times the fit is performed, many pairs have left the
inertial range already �tcutoff� tL�, and hence, a basic model
assumption is violated. To reflect this effect, the model
would need to be extended by, e.g., modeling the particle
behavior similar to Brownian motion for pairs with ��L.
However, this extension goes beyond the scope of this work,
whose primary objective is to investigate the multiscale stag-
nation point topology within the inertial range.

B. Mean square separation and parameter fit

Despite the conclusion in Sec. III A that it is not ex-
pected to observe a t3 law in the given DNS data, Fig. 7
shows a slope that is approximately close to t3 for times
t� �tB , tL� for the runs with initial separation smaller than the
forcing length: �0�� f.

According to Sec. III A, this behavior was only to be
expected for �0�� f. However, as mentioned previously, the
DNS resolution is currently not large enough to accommo-
date tB� tL for initial separations larger than � f.

Nonetheless, the approximate slope �t3 is quite mean-
ingless, as for times t� tL, the mean square separation is still
influenced by the finite initial separation. Thus, let us com-
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FIG. 6. Threshold time tL for all initial separations �0. Forward separation
data are shown as triangles ���; backward data as diamonds ���. For com-
parison, the Batchelor time tB is represented by the dashed line.
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FIG. 7. �Color online� Mean square separation from the DNS for all ten
initial separations. Forward separation is shown in black; backward in red
�in this plot the difference between the forward and backward cases is hardly
noticable�. The Batchelor time tB is indicated by triangles ��� and the
threshold time tL by diamonds ���. The straight line is �t3. The slope of the
data is approximately �t3 in the intervals �tB , tL�, although there is a notable
deviation for times just larger than tB. The fifth graph from the bottom has
initial separation �0=� f.
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FIG. 5. Pair separation PDF P�� , t�, plotted logarithmically in time. All
figures show PDFs from forward separation data, the figures for backward
data look very similar. �a�–�c� have the following initial separations:
�0=� f /16, � f, 32� f. Black represents a PDF value of 10−6 or lower. The
probability of a particle pair having a separation of the integral scale L
exceeds values of 10−3 �gray� at about t /TL	10−1, see text.
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pare the model’s prediction for ��2� with finite initial
separation �0�0 with the data and try to fit the model
parameters.

The model has been integrated for all ten initial
separations and for three different values of k0, namely,
k0� �−0.65,−0.75,−0.85�. The parameter � / t can be easily
adjusted after integration of the model. This parameter has
been manually adjusted to give a qualitative fit to the DNS
data for the three values of k0 mentioned previously. The two
best fitting DNS data sets are shown in Fig. 8 with
�0� �� f /4,� f /2� for the best fit value of the time scaling
parameter, � / t	1.2.

For initial separations in our data set which are smaller
or larger than the best fit ones pointed out, the fit with these
parameter values becomes less acceptable. Using different
parameters improves the situation, but does not lead to a fit
of the same quality as shown in Fig. 8. Hence, we conclude
that one set of parameters is not sufficient to fit all data for
varying initial separations.

From Fig. 8, it is immediately apparent that the variation
in k0 only has a small impact on the variation in the curve,
and therefore, it is not possible to estimate k0 to a very high
accuracy from this kind of fit. Hence, while Richardson’s
value of k0 is compatible with the present data, it can unfor-
tunately not be uniquely confirmed. Nevertheless, by apply-

ing Ockham’s razor, we shall assume Richardson’s value of
k0=−0.75 to be a reasonable fit for the remainder of this
work.

C. Dependence on initial separation

Section II highlights that the present model cannot be
fitted to the DNS data for all given initial separations. The
validity of the model is thus clearly dependent on the initial
separation, which is a further manifestation of the limited
range of scales that the model operates on. In the DNS, too
many particle pairs leave the range of multiscale stagnation
point distances too quickly and, therefore, ��2� falls below
the value expected from the present model. This effect is
stronger for larger initial separations �see Fig. 9�. Hence,
additional care needs to be applied when fitting data to the
model, as the DNS data will deviate from the model for large
times, as seen in Fig. 9.

For comparison, a simple functional form for the mean
square separation with finite initial separation has been pre-
viously suggested to be used as a fitting law,10,15

��2� = ��G���1/3t + �0
2/3�3 = �G�

1/3� + �0
2/3�3. �56�

This is shown in Fig. 9, along with the present model and the
DNS data. It easily satisfies the two given limits ��2�=�0 for
t=0 and Richardson’s law �46� for t→
. In general, the
present model and this simple approximation are more simi-
lar to each other than each compared with the DNS data. For
the best fit cases with initial separation �0� �� f /4,� f /2�
�third and fourth from the bottom in Fig. 9�, the present
model is a better fit than the given approximation �56�.

