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We perform Particle Image Velocimetry (PIV) measurements of various terms of the
non-homogeneous Kármán-Howarth-Monin equation in the most inhomogeneous and
anisotropic region of grid-generated turbulence, the production region which lies be-
tween the grid and the peak of turbulence intensity. We use a well-documented fractal
grid which is known to magnify the streamwise extent of the production region and abate
its turbulence activity. On the centreline around the centre of that region the two-point
advection and transport terms are dominant and the production is significant too. It
is therefore impossible to apply usual Kolmogorov arguments based on the Kármán-
Howarth-Monin equation and resulting dimensional considerations to deduce interscale
flux and spectral properties. The interscale energy transfers at this location turn out
to be highly anisotropic and consist of a combined forward and inverse cascade in dif-
ferent directions which, when averaged over directions, give an interscale energy flux
which is negative (hence forward cascade on average) and not too far from linear in
r, the modulus of the separation vector r between two points. The energy spectrum of
the streamwise fluctuating component exhibits a well-defined -5/3 power law over one
decade even though the streamwise direction is at a small angle to the inverse cascading
direction.

1. Introduction

The mathematical formulation of the Richardson-Kolmogorov cascade (Richardson
1922; Kolmogorov 1941b,c,a; Batchelor 1953) is based on the evolution equation for the
second order structure function δq2 = (δui)2 (with an implicit summation over the index
i) where the overbar denotes an average over realisations or, in practice in this paper, over
time. In this structure function, δui ≡ ui−u′

i where ui (i = 1, 2, 3) is a fluctuating velocity
component at a location x = X+r/2 in the turbulent flow and u′

i is the same fluctuating
velocity component at a different location, namely x′ = X−r/2. This evolution equation
is usually refered to as the Kármán-Howarth or the Kármán-Howarth-Monin equation
and it can be written down without assumptions of statistical homogeneity and isotropy
(see Deissler 1961; Hill 2002; Marati et al. 2004; Danaila et al. 2012; Valente & Vassilicos
2015) in which case δq2 is a function of both the centroid X and the separation vector
r. The starting point is the Navier-Stokes equation for incompressible flow where the
velocity and pressure fields have been decomposed into mean (in upper case notation)
and fluctuating (in lower case notation) fields, i.e.

∂ (Ui + ui)

∂t
+ (Uk + uk)

∂Ui + ui

∂xk
= −1

ρ

∂

∂xi
(P + p) + ν∇2 (Uk + uk) (1.1)
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(ρ and ν are, respectively, the mass density and kinematic viscosity of the fluid). By
incompressibility, ∂

∂xi
Ui = ∂

∂xi
ui = 0. Using the Navier-Stokes and incompressibility

equations at both locations x and x′ and operating a change of variables from (x,x’) to
(X,r) one derives the following Kármán-Howarth-Monin equation by standard mathe-
matical manipulations (see Hill 2002; Marati et al. 2004; Danaila et al. 2012; Valente &
Vassilicos 2015):

∂δq2

∂t
+

(
Uk + U ′

k

2

)
∂δq2

∂Xk
+

∂δukδq2

∂rk
+

∂δUkδq2

∂rk
=

4P + 4T + 4Tp + 4Dν + 4DX,ν − 4ϵ∗
(1.2)

where δUk ≡ Uk − U ′
k, δp ≡ p− p′ and:

• 4P(X, r) ≡ −2ukδui∂Ui/∂xk +2u′
kδui∂U

′
i/∂x

′
k represents the turbulent production

term which is kept in its expression as a function of x = X+ r/2 and x′ = X− r/2;

• 4T (X, r) ≡ −∂/∂Xk((uk + u′
k)δq

2/2) represents turbulent transport along X of
δq2 ≡ (δui)

2 which is a function of X and r;

• 4Tp(X, r) ≡ −2/ρ∂δukδp/∂Xk represents turbulent transport along X of δp(X, r);

• 4Dν(X, r) ≡ 2ν∂2δq2/∂r2k is the viscous diffusion in the space of separation vectors
r (note that Dν(X, r) = ϵ(X) in the limit |r| ≡ r → 0);

• 4DX,ν(X, r) ≡ ν/2∂2δq2/∂X2
k is the viscous diffusion in physical space (i.e. alongX);

• 4ϵ∗(X, r) ≡ 2ν(∂ui/∂xk)
2 + 2ν(∂u′

i/∂x
′
k)

2 is the sum of two times the turbulent
kinetic energy dissipation evaluated at each location with ϵ∗ = (ϵ+ ϵ′)/2.

By assuming that at small enough separations r ≡ |r| the turbulence is locally sta-
tistically homogeneous in the frame moving with the mean flow, all the terms on the
right hand side of equation 1.2 vanish except 4Dν and 4ϵ∗. Furthermore, the viscous
diffusion term 4Dν can reasonably be neglected at high enough Reynolds numbers for
a given r which is larger than length-scales where viscous diffusion is significant. With
these simplifying assumptions, equation 1.2 becomes

∂δq2

∂t
+

(
Uk + U ′

k

2

)
∂δq2

∂Xk
+

∂δukδq2

∂rk
= −4ϵ . (1.3)

The only remaining terms are:

• 4At(X, r) ≡ ∂δq2/∂t (which cancels when the flow is statistically stationary and the
average can be taken over time);

• 4A(X, r) ≡ (Uk + U ′
k)/2∂δq

2/∂Xk which is the advection of δq2(X, r) by the mean

flow (and which equals Uk∂δq2/∂Xk when there is statistical homogeneity);

• 4Π(X, r) ≡ ∂δukδq2/∂rk which is the non-linear energy transfer term. The diver-
gence of the flux δukδq2 transfers fluctuating energy from spherical shells centred at X
with radius r = |r| either to spherical shells centred at the same X but with different
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radius or within the same spherical shell but to a different orientation r/r;

• 4ϵ∗(X, r) ≡ 4(ϵ+ ϵ′)/2 which equals 4ϵ when there is statistical homogeneity.

Note that statistical homogeneity has also allowed us to discard 4ΠU (X, r) = ∂δUkδq2/∂rk
which is the linear energy transfer by the mean flow and which has a similar interpretation
as 4Π(X, r) but in relation to the flux Ukδq2.
The critical equilibrium assumption made by Kolmogorov (1941b,c,a) is that, at high

enough Reynolds number, the time scales characterising the evolution of δq2 at small
enough scales r are much smaller than the time scale characterising homogeneous turbu-
lence decay, thus implying

∂δq2

∂t
+

(
Uk + U ′

k

2

)
∂δq2

∂Xk
≈ 0 . (1.4)

Kolmogorov’s assumption leads directly to an equilibrium between nonlinear energy
transfer and dissipation which is the crux of the Richardson-Kolmogorov cascade, namely

∂δukδq2

∂rk
≈ −4ϵ . (1.5)

Integrating both sides of this balance over a sphere of radius |r| = r as in Nie & Tanveer
(1999) and making use of the Gauss divergence theorem we get∫

δuδq2.
r

r
dΩ ≈

∫
−4ϵ dV = −16π

3
ϵr , (1.6)

where dΩ and dV are differentials of a solid angle and a volume, respectively. If the
assumption of small-scale isotropy is made, i.e. that δuδq2. rl is independent of the orien-
tation of the unit vector r/r, then this integral yields the expression

