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Abstract

A wall-attached cube immersed in a zero pressure gradient boundary layer is studied

by means of Direct Numerical Simulations (DNS) at various Reynolds numbers ReH

(based on the cube height and the free-stream velocity) ranging from 500 to 3, 000.

The cube is either immersed in a laminar boundary layer (LBL) or in a turbulent

boundary layer (TBL), with the aim to understand the mechanisms of the unsteady

flow structures generated downstream of the wall-attached cube. The mean locations of

the stagnation and recirculation points around the cube immersed in a TBL are in good

agreement with reference experimental and numerical data, even if in those studies the

cube was immersed in a turbulent channel. In the TBL simulation, a vortex shedding

can be identified in the energy spectra downstream of the cube, with Strouhal number

of St = 0.14. However, the frequency of the vortex shedding is different in the LBL

simulations, showing a significant dependence on the Reynolds number. Furthermore,

in the TBL simulation, a low frequency peak with St = 0.05 can be observed far away

from the boundary layer, at long streamwise distances from the cube. This peak cannot

be identified in the LBL simulations nor in the baseline TBL simulation without the

wall-attached cube.
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1. Introduction

The turbulent flow around a wall-attached solid cube represents an interesting and

complex problem from a fundamental point of view. Additionally, this flow configura-

tion is a simple model for the interaction between a boundary layer and complex bodies

immersed in it. For instance, the wall-attached cube may represent a typical protu-5

berance on the surface of aerodynamic vehicles, such as aircraft or vessels. The flow

around low and high aspect-ratio square cylinders is also very important for environ-

mental applications, since it can model the air movement around simplified buildings.

In the last few decades, there has been extensive research on the turbulent flow

around wall-attached obstacles with high aspect ratios H/L � 1 (where H is the10

obstacle height and L accounts for the base side). Early experiments on the mean-

flow characteristics and vortex shedding of high aspect ratio wall-attached circular and

square cylinders were performed in the 70’s and 80’s. Corke et al. (1979) studied the flow

near a building model in order to examine the response of the flow field to variations

in the characteristics of the boundary layer. Measurements of the vortex-shedding15

frequency behind a vertical rectangular prism and a vertical circular cylinder attached

to a plane wall were performed by Sakamoto & Arie (1983) to investigate the effects of

the aspect ratio of these bodies and the boundary-layer characteristics on the vortex-

shedding frequency. Kawamura et al. (1984) performed flow visualization experiments

and measurements of surface pressure around a finite circular cylinder on a flat plate,20

in order to study the main flow features close to the immersed objects. More recently,

experimental research on the finite-length effects of wall-attached circular and cylinders

using hot-wire anemometry was carried out by Park & Lee (2000). Additionally, the

Particle Image Velocimetry (PIV) experiments of Wang & Zhou (2009); Monnier et al.

(2010); Wang et al. (2014a) provide further insight on the flow structures generated25

by wall-attached circular and square cylinders. The wind tunnel experiments of Wang

et al. (2006) studied the effect of the inflow conditions on the interactions between a

boundary layer over a flat plate and flow around a wall-mounted finite-length cylinder.
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Finally, the research of McClean & Sumner (2014); Sumner et al. (2015, 2017) focused

on the effect of the aspect ratio and the incidence angle of wall-attached objects in a30

low-speed wind tunnel using PIV.

Direct Numerical Simulations (DNS) of square cylinders were performed by Saeedi

et al. (2014) with a study of the turbulent wake behind a wall-mounted square cylin-

der with aspect ratio 4. Vinuesa et al. (2015) assessed the effect of inflow conditions

by considering a fully turbulent zero pressure gradient boundary layer and a laminar35

boundary layer. The evolution of various flow structures associated with finite length

cylinders immersed in a low Reynolds number boundary layer such as wakes, tip vor-

tices, base vortices and horse-shoe vortices were discussed by Saha (2013). A square

rectangular tall building was considered by Li et al. (2014) to investigate the effects

of turbulence integral length scale and turbulence intensity on the building by means40

of Large Eddy Simulation (LES). Numerical investigation of the turbulent flow around

a surface-mounted square cylinder of aspect ratio 4 were performed by Wang et al.

(2014b) to get detailed information about the flow structures around such a cylinder

and to establish a suitable turbulent model that could yield accurate and reliable results

for practical industrial applications.45

The flow around a wall-attached object with H = L is an important classical bench-

mark for simulations and experiments of bluff bodies. However, there is only a limited

number of fundamental studies on the turbulence physics of this flow configuration.

The investigation of Castro & Robins (1977) is among the first exhaustive experimen-

tal studies on the turbulent flow around a wall-attached cube. The authors compared50

the effect of uniform and sheared turbulent incoming streams at different Reynolds

numbers. Since then, this flow configuration has been revisited, for instance, by the

experimental work of Martinuzzi & Tropea (1993) at ReH = 40, 000, by Meinders et al.

(1999) with 2, 750 < ReH < 4, 970 and by the Direct Numerical Simulation (DNS) of

Yakhot et al. (2006b) at ReH = 1870. The scalar concentration field behind a wall-55

attached cube has been studied experimentally by Ogawa et al. (1983), Li & Meroney

(1983) and Mavroidis et al. (2003) at high Reynolds numbers and computationally by
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Rossi et al. (2010) at ReH = 5, 000, using DNS and Reynolds-Averaged Navier Stokes

(RANS) simulations. The recent study of a wall-attached cube by Hearst et al. (2016),

at ReH = 1.8×106, suggested that different inflow conditions at high Reynolds numbers60

may not modify the main shedding frequency or the mean position of the stagnation

and reattachment points but seem to affect the length of the turbulent wake behind

the cube.

The presence of a wall-immersed object in a boundary layer can modify the flow

properties in a noticeable way, even with a small blockage ratio. Its turbulent wake65

induces a momentum loss which results in a rapid increase of the boundary layer thick-

ness. Moreover, despite of its relatively small size, the effect of a wall-attached body on

the energy spectra of the flow can persist at long distance from the immersed object.