Thus, this approximation correctly traces the qualitative
features of the present model and, hence, provides a use-
ful analytical approximation which can be used as an esti-
mate. However, its use for accurate data fitting remains
questionable.

D. Time asymmetry in 2D turbulence

Looking at Fig. 7, it seems that there is no significant
difference in mean square separation between the forward
and backward cases in the investigated 2D stationary turbu-
lence DNS.
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FIG. 8. �Color online� Best fit of numerically integrated mean square sepa-
ration ��2� to DNS data with initial separations �0=� f /4 �a� and
�0=� f /2 �b�. The DNS data are shown in dashed lines, black �forward�, and
red �backward, hardly distinguishable from forward case�. The model data
are given in black for three values of k0: �0.85, �0.75, and �0.65 �top to
bottom�. The lines are very close together �and thus appear as one thick
line�, indicating a weak dependence of ��2� on k0. The diamonds ��� de-
mark the threshold time tL, which is the largest time for which one can
expect agreement of the model with the data.
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FIG. 9. �Color online� Numerically integrated mean square separation ��2�
�solid black� compared to the simple approximation �56� �dashed black� and
DNS data �solid red, extending beyond �=10 TL� for all ten initial separa-
tions, using the best fit values � / t=1.2 and k0=−0.75.
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However, the logarithmic scale is deceiving, as the plot
of the ratio ��fwd

2 � / ��bwd
2 � in Fig. 10 shows. It indicates that

the mean square separation in the forward case is up to 22%
larger than the backward case.

The time asymmetry for a 3D particle tracking velocim-
etry experiment with Re�	170 has been documented in the
literature by giving the ratio of the Richardson constants
gf =G�,fwd and gb=G�,bwd from a fit of Eq. �56�.9 In this 3D
case, the observed ratio was gb /gf 	2.1, i.e., the backward
case separated stronger than the forward case. This ratio
has been confirmed in the same work by a DNS with
Re�	280.

To be able to draw a more direct comparison to the 2D
case, we shall plot the same ratio in Fig. 11, obtained from
Eq. �56�, over time,

gf

gb
= 
 ��fwd

2 �1/3 − �0
2/3

��bwd
2 �1/3 − �0

2/3�3

. �57�

This relation is useful, since it takes the qualitative depen-
dence of Richardson’s law on the initial separation �0 into
account, as described in Sec. III C. Figure 11 shows that this
ratio is larger than unity for most initial separations and
times. Furthermore, with the exception of the �0=� f /16 data
set, around �and between� the critical times tB and tL, the
ratio is between 1.05 and 1.25. Hence, the best estimate from
Figs. 10 and 11 for the ratio of Richardson’s constants in this
2D DNS is

gf

gb
= �1.15 � 0.10� . �58�

Note that in 2D the forward separation is stronger while the
effect is opposite in the 3D experiment, where backward
separation dominates. However, the effect in 2D with �15%
difference is not as prominant as in 3D ��100%�. Figures 10
and 11 suggest that the ratio is different from unity. How-
ever, given the uncertainty of the ratio, one cannot conclude
this for certain from this kind of fit.

E. Richardson’s constant and improvement
of time asymmetry fit

While it was possible to estimate the ratio of Richard-
son’s constants from the time series of mean square separa-
tion ��2�t�� for both the forward and backward cases, it is
well known that obtaining Richardson’s constant itself from
this kind of data is much more problematic.18,20 Alternative
suggestions of extracting Richardson’s constant include sta-
tistics of doubling times18 and investigation of mean diffu-
sivity depending on mean separation.20

We will follow the latter approach. First, note that Rich-
ardon’s constant G� is usually defined in terms of the t3 law,

��2�t�� = G��t3, �59�

where � is the mean energy dissipation of the flow. From
this, one can easily derive the relation

d

dt
��2�t�� = 3�G���1/3��2�t��2/3, �60�

which is valid for all times if one assumes that the Richard-
son law holds. This relation also agrees with Eq. �56�, taking
the qualitative dependence on initial separation into account.