δu||δq2 ≈ −4

3
ϵr , (1.7)

where δu|| ≡ δu.r/r. This expression and the equilibrium balance equation 1.5 are the
central properties of the Richardson-Kolmogorov cascade and are valid over the so-called
inertial range of scales r which are neither too small for viscous effects to be signifi-
cant nor too large to be comparable with the size of the largest turbulent eddies where
Kolmogorov’s assumption 1.4 will certainly break down. The minus sign in equation 1.7
indicates that the energy cascades from large to small scales and the independence of the
equilibrium balance 1.5 on r (as long as r is in the inertial range) implies a self-similar
cascade, i.e. one where the divergence of the flux δukδq2 is independent of r and pro-
portional to the dissipation rate ϵ. This last concept then sets the foundations for the
dimensional analysis which leads to the celebrated 2/3 and −5/3 respective scalings of
the second order structure function and the energy spectrum of small-scale turbulence
(Kolmogorov 1941b,c,a; Batchelor 1953).
In the present paper we explore these ideas in a non-homogeneous turbulence where

equation 1.3 is not valid and one therefore needs to revert to the full non-homogeneous
Kármán-Howarth-Monin equation 1.2. However we explore these ideas in a highly inho-
mogeneous part of a turbulent flow where Kolmogorov’s 2/3 power law has been reported
to exist, namely in the production region of a turbulent flow generated by a fractal square
grid obstructing a free stream (Laizet et al. 2013; Gomes-Fernandes et al. 2014). The pro-
duction region is a region near the turbulence-generating grid where the turbulence does
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Grid N tr RL t0 (mm) tmin (mm) L0 (mm) Lmin(mm) σ (%)

SFG17 4 17 0.5 23.5 1.4 303.3 37.9 25

Table 1. Space-filling fractal square grid SFG17 geometric details. tmin = t3, Lmin = L3

not decay with streamwise distance at all spanwise locations but in fact grows with
streamwise distance, in particular along the centreline where it grows for the longest
streamwise extent. The advantage of a fractal square grid over a regular one, for exam-
ple, is that the fractal square grid magnifies the spatial extent of the production region
and abates its activity there thus making measurements possible or at the very least
less difficult, see Mazellier & Vassilicos (2010); Laizet & Vassilicos (2011, 2012, 2015);
Nagata et al. (2013) who have documented the inhomogeneous and anisotropic nature of
the production region downstream of a fractal grid and in particular Laizet & Vassilicos
(2012, 2015) who have made comparisons with regular grids.
In section 2 we decribe our experimental facility and measurement locations and tech-

nique and in section 3 we present our first results concerning energy spectra and the
third order structure function δu||δq2. In section 4 we describe how we reduce from our
measurements the different terms in equation 1.2, what assumptions we make and what
terms we are unable to obtain. In sections 5 and 6 we report on these terms and we
conclude in section 7.

2. Experimental details

2.1. Experimental facility and grid geometry details

Experiments are carried out in a recirculating water tunnel whose schematic is shown
in figure 1. The test section has a cross sectional area of 0.6 × 0.6 m2 and is 9 m long.
Transparent perspex sheets are installed as a roof to prevent any gravitational waves to
interfere with the flow. The free-stream turbulence intensity is 2.8% for the streamwise
fluctuating velocity u and 4.4% for the spanwise fluctuating velocity v. For more details
on the experimental facility see Gomes-Fernandes et al. (2012, 2014).
In the present work, the space-filling fractal square grid SFG17 is used. This fractal

grid was introduced by Hurst & Vassilicos (2007) and then used for turbulence studies
by Seoud & Vassilicos (2007), Mazellier & Vassilicos (2010), Valente & Vassilicos (2011),
Gomes-Fernandes et al. (2012), Discetti et al. (2013), Nagata et al. (2013), Valente &
Vassilicos (2014) and Gomes-Fernandes et al. (2014). There is therefore a wealth of data
by now on the turbulence generated by this grid. Figure 2 shows a schematic of the
SFG17. It has four “fractal iterations” (N), a thickness ratio (tr) of 17 (tr is the ratio
between the thickness of the thickest bar t0 and that of the thinnest bar tmin) and a
blockage ratio of 25%. L0 is the length of the thickest bars. The ratio between the lengths
of two consecutive iterations is RL = Li+1/Li (i from 0 to N − 1) is 1/2. Defined in a
similar way, the ratio between the thickness of two consecutive iterations Rt = ti+1/ti is

t
1/(N−1)
r . The grid thickness in the streamwise direction is 5 mm. Full geometrical details
are found in table 1.
The inlet velocity U∞ was set to 0.48 ms−1, case A of Gomes-Fernandes et al. (2012).

Table 2 shows a summary of the inlet velocities and global Reynolds numbers for the
present study. Global Reynolds number is denoted this way given that it does not depend
on space and time as it is fully determined by the inlet conditions.
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Figure 1. Schematic of the water tunnel and PIV setup.

Figure 2. Schematic of the SFG17 after Gomes-Fernandes et al. (2012). The N = 4 “fractal
iterations” are highlighted in black and further details on the geometrical parameters are found
in table 1.

U∞ Re0 ReL0

0.48 11200 144900

Table 2. Experimental conditions: free-stream velocities and global Reynolds numbers. Re0 and
ReL0 are the Reynolds numbers based on the thickness t0 and on the length L0, respectively
(see figure 2): Re0 = U∞t0/ν and ReL0 = U∞L0/ν
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2.2. Measurement locations

Before describing our measurement technique, we need to explain how we chose our mea-
surement locations. Figure 3 shows the behaviour of turbulence intensity of the stream-
wise velocity fluctuation (u′/U∞) generated by space-filling fractal square grids from two
different experiments (Mazellier & Vassilicos 2010; Gomes-Fernandes et al. 2012). The

streamwise distance x is normalized by xpeak
∗ ∝ L2

0/(αCdt0) where α is a parameter that
takes into account the incoming free-stream turbulence and Cd is the drag coefficient of
the thickest bar if assumed of infinite length. This scale xpeak

∗ is an estimator of the tur-
bulence intensity peak location and an improvement on the wake interaction length scale
introduced by Mazellier & Vassilicos (2010). Note that in the present case xpeak

∗ = 1.36m
which allows us to have a considerable physical space to perform PIV in the production
region as opposed to what happens with usual regular grids where xpeak

∗ ≈ 3M with M ,
the mesh size, being of the order of 0.025m (see Jayesh & Warhaft 1992). In addition,
the fractal grid generates a lower level of turbulence intensity in this region when com-
pared to the regular ones making it easier to capture the smallest scales of the flow while
maintaining a good dynamic range in space. The turbulence intensity can be a priori es-
timated as being about 1.6β−1(Cdt0/x

peak
∗ )1/2 at x = xpeak

∗ (β is another parameter that
takes into account the incoming free-stream turbulence), see figure 3. More explanations
for these scalings can be found in Gomes-Fernandes et al. (2012).
All our measurements are located in the production region which lies between the grid

and a streamwise distance x = xpeak
∗ from the grid. Specifically, our measurement stations

are at x/xpeak
∗ =0.20, 0.44 and 0.57 along the centreline. An additional measurement is

made very close to the fractal grid, downstream of the thickest bar at x/xpeak
∗ = 0.08

with the PIV field of view centered as in figure 4 to measure the frequency of the Kármán
vortex shedding.