However, there is little fundamental work published on the influence of a wall-attached

cube further downstream of its position and on the far-field fluctuations that it gen-70

erates. On the other hand, the far field dynamics generated by circular and square

cylinders are slightly better documented in literature, in particular by the recent works

of Becker et al. (2008), King & Pfizenmaier (2009), Porteous et al. (2013) and Moreau

& Doolan (2013). An exhaustive review on the far-field dynamics has been recently

compiled by Porteous et al. (2014).75

The present numerical study investigates the downstream signature of a wall-attached

cube, comparing situations where the cube is immersed in a laminar and in a turbulent

boundary layer. In particular, we focus on the various peaks found in the energy spec-

tra inside the boundary layer but also at large distances from the wall and far away

downstream of the cube. Data in the near-field of the cube are also validated against80

the reference data of Martinuzzi & Tropea (1993) and Yakhot et al. (2006b).

2. Computational setup

The results presented here have been obtained from high fidelity Direct Numerical

Simulations (DNS) of zero-pressure gradient laminar and turbulent boundary layers

(LBL, TBL, respectively), with a solid cube immersed in the computational domain.85
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The baseline simulation of the TBL case, which uses the same numerical domain with-

out the immersed wall-attached cube, was introduced and validated in a fundamental

investigation on the wall shear-stress fluctuations by Diaz-Daniel et al. (2017). The

local Reynolds number of the TBL covers the range Reθ = 270 − 2, 200, based on the

momentum thickness θ and free-stream velocity U∞.90

The computational flow solver, Incompact3d (Laizet & Lamballais, 2009; Laizet &

Li, 2011), uses sixth-order finite difference schemes, with a spectral treatment for the

pressure equation and a semi-implicit time advancement for the viscous terms. The

validation results of the TBL in Diaz-Daniel et al. (2017) include the computation

of the budget terms of the mean turbulence kinetic energy equation. The balance of95

the steady budget terms stays under 1% of the mean dissipation rate in the entire

computational domain. The statistics of velocity and wall shear-stress are in excellent

agreement with the reference data of Schlatter & Örlü (2010) and Jiménez et al. (2010)

at equal Reynolds numbers.

The computational parameters of the present simulations are included in Table 1.100

The cube height is represented by H and the coordinate variables in the streamwise,

wall-normal and spanwise directions are x, y, z, respectively. The coordinate system is

shifted to a streamwise position such that x = 0 is located at the front plane of the

cube. The computational domain is stretched in the wall normal direction using the

metric described by Laizet & Lamballais (2009). In the baseline TBL simulation, the105

mesh resolution, in wall viscous units (at Reθ = 1, 470) is: ∆x+ = 10.2, ∆z+ = 5.1,

∆y+ = 0.42 at the wall and ∆y+ = 108.8 at the top of the domain. The stretching

function parameters guarantee that the wall-normal node spacing inside the boundary

layer is lower than ∆y+ = 12 at the maximum Reynolds number Reθ ≈ 2, 200.

The inflow boundary condition in our simulations is a Blasius laminar boundary110

layer profile prescribed at the inlet plane. In the TBL simulation, the transition to

turbulence is triggered via the random-forcing method described in Schlatter & Örlü

(2012). A streamwise convective equation is solved at the outlet and a no-slip condition

is imposed at the bottom wall. Periodic boundary conditions are used in the spanwise
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Reθ Reδ∗ nx × ny × nz Lx
H
× Ly

H
× Lz

H
∆ywall/H ∆ytop/H ∆tU∞/H T/H

ReH = 500 LBL 68 175 357× 129× 192 35× 15× 8 0.02 0.68 0.007 10,000

ReH = 600 LBL 81 210 357× 129× 192 35× 15× 8 0.02 0.68 0.007 10,000

ReH = 750 LBL 101 263 357× 129× 192 35× 15× 8 0.02 0.68 0.007 10,000

ReH = 1, 100 LBL 149 385 357× 129× 192 35× 15× 8 0.02 0.68 0.007 10,000

ReH = 1, 700 LBL 230 596 357× 193× 192 35× 15× 8 0.015 0.41 0.005 10,000

ReH = 3, 000 LBL 406 1,051 513× 385× 256 35× 15× 8 0.007 0.22 0.002 3,000

ReH = 3, 000 TBL 750 1,105 4, 097× 513× 256 320× 27× 10 0.0033 0.833 0.001 750

Table 1: Summary of the simulation parameters (the momentum thickness is θ and the displacement

thickness is δ∗) for the present investigation.

direction, effectively modelling an infinite array of cubes, and an homogeneous Neumann115

condition is imposed at the top boundary.

The solid cube, of size H, is modelled with an immersed boundary method (see

Laizet & Lamballais (2009) for the details). In the simulation with an incoming TBL,

the height of the cube, H, is equal to 0.42δ, where δ is the local boundary layer thickness,

and the Reynolds number based on H and U∞ is ReH = 3, 000. The cube is placed120

at a streamwise distance of 72H from the inlet, where the local Reynolds number is

Reθ = 750. At the cube’s top face location, y = H, the wall-normal stretching function

satisfies ∆y+ = 0.82. In the simulations with an incoming LBL, the cube has a height

H = δ and is located at a distance 9H from the inlet. Six different Reynolds numbers are

simulated, ReH = 500, 600, 750, 1, 100, 1, 700 and 3, 000. The value of δ/H guarantees125

that the ratio between the local displacement thickness of the boundary layer and the

cube height is similar in the LBL and TBL simulations, being respectively δ∗/H = 2.86

and δ∗/H = 2.7. The blockage ratio of the cube, based on the frontal area of the

obstacle and the total area occupied by δ, is σ = 4.2% in the TBL simulation and

σ = 12.5% in the LBL simulations.130

The statistics presented in this study have been averaged over a time period T

indicated in Table 1, after letting the simulations run for a sufficiently long initial

transient period. For the computation of the energy spectra, the time signals were split

and averaged over windowed intervals (using a Hanning window) with 50% overlap.
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The number of windowed intervals is 40 in the LBL simulations up to ReH = 1, 700,135

20 in the LBL simulation at ReH = 3, 000 and 2 in the TBL simulation. The non-

dimensional power spectral density (PSD) has been defined as PSDui = EuiuiU
−1
∞ H−1,

where Euiui is the temporal energy spectrum of the velocity component ui.

