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The von Kárman–Howarth equation implies an infinity of invariants corresponding to an infinity of
different asymptotic behaviours of the double and triple velocity correlation functions at infinite
separations. Given an asymptotic behaviour at infinity for which the Birkhoff–Saffman invariant is not
infinite, there are either none, or only one or only two finite invariants. If there are two, one of
them is the Loitsyansky invariant and the decay of large eddies cannot be self-similar. We examine the
consequences of this infinity of invariants on a particular family of exact solutions of the von Kárman–
Howarth equation.

© 2011 Elsevier B.V. All rights reserved.
1. Introduction

Results from recent laboratory experiments [1] suggest that
classes of homogeneous turbulence decay exist which are at odds
with classical theory [2]. As the general theory of homogeneous
turbulence decay is based on invariants of the von Kárman–
Howarth equation [2,3], these recent experiments call for a fresh
study of what is true about these invariants. The present Letter
provides such a study in the context of decaying homogeneous
isotropic turbulence. However, the assumption of isotropy could be
dropped by following, for example, the method of Nie and Tan-
veer [4].

2. Invariants of the von Kárman–Howarth equation

Starting from the von Kárman–Howarth equation for decaying
homogeneous isotropic turbulence [2,3], we show that it is possi-
ble to derive an infinite number of different invariants correspond-
ing to an infinite number of different conditions at infinity. This
equation is

∂

∂t

(
u′2 f

) = u′3
(

∂k

∂r
+ 4k

r

)

+ 2νu′2
(

∂2 f

∂r2
+ 4

r

∂ f

∂r

)
(1)

where u′ = u′(t) is the r.m.s. of the turbulent fluctuating veloc-
ity component u, u′ 2 f (r, t) ≡ 〈u(x, t)u(x + r, t)〉 and u′ 3k(r, t) ≡
〈u2(x, t)u(x + r, t)〉, the brackets signifying an average over realisa-
tions or over the spatial coordinate x which is defined on the same
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axis as the velocity component u. Note that r � 0, that f (0, t) = 1
and that reflection invariance implies k(0, t) = 0. It is natural to
assume that all derivatives of f and k with respect to r are not
infinite at r = 0.

Given suitable conditions at infinity, Eq. (1) can be used to cal-
culate the rate of change of u′ 2

∫ +∞
0 rm ∂n f

∂rn dr for an infinite range
of values of m and n. Repeated integrations by parts yield

d

dt

[
u′2

+∞∫
0

rm ∂n f

∂rn
dr

]

= (−1)nu′3

+∞∫
0

dr rm−n−1k(r)
[
4T m

m−n+1 − T m
m−n

]

+ (−1)n2νu′2

+∞∫
0

dr rm−n−2 f (r)

× [
T m

m−n−1 − 4(m − n − 1)T m
m−n+1

]
(2)

where T m
m+p = 1 and T m

m−p = m(m − 1) · · · (m − p) if p is a
positive integer, and T m

m = m (note that m does not need to
be an integer). These integrations by parts yield the right-hand
side of (2) provided that m > n + 1, n � 0, limr→∞(rm−nk) = 0
and limr→∞(rm−n−1 f ) = 0. The integral

∫ +∞
0 rm ∂n f

∂rn dr is finite if
limr→∞(rm−n+1 f ) = 0. We make the assumption that f (r) and
k(r) do not oscillate at infinity.

Noting that T m
m−n−1 − 4(m − n − 1)T m

m−n+1 = (1 + n − m)×
[4T m − T m

m−n] for all n � 0, (2) simplifies to
m−n+1
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d
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[
u′2

+∞∫
0

rm ∂n f

∂rn
dr

]

= (−1)n(4T m
m−n+1 − T m

m−n
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u′3

+∞∫
0

dr rm−n−1k(r)

+ 2(1 + n − m)νu′2

+∞∫
0

dr rm−n−2 f (r)

]
. (3)