2.3. Experimental technique

We use planar, two-component Particle Image Velocimetry (PIV) to measure the velocity
field in the aforementioned stations. Figure 1 shows a schematic of the PIV system which
consists of a Nd:YLF laser (Litron LDY304 with 30 mJ/pulse at 1kHz) with an output
wavelength of 527 nm and a pair of CMOS cameras (Phantom v210). The cameras face
the same interrogation area but with different magnifications resulting in two different
fields of view: small and large. Both fields of view are in the xz plane and include the
centreline (see figure 1).
The laser light sheet is obtained by bending the beam 90◦ with a mirror, passing it

through a spherical lens to converge the beam into a minimum thickness of around 1.2
mm (measured in Gomes-Fernandes et al. (2014)) and through a cylindrical lens to create
the light sheet seen in figure 1.
For the Large Field of View (LFV), the cameras are operated at a resolution of 1280 x

800 pixels and are synchronized with the laser at a frequency of 500 Hz. They were fitted
with a Nikon 60 mm lenses with a f# of 5.6. Five runs of 8216 vector fields were acquired
using the large field of view at x/xpeak

∗ =0.20, 0.44 and 0.57. A summary of the resolution
related to the LFV is shown in table 3 where the Kolmogorov scale η = (ν3/ϵ)1/4 with ν
being the water’s kinematic viscosity and ϵ the turbulent kinetic energy dissipation. As
for the Small Field of View (SFV), the cameras operate at a resolution and frequency
shown in table 4. Ten runs of 102709 vector fields were acquired using this field of view at
x/xpeak

∗ =0.20, 0.44 and 0.57. The cameras were fitted with a Sigma 180 mm Macro lens
with a f# of 8. For the station downstream of the thickest bar a Sigma 180 mm Macro
lens is used with a f# of 5.6. The magnification is set to achieve a resolution close to
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Figure 3. Streamwise evolution of the centreline turbulence intensity generated by space-fill-
ing square fractal grids after Gomes-Fernandes et al. (2012, pp. 325) and a plan view of the
measurement locations for the present study.
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Figure 4. Location of measurements behind one of the biggest bars at x/xpeak
∗ = 0.08 from

the grid and centered at a 0.5t0 transverse (z) distance from the bar’s centre.

t0/10 to capture the secondary instabilities according to the DNS of Dong et al. (2006)
at a similar Reynolds number compared to the present experiment (see table 2). Three
runs of 513600 vector fields were acquired at this station.

Distortion and other aberrations introduced by the lenses and water/glass interface



8 R. Gomes-Fernandes, B. Ganapathisubramani and J. C. Vassilicos

Station Camera Frequency of Experimental Vector
resolution (pixels) acquisition (Hz) resolution count

x/xpeak
∗ = 0.20 1280× 800 500 7.0η 160× 100

x/xpeak
∗ = 0.44 1280× 800 500 8.4η 160× 100

x/xpeak
∗ = 0.57 1280× 800 500 10.5η 160× 100

Table 3. Experimental resolution computed with the large field of view. The resolution is
based on the Kolmogorov length scale at the centreline in the respective location.

Station Camera Frequency of Experimental Vector
resolution (pixels) acquisition (Hz) resolution count

x/xpeak
∗ = 0.08 256× 64 1000 N/A 16× 3

x/xpeak
∗ = 0.20 128× 128 2000 4.3η 16× 16

x/xpeak
∗ = 0.44 1280× 64 2000 5.0η 80× 3

x/xpeak
∗ = 0.57 1280× 64 2000 6.1η 80× 3

Table 4. Experimental resolution computed with the small field of view. The resolution is based
on the Kolmogorov length scale at the centreline in the respective location when applicable.

were corrected using a calibration target with a fixed grid. A third-order polynomial
function after Soloff et al. (1997) is fitted to map the vectors from image to object plane.
The flow is seeded with polyamide 12 powder with a nominal size of 7 µm and a specific

gravity of around 1.1. The response time (τP ) of the seeding particles is estimated to be
0.24 µs. The Stokes number St = τP /τF is estimated using the Kolmogorov time scale
τη =

√
ν/ϵ as the characteristic time scale (τF ). In our case St = 5 × 10−6 which is

substantially smaller than unity.
The images were acquired in single frame mode. Frame 1 was correlated with frame

2 to get the first velocity field, frames 3 and 4 to get the second one and so forth. The
final interrogation window size was 32× 32 pixels with 50% overlap for the small field of
view and 16× 16 pixels with 50% overlap for the large field of view. The number of total
vectors for the large and small field of views, respectively, are 3 × 80 and 160 × 100 in
the x × y directions. The number of spurious vectors was less than 1% for both field of
views. The time between frames allow a 8 pixel displacement on average.
Figure 5 shows examples of the instantaneous fluctuating velocity field and of the mean

velocity field at x/xpeak
∗ = 0.44 from the small and large fields of view, respectively.

Using the small field of view, the Taylor microscale λ =
√
⟨u2⟩ / ⟨(∂u/∂x)2⟩ (where

u ≡ u1) is computed at x/xpeak
∗ =0.44 and 0.57 and it takes values of 7.2 mm and 10.3

mm, respectively, at the centrelines. The values of λ do not change significantly across the
z direction amounting to values between 6.5-7.3 mm and 9.2-11.2 mm for x/xpeak

∗ =0.44
and 0.57, respectively. Table 5 shows the Reλ for the three stations measured in the
production region.

3. Energy spectra and third order structure function

3.1. Energy spectra and data filtering

Figure 6 shows the one-dimensional longitudinal energy spectra E11 in the frequency
domain evaluated at x/xpeak

∗ =0.44 for z = y = 0, i.e., at the centreline, using raw and
filtered data from the small field of view. In the horizontal axis we show the frequency



The energy cascade in near-field non-homogeneous non-isotropic turbulence 9

x (mm)

z 
(m

m
)

 

 

−50 −40 −30 −20 −10 0 10 20 30 40 50

−60

−40

−20

0

20

40

60

80

100

120 0.48

0.5

0.52

0.54

0.56

0.58

0.6

0.62

b)

Figure 5. a) Instantaneous fluctuating velocity field at x/xpeak
∗ = 0.44 obtained from the small

field of view. Only half the vector count is included in the z direction. b) Mean velocity field at

x/xpeak
∗ = 0.44 obtained from the large field of view.

Station Reλ
x/xpeak

∗ = 0.20 102

x/xpeak
∗ = 0.44 190

x/xpeak
∗ = 0.57 268

Table 5. Reynolds numbers Reλ = u′λ/ν where u′ is the r.m.s. of the streamwise velocity

fluctuation, λ =
√

⟨u2⟩ / ⟨(∂u/∂x)2⟩ is the Taylor microscale and ν is the kinematic viscosity.

normalised by the lateral thickness of the largest bars, t0 (see table 1), and the freestream
velocity, U∞ (see table 2). There is a one decade power law with an approximate -

5/3 exponent in this location and even more clearly at x/xpeak
∗ =0.57 (see figures 8a

and 8b) even though Gomes-Fernandes et al. (2014) reported that at x/xpeak
∗ = 0.57

on the centreline, vortex stretching only marginally dominates over vortex compression
whereas in the decay region (x/xpeak

∗ = 2.04) and in various reference cases reported
in the literature (such as regular grid turbulence and atmospheric surface layer), vortex
stretching dominates over vortex compression very significantly.
At ft0/U∞ & 10 the spectra display a noise floor. In order to reduce the effect of noise

in the velocity gradients, a filter is applied to the data. The filter consists of a Gaussian
kernel applied to the temporal data with a full width of the experimental resolution (via
Taylor’s hypothesis) at 1/e2. The result is shown in figure 6 where the effect of noise is
greatly reduced. The filter is also applied to the w component of the measured fluctuating
velocity and displays the same behaviour as the u component.
The peak appearing approximately around ft0/U∞ = 0.13 (see figure 6) is related

to the initial conditions, more specifically to the Kármán vortex shedding of the largest
bars. Figure 7a shows the one-dimensional longitudinal energy spectra downstream of
the largest bar (see figure 4), centred in the y direction at x/xpeak

∗ = 0.08, confirming
that the peak at StK = 0.13 is related to the Kármán vortex shedding. It is also worth
noting that the power law exponent of the inertial range is close to 2 which is consistent
with the vortex sheet structure of the flow at such close distance from the grid. As for
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cies normalised by the lateral thickness of the largest bars, t0, and the freestream velocity,
U∞.
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Figure 7. a) One-dimensional longitudinal energy spectra E11 at the off-centreline position

x/xpeak
∗ = 0.08 shown in figure 4) downstream of one of the largest bars. b) One-dimensional

longitudinal energy spectra E11 at x/xpeak
∗ = 0.20 on the centreline without the grid in place.