3. Wall-attached cube under laminar upstream conditions

The focus in this section is on the coherent structures generated by a cube under140

laminar upstream conditions for Reynolds numbers ranging from 500 to 3, 000. Accord-

ing to the results of Meinders et al. (1999) and Yakhot et al. (2006b), the mean flow

topology and dynamics seem to be approximately Reynolds number independent for

ReH > 2, 000 when the incoming boundary layer is fully turbulent. Therefore, the re-

sults at ReH = 3, 000 under TBL upstream conditions are expected to be representative145

of higher Reynolds numbers cases.

3.1. Mean flow topology

Previous computational studies of a wall-attached object immersed in a channel

for Reynolds numbers ranging from 0.01 to 3, 500 suggested that the mean-flow topol-

ogy around a wall-attached cube under LBL conditions is strongly dependent on the150

Reynolds number, at least up to ReH < 2, 000 (Liakos & Malamataris, 2014; van Dijk

& de Lange, 2007; Hwang & Yang, 2004). The location of the main mean-flow fea-

tures obtained in our simulations are summarised in Table 2. The last row presents the

results for a cube under TBL conditions (see section 4 for a detailed discussion).

For Re ≤ 1, 700, the mean-flow streamlines behind the cube, shown in Figure 1,155

do not create a closed recirculation region. However, there exists a stagnation point,

marked D′ in Figure 1, which is located at closer distance xD′ from the cube for in-

creasing Reynolds numbers. In the simulation at ReH = 3, 000, a recirculation point

can be found at xD = 1.63H, yD = 1.11H (point D in the bottom plot of Figure 1),

in addition to the stagnation point D′. For Re ≤ 3, 000, no recirculation region can160
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Front face.

stag. yA

Stag point

xD′

Stag point

yD′

Stag. point

xF

Recirc. point

xD

Recirc. point

yD

Re = 500 0.82 3.48 0.17 -1.6 - -

Re = 600 0.82 3.22 0.21 -1.7 - -

Re = 750 0.82 2.98 0.24 -1.8 - -

Re = 1, 100 0.82 2.19 0.145 -2.0 - -

Re = 1, 700 0.81 2.15 0.141 -2.25 - -

Re = 3, 000 0.81 1.93 0.181 -2.57 1.63 1.11

Re = 3, 000 (turb.) 0.67 - - -1.4 1.45 0.87

Table 2: Positions of the mean flow features of a wall-attached cube with a laminar incoming boundary

layer. In the last row, we have added, for comparison, the results of the simulation with incoming TBL

at ReH = 3, 000, described in Section 4.

be found over the top surface of the cube but the mean-flow streamlines are strongly

curved over the cube due to a strong backflow in the streamwise direction.

The upstream stagnation point (point F in Figure 1) moves farther from the front

face with increasing Reynolds numbers. On the other hand, its streamwise position xF

has been reported to be approximately constant when the flow around the cube becomes165

fully turbulent (Yakhot et al., 2006b). An empirical correlation for the position of this

stagnation point in the range 300 < ReH < 1, 500 was proposed by Hwang & Yang

(2004), xF/H = −0.77 log(ReH) + 0.564, measured on the x-z plane y = 0.006H. In

our simulations, the location of the upstream stagnation point measured at the plane

y = 0.025H (xF in Table 2), also follows a logarithmic trend for 500 < ReH < 3, 000,170

xF/H = −1.24 log(ReH) + 1.77 (see Figure 2(a)). The 10-15% difference with the

correlation predictions of Hwang & Yang (2004) can be attributed to the different set-

up (channel flow of size 2H versus boundary layer).

The horseshoe vortex system observed just upstream of the cube is stable for all

our laminar simulations. The work of Baker (1979) investigated the horseshoe vortex175

system around high-aspect ratio cylinders for different flow conditions, and suggested

that its topology and stability depend mostly on the Reynolds number and the ratio

D/δ∗, where D is the cylinder diameter and δ∗ is the boundary layer displacement
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Figure 1: Mean flow streamlines and time-averaged streamwise velocity contours around a wall-

attached cube at different Reynolds numbers. Left: x-y plane z = 0 (the colourmap for u ranges

from −0.1U∞, dark blue, to 1.1U∞, dark red). Right: x-z plane y = 0.025. (colourmap for u from

−0.1U∞, dark blue, to 0.2U∞), dark red.
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thickness. Depending on the pair of dimensionless numbers {ReD, D/δ∗} (ReD is based

on the cylinder diameter), the horseshoe vortex system may be either stable with 2,180

4 or 6 vortices, or unstable following a quasi-periodic behaviour. The stability map

obtained from the experiments on cylinders by Baker (1979) is presented in Figure 2(b).

Our simulations have been included in this map for reference, based on their values of

{ReH , H/δ∗}. The different vortex systems from our simulations can be identified in

the streamline visualisations of Figures 1 (stable vortices) and 6(a) (unstable vortex,185

see Baker (1979) for a more detailed description).