By considering linear combinations of pairs of integrals
∫ +∞

0 rm ×
∂n f
∂rn dr and

∫ +∞
0 rm′ ∂n′

f
∂rn′ dr for which m − n = m′ − n′ ≡ M , we

can form an infinite number of invariants. There are two cases.
One where M ≡ m − n = 4, in which case there is no need to
consider such linear combinations because [4T m

m−n+1 − T m
m−n] =

[4T m
5 − T m

4 ] = 0 for any integer m � 4. This case immediately yields

d

dt

[
u′2

+∞∫
0

r4+n ∂n f

∂rn
dr

]
= 0 (4)

for any integer n � 0 under the conditions limr→∞(r4k) = 0
and limr→∞(r5 f ) = 0. These conditions ensure that the quan-
tity u′ 2

∫ +∞
0 r4+n ∂n f

∂rn dr is both finite and independent of time for
any integer n � 0. When n = 0, this quantity is the well-known
Loitsyansky invariant [7,3]. Integrations by parts show that this
quantity is proportional to the Loitsyansky invariant for any n � 0
because limr→∞(r5 f ) = 0 and f (r) is assumed not to oscillate at
infinity.

The second case is for M �= 4. In this case the following linear

combinations of integrals
∫ +∞

0 rm ∂n f
∂rn dr and

∫ +∞
0 rm′ ∂n′

f
∂rn′ dr are in-

variant:

IMnn′ ≡ u′2

+∞∫
0

rM+n′ ∂n′
f (r)

∂rn′ dr

+ CMnn′ u′2

+∞∫
0

rM+n ∂n f (r)

∂rn
dr (5)

where m − n = m′ − n′ ≡ M �= 4, n and n′ are non-negative in-
tegers such that n �= n′ and CMnn′ = −(−1)n′−n[4T M+n′

M+1 − T M+n′
M ]/

[4T M+n
M+1 − T M+n

M ]. From (3),

d

dt
IMnn′ = 0 (6)

under the conditions that M > 1, limr→∞(rMk) = 0 and
limr→∞(rM−1 f ) = 0 and that IMnn′ is well-defined. Hence, the von
Kárman–Howarth equation admits an infinity of possible finite in-
tegral invariants depending on conditions at infinity.

Whilst M does not have to be an integer, the smallest integer
value of M for which such invariants exist is M = 2. The particu-
lar choice M = 2, n′ = 0 and n = 1 recovers the Birkhoff–Saffman
invariant [5,6]

3I210 = u′2

+∞∫
0

[
3r2 f (r) + r3 ∂ f (r)

∂r

]
dr. (7)

The use of a single integral in this expression instead of the two
integrals in Eq. (5) is significant because 3r2 f + r3 ∂ f = ∂ (r3 f )
∂r ∂r
leads to

3I210 = u′2 lim
r→∞

(
r3 f

)
, (8)

showing that I210 = 0 if limr→∞(r3 f ) = 0, but also that I210
takes a finite value if defined as in (7) rather than (5) and if
limr→∞(r3 f ) is finite.

The Birkhoff–Saffman invariant (7) can be generalised into an
infinite series of invariants in two steps. Firstly, for any n � 1, de-
fine

I2n0 = u′2

+∞∫
0

[
r2 f (r) + C2n0r2+n ∂n f (r)

∂rn

]
dr (9)

for which the following iterative relation holds:

I2(n+1)0 = I2n0 + C2(n+1)0u′2 lim
r→∞

(
r3+n ∂n f

∂rn

)
. (10)

Hence, if f (r, t) ≈ a3(t)(L(t)/r)3 (where L(t) is a length-scale
and a3L3 �≡ 0) to leading order when r → ∞, then the gener-
alised Birkhoff–Saffman invariants I2n0 are finite and their time-
independence implies the time-independence of a3L3u′ 2 (and vice
versa). As a second step, define

IMnn′ ≡ u′2

+∞∫
0

[
rM+n′ ∂n′

f (r)

∂rn′ + CMnn′rM+n ∂n f (r)

∂rn

]
dr (11)

for any M > 1 and any n �= n′ . Noting that CMn(n′+1) = −(M + n′ +
1)CMnn′ , one can derive the iterative relation

IMn(n′+1) = −(
M + n′ + 1

)
IMnn′

+ u′2 lim
r→∞

(
rM+n′+1 ∂n′

f

∂rn′

)
. (12)

Under the same assumption that f (r, t) ≈ a3(t)(L(t)/r)3 to leading
order when r → ∞, (11) and (12) applied to M = 2 can now be
used to show that all generalised Birkhoff–Saffman invariants I2nn′
are finite and their time-independence is equivalent to the time-
independence of a3L3u′ 2.