The horizontal axis represents the frequencies normalised by the lateral thickness of the largest
bars, t0, and the freestream velocity, U∞.

the second peak seen at ft0/U∞ = 1.3 in figure 6, the same peak appears in the spectra

at x/xpeak
∗ = 0.20 when the grid is not in place (see figure 7b), thus suggesting that its

origin is not in the turbulence generated by the fractal grid.
The spatial evolution of the one-dimensional spectra from station x/xpeak

∗ = 0.20,

to x/xpeak
∗ = 0.44 and eventually x/xpeak

∗ = 0.57 is shown in figures 8a and 8b and
corresponds to an evolution from Reλ = 102, to Reλ = 190 and eventually Reλ = 268
(table 5). At x/xpeak

∗ = 0.20 the Kármán vortex shedding’s signature is not present in this

centreline spectrum but it does appear at x/xpeak
∗ = 0.44. At x/xpeak

∗ = 0.44 the spectrum
has already a decade of scaling with exponent close to -5/3 (see the compensated spectra
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Figure 8. a) Spatial evolution of the one-dimensional spectra at centreline positions

x/xpeak
∗ = 0.20, 0.44 and 0.57 and b) the same data compensated by (ft0/U∞)5/3 in linear-log-

arithmic axes. The horizontal axis represents the frequencies normalised by the lateral thickness
of the largest bars, t0, and the freestream velocity, U∞.

in figure 8b). At x/xpeak
∗ = 0.57 the existence of a decade of -5/3 scaling is very clear

even though we are at the heart of the production region where the turbulence is highly
inhomogeneous and the turbulence intensity is still rising with streamwise distance from
the grid.

3.2. Third order structure function and statistical convergence

The third order structure function δu||δq2 can be calculated with r along the streamwise
direction, i.e. r = (r1, 0, 0), by making use of the Taylor hypothesis in this direction. We

established the validity of this hypothesis at x/xpeak
∗ =0.44 and 0.57 and we present details

of this validation in appendix A. In figure 9 we plot this third order structure function
which we have calculated by assuming that δuδq2 ≈ δu3+2δuδw2 (where u ≡ u1, v ≡ u2

and w ≡ u3). In this figure, δu||δq2 = δuδq2 is normalised by the Kolmogorov velocity

scale uk = (νϵ)1/4 and is plotted as a function of the normalised streamwise separation
scale r1/η. It is of course legitimate to plot δuδq2 as a function of r1 in principle, but it
must be stressed that this plot will be representative of δu||δq2 as a function of r for any
direction r/r only if the small scales are isotropic in the sense defined in the introduction
when proceeding from equations 1.6 and 1.7.
The inset in figure 9a shows the same data in a logarithmic scale to stress that the

small scales do indeed follow a power law ∝ r3 as would be expected by straightforward
Taylor expansion if the resolution is adequate. In this inset we also include a straight
line representing a power law of exponent 1 for comparison with the r-dependence in
equation 1.7.
The most striking observation made when looking at figure 9 is that δuδq2 is positive

throughout the range of separations r1 at x/xpeak
∗ =0.44 and x/xpeak

∗ =0.57 (even though

at x/xpeak
∗ =0.57 it is not possible to confirm this within a confidence interval for r/η less
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Figure 9. Third order structure function < δuδq2 > (where δq2 = δu2 + 2δw2) normalised by
the Kolmogorov velocity uk versus the streamwise separation r1 normalised by the Kolmogorov
length η at a) x/xpeak

∗ =0.44 and b) x/xpeak
∗ =0.57. Error bars represent a 95% confidence interval

for the true value.

than about 40, see the inset of figure 9b). This would imply an inverse energy cascade,
i.e. from small to large scales, if the small-scale turbulent fluctuations were isotropic in
the sense that equation 1.6 could be used to imply 1.7. As they are not (see section 5),
there remains the possibility that the interscale energy transfers are anisotropic allowing
for a forward cascade in one direction and an inverse in the other.
It is therefore important to show that δuδq2 is positive within a confidence interval. We

choose a 95% confidence interval and use the expression ±1.96
√
σ2
δuδq2/N where σ2

δuδq2

is the variance of δuδq2 and N is the number of independent samples. The number of
independent samples is chosen on the basis of a bespoke integral length-scale calculated
for this purpose by integrating the correlation function of δuδq2(r1, r3) as in Valente
& Vassilicos (2015). The number of independent samples is then estimated by choosing
points separated by at least two such bespoke integral length scales resulting in the
confidence intervals seen in figure 9. We conclude that < δuδq2 > is indeed positive
within the chosen 95% confidence interval and that statistical convergence, at least for
the sign of < δuδq2 >, has therefore been achieved.

4. Data reduction

In the present planar PIV experiment the two-point separation vectors are in the PIV
xz plane. The separation’s streamwise component r1 is evaluated along the x direction,
and the separation’s transverse component r3 along the z direction (see figure 10). In
order to obtain the terms in equation 1.2 some assumptions are made because 2D planar
PIV does not provide information about the third velocity component (in our case v in the
y direction) and about how the second and third order structure functions behave in the
y direction. Therefore we assume δv2 = δw2, which implies δq2(r) = δu2(r) + 2δw2(r),
and that the interscale flux vector can be approximated as δuiδq2(r) ≈ δuiδu2(r) +
2δuiδw2(r).
The various terms in equation 1.2 are estimated by calculating the following statis-

tics where the average is over time: δu2, δw2, δu3, δw3, δuδw2, δwδu2, (w + w′)δu,

(u+ u′)δu2, (w + w′)δu2, (u+ u′)δw2 and (w + w′)δw2 at the two centroidsX = (0.44xpeak
∗ , 0, 0)

and X = (0.57xpeak
∗ , 0, 0) for many different separation vectors (r1, r3). Hence, equation
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Figure 10. Coordinate system. The velocity difference components δu|| and δu⊥ lie on the
measurement PIV plane. The angle between r3 axis and r is denoted θ.

1.2 is evaluated at the two aforementioned centroids both along the centreline of the
tunnel. In the z direction, r3 is limited by the small field of view and attains a maximum
value of 26 mm (see figure 5a). In the x direction, r1 is obtained from Taylor’s hypothesis
and is sampled to take similar values as our separations r3.
All statistics are then bi-linearly interpolated into a spherical coordinate system where

r1 is aligned with (r, π/2, 0) and r3 with (r, 0, 0) in the (r, θ, ϕ = 0) plane (see figure
10). The spherical coordinate grid results from the intersections of 19 equally spaced
circumferences with 19 equally spaced radial lines between θ = 0 to θ = π/2.
Our planar PIV can only access δu and δw. Therefore, we use DNS data of Laizet &

Vassilicos (2015) to verify the assumption δv2 = δw2. The data we use are from their
DNS1-5 which are numerical simulations of turbulence generated by a fractal grid very
similar to ours, except that it has N = 3 fractal iterations and a thickness ratio tr = 8.4.

Figure 11 shows the ratio
(
δu2(r) + δv2(r) + δw2(r)

)
/
(
δu2(r) + 2δw2(r)

)
for different

r1 and r3 centred at x/xpeak = 0.44 (xpeak is the actual exact location of the turbulence
intensity peak along the centreline). This position corresponds to one of the two ceon-
troids considered here. We use 960 time steps in total to calculate statistics. Figure 11a
shows the results obtained using half of these time steps and figure11b shows the results

obtained with all of them. The ratio
(
δu2(r) + δv2(r) + δw2(r)

)
/
(
δu2(r) + 2δw2(r)

)
varies between 0.85 and 1.15 in figure11b which supports our assumption for the cal-
culation of δq2(r). It is also evident from these results that these DNS data are not
sufficient to converge higher order statistics and therefore do not allow us to test our
second assumption that the interscale flux vector can be approximated as δuiδq2(r) ≈
δuiδu2(r) + 2δuiδw2(r).
All the terms in equation 1.2 are computed apart form the pressure transport. The

derivatives with respect to X1 and X3 are computed using a first order forward difference
scheme from data at x/xpeak

∗ = 0.57 and x/xpeak
∗ = 0.44. However, the derivatives with
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Figure 11. Iso-contours of the ratio
(
δu2(r) + δv2(r) + δw2(r)

)
/
(
δu2(r) + 2δw2(r)

)
using a)

480 time steps and b) 960 time steps. Data of Laizet & Vassilicos (2015).

respect to r1 and r3 are computed using a second order central difference scheme (except
at the borders where r1 = 0 or r3 = 0 where we use a first order forward difference
scheme). Each term is estimated using approximations as in Valente & Vassilicos (2015)
which are detailed as follows.