(a) (b)

Figure 2: a) Position of the upstream stagnation point generated by a wall-attached cube under laminar

inflow conditions. In Hwang & Yang (2004), it is measured in a channel at a distance y = 0.006H

from the wall, while in the current simulation it was measured in an LBL at y = 0.025H from the

wall. The value nHS indicates the number of steady horseshoe vortex found at each Reynolds number.

b) Dependency of the horseshoe system dynamics on the parameters ReD and D/δ∗ for the wall-

attached cylinder experiments of Baker (1979), indicated with blue cross symbols. The continuous

lines indicate the empirical threshold between the 2-vortex, 4-vortex, 6-vortex and unstable horseshoe

systems obtained by these authors. The triangles and the square represent the pairs ReH and H/δ∗ in

our cube simulations under LBL and TBL upstream conditions, respectively. Note that the numbers

of horseshoe vortices found in these simulations are different than those predicted by the diagram for

cylinders proposed by Baker (1979).

In Figure 2(a), the position of the stagnation point is plotted for the present sim-

ulations and for the work of Hwang & Yang (2004), indicating the number of steady

10



horseshoe vortices found for each case. The ratio H/δ∗ is different in both investi-

gations, with a value of 2.8 in our study and a value of 1 in Hwang & Yang (2004).190

According to the stability map of Baker (1979) in Figure 2(a), the horseshoe vortex

system around wall-attached cylinders should consist of 2 vortices with a low ratio H/δ∗

and ReH between 500 and 1, 700. However, in the present simulations, the horseshoe

vortex system contains 4 steady vortices approximately for 300 < ReH < 1, 000, 6 vor-

tices for 1, 000 < ReH < 3, 000 and 8 vortices for ReH ≥ 3, 000 and a similar behaviour195

is inferred from the results of Hwang & Yang (2004). At ReH = 3, 000, the horseshoe

system remains stable even if some unsteady fluctuations are noticeable. This suggests

that the stability limits can be significantly different depending on the geometry of the

wall-attached objects.

In contrast to the Reynolds number dependence of the topological features discussed200

in the previous paragraph, the position of the stagnation point on the cube front face (A

in Figure 1) is approximately constant for the range ReH = 500− 3, 000, at yA = 0.82.

Finally, the mean-flow streamlines suggest that the wake behind the cube becomes wider

for increasing Reynolds numbers. In the low Reynolds number simulations, ReH =

500, 600, 750, the streamlines in the cube wake are almost parallel to the streamwise205

direction for |z| > 1.4H, x > 6H. This suggests that the wake width at low Reynolds

numbers is approximately constant, with value Wwake = 2.8H.

3.2. Dynamic structures

Instantaneous visualisations from the LBL simulations at ReH = 500−3, 000, using

the Q criterion (defined by Hunt et al. (1988)), are presented in Figures 3 and 4. These210

visualisations suggest that the coherent velocity fluctuations may be associated with

a periodic generation of hairpin vortices from the top of the cube. The two upper

side edges induce vortical motions, which presumably interact with the shear layer

created over the cube and this may lead to flow instability. This mechanism creates a

primary street of symmetric hairpin vortices, which are detached from the wall. For215

low Reynolds numbers (ReH = 500−750), vortex generation starts farther downstream
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of the cube than for higher Reynolds numbers.

At ReH = 500, the isocontours of Q = 0.1U2
∞/H

2 3(a) do not show any unsteady

structure since the velocity fluctuations are very low. If the threshold for Q is relaxed

down to Q = 0.003U2
∞/H

2 (drawn with low opacity), weakly unsteady structures are220

revealed, which develop into hairpin vortices at x > 15H. Therefore, this suggests that

the critical Reynolds number for flow unsteadiness may be close to ReH = 500. Ac-

cording to the flow visualisations, the hairpin vortices might be related to an instability

mechanism of the steady streamwise vortices which are generated at the cube top edges.

(a) (b) (c)

(d) (e) (f)

Figure 3: Simulation of a wall-attached cube at different Reynolds numbers with a laminar incoming

boundary layer. a,b,c) Isocontours of Q = 0.1U2
∞/H

2, coloured by streamwise velocity (from −0.5U∞,

in dark blue, to 1.1U∞, in dark red). d) Isocontours of Q = 0.2U2
∞/H

2 and e,f) isocontours of

Q = 0.28U2
∞/H

2. In subfigure (a), the low opacity surface represents the isocontour Q = 0.003U2
∞/H

2.

The Strouhal number associated with the hairpin vortex structures at ReH = 500225

is St = 0.17. The unsteady structures appear as a single sharp and intense peak in the

turbulence energy spectra, which is shown for different downstream locations in Figure

4(a). These energy spectra have been averaged over 9 equidistant spanwise locations
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between z = −1.5H and z = 1.5H from the cube centre plane. The obtained value

St = 0.17 is in good agreement with the Strouhal number obtained by the DNS of230

Yanaoka et al. (2007) at ReH = 500 (St = 0.159). The coherent velocity fluctuations

are significantly stronger in Yanaoka et al. (2007), where symmetry conditions were

used in the spanwise direction and a slip condition on the domain top plane, located

at y = 10H from the wall. These authors reported that the flow solution in their

simulation at ReH = 450 is stable, which supports our previous statement suggesting235

that ReH = 500 may be close to the critical value for unsteady flow.

In the present simulations, the magnitude of the peak found in the energy spectra

is maximum around x = 15H, y = H from the cube, after the shear layer becomes

unstable. When moving farther downstream at y = H, the peak intensity is reduced,

but can still be detected up to the domain outlet. The magnitude of the peak in the240

power spectra reported by Yanaoka et al. (2007) (measured at y = H) also decreases

for increasing x > 6H.

For ReH = 600, the contours of Q suggest that another two streets of hairpin

vortices, which are attached to the wall, are generated on the sides of the primary

structures, possibly from a secondary interaction between the cube flow structures and245

the wall. These secondary vortex streets are symmetrically separated by a distance

of approximately 1.2H from the cube centre plane z = 0. Their generation may be

associated with the instabilities caused by the vortical motion of the horseshoe vortex

legs. In particular, the flow region around a horseshoe vortex is fundamentally similar

to a quasi-streamwise vortex from the near-wall region of a turbulent wall-bounded250

flow. Therefore, it might be reasonable to expect similar hairpin-vortex structures to

those discussed by Adrian (2007) for the buffer and log layers.