Hence, our generalised Birkhoff–Saffman invariants lead to a
conclusion previously reached by Birkhoff [5] and Saffman [6] on
the basis of the constancy of (7) alone. Namely, if f (r) ≈ a3(L/r)3

as r → ∞, and if limr→∞(r2k) = 0, then

d

dt

(
a3L3u′2) = 0. (13)

As for any M > 1 but different from 2 and 4, the case M = 3
corresponds to a new set of integral invariants. Similarly to the
M = 2 case, we rewrite the invariants I3n0 using only one integral,
i.e.

I3n0 = u′2

+∞∫
0

[
r3 f (r) + C3n0r3+n ∂n f (r)

∂rn

]
dr (14)

for n � 1, and we note that

4I310 = u′2 lim
r→∞

(
r4 f

)
(15)

and that

I3(n+1)0 = I3n0 + C3(n+1)0u′2 lim
r→∞

(
r4+n ∂n f

∂rn

)
. (16)

The condition limr→∞(r4 f ) = 0 under which we established
the constancy of I3n0 implies I310 = 0. However, if I3n0 is defined
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as in (14) rather than (5), then it is permitted to relax this condi-
tion and assume instead that f (r, t) ≈ a4(t)(L(t)/r)4 (where L(t)
is a length-scale and a4L4 �≡ 0) to leading order when r → ∞.
In this case, and without forgetting the accompanying condition
limr→∞(r3k) = 0, I3n0 is finite for all n � 1, and its invariance in
time leads to

d

dt

(
a4L4u′2) = 0. (17)

An effectively identical argument to the one given above for I2nn′
shows that all integral invariants I3nn′ are in fact finite and time-
independent under the conditions that f (r, t) ≈ a4(t)(L(t)/r)4 to
leading order when r → ∞ and limr→∞(r3k) = 0. Their time inde-
pendence is also equivalent to (17).

The cases M > 4 are similar to the cases M = 2 and M = 3. In
general, for any M > 1 such that M �= 4, we have

(M + 1)IM10 = u′2 lim
r→∞

(
rM+1 f

)
(18)

and

IM(n+1)0 = IMn0 + CM(n+1)0u′2 lim
r→∞

(
rM+1+n ∂n f

∂rn

)
. (19)

For simplicity, we focus on IMn0 because the argument based on
(11) and (12) which we gave for M = 2 can be applied here
to show that what holds for IMn0 also holds for IMnn′ . A re-
definition of IMn0 in terms of a single integral (11) instead of (5)
allows the possibility for non-zero invariants of order M . Specifi-
cally, with such a re-definition, it is possible to assume f (r, t) ≈
aM+1(t)(L(t)/r)M+1 (where L(t) is a length-scale and aM+1 LM+1

�≡ 0) to leading order when r → ∞. In terms of the energy
spectrum E(κ) in Fourier space, this assumption takes the form
E(κ) ∼ aM+1u′ 2L(κ L)M in the limit κ → 0 when M > 1 (because

[2] E(κ) = u′ 2

π

∫ ∞
0 dr (3 f (r)+r∂ f /∂r)κr sinκr). Under this assump-

tion and the accompanying condition limr→∞(rMk) = 0, IMn0 is
finite for all n � 1 and its invariance leads to

d

dt

(
aM+1LM+1u′2) = 0. (20)

This proves a more precise version of the principle of permanence
of large eddies given in p. 113 of the 1995 book by Frisch [8]. Note
that (20) has already been obtained by Rotta [9] and Lundgren [10]
by direct inspection but without noticing the integral invariants
(11) and therefore without the resulting systematic approach given
here.

We stress that M does not need to be an integer for Eqs. (6),
(18), (19) and (20) to hold. However, as Rotta [9] remarked, E(k)

results from an integral over a spherical shell in wavenumber
space [2] so that any M < 2 would imply that the spectral ten-
sor [2] (that is the Fourier transform of the velocity correlation
tensor Rij ≡ 〈ui(x)u j(x + r)〉) diverges as k → 0. We therefore limit
the remainder of this Letter to M � 2. There is no a priori up-
per limit to M as the results of this section are valid for any
M > 1.