• At = 0 because of statistical stationarity and the nature of our averaging operation.

• 4A ≈ (U +U ′)/2∂δq2/∂X1 because V and W are less than 2% of U and, therefore,
considered negligible. The gradient of the mean velocity in the x direction is found to be
one order of magnitude smaller than in the z direction (see figure 5b), hence the following
approximation is used: (U + U ′)/2 ≈ (U(X1, 0, X3 + r/3) + U(X1, 0, X3 − r3/2))/2. We
calculate 4A only at x/x∗

peak = 0.44 because we need the data at x/x∗
peak = 0.57 to

estimate the derivative with respect to X1. The mean flow data was taken from the large
field of view seen in figure 5b.

• 4Π ≈ 1/r2∂/∂r
(
r2δu||δq2

)
+1/(rsinθ)∂/∂θ

(
sinθδu⊥δq2

)
, where δu|| and δu⊥ are

the longitudinal and transverse velocity differences shown in figure 10. The divergence of
the energy flux is estimated in spherical coordinates where the contribution from the ∂

∂ϕ

term is neglected because we assume the energy flux component in the direction (defined
by the unit vector r̂⊢) normal to the directions marked δu|| and δu⊥ in figure 10 to be ap-
proximately independent of the angle ϕ. We cannot test this assumption directly. However
we can use the data of Gomes-Fernandes et al. (2014) to plot (δu.r̂⊢)2 at x/xpeak

∗ = 0.57
in the r2r3 plane and see whether this quantity is approximately independent of ϕ (figure
12). Unfortunately the data of Gomes-Fernandes et al. (2014) are insufficient to converge
third order statistics such as the relevant component of the energy flux, but figure 12 does
provide some indirect support for our assumption albeit on another, yet related, quantity.
The wind tunnel experiments of turbulence generated by the same fractal square grid
reported by Nagata et al. (2013) also support this assumption. These authors found that
the one-point kinetic energy and the skewness of the streamwise fluctuating velocity are
approximately axisymmetric around the centreline in the production region (and speci-
ficially at streamwise distances from the grid very similar to ours in terms of fractions
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Figure 12. Map of (δu.r̂⊢)2, in the r2r3 plane obtained at x/xpeak
∗ = 0.57, where r̂⊢ is a unit

vector normal to the directions marked δu|| and δu⊥ in figure 10. We used the data presented
in Gomes-Fernandes et al. (2014) and an additional 2 runs of data at the same location in order
to converge the statistics.

of x∗
peak) within a radius smaller than 5% of the tunnel width. The maximum separa-

tion r (≈ 26mm) considered in the present statistics is always smaller than 5% of our
channel width, and it is reasonable to assume that the two-point statistics involved in
the definition of 4Π should also be axisymmetric under such conditions. We calculate 4Π
at both x/x∗

peak = 0.44 and 0.57 where the field of view is wide enough in the r3 direction.

• 4ΠU ≈ ∂δUδq2/∂r1 where we effectively assume V = W = 0 as we are on the
centreline or very near it. Due to centreline symmetry, U(X1, 0, r3/2) ≈ U(X1, 0,−r3/2)
and δU is only non-zero for r3 ̸= 0. Since U is a slowly varying function of x (or X1)
we approximate δU with a Taylor expansion δU ≈ r1∂U/∂x and we use a second order

central difference scheme to estimate it at x/x∗
peak = 0.44 with data from x/xpeak

∗ = 0.20
and 0.57;

• 4P ≈ 2δu2∂U/∂x+2(w + w′)δu∂U/∂z as V and W are again assumed equal to zero
as well as ∂U/∂y and ∂U ′/∂y′ because of the mean flow symmetry in the xz plane. In ad-
dition, symmetry of the flow in relation to the centreline is invoked as ∂U/∂z ≈ −∂U ′/∂z′

as well as the approximation that ∂U/∂x ≈ ∂U ′/∂x′. The gradient ∂U/∂z is taken from
a second degree polynomial function fitted to the data in figure 5b at x/η = 0;

• 4T ≈ −∂/∂X1((u+ u′)δq2/2) − ∂/∂X3((w + w′)δq2) where the derivative in X3,
∂/∂X3((w + w′)δq2/2), is assumed equal to ∂/∂X2((v + v′)δq2/2) given the 90o statisti-
cal flow symmetry about the centreline. The transverse derivative is estimated by taking
another centroid along the z axis where z = 13mm (see figure 5a). The results were
checked and were found not to be significantly sensitive to the z coordinate chosen around
this value. The term 4T was estimated at x/x∗

peak = 0.44 using data from x/xpeak
∗ = 0.57.
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• The pressure transport 4Tp cannot be estimated with the present data.

• 4Dν ≈ 2ν/r2∂/∂r(r2∂δq2/∂r) plus polar and azimuthal contributions which cancel
out when averaged over spherical shells. Here we only calculate the radial contribution to
4Dν at x/x∗

peak = 0.44 and 0.57. Note that 4Dν tends to ϵ(X) when the scale separation
tends to zero. It was also mathematically shown in Laizet et al. (2013) and Valente &
Vassilicos (2015) that 4Dν is small compared to ϵ(X) when r is larger than the Taylor
microscale.

• 4DX,ν ≈ ν/2∂2/∂X2
1 (δq

2)+ν∂2/∂X2
3 (δq

2) where use is again made of 90o symmetry
about the centreline. The streamwise second order derivative is only computed for r3 = 0
using data from stations x/xpeak

∗ = 0.20, 0.44 and 0.57. Hence we estimate 4DX,ν only at

x/xpeak
∗ = 0.44. Valente & Vassilicos (2015) reported that this term is negligibly small for

the decay region of regular grids and we confirm that the same holds in the production
region of our fractal grid by calculating this term for several r1 separations (see section 6).
The second order derivative in the z direction (assumed equal to the one in y direction,
given the 90o symmetry) is estimated using the statistical symmetry with respect to the
centreline in the zx plane where it becomes 2(δq2(X1, 0,∆z; r) − δq2(X1, 0, 0; r))/∆z2

(∆z = 13mm);

• 4ϵ∗ = 4(ϵ + ϵ′)/2 where we use the surrogate 3ν(s211 + s222) + 12νs212 with sij =
1/2(∂ui/∂xj + ∂uj/∂xi) (Tanaka & Eaton 2007) to estimate the energy dissipation at x
and x’. To estimate ϵ and ϵ′ from the small field of view which does not allow r1 values
beyond the resolution scale, we use the observation that ϵ and ϵ′ are about equal along
a z = const line. This observation is supported by figure 13 where we plot a xz map of ϵ
calculated from the large field of view at x/x∗

peak = 0.44. This figure shows clearly that ϵ
varies significantly along z but very little along x. Even though the spatial resolution in
this figure is relatively low (close to 8.4η on the centreline, see table 3), we do not expect
the qualitative behaviour to change much with increased resolution.