The Strouhal number of the primary top vortices, St = 0.19, is slightly increased in

comparison to the ReH = 500 case. The secondary wall-attached structures are shed at

the same frequency, but the interaction between the different structures seems to result255

in harmonic peaks at St = 0.38, St = 0.57 and higher multiples of the main Strouhal

number St = 0.19. The interaction with the wall and between the vortex streets may
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(a) (b) (c)

(d) (e) (f)

Figure 4: Simulation of a wall-attached cube at different Reynolds numbers with a laminar incoming

boundary layer. Energy spectra of the streamwise velocity component u at different positions x, y.

The power-spectral density (PSD) has been non-dimensionalised as PSDu = EuuU
−1
∞ H−1.

also be responsible for an amplification of the primary peak in the energy spectra, since

its magnitude keeps increasing when moving away from the cube.

At ReH = 750, stronger flow interactions between the cube and the wall produce a260

higher number of secondary structures and a more disorganised distribution of them.

The Strouhal number of the main shedding further increases to St = 0.21. The vortex

interaction and additional flow instabilities behind the cube generate a secondary peak

with a lower Strouhal number St = 0.1. This peak can be associated with a new

phenomenon since the harmonics found at ReH = 600 all have higher frequencies than265

the main peak. The interaction between the new peak at St = 0.1 and the primary

peak at St = 0.21 also generates the harmonic St = 0.1 + 0.21 = 0.31. Interestingly,

the velocity fluctuations at St = 0.1 for this Reynolds number seem to be less amplified
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than in the ReH = 600 case. At ReH = 750, the primary peak reaches its maximum

magnitude around x = 4H and decreased downstream of this location.270

The vortex visualisations presented in Figure 3(d) suggest that, at ReH = 1, 100,

the flow structures are much more complex than in the previous cases, but it is still

possible to distinguish the vortical structures described before. The primary hairpin

vortex street can be found close to the cube, but after a short distance away from the

cube, the interaction with other flow structures becomes very strong and the vortices275

break down into less organised motions. The secondary streets of wall-attached hairpin

vortices on the sides of the cube can be identified as well.

The near-cube coherent structures are shed with higher frequency than at lower

Reynolds numbers and the Strouhal number of the main peak in the energy spectrum

computed at x = 4H, y = 0.75 is equal to St = 0.32. However, secondary peaks280

at St = 0.22 and St = 0.12 are also identified, which might be the signature of the

coherent fluctuations found at lower Reynolds numbers. The energy spectra suggest

that the flow interactions at ReH = 1, 100 are non-linear and that the flow may become

turbulent further downstream of the cube. At this Reynolds number, the turbulent

kinetic energy is distributed in a broad band range of frequencies and no peaks can be285

easily identified for x > 20H and y < H. It is interesting to note that a low frequency

peak, with St = 0.05, can be found in the energy spectrum at x = 1.5H. It seems that

this low frequency peak is only detected inside the backflow region behind the cube

(see Figure 1), suggesting that the flow dynamics may be different here. The peak at

St = 0.05, weak in comparison with the other ones, is not present in the spectrum at290

x = 4H, y = 0.75H nor for higher streamwise positions.

At ReH = 1, 700, the main peak with St = 0.32 found at ReH = 1, 100 and x = 4H

can also be identified, but its Strouhal number increases to St = 0.37. While the peak

at St = 0.22 is much weaker at ReH = 1, 700, the peak at St = 0.14 has a greater

magnitude than the peak at St = 0.12 at ReH = 1, 100. Since the Strouhal number is295

the same as the one identified in the simulation with a turbulent incoming boundary

layer in Figure 10(a), the peaks found at St = 0.14 for ReH = 1, 700 and ReH = 3, 000
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might possibly be associated with the same flow structures. Hwang & Yang (2004)

stated that the mechanism which generates the dominant peak with St ≈ 0.12−0.14 at

high Reynolds numbers is not well understood, since the main coherent structures are300

shed with higher Strouhal numbers. However, these authors suggested that the peak

at St ≈ 0.13 actually dominates the force coefficient of the total spanwise loading on

the cube. While the horseshoe vortex is still stable at ReH = 1, 700, the isocontours of

Figure 3(e) show a strong generation of hairpin vortices around its legs. The shedding

of hairpin vortices can be related to a new peak with St = 0.75 found in the energy305

spectra, since these are the only coherent structures found to be shed at such high

frequencies. At higher downstream distances from the cube, the energy spectra at

St = 1, 700 does not predict any dominant peak, only broadband fluctuations.

At ReH = 3, 000, a single peak with St = 0.1 can be identified in the energy spectra

of Figure 4(f) at x = 1.5H and x = 4H, but it is no longer detected far downstream.310

The horseshoe vortex system is stable, and the instantaneous and averaged streamlines

in front of the cube are very similar to each other. However, Figure 5(a) shows that the

largest horseshoe vortices are not steady and they generate weak velocity fluctuations

which can be associated to a peak in the energy spectra found at approximately St =

0.085, as seen in Figure 5(b). The St value is relatively similar to the one reported315

in Yakhot et al. (2006a) for the unstable horseshoe vortex system of a cube under

turbulent upstream conditions (St ≈ 0.08), suggesting that the velocity fluctuations in

the two cases might be related to the same physics.