To analyze the DNS data for ��2�t��, the value of the
time derivative is obtained by using a finite difference
scheme of second order. These data are given in logarithmi-
cally equidistant bins, and, therefore, the scheme needs to
account for variable distances between the data points,

df

dt
=

1

dt−1 + dt1
�dt−1

dt1
f�t + dt1� − 
dt−1

dt1
−

dt1

dt−1
� f�t�

−
dt1

dt−1
f�t − dt−1�
 + O�dt3� , �61�

where f�t� is an arbitrary function, dt−1 is the distance to the
previous timestep and dt1 is the distance to the next timestep.

However, it was not possible to observe relation �60� in
the DNS data as can be seen in Fig. 12. Instead evidence for
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FIG. 11. �Color online� Ratio of Richardson’s constants gf /gb from the
approximation �56� for all initial separations from the DNS data. The lines
show the largest initial separation to the smallest through the color spectrum
red, blue, green, yellow, orange. If color is not available, this corresponds
roughly to bottom to top order at t	TL, or otherwise, the lines can be
identified by the order of increasing Batchelor time tB. The Batchelor time tB

is indicated by triangles ��� and the threshold time tL by diamonds ���.
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FIG. 10. �Color online� Ratio of mean square separations ��fwd
2 � / ��bwd

2 � for
all initial separations from the DNS data. The lines show the largest initial
separation to the smallest through the color spectrum red, blue, green, yel-
low, orange. If color is not available, this corresponds roughly to bottom to
top order at t	TL, or otherwise, the lines can be identified by the order of
increasing Batchelor time tB. The Batchelor time tB is indicated by triangles
��� and the threshold time tL by diamonds ���. Note that the “best fit”
cases with initial separation �0� �� f /4,� f /2� are two �green� curves near
the highest achieved ratio.
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exponential growth is found. Nicolleau and Yu20 found simi-
lar behavior for small separations in a 3D kinematic simula-
tion with a large inertial range. While they also observed a
region ���2�2/3, we suspect that the absence of this observa-
tion in Fig. 12 is due to the limited width of the inertial
range.

Note that independently of the slope of Fig. 12, the ratio
of change in mean square separation also gives the ratio of
Richardson’s constants,

d/dt ��fwd
2 �t��

d/dt ��bwd
2 �t��

=
G�,fwd

1/3 ��fwd
2 �t��2/3

G�,bwd
1/3 ��bwd

2 �t��2/3 =
G�,fwd

G�,bwd
=

gf

gb
, �62�

where we used Eq. �59� in the second last equality. Taking
finite initial separations into account by using Eq. �56� gives
the same result for large enough times.

Plotting this ratio using the DNS data in Fig. 13 looks
remarkably like Fig. 11 and is also consistent with the value
of

gf

gb
= �1.15 � 0.10� �63�

found earlier. Despite the fact that Fig. 12 suggests non-
Richardson exponential growth of ��2�t�� due to the limited
power-law range of length scales, this still is evidence that
the forward separation is happening faster than the backward
separation.

1. Conditioning on separation scale

Nicolleau and Yu20 demonstrated that it is possible to
have exponential and Richardson-like growth in the same
flow. Our suspicion is that the Richardson-like behavior is
still present in the DNS flow, but overshadowed by contami-
nations from scales outside the inertial range, which are
present in every average over all Lagrangian trajectories.

Going back to Richardson’s original concept that the dif-
fusivity is purely scale dependent,11 we are going to subject
Eq. �60� to conditioning on separation scales �,

�� d�2

dt
��� = 3�G���1/3��2 ! ��2/3 = 3�G���1/3�4/3.

�64�

Note that this average is entirely different from the previous
ones. While in Secs. I and II of this article, the averaging was
carried out by sampling the set of Lagrangian trajectories for
each timestep in the DNS �i.e., ensemble average, condi-
tioned on DNS time t�, it is now completely independent of
time and instead averages over all particle pairs that have a
certain separation � at any given time. Hence, temporal in-
formation is lost for averages of this kind, but the condition-
ing on scales ensures that scale contamination is completely
eliminated.