3. Consequences of these invariants

It is clear that we have an infinity of possible invariants de-
pending on the asymptotic behaviours of f (r, t) and k(r, t) at in-
finity. Some of these invariants can also be expressed in terms of
the velocity correlation tensor Rij , specifically in terms of its trace
Rii which is a function of only r = |r| because of homogeneity and
isotropy. In Batchelor’s book on turbulence [2] one can find the
identity Rii(r) = u′ 2(3 f + r ∂ f

∂r ) for homogeneous isotropic turbu-
lence. Using this identity, one obtains
∫
rM−2 Rii dr

= 4π

∞∫
0

rM Rii(r)dr

= 4π(M − 2)u′2

∞∫
0

rM f (r)dr + 4πu′2 lim
r→∞

(
rM+1 f

)
(21)

for any M � 2.
As noted by Birkhoff [5] and Saffman [6], this integral equals

4πu′ 2 limr→∞(r3 f ) when M = 2 and is finite if this limit is also
finite. If this limit vanishes, then so does

∫
Rii dr, but in both cases∫

Rii dr is an invariant.
For any M > 2,

∫
rM−2 Rii dr diverges in the case where

limr→∞(rM+1 f ) is finite but equals 4π(M − 2)u′ 2
∫ ∞

0 rM f (r)dr
in the case where limr→∞(rM+1 f ) = 0. Hence, with the excep-
tion of M = 2 and M = 4,

∫
rM−2 Rii dr is not in general invariant,

even though there are invariants IMnn′ for every value of M � 2.
(The case M = 4 corresponds to

∫
r2 Rii dr which is, in fact, the

Loitsyansky invariant in a different guise.)
We now show that, for conditions at infinity which are such

that the Birkhoff–Saffman invariant is not infinite, either none
or only one or only two invariants are finite. Assuming that
there exists a number M f � 2 for which limr→∞(rM f +1 f ) =
aM f +1LM f +1 �≡ 0 and a number Mg for which limr→∞(rMk) = 0

for any M in the interval 2 � M < Mg but limr→∞(rMk) �= 0 for
any M � Mg , then the following possibilities present themselves
for IMnn′ redefined in terms of a single integral (11) instead of (5).

(i) Mg < M f and Mg < 4, in which case all invariants IMnn′ = 0
for M < Mg and all IMnn′ for M � Mg are not invariant.

(ii) Mg < M f and Mg � 4, in which case all invariants IMnn′ = 0
for M < Mg except the Loitsyansky invariant which is the
single non-vanishing invariant, and all IMn for M � Mg are
not invariant. In this case u′ 2

∫ +∞
0 r4 f (r)dr is the only non-

vanishing invariant.
(iii) 4 > Mg � M f , in which case all invariants IMnn′ = 0 for

M � M f but invariant IM f nn′ �= 0 and all integrals IMnn′ with
M > M f diverge.

(iv) Mg � 4 > M f in which case all integrals IMnn′ for which
M < M f are invariant but vanish and IM f nn′ �= 0 and is in-
variant.
In cases (iii) and (iv), aM f +1LM f +1u′ 2 is the only non-
vanishing invariant and M f < 4.

(v) Mg � M f � 4 in which case there are only two non-vanishing
invariants when M f > 4, the Loitsyansky invariant and IM f nn′ ,

i.e. u′ 2
∫ +∞

0 r4 f (r)dr and aM f +1LM f +1u′ 2. When M f = 4,

u′ 2
∫ +∞

0 r4 f (r)dr is the sole non-vanishing invariant.