Finally, the far-field velocity signature of the cube at ReH = 3, 000 is also presented

in Figure 5(b). The turbulence energy spectra suggests that the signature of the co-320

herent motions detected near the cube is not noticeable far downstream of the cube

location. At y = 3H and x > 20H, the energy is spread in a broad bandwidth of

frequencies, centred around St = 0.15− 0.2, and no sharp peak can be observed. The

results suggest that the main frequency of the excited region of the energy spectra may

decrease for increasing values of x/H.325

16



(a) (b)

Figure 5: Simulation of a wall-attached cube at ReH = 3, 000 with a laminar incoming boundary layer:

a) Instantaneous contours of the streamwise velocity component and instantaneous streamlines on the

x-y plane z = 0. Detail of the front horseshoe vortex. b) Energy spectra of the streamwise velocity

component u at the front horseshoe vortex position and in the cube far-field. The non-dimensional

PSD is defined as PSDu = EuuU
−1
∞ H−1.

4. Wall-attached cube under turbulent upstream conditions

4.1. Mean-flow features in the near-cube region

The mean flow features of our TBL simulation at ReH = 3, 000 are compared with

published experimental and simulation data (Martinuzzi & Tropea, 1993; Yakhot et al.,

2006b). In those studies, the Reynolds number ReH is similar to ours, but the cube330

is immersed in a turbulent channel instead of a turbulent boundary layer. The mean

flow streamlines in Figures 6(a) and 6(b) show the time averaged structures around the

cube. In the centre plane z = 0, the stagnation point A is located at yA/H = 0.67, the

reattachment point E at xE/H = 2.5, the front vortex C has its centre at xC/H = 0.48

and the horizontal location of the rear recirculation centre D is xD/H = 1.45. Those335

spatial positions are in good agreement with the numerical results of Yakhot et al.

(2006b), with differences of less than 3%. On the other hand, the location of the top

recirculation bubble B, xB/H = 0.65 and yB/H = 1.13, and the vertical position of

the rear recirculation D, yD/H = 0.87, have a 10-15% relative error with respect to
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the values found in Yakhot et al. (2006b). This can be explained by the different top340

boundary condition, since the upper wall in the channel configuration constraints the

flow in the vertical direction.

The results are summarized in Table 2 and the comparison with Figure 1 shows

important disparities in the location and size of the mean-flow features between simu-

lations under LBL and TBL conditions for the same Reynolds number. For instance,345

the distance from the mean stagnation point and the cube front face, xF , is 45% lower

for the TBL simulation and the location of the stagnation point A on the cube front

face is lower by 17% with yA = 0.67. The authors in Vinuesa et al. (2015) have also

previously reported that the inflow conditions can have an important influence on the

main flow features around a high aspect-ratio square cylinder. It was suggested that,350

while the Strouhal number of the main shedding is approximately the same (St = 0.1)

under incoming turbulent and laminar upstream conditions, the upstream horseshoe

vortex dynamics and the downstream wake parameters may be significantly different.

The TBL simulation at ReH = 3, 000 exhibits an unstable horseshoe vortex system

in front of the cube, as confirmed by the mean-flow streamlines in Figure 6(a), and in355

agreement with the results reported by Yakhot et al. (2006a). It seems that the dynam-

ics of this flow feature are strongly dependent on the turbulence upstream conditions,

as suggested by Baker (1979) with a dependence with the parameters ReH and δ∗/H

only. The LBL and TBL simulations at ReH = 3, 000 have more or less the same value

of δ∗/H ≈ 2.8 but the horseshoe vortex dynamics and the main mean-flow features360

around the cube are fundamentally different. On the other hand, similar results ob-

tained in the present simulation and in Yakhot et al. (2006b) suggest that the effect of

the top boundary condition (TBL versus turbulent channel) is not that important for

this flow feature.

Periodic boundary conditions in the spanwise direction are modelling an infinite365

array of cubes and one can average the flow variables over [−Lz/2, Lz/2] to estimate

the effect of the cube on the boundary layer statistics. The interaction with the cube

increases the span-averaged momentum thickness by a constant ∆θ, which is reflected
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(a) (b)

Figure 6: a) Mean velocity streamlines in the spanwise plane z = 0. Coloured contours by velocity

magnitude (from -0.25, blue, to 1.1U∞, red). b) Mean velocity streamlines in the wall-normal plane

y/H = 0.0045. Coloured contours by streamwise velocity (from −0.1U∞, blue, to 0.2U∞, red).

in the Reynolds number, as shown in Figure 7(a). By using the physical meaning

of the momentum thickness, D = U2
∞Lz∆θ, the drag coefficient of the cube can be370

related to ∆θ as Cd = 2∆θLz/H
2 = 2∆Reθ

ReH

Lz
H

= 0.7. The obtained value of the drag

coefficient, Cd = 0.7, is in good agreement with the result obtained by integrating the

surface forces, equal to Cd = 0.72 (the contribution of the pressure forces on the front

and rear faces to the form drag is 0.642 and 0.09 respectively, and the skin friction

drag only contribute as -0.011, a 1.5% of the total). Differences in the drag coefficient375

with the experiments of Martinuzzi & Havel (2004) (Cd ≈ 0.95) can be attributed to

different incoming flow conditions which affect the cube wake characteristics (in their

study, a Blasius laminar profile with δ/H = 0.07 was prescribed upstream of the cube).

The experimental studies of Sakamoto et al. (1982) and Sakamoto & Oiwake (1984)

suggest that the drag coefficient of the cube strongly depends on the ratio H/δ. These380

authors obtained a value around Cd ≈ 0.4 for H/δ = 0.15, a value around Cd = 0.6 for

H/δ = 0.5 and Cd = 0.95 for H/δ = 1.5.

Moving further downstream, the span-averaged velocity profiles recover a canonical

state for the inner and buffer regions of the TBL and the influence of the cube is

mostly concentrated on the inertial and wake layers. The comparison between the385

span-averaged turbulent fluctuation profiles at Reθ = 1, 000 (22.3H downstream of
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the cube), presented in Figure 7(b), shows a significant increment for span-averaged

streamwise fluctuations expressed in wall units u+
rms in the cube simulation between

y+ ≈ 80 and y+ ≈ 300, while the inner part of boundary layer remains unaltered.