• 4B = 4A+4Π+4ΠU − 4P − 4T − 4Dν − 4DX,ν +4ϵ∗ where each one of these terms
is calculated as described in the preceding bullet points. 4B is therefore the remainder
required to satisfy the Kármán-Howarth balance 1.2. This remainder may be expected
to be dominated by the pressure transport 4Tp which we are unable to measure, but
it can also have contributions coming from the simplifying assumptions we made when
estimating all the other terms.

5. Non-linear energy transfer between scales

Having obtained positive values for δuδq2 (figure 9) we now plot iso-contours of δu||δq2

which show how this quantity depends on r1 and r3 at x/xpeak
∗ = 0.44 and 0.57. This

map (figure 14) shows that δu||δq2 is not isotropic at the scales considered and is there-

fore different from δuδq2. Hence, equation 1.7 does not follow from equation 1.6 at the
locations where we measure in this turbulent flow and must not be expected to hold. In
fact, figure 14 shows that δu||δq2 has different signs at different values of (r1, r3) which
invalidates equation 1.7 at a stroke.
Figure 15 shows the iso-contours of the second order structure function δq2(r1, r3) at

x/xpeak
∗ = 0.44 and 0.57. It may be interesting to note that δq2(r1, r3) is much more

isotropic than δu||δq2. In fact, in terms of spherical coordinates (see figure 10), the
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Figure 13. Turbulent energy dissipation ϵ (m4s−3) map in the xz plane at x/xpeak
∗ = 0.44.
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Figure 14. Iso-contours of the parallel third order structure function δu||δq2 (m3s−3) at a)

x/xpeak
∗ = 0.44 and b) x/xpeak

∗ = 0.57.

variation of δq2(r, θ, ϕ = 0) with angle θ shows that δq2 becomes more isotropic from

x/xpeak
∗ = 0.44 to 0.57 as the iso-contours become more circular. Note also that in

the production region where the present measurements are taken, turbulence intensity
increases along the streamwise direction and so does the energy contained within a specific
separation vector (r1, r3) in figure 15.
The possibility of a forward cascade in one direction and an inverse cascade in the

other has already been mentioned in section 3.2 and the different signs of δu||δq2 for
different separation vectors (r1, r3) in figure 14 support such a view. Following Lamriben
et al. (2011) and Valente & Vassilicos (2015), we plot the fluxes δuiδq2 in figures 16a and

17a for x/xpeak
∗ = 0.44 and 0.57 respectively. The directions of these flux vectors show

an inverse cascade roughly aligned with an axis at a small angle from the streamwise
(r1 and velocity component u) direction, and a forward cascade roughly aligned in the
lateral (r3 and velocity component w) direction for r1 is small. For separation vectors
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Figure 15. Iso-contours of the second order structure function δq2 (m2s−2) at a)

x/xpeak
∗ = 0.44 and b) x/xpeak

∗ = 0.57.

between these two extremes, the interscale energy flux is in an intermediate state where
the cascade is both forward and inverse in different components of the flux vector, i.e.
forward in the longitudinal and inverse in the streamwise projections of this vector. For
separation vectors between the streamwise direction and the aforementioned axis at a
slight angle to this direction, the cascade is purely inverse.
Writing the non-linear energy transfer term 4Π(X, r) = ∂δuiδq2/∂ri in spherical coor-

dinates as in section 4 and integrating over the solid angle one immediately gets∫
4Π dΩ =

∫
4Πr dΩ (5.1)

where Πr = 1/r2∂/∂r
(
r2δu||δq2

)
is the radial part of the divergence of δuiδq2. This

relation between two integrals simply states that when averaged over all directions, the
non-linear interscale energy transfers are fully determined only by the radial part Πr of
the interscale flux divergence. We therefore plot Πr in figures 16b and 17b but remain
mindful of the limitations imposed by our measurement capabilities which mean that we
can only plot iso-contours of Πr in the ϕ = 0 plane (see figure 10). The white contour
indicates the transition between negative and positive values for Πr in agreement with
the behaviour of the flux vectors. This is another way to extract from the data the
information that the cascade in the two production region locations considered here is
both forward and inverse, the inverse part operating mostly in the streamwise direction
whereas the forward part operates mostly in the lateral direction along z.
It may be worth pointing out that the energy spectra at the centreline positions

x/xpeak
∗ = 0.44 and x/xpeak

∗ = 0.57 where we find this combination of forward and
inverse cascades have power law spectra with exponents close to −5/3 (see figure 8a,b).
In fact the inverse part of the cascade is around the streamwise direction. This is also the
direction for which these E11(k1) energy spectra are calculated, the wavenumber k1 cor-
responding to the frequency f in figure 8 by Taylor’s hypothesis k1 = fU1 (see appendix
A for our validation of the Taylor hypothesis in the present context).
To evaluate whether the cascade is overall forward or inverse at a given separation

|r| = r, we need to integrate Π over the angles θ and ϕ (see figure 10). However, our data
do not allow us to calculate the integrals in equation 5.1 because they are confined to the
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Figure 16. a) Third order structure function vectors δuiδq2 and iso-contours of their

magnitude and b) iso-contours of the radial part of the divergence of δuiδq2 at x/xpeak
∗ = 0.44.
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Figure 17. a) Third order structure function vectors δuiδq2 and iso-contours of their

magnitude and b) iso-contours of the radial part of the divergence of δuiδq2 at x/xpeak
∗ = 0.57.

plane ϕ = 0. Nevertheless, we can calculate
∫ π/2

0
Πdθ and

∫ π/2

0
Πrdθ using the reduced

form for Π in section 4. We find these two integrals to be very close to each other at
both centreline positions x/xpeak

∗ = 0.44 and x/xpeak
∗ = 0.57. In fact, Laizet & Vassilicos

(2011) and Nagata et al. (2013) have shown that in a transverse planar region around
the centreline of size less than about L0/10 at these positions (L0/10 corresponds to
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Figure 18. a) Circumferentially averaged non-linear energy transfer term Πa normalised by
the similarly averaged energy dissipation ϵa. b) Circumferentially averaged parallel third order

structure function compensated by ϵar, i.e. δu||δq2
a
/ϵr as a function of r (mm) at x/xpeak

∗ = 0.44

and x/xpeak
∗ = 0.57.

about 30mm here) the one-point turbulence statistics are approximately axisymmetric
around the streamwise axis, i.e. independent of ϕ. Their result is consistent with our

finding that
∫ π/2

0
Πdθ ≈

∫ π/2

0
Πrdθ which is implied from equation 5.1 when Π and Πr

are independent of the angle ϕ.

In figure 18a we plot −Πa ≡ − 2
π

∫ π/2

0
Πdθ normalised by ϵa ≡ 2

π

∫ π/2

0
ϵ∗dθ as a function

of r = |r|. The first observation is that, regardless of the inverse and forward cascade
mix evident in the previous statistics, the sign of Πa is negative for all separations r
considered here. This indicates an overall forward cascade when integrated over the
different directions. The second observation is that −Πa/ϵa takes values between 1 and

2 at x/xpeak
∗ = 0.44 and between 1.1 and 1.6 at x/xpeak

∗ = 0.57 where the -5/3 spectrum
is particularly well defined (see figure 8). Note that when we normalise −Πa by ϵ (i.e.
ϵ∗ at r = 0), the plots in figure 18a do not change much and in fact, for the case where

x/xpeak
∗ = 0.57, −Πa/ϵ varies between 1.2 and 1.5. There is therefore some tendency

for −Πa to be close to a constant at x/xpeak
∗ = 0.57 though far from perfectly so. This

suggests a cascade which is approximately self-similar in scales when directions have been
integrated out.