All in all, depending on conditions at infinity, either no fi-
nite invariants exist, or, if such exists, then either aM f +1LM f +1u′ 2

is the sole finite invariant with M f < 4, or u′ 2
∫ +∞

0 r4 f (r)dr is

the sole finite invariant, or u′ 2
∫ +∞

0 r4 f (r)dr and aM f +1LM f +1u′ 2

(with M f > 4) are the only two finite invariants.
We close this Letter by testing this conclusion on George-type

self-preserving solutions [11,12,1] of (1) because of the recent
claim that it might be possible to engineer self-preserving de-
caying homogeneous isotropic turbulence in the wind tunnel [1].
These solutions are of the form f (r, t) = f [r/l(t)] and k(r, t) =
b(ν, u′

0, l0, t − t0)κ[r/l(t)] where u′
0 ≡ u′(t0) and l0 ≡ l(t0). Intro-

ducing these forms into (1), one obtains the solvability conditions
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d
dt u′ 2 = −2ανu′ 2/l2, d

dt l2 = cν and b = βν/(u′l) where α > 0,
c > 0 and β are numerical constants. It follows that

u′2(t) = u′2
0

[
1 + cν

l20
(t − t0)

]−2α/c

(22)

and

l2(t) = l20 + cν(t − t0). (23)

If the conditions at infinity are such that no finite invariant
exists, then no obvious constraint can be imposed on the ex-
ponent 2α/c and the rate of turbulence decay. However, in the
case where the sole finite invariant is the Loitsyansky integral,
then 2α/c = 5/2. In the case where the sole finite invariant is
aM f +1LM f +1u′ 2 with 2 � M f < 4, then we can take L(t) = l(t) and
the self-preserving form of f implies that aM f +1 must be constant
in time. We therefore get 2α/c = (M f + 1)/2 which lies between
3/2 and 5/2.

Finally, when the conditions at infinity are such that u′ 2 ×∫ +∞
0 r4 f (r)dr and aM f +1LM f +1u′ 2 (where M f > 4) are both finite

and invariant, then no George-type self-preserving solution of (1)
is allowed because of the time-independence of aM f +1 implied by

such solutions. Noting that the contribution to
∫ +∞

0 r4 f (r)dr com-
ing from small values of r is negligible, this conclusion is valid
more broadly for any form of f (r) which is permissible by (1) and
the incompressible Navier–Stokes equations and which conforms
with self-similar decay of large eddies [8], i.e. for which f (r, t) ≈
f [r/l(t)] if r is large enough and aM f +1 is time-independent as a

result. Hence, if f (r) decays faster than r−5 as r → ∞ (i.e. E(k)

drops faster than k4 as k → 0), and if the asymptotic behaviour of
the triple velocity correlation function is such that two finite in-
variants exist at once (case (v) above), then the decay of the large
eddies cannot be self-similar.

4. Conclusions

A summary of main conclusions is in the abstract. The nature
of turbulence decay depends critically on the asymptotic behaviour
of the double and triple velocity correlation functions at infinite
separations. There are four cases depending on whether M f /Mg

is larger or smaller than 1 and whether min(M f , Mg) is larger or
smaller than 4.

When M f /Mg is larger than 1 and min(M f , Mg) is smaller
than 4 there are no finite invariants. When M f /Mg is larger than
1 but min(M f , Mg) is larger than 4 there is only one finite invari-
ant and this is the Loitsyansky invariant. When M f /Mg is smaller
than 1, there is either one or two finite invariants depending on
whether min(M f , Mg) is smaller or larger than 4. In both cases
aM f +1LM f +1u′ 2 is finite and invariant but when min(M f , Mg) is

larger than 4, Loitsyansky’s u′ 2
∫ +∞

0 r4 f (r)dr is a finite invariant
too.

Self-preserving turbulence decays in accordance with (22) and
(23) and the infinity of possible invariants permitted by (1) cannot
determine the exponent in (22) without prior knowledge of corre-
lations between points in the turbulence which are extremely far
apart. In fact, these correlations can even be such that no conclu-
sion whatsoever can be made on the value of the exponent in (22),
and the relatively high values reported for this exponent in some
wind tunnel experiments [1] cannot be ruled out theoretically
without prior knowledge of these correlations. The self-preserving
decay which seems to have been observed in some instances of
fractal-generated homogeneous turbulence [1] suggests that M f
and Mg cannot be such that 4 < M f < Mg in such instances of
turbulence if it is isotropic. Research with many fundamentally dif-
ferent ways of generating homogeneous turbulence [1] needs to be
carried out so as to gain some understanding of what determines
conditions at infinity and whether they are all physically possi-
ble.
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