Since this approach does not directly use time series
data, the finite difference approach of obtaining the time de-
rivative is not practical. Instead, let us consider the relative
motion of particles 1 and 2 in a pair,

d

dt
� =

d

dt
��x1

� − x2
��2 =

�x1
� − x2

�� · �u1
� − u2

��
�

= �u1
� − u2

�� · �̂
� � u�, �65�

where xi
� and ui

� are particle position and velocity and

�̂
� = �x1

�−x2
�� /� is the unit vector of particle separation. u� is

then the longitudinal velocity increment of a particle pair,
which can be calculated from the velocity field at every in-
stance. �Note that this longitudinal velocity increment is not
the same as the one generally used in e.g., Kolmogoroff’s 4/5
law. The latter velocity increment is an average over all po-
sitions or ensembles at a particular time, whereas the veloc-
ity increment defined in Eq. �65� is an average over specific
particle pairs at different times. A comparison of dimensions
could lead to a suspicion that the two could have the same
value. However, this is unlikely since Kolmogoroff’s 4/5 law
has opposite signs in 2D and 3D, while u� is positive in both
2D and 3D.� Thus, we obtain the change in mean square
separation from
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FIG. 13. �Color online� Ratio of Richardson’s constants gf /gb as given by
Eq. �62� for all initial separations from the DNS data. The lines show the
largest initial separation to the smallest through the color spectrum red, blue,
green, yellow, orange. If color is not available, this corresponds roughly to
bottom to top order at t	TL. The Batchelor time tB is indicated by triangles
��� and the threshold time tL by diamonds ���, which can also be used to
identify the initial separation of a line.
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FIG. 12. Diffusivity d /dt��2�t�� vs mean square separation ��2�t�� for all
initial separations from the forward DNS data �smallest to largest left to
right�. The expected slope of 2/3 as predicted by Eq. �60� cannot be ob-
served. Instead the best fit �straight line� suggests the exponent of 1 indicat-
ing exponential growth.
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� d�2

dt
� = 2��u�� . �66�

We can now without problem introduce conditioning on
separation,

�� d�2

dt
��� = 2��u���� = 2��u���� . �67�

Note that the last equality holds for conditioning using in-
finitesimal � bins, but for the purposes of obtaining data
using finite width separation bins, more accuracy is obtained
by using the second expression. Thus, combining Eqs. �64�
and �67� we arrive at a relation which can be tested against
the DNS data,

��u���� = 3
2 �G���1/3�4/3. �68�

The forward and backward DNS data are shown in Figs.
14 and 15. Both demonstrate the validity of Eq. �68� within
the inertial range. It seems that this behavior is extended for
separations even larger than L, while for ��� f the expo-
nential separation typical of ballistic separation is observed.

As expected, the relation �68� is independent of initial
separation which manifests itself in a good collapse of all
data sets, proving it a useful tool to circumvent the problem
of dependence on finite initial separations.

The best fits of Richardson’s constants from Eq. �68� for
both forward and backward separations are given in Table
III. The overall estimates for Richardson’s constant in this
2D turbulence are gf = �1.066�0.020� for forward separation
and gb= �0.999�0.007� for backward separation. This leads
to a ratio of

gf

gb
= �1.07 � 0.03� , �69�

which is compatible with the earlier value �63�.

A further consistency check can be performed by fitting
a constant to the ratio of Richardson constants as obtained
from Eq. �68�,

��u����fwd

��u����bwd
= 
G�,fwd

G�,bwd
�1/3

= 
 gf

gb
�1/3

⇒
gf

gb
= 
 ��u����fwd

��u����bwd
�3

. �70�

The results from fitting Eq. �70� to the data are compat-
ible with the previous value of gf /gb �see Table IV�. It
can also be seen from Fig. 16 that the ratio gf /gb is
larger than unity for all five initial separations shown. We
conclude that the ratio of Richardson’s constants for this 2D
DNS of isotropic homogeneous turbulence with resolution
N=3072 is the weighted average of the values given in
Tables III and IV,

gf

gb
= �1.09 � 0.03� . �71�
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FIG. 14. �Color online� ��u� ��� vs pair separation � for some initial sepa-
rations from the forward DNS data. The expected slope of 4/3 as predicted
by Eq. �68� can clearly be observed for at least the inertial range
�−2	 log � f � log �� log L	−0.6� with gf = �1.066�0.020�. For smaller
separations, the expected exponential growth for ballistic separation with
slope ��2 is also observed. Note that separations ���0 have only a small
number of pairs contributing to the statistics and, therefore, exhibit a large
scatter.
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FIG. 15. �Color online� ��u� ��� vs pair separation � for some initial sepa-
rations from the backward DNS data. The expected slope of 4/3 as predicted
by Eq. �68� can clearly be observed for at least the inertial range
�−2	 log � f � log �� log L	−0.6� with gb= �0.999�0.007�. For smaller
separations, the expected exponential growth for ballistic separation with
slope ��2 is also observed. Note that separations ���0 have only a small
number of pairs contributing to the statistics and, therefore, exhibit a large
scatter.