A functional form for the directionally averaged interscale flux δu||δq2
a
= 2

π

∫ π/2

0
δu||δq2dθ

can be derived from the observation that −Πa is not too far from a constant and using

r24Πa = 2
π

∫ π/2

0
∂
∂r (r

2δu||δq2)dθ = ∂
∂r (r

2δu||δq2
a
). Integrating with respect to r (starting

from r = 0) while assuming that Πa is constant yields

δu||δq2
a
= 4Πar/3 . (5.2)

In figure 18b we plot δu||δq2
a
/(ϵr) versus r and see that, at x/xpeak

∗ = 0.57 where

the -5/3 is most clearly present (figure 8), δu||δq2
a
≈ −16ϵr/9 (consistent with equation

5.2 and Πa ≈ −4ϵ/3 from figure 18a) but with a small drift away from this expression.
Hence, even though equation 1.7 does not hold here, a relation similar to it does hold at
x/xpeak

∗ = 0.57 when averaging over separation vector orientations. (Note also that figure

18b remains roughly the same when plotting δu||δq2
a
/(ϵar) rather than δu||δq2

a
/(ϵr).)
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We now make a final set of observations which relate to equation 1.5 in the introduction.
This equation is central to the Richardson-Kolmogorov cascade and is typically derived
by assuming local homogeneity and local equilibrium 1.5. It implies, in particular, that
the non-linear energy transfer term (or divergence of the interscale energy flux) Π is
independent of the orientation of the separation vector r. We have seen that the radial
part Πr of the divergence of the interscale energy flux is not independent of orientation
(figures 16 and 17) but as shown in figure 19, Π does nevertheless turn out to be fairly

isotropic at x/xpeak
∗ = 0.57 though not at x/xpeak

∗ = 0.44. Note also that the values of Π

are negative at both locations x/xpeak
∗ = 0.44 and 0.57 for all separations probed here and

that they do not vary much with r at x/xpeak
∗ = 0.57. We are therefore presented with

a situation at x/xpeak
∗ = 0.57 where Π is negative and approximately uniform in value

across our separation vectors, a situation very similar to equation 1.5. Yet, as mentioned
in the first paragraph of this section, equation 1.7 does not hold at our measurement
stations.

The violation of 1.7 results from the combined forward and inverse cascades already
mentioned. The negative values of Π throughout our r plane result from non-linear energy
transfers from one orientation of r to another at constant r = |r|. It has to do with the
topology of the interscale flux vector field in r space (see figures 16a and 17a). The
seemingly attracting inverse cascade axis which lies at a small angle to the streamwise
direction (see figures 16a and 17a) imposes a negative transfer in orientations (from
θ = π/2 to smaller) between this axis and the streamwise direction (where Πr > 0) and
a positive transfer in orientations (towards increasing angles θ) in the rest of the r plane
(where Πr < 0). As the circumferentially averaged transfer in orientations equals 0, i.e. as∫ π/2

0
Πdθ =

∫ π/2

0
Πrdθ, and as the negative transfer in orientations (from θ = π/2 to 0) is

confined over a region in the r plane which is significantly smaller than the region where
the transfer in orientations is positive (i.e. towards increasing angles θ), we can expect
the negative values of Π − Πr (confined to the region where Πr > 0) to be significantly
larger in magnitude than the positive values of Π−Πr (in the rest of the r plane where
Πr < 0). These kinematic considerations explain why Π can be negative throughout r as

indeed observed, but do not explain why it actually is negative at both x/xpeak
∗ = 0.44

and 0.57 and approximately uniform in r at x/xpeak
∗ = 0.57.

We close this section with a summary of our findings so far.

(i) At our measurement stations in the production region around centreline points

x/xpeak
∗ = 0.44 (where Reλ = 190) and x/xpeak

∗ = 0.57 (where Reλ ≈ 270) the interscale
energy transfers are characterised by a combination of an inverse cascade along an at-
tracting axis at a small angle to the streamwise direction and a forward cascade in the
transverse direction. For this reason there is no relation such as equation 1.7 valid at
these production region points and there is no small-scale isotropy either.

(ii) Nevertheless, there is a well-defined -5/3 streamwise energy spectrum E11(k1),

particularly at x/xpeak
∗ = 0.57 where Reλ ≈ 270.

(iii) The directionally averaged cascade is forward, i.e. from large to small scales, and

the r-dependence of δu||δq2
a
is not too far from δu||δq2

a
= −16ϵr/9 at x/xpeak

∗ = 0.57.
The coefficient 16/9 should not be given too much significance as it can be expected to
be, at least residually, Reynolds number dependent.

(iv) Even without directional averages, Π is negative at both x/xpeak
∗ = 0.44 and 0.57

and approximately uniform in r at x/xpeak
∗ = 0.57. This results from the combination of

nonlinear transfers across separation scales and across separation orientations.

In the following section we show that the turbulence at these measurement stations
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Figure 19. Non-linear energy transfer term normalised by energy dissipation, Π/ϵ∗, at a)

x/xpeak
∗ = 0.44 and b) x/xpeak

∗ = 0.57.

is not homogeneous at the scales r considered and that it is therefore not possible to
reduce the inhomogeneous Kármán-Howarth equation 1.2 to the simpler form 1.3 which
is typically used to derive the Richardson-Kolmogorov cascade and its consequences from
Kolmogorov’s assumption of local equilibrium.

6. Energy transfer budget

6.1. Small and negligible terms

The energy transfer via the mean velocity gradients ΠU , the viscous transport D∗
X,ν and

the viscous diffusion D∗
ν are found to be small compared to the other terms in equation

1.2 that we can estimate and in particular small compared to ϵ∗.
Figure 20a shows the flux vector (δUδq2, 0, 0) (m3s−3) (see data reduction in section 4)

and the iso-contours of its magnitude |δUδq2| whereas figure 20b presents the divergence
of this flux, ΠU , which is normalised by ϵ∗. The divergence of δUδq2 takes maximum
values at separations that have large r1 and small r3 values. These maximum values are
of the order of 0.25ϵ∗. For similar separations (r1,r3), advection A takes on values close
to 9ϵ∗ (see figure 22a) and turbulent transport T close to 10ϵ∗ (see figure 22b) which
makes the divergence of δUδq2 negligible. In fact, as a cursory comparison of figures 20b
and 22 rightly suggest, ΠU is much smaller than both A and T at all r.
The viscous diffusion term, DX,ν was estimated for r3 = 0 and was found to be two

orders of magnitude smaller than ϵ∗ irrespective of r1. It is therefore, as expected, not
considered important for the Kármán-Howarth two-point energy budget.

Figure 21 is a plot of the r-dependencies of Πa
U = 2

π

∫ π/2

0
ΠUdθ and Da

ν = 2
π

∫ π/2

0
Dνdθ

normalised by ϵa = 2
π

∫ π/2

0
ϵ∗dθ. This figure shows that viscous diffusion tends to increase

with decreasing r which agrees with the constraint that Dν tends to ϵ(X) as r tends to 0.
The maximum values of Πa

U +Da
ν are below about 30% of the energy dissipation which

is negligible when compared with the other terms estimated in section 6.2.

6.2. Main terms

Figure 22 is a plot in (r1, r3) space of the advection (A) and turbulent transport (T )
terms normalised by energy dissipation ϵ∗. Both terms are shown to be fairly isotropic
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in the sense that their contour lines resemble circles, at least up to the maximum radius
considered here. In addition, given that their magnitudes are roughly similar particularly
at the smaller scales, there seems to be a tendency for these two terms to cancel much
(though not all) of each other in equation 1.2.
Figure 23 is also a plot in (r1, r3) space but of the production (P) and of the remainder

−B of the Kármán-Howarth-Monin balance 1.2 both normalised by ϵ∗. Both these terms
are larger than energy dissipation for transverse separations r3 that are not too small.
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Figure 22. a) Advection term normalised by energy dissipation, A/ϵ∗ and b) turbulence

transport normalised by energy dissipation, T /ϵ∗ at x/xpeak
∗ = 0.44.