Thus, the effect of the immersed cube on the the span-averaged turbulence statistics is390

mostly concentrated around its upper edges, located at y+ ≈ 132.

(a) (b)

Figure 7: a) Effect of the cube on the span- averaged momentum thickness. b) Effect of the solid cube

in the span-averaged streamwise fluctuations, at Reθ = 1, 000. This Reynolds number location can

be found at 111H in the unperturbed boundary layer simulation and at 95H in the cube simulation

(22.3H downstream of the cube).

4.2. Energy spectra inside the boundary layer

In the near-field flow around the cube, for y < H, top, rear and lateral recirculations

shed unsteady vortices, producing a dominant peak in the velocity spectra. Previous

studies have reported a shedding frequency with a Strouhal number St = fH/U∞ =395

0.08− 0.15 (Yakhot et al., 2006b; Porteous et al., 2014; Martinuzzi & Havel, 2004). In

our simulation, close to the rear wall of the obstacle (x = 4.7H, y = 0.73H, z = 0),

it is possible to identify a peak in the turbulence spectra with St = 0.14 as seen in

Figure 8(a). The peak frequency lies within the range of values found in the literature

and is in good agreement with the empirical correlation of Wang & Lu (2012), based400

on experimental results. Further downstream, the peak in the energy spectra of the
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streamwise component u is masked by the boundary layer turbulence and cannot be

detected for y < δ (see Figure 8(a) for x = 36H). The spectra of the spanwise compo-

nent w also presents a peak with St = 0.14 which is shown in figure 8(b). While the

magnitude of this peak decreases further downstream, it is still noticeable at y/H = 36,405

as the background spanwise fluctuations of the boundary layer are less intense than the

streamwise ones.

(a) (b)

Figure 8: Energy spectra of a) streamwise and b ) spanwise velocities in the near field of the wall-

attached cube, at y = 0.73H and z = 0. Comparison at x = 4.7H and x = 36H downstream of the

cube (points P and P ′ in Figure 9). The non-dimensional PSD is defined as PSDui = EuiuiU
−1
∞ H−1.

4.3. Energy spectra outside the boundary layer

In the free-stream, away from the boundary layer, an array of virtual probes recorded

the velocity signal as a function of time at different streamwise positions and same410

distance from the wall, y/H = 4.7, as sketched in Figure 9. In this region, the flow

statistics have small variations in the spanwise direction and, thus, the frequency spectra

have been averaged over 16 equally-spaced spanwise positions to improve statistical

convergence. Far away from the boundary layer (at least y/H = 3− 4 from the wall),

a sharp peak with Strouhal number St = 0.05 is found in the turbulence spectra for415

large distances downstream of the cube, around x/H > 30 (Figure 10(a)). The peak

magnitude is low since this position is far from the turbulent region, but it is over 5 times
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higher than the magnitude obtained in the simulation with no cube at the exact same

spatial locations. The shape of the far-field spectra generated by the baseline turbulent

boundary layer is similar to the one obtained experimentally by Favre et al. (1957), and420

may be explained by the theoretical model of irrotational fluctuations by Philips (1955).

The free-stream spectra of a TBL was briefly discussed again by Rodŕıguez-López et al.

(2016).

Figure 9: Probe positions for the frequency spectra in the wall-attached cube simulation. Points P ,

P ′: inside boundary layer, x/H = 4.7, 36, y/H = 0.7. Points A−D, free-stream far-field, y/H = 4.7

and x/H = 20, 28, 36, 45; D′ at y/H = 6.5, x/H = 45.

Figure 10(b) shows that, at an equal distance y/H = 4.7 from the wall, peak

magnitudes in the cube simulation’s span-averaged streamwise spectra increase with425

downstream distance, but the peak frequency does not change. This suggests that the

fluctuations created by the cube may propagate and possibly amplify downstream and

upwards. This effect could be associated with the boundary layer thickness growth, but

the value of the energy spectra peak measured at x = 20H, y = 4.7H, located at 2.3H

from the boundary layer edge, is lower than the peak value measured at x = 45H, y =430

6.5H, at 2.9H from the boundary layer edge. The frequency of the peak is very low

and cannot be associated directly with the vortex shedding of the cube measured closer

to the wall. Note that in previous experimental studies of round and square cylinders

by Porteous et al. (2013) and Porteous et al. (2014), a low-frequency peak was also

detected in the far-field with St = 0.07. The authors associated this peak with the tip435

flow shedding, occurring at a different frequency from the main vortex shedding with
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(a) (b)

Figure 10: a) Span-averaged energy spectra of the streamwise component u. Comparison with and

without cube at x = 36H, y = 4.7H from the cube position (point P in Figure 9). b) Span-averaged

temporal spectra of the streamwise velocity component, from the cube simulation, measured in the

free-stream at several streamwise positions (points A−D and D′). The non-dimensional PSD is defined

as PSDu = EuuU
−1
∞ H−1.

St ≈ 0.15 − 0.2. However, this low frequency peak was only detected in the far-field

spectra of high aspect ratio cylinders (H/D > 9, where D is the cylinder diameter),

which is not the case here. Therefore, it is reasonable to think that the far-field peak

in our simulations may not be related to a tip flow shedding but is otherwise connected440

to another physical phenomenon.