TABLE III. Results from fit of Eq. �68� to the DNS data. Given are the best
fit values of Richardson’s constants for forward and backward DNS data and
confidence intervals as found by gnuplot 4.0 for separations within the in-
ertial range �−2	 log � f � log �� log L	−0.6�. Data with �0�� f did not
have good enough statistics within the inertial range to be considered for
this fit. The uncertainty given for the individual fits is the asymptotic stan-
dard error given by gnuplot and the uncertainty given for the combined
�averaged� values is the standard deviation �n−1 of the distribution of values
above plus the average error above.

�0 gf gb gf /gb

� f /16 1.061�0.004 1.005�0.002 1.06�0.01

� f /8 1.084�0.004 0.996�0.003 1.09�0.01

� f /4 1.080�0.004 0.999�0.002 1.08�0.01

� f /2 1.053�0.004 0.996�0.002 1.06�0.01

� f 1.050�0.004 1.001�0.003 1.05�0.01

Combined 1.066�0.020 0.999�0.007 1.07�0.03
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IV. DISCUSSION

The main limitation of the present model has been
shown repeatedly in this article. It currently models an infi-
nite inertial range with a multiscale stagnation point topol-
ogy of infinitely wide scale range. However, in order for the
model to accurately describe the systems available in experi-
ment and DNS, it would be necessary to include finite range
effects.

Some suggestions are to incorporate the separation be-
havior similar to Brownian motion for scales larger than the
integral scale �Sec. III A� and to include dissipative effects
for separations that are smaller than the distance between
stagnation points.

All results obtained from comparison of DNS with the
model need to be discussed in this light. Thus, the value
obtained by GV04 of 
GV=1.3 might turn out to be in agree-
ment with Richardson’s prediction of 
GV=1.5, when one
takes into account that the range of scales in the multiscale
stagnation point topology is finite �Sec. II A 5�.

These finite range effects are also the reason that Rich-
ardson’s t3 law is not clearly present in the DNS with a
resolution of N=3072. However, this does not mean that one
cannot interpret the DNS data at all. In Sec. III E 1, we were
able to use a novel scale-dependent approach which confirms
Richardson’s scalings11 in our finite range DNS even though
the usual diagnostics and statistics do not show them clearly.
Richardson’s constants for the forward and backward cases
of this 2D DNS of isotropic homogeneous turbulence with
resolution N=3072 are found to be

G�,fwd = �1.066 � 0.020� , �72�

G�,bwd = �0.999 � 0.007� . �73�

These values are approximately four times lower than the
Richardson constant g	3.8 for a similar 2D DNS with simi-
lar resolution as obtained by Boffetta and Sokolov18 using
exit time statistics and approximately twice as large as the
value of g	0.5 obtained from fitting the �t3 law to a 2D
turbulence experiment by Jullien et al.21 The spread in ob-
tained Richardson constants may be due to nonuniversality
stemming from different characteristics of the investigated

flows, but might also stem from the varying approaches in
obtaining them. The notion of a nonuniversal Richardson
constant is plausible and supported by

G� � CB
3Cs

3/d, �74�

which can be derived from Eqs. �6�, �11�, and �46�. This
predicts that the Richardson constant depends on the stagna-
tion point number Cs and the constant CB, both of which are
not necessarily universal.

Finally, the investigation of the 2D DNS in Sec. III D
has shown qualitatively that the forward/backward time
asymmetry of turbulent pair separation is opposite in 2D to
what it is in 3D. Furthermore, utilizing conditioning on
scales rather than on time yields a sound quantitative value
for the ratio of Richardson’s constants in the present 2D tur-
bulence DNS �Sec. III E 1�,

gf

gb
= �1.09 � 0.03� . �75�

This can be compared to a value for 3D turbulence obtained
experimentally in a previous study.9

For present 2D DNS,

gb

gf
= �0.92 � 0.03� , �76�

and for 3D experiment,9

gb

gf
= �2.1 � 0.3� . �77�

Berg et al.9 explained the time asymmetry in terms of
the positive sign of the mean second eigenvalue of the strain
tensor in 3D turbulence. Their argument would imply that
gf /gb=1 in incompressible 2D turbulence, which we have
shown not to be the case. However, this does not imply that
their argument is wrong. It implies that their mechanism can-
not be the only one contributing to the observed time asym-
metry of pair separation. We shall attempt to give a qualita-
tive explanation for what might be a different and perhaps
additional mechanism.