This is not surprising for the production term as, in the production region, turbulence
intensity and δq2 (see figure 15) increase with streamwise distance from the grid. Qual-
itatively, these terms behave differently compared to advection and turbulent transport
in figure 22. The main difference is that the contours appear stratified in figure 23 as
opposed to circular in figure 22. The stratification of the production term in the r3 direc-
tion (figure 23a) is due to the mean velocity gradients being much larger in that direction
than in the r1 direction. This fact is patent in the mean velocity field, see figure 5b.
Besides Π and ϵ∗, the main terms in the Kármán-Howarth-Monin balance 1.2 at the

location of the production region where we can estimate them (x/xpeak
∗ = 0.44) are A,

T , P and −B. The approximate Kármán-Howarth-Monin balance that we are therefore
faced with is

Π ≈ −ϵ∗ + P + (T − A) + B (6.1)

where we might expect a significant part of B to be the pressure transport term Tp, see
section 4. Laizet & Vassilicos (2012) reported that at a distance x/xpeak

∗ = 0.44 from a
turbulence-generating fractal grid similar to ours, the average pressure is still recovering.It
is indeed reasonable to expect the pressure transport term Tp to be important in the
production region.
In figure 24 we plot the terms in equation 6.1 at x/xpeak

∗ = 0.44 but averaged over θ

and normalised by ϵa = 2
π

∫ π/2

0
ϵ∗dθ. The production term Pa = 2

π

∫ π/2

0
Pdθ is positive,

meaning production of turbulence fluctuations by the mean flow, and is comparable to the

non-linear energy transfer −Πa = − 2
π

∫ π/2

0
Πdθ. The terms of highest magnitude, how-

ever, are the advection Aa = 2
π

∫ π/2

0
Adθ and the turbulent transport T a = 2

π

∫ π/2

0
T dθ,

both positive, and the remainder Ba = 2
π

∫ π/2

0
Bdθ which turns out negative. As already

mentioned, Πa is negative but also, perhaps remarkably, varies less with r than all the
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Figure 23. a) Production term normalised by energy dissipation, P/ϵ∗ and b) the remainder

of the Kármán-Howarth balance normalised by energy dissipation, −B/ϵ∗ at x/xpeak
∗ = 0.44.

other terms in equation 6.1. Combining expression 6.1 with 5.2 which follows from the
near-constancy of Πa, we obtain

δu||δq2
a
≈ −4

3
r (ϵa − Pa − (T a −Aa)− Ba) (6.2)

which is similar to 1.7, in particular because ϵa − Pa − (T a − Aa) − Ba (which turns
out to be approximately equal to 4/3ϵa here, see paragraph under equation 5.2) is only
weakly dependent on r, yet very different.

7. Conclusions

The focus of this work has been in the two-point statistics of turbulence fluctuations in
the most inhomogeneous and anisotropic region of grid-generated turbulence. This region
is termed the production region and lies between the grid and the peak of turbulence
intensity downstream of it. In order to magnify the space where PIV can be performed
and to capture the smallest scales of the flow while maintaining a good dynamic range in
space, we have used a well-documented turbulence-generating fractal square grid which is
known to magnify the streamwise extent of the production region and abate its turbulence
activity. We performed planar two-component PIV measurements of many terms of the
non-homogeneous Kármán-Howarth-Monin equation in this region. We found the turbu-
lence to be indeed significantly inhomogeneous and anisotropic even at scales smaller than
the Taylor microscale around the centre of that region on the centreline. The two-point
advection and transport terms are dominant and the production is significant too in the
Kármán-Howarth-Monin balance. The importance of the two-point advection indicates
that one cannot apply the local equilibrium hypothesis 1.4 of Kolmogorov. It is therefore
impossible to apply usual Kolmogorov arguments based on the Kármán-Howarth-Monin
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equation and resulting dimensional considerations to deduce interscale flux and spectral
properties.

We find that the interscale energy transfers are characterised by a combination of an
inverse cascade along an attractive axis, which is at a small angle with the streamwise
direction and a forward cascade in the transverse direction. For this reason there is no
relation such as equation 1.7, which requires a forward cascade for all separations, valid
at our production region points and there is no small-scale isotropy either. Even so, the
energy spectrum of the streamwise fluctuating component exhibits a well-defined -5/3
power law over one decade.

The directionally averaged cascade is forward, i.e. from large to small scales, and the r-
dependence of δu||δq2

a
is not too far from linear in r at x/xpeak

∗ = 0.57. The directionally
averaged non-linear energy transfer term Πa is negative and varies less with r than all
the other terms in the approximate Kármán-Howarth-Monin balance 6.1.

Even without directional averages, Π is negative at both x/xpeak
∗ = 0.44 and 0.57 and

approximately uniform in r at x/xpeak
∗ = 0.57. This results from the combination of

nonlinear transfers across separation orientations as well as across scales.

Note that power-law energy spectra with exponents close to -5/3 have also been re-
ported in a cylinder wake within one cylinder diameter from the cylinder (Braza et al.
2006). It might be relevant to perform studies similar to ours in various very near-field
wakes and determine their intercale nonlinear cascade characteristics. In future works on
near-field wakes and on the production region of grid-generated turbulence it will also
be important to examine the assumptions that we were forced to make as a result of the
2D planar nature of our PIV. The first two main assumptions are stated at the end of
the first paragraph of section 4 and the third main one is given in the same section and
concerns our estimate of the divergence of the energy flux. The interpretations of the
results in sections 5 and 6 depend on these assumptions.
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Figure 25. Validation of Taylor’s hypothesis at x/xpeak
∗ =0.44: a) correlation coefficient between

∂u/∂x and ∂ud/∂x for several averaging window sizes and b) second order structure function
calculated with spatial and temporal (by Taylor’s hypothesis) data.

Appendix A. Taylor’s hypothesis validation

The main results from the present paper assume that Taylor’s hypothesis is valid in
the production region of the flow and are mainly focused in the location x/xpeak

∗ =0.44. In
order to assess the validity of this hypothesis at this station we present some indicators
based on the SFV and the LFV.
The SFV is composed by 1280 × 64 pixels (see table 4) which translates into 80 ×

3 vectors, in the z and x directions, respectively. The spatial derivatives (∂u/∂x) are
calculated using a second order difference scheme with the first and third vectors at each
row. The derivatives computed using Taylor’s hypothesis use the temporal information
of the second vector and the following expression:

∂ud(z)

∂x
=

−1

U(z)

∂u(z)

∂t
(A 1)

where U(z) is the mean velocity averaged through time information. Figure 25a shows
the correlation coefficient between the aforementioned gradients along the z direction in
the centreline. In an attempt to improve the correlation, the convection velocity used in
equation A1 (U(z)) is computed using the local mean velocity (usual procedure when
applying Taylor’s hypothesis) or using a local averaging window in the temporal data
with different sizes namely λ/2 (where λ is the Taylor microscale), λ, L (L is the integral
length scale of u in the x direction) and 30L. The use of local windows proved to capture
better the derivative of strong events but it is not as effective in capturing the weaker ones
resulting in a slight loss of the overall correlation. Nevertheless, the level of correlation is
in line with what other authors reported such as Ganapathisubramani et al. (2007) and
Gomes-Fernandes et al. (2014) and Taylor’s hypothesis is applied using a global mean
velocity as the convection velocity.
Figure 25b shows the second order structure function < δu2(r) > at the centreline in

x/xpeak
∗ =0.44 calculated using temporal data and Taylor’s hypothesis and spatial data.

The spatial data is computed using the LFV which is 100× 180 mm2 and the statistics
are converged with 5 runs of 8126 vector fields each. In the spatial data the centreline
at x/xpeak

∗ =0.44 is kept as the centroid and < δu2(r) > is computed between points
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equidistant from this point in the x direction. The agreement between the two methods
is good which indicates that Taylor’s hypothesis is valid in this region.
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