Figure 11 shows that the peak found in the energy spectra of the streamwise ve-

locity component can also be found for the wall-normal component v. Moreover, the

magnitude of the peak is of the same order for these two components. On the other

hand, the energy spectra of the spanwise component does not seem to present a well-445

defined peak: a single frequency with significantly higher power spectral density can-

not be clearly identified. Indeed, the maximum value in the w-component spectra at

x = 36H, y = 4.7H is about 15 times lower than the peak value found in the energy

spectra of u and v. It suggests that the far-field velocity fluctuations are fundamentally

two-dimensional in our simulations, which may possibly be explained by either of the450
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following reasons or the combination of them:

a) The large-scale fluctuations generated by the cube are two-dimensional themselves

and might be unrelated to the shedding at St = 0.15 detected in the near-wall region,

which generates spanwise fluctuations (see Figure 8(b)). The far-field fluctuations

might be associated with spanwise-oriented vortices generated on top of the cube455

and/or with the turbulent interaction of the heads of the hairpin vortices observed

behind the cube.

b) The scale of the far-field fluctuations is so large that it occupies the entire span-

wise extent of the computational domain. The time separation of the structures

associated with St = 0.05 is ∆t ≈ 20H/U∞ and if one assumes Taylor hypothesis460

(convection velocity equal to U∞), the scale associated with such structures would

be 20H, larger that the spanwise extent Lz = 10H.

(a) (b)

Figure 11: a) Span-averaged energy spectra of the wall-normal component v. Comparison with and

without cube at x = 36H, y = 4.7H from the cube position (point P in Figure 9) and x = 36H, y =

6.5H. b) Span-averaged energy spectra of the spanwise component w. Comparison with and without

cube, also at x = 36H, y = 4.7H. The non-dimensional PSD is defined as PSDui
= Euiui

U−1∞ H−1.

The instantaneous streamwise velocity fluctuations, probed at x = 45H, y = 6H,

z = 0 and plotted in Figure 12(a), show evident differences between the two TBL
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simulations with and without the cube. The time-signal from the immersed-cube sim-465

ulation presents higher maxima and minima and the separation between these peaks

is relatively constant over time. This suggests that the cube is exciting or enhancing

free-stream fluctuations at a particular low frequency, consistent with the peak location

in the energy spectra.

(a) (b)

Figure 12: a) Time signal of the fuctuating streamwise velocity u′, with and without the cube, at the

position x = 45H, y = 6H. b) Probability distribution function (PDF) of the time lapse between

velocity maxima (conditioned to u′ > 0.002) and minima (conditioned to u′ < −0.002), at the position

x = 45H, y = 6H, z = 0.

To confirm this, the probability distribution function (PDF) of the time-lapse be-470

tween maxima of u′ (conditioned to u′ > 2× 10−3) was computed at x = 45H, y = 6H.

This PDF shows that the events with time such that ∆t ≈ 20H/U∞, equivalent to the

frequency St = 0.05, have a high probability peak of approximately 8% when the cube

is present (Figure 12(b)). The PDF of the time-lapse between local minima (condi-

tioned to u′ < −2×10−3) does not show such high peaks at ∆t ≈ 20H/U∞, supporting475

existing evidence of high skewness in the velocity signal at this location.

The sharp peak described in this section is not observed in the simulations of a cube

immersed in a LBL. This suggest that the far-field structures responsible for this peak

is only generated when the cube interacts with an incoming turbulent boundary layer.

25



The comparison between these two configurations revealed that some flow structures480

in the cube near-field are fundamentally different, even if the Reynolds number is the

same (ReH = 3, 000). For instance, we previously discussed the differences between the

mean-flow features around the cube and mentioned that the horseshoe vortex system

in front of the cube is unstable only in the TBL simulation.

5. Conclusions485

The interaction between a turbulent boundary layer and a wall-attached cube gen-

erates a low-frequency sharp peak in the far-field energy spectra which persists for

long downstream distances with a constant Strouhal number St = 0.05. This peak is

not due to numerical effects nor related to the background boundary layer turbulence,

since it was not identified in the unperturbed zero-pressure gradient turbulent boundary490

layer. The Strouhal number of this peak does not correspond to the vortex shedding

detected close to the cube at St = 0.14, hence it might be associated with an additional

phenomenon. The peak has been observed in the energy spectra of the streamwise

and vertical fluctuating velocity components but not in the spectra of the spanwise

fluctuations, which suggests that the responsible flow structures might be essentially495

two-dimensional.

A series of simulations with incoming laminar boundary layer conditions investigated

the coherent structures generated by the cube at different Reynolds numbers, in the

range ReH = 500−3, 000. The coherent structures are mainly organised in two distinct

vortex streets: hairpin vortices shed from the top of the cube and wall-attached hairpin500

vortices generated at both sides of the cube wake. This study revealed that there is a

strong Reynolds number dependence for the peaks found in the energy spectra, but the

far-field peak was not found in those simulations with incoming laminar conditions.

The turbulent upstream conditions are therefore related, directly or indirectly, to the

far-field peak. For this reason, the origin of the far-field peak is most probably related505

to mechanisms involving the interaction between a turbulent boundary layer and a

cube. The energy spectra of the incoming boundary layer at y = 4.7H has a broad
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peak centred around St = 0.07 − 0.1. The interaction with the cube might modulate

or amplify the oscillations at St = 0.05 and this modulation could be responsible for

the far-field peak, since the low frequency velocity fluctuations are weakly dissipated510

by viscous stresses.

As explained before, the flow dynamics around the cube present some fundamental

differences between the LBL and TBL simulations at ReH = 3000. For instance, the

main mean-flow recirculations, behind and on top of the cube, are not completely

developed in the LBL simulation. Secondly, the horseshoe vortex system in front of the515

cube is stable with 8 vortices in the LBL simulation and unstable in the TBL simulation.

The authors of Yakhot et al. (2006a) suggested that the unstable horseshoe vortex

system has a similar dynamic as the inviscid-viscous interaction between a vortex and

the high-vorticity region near the wall in a junction flow. They described the unsteady

mechanism in front of the cube as a quasi-periodic regeneration of the horseshoe vortex520

and a low-momentum fluid ejection away from the wall. The dominant frequency of

this cycle is reported to be at St = 0.08. It is unclear whether the ejection of low-

momentum fluid at such low frequencies might be related to the velocity fluctuations at

St = 0.05 found in the far-field of our simulation with a turbulent incoming boundary

layer. Both phenomena are presumably only found at high Reynolds numbers when525

the flow around the cube is fully turbulent.
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