The mechanism causing this time asymmetry in 2D tur-
bulence could have its origin in the asymmetry which exists
between forward and inverse energy cascades. The latter is
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FIG. 16. �Color online� Ratio of Richardson’s constants gf /gb from Eq. �70�
for initial separations from the DNS data with �0�� f within the inertial
range �−2	 log � f � log �� log L	−0.6�. The line colors are the same as
in Fig. 13. In the absence of color note that the ratio is �1. The solid black
line shows the best fit constant gf /gb=1.10.

TABLE IV. Best fit values of ratios of Richardson’s constants for forward
and backward DNS data and confidence intervals as found by gnuplot
4.0 for separations within the inertial range �−2	 log � f � log �� log
L	−0.6�. Data with �0�� f did not have good enough statistics within the
inertial range to be considered for this fit. The uncertainty given for the
individual fits is the asymptotic standard error given by gnuplot, and the
uncertainty given for the combined �averaged� values is the standard devia-
tion �n−1 of the distribution of values above plus the average error above.

�0 gf /gb

� f /16 1.120�0.006

� f /8 1.109�0.004

� f /4 1.106�0.003

� f /2 1.121�0.005

� f 1.069�0.005

Combined 1.105�0.022
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related to merging and thereby growing eddies in 2D turbu-
lence, whereas the former is related to eddies breaking up
into smaller eddies.

It is known that in 2D turbulence, small vortices within
each others proximity can merge into a vortex of a larger
scale.22 This idea of merging vortices has been explored for
many decades.23,24 Picking up the notion of a particle pair’s
patron from Sec. II, let us point out that it might be possible
for a particle pair to move to a larger patron without encoun-
tering a hyperbolic stagnation point as presented in an earlier
section. This alternative merging process would involve the
annihilation of the small vortices and therefore the disappear-
ance of their hyperbolic and elliptic zero-acceleration points
and the creation of an elliptic zero-acceleration point for the
emerging larger scale vortex, shown in Fig. 17. This dynamic
process of a particle pair moving to a larger patron cannot be
explicitly included in our model which is based on particle
pairs encountering hyperbolic stagnation points. However, it
is possible to include the effect of this process in an effective
value of either of the constants Cs, CB, or both, which will be
smaller if pairs separate while eddies break up into smaller
eddies �as in our time-reversed 2D turbulence�. Conversely,
if pairs separate while eddies merge into larger eddies �as in
forward time inverse-cascading 2D turbulence, see Fig. 17,
the value of either Cs and/or CB would be larger.

Summarizing, apart from the burstlike processes of sepa-
ration and convergence described in Sec. II, there might be
an additional mechanism of merging vortices that also con-
tributes to a particle pair’s separation in 2D turbulence. This
additional route to larger separation would strengthen the
separation process in the natural time direction �forward� and
would be reversed and therefore weakening the separation in
the backward case. Note that this process would be happen-
ing on time scales larger than the lifetime of the involved
stagnation points. Note also that this process has not �yet�
been directly observed in the context of pair separation and,
thus, is merely a suggested notion which consistently ties
together all observations.

The inverse energy cascade of 2D turbulence is under-
stood to describe the same phenomenon22 of smaller vortices
merging into larger ones. While nothing more than a hand-
waving argument, transferring this notion to 3D turbulence,
where the energy cascade is associated with larger vortices
breaking up into smaller ones, the separation process is de-

pleted in the natural progression of time and strengthened in
the backward case, giving a consistent qualitative picture for
the observed time asymmetry in 2D and 3D turbulence.

V. CONCLUSIONS

An improved model of particle pair separation in flows
with a multiscale stagnation point topology was devised, thus
setting its predecessor10 on a sound mathematical foundation.
The new model is able to model the observed time asymme-
try provided that the effects of vortex merging �Fig. 17� can
be taken into account in effective values of Cs and/or CB.
Furthermore, it has been argued that correction terms of
higher order derivatives are necessary in the PDF evolution
equation �14� when considering separation moments of third
order or higher.

The limitations and possible improvements to the
present model are discussed, and the Richardson constant for
the isotropic homogeneous 2D DNS turbulence is found to
be of the same order of magnitude as previous comparable
values.18,21

The time asymmetry is found to have opposing effects in
2D and 3D turbulence. It is suggested that the stronger for-
ward separation in 2D turbulence might be caused by merg-
ing of eddies. Furthermore, the observed asymmetry is con-
sistent with the assumption that the direction of the energy
cascade in 2D and 3D turbulence is directly correlated with
the direction of the time asymmetry.
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