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Abstract

A careful data analysis of far downstream turbulent flowsegated by conventional and multiscale grids shows thaettesaying
flows are very clearly dierent from both S@man and Loitsyansky turbulence. The analysis also showishbee are marked
differences between the far downstream turbulence behavinesajed by dferent types of grid. There is an inflow condition
dependence on both the normalised energy dissipation arabtiserved large-scale invariant.
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1. Introduction lence and which revealed the possibility of a decaying turbu

lence without the expected high Reynolds number dissipatio
A few years ago, Lavoie, Djenidi, and Antonia (2007) in- scaling A = &£/u® ~ Constant (see equation 2) but instead

vestigated potentialffects of inflow conditions on the decay of A - Re;l (read introduction of Valente and Vassilicos (2011)
approximately homogeneous isotropic turbulence. Inflon-co anq references therein where, among much else, the conse-
ditions refer to the way the turbulence is generated. In timelw quence of ~ Re;l on fast turbulence decay is also explained).
tgnnel experiments of these autho_rs, the tgrbulence was pagerhaps the reason why the multis¢iatetal cross grid type
sively generated by square-mesh biplane grids placed &she of design has mostly been neglected (except in studies where
section entry. A particular aspect of the potential depande they were used to enhance the Reynolds number, see Kinzel,
on inflow conditions is whether the power-law decay of the far Wolf, Holzner, Liithi, Tropea, and Kinzelbach (2010); Galip
downstream turbulence depends on them. Quantitativety, thyenry Goh, and Lindstedt (2010)) is that Hurst and Vassslico
question is whether the decay exponeit (2007) did not make any strong or unexpected claim about the
dependence af on x— X in decaying turbulence generated by
them. Their conclusion on these grids was just a double neg-
ative: “the turbulence decay observed is not in disagreémen
with power-law fits and the principle of large eddies”.

W ~ (X = Xo) ™" )
(whereu? stands for two thirds of the turbulent kinetic energy
and x is the streamwise distance along the tunmglbeing a
virtual origin) difters for diferent inflow conditions as claimed  Sketches of the multiscale cross grids used by Krogstad and
by George (1992), and if so, how variable can it be. Davidson (2011) can be seen in their figure 1 and are described
Lavoie et al. (2007) tried four ierent conventional passive in their section 2 where they are labeledgl andmsg2. We
grids (with square or with round bars withithout a small heli-  do not need to repeat the description here except to say that
cal wire) and two dierent test sections (one with and one with- each multiscale cross grid has threffatient mesh sizes, the
out a secondary contraction to improve isotropy). They diti n smallest one beingls = 15mm for msgl and Mz = 21mm
find any significant fect of inflow conditions on the decay ex- for msg2. Krogstad and Davidson (2011) were careful to de-
ponentn other than that of anisotropy which does, itself, dependsign their two multiscale cross grids and one conventioridl g
on inflow conditions and persists far downstream. in such a way that the longitudinal integral length-scaléhef
Krogstad and Davidson (2011) carried out a similar wind tunturbulence at a 2m distance from the grid location is the same
nel study but with two multiscale grids and one conventionaly ~ 23.65mm=+0.25mmfor all three grids. The ratio betweégn
grid. Their grids were all monoplanar and their two multi- and the distance between the tunnel walls is smaller thag.1
scale grids were chosen from one of the three design families
of multiscale grids introduced by Hurst and Vassilicos (200
specifically the family of fractal cross grids. These grids a
very different in design from the low-blockage space-filling
fractal square grids which have been used in the vast majo
ity of subsequent works on multisc#iactal-generated turbu-

A description of the wind tunnel used by Krogstad and
Davidson (2011) can be found in Krogstad and Davidson (2010,
2011). The grids were placed in the tunnel contraction,ipec
ically 1.2m upstream from the start of their test sectiord an
their turbulence measurements were taken using singlenand t
component hot-wire anemometry froxne 60l till x = 4006
which means 9Bl; < x < 629M3 for msgl and 6M3 < X <
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446M3 for msg2. In the case of their conventional grid (refered
to ascg), 600 < X < 400, corresponds to 4@ < x < 240M

November 2, 2011



whereM is the mesh size of the grid. - ‘
In the next two sections we apply a careful analysis to the aA ]
data published by Krogstad and Davidson (2011) which demon- LN
strates that, in the far-region where these authors mea$iere
multiscale cross grids and the conventional grid produge si LN
inicantly different turbulence behaviors, all of which are very
clearly diferent from both S@man and Loitsyansky turbu-

lence.

mean

u?/u?

2. Decaying homogeneous isotropic turbulence with three
different inflow conditions
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Krogstad and Davidson (2011) established that their turbu- (x — x0)/lo
lent flows were reasonably homogeneouscdteyond 2n in
terms of longitudinal profiles of variances, skewnessedlahd
nesses of the streamwise fluctuating velocity componergirTh
centreline mean streamwise fldwremains constant to within N
less than+0.1% for all three grids fronx = 2m till about e
x = 8m, though it deviates a very little bit fomsg2 beyond
X = 6.5m. As a result, they chose to design their three grids in
such a way that they all generate turbulence with nearly same
longitudinal integral length-scal& at x = 2m. The positions
x = 80¢ fall around 19m for all the grids. (Krogstad and
Davidson (2011) in fact recorded, and in a few instances used
for their analysis, a few measurements at closer distandégt 07: = = = =
grid, i.e. x as small as about 43.) The longitudinal length- (& —20)/lo
scalef grows as the turbulence moves downstream, but the ra-
tio betweerr and the distance between the tunnel walls remaingigure 1: Data and best-fit power laws for: (@) > /Ufea, Versus k—xo)/to

very small, less than about40 at 8nfrom the grid location. (b) Rex/Reu versus K — xo)/¢o. (®) cg, (A) msgl, () msg2. The vertical
They also calculated ratios Ui > /< U)Z, > < u)z( >/ < dashed lines mark the start and end of the admissible dage nased in the

least-squares fits.
u? > andu?/ < u2 > and found small levels of anisotropy
“comparable, if not better, than in most other experimenits”
particularu?/ < u2 > hovers between.05 and 102 throughout  ues ofn andx, obtained by Krogstad and Davidson (2011) by
the regions where they recorded their measurements. Hendeeir three diferent fitting methods for all three grids except
any anisotropy-related dependence on inflow conditionsias ifor their value ofxy for msgl and their value oh for msgl
Lavoie et al. (2007) can, most probably, be ruled out. when they use one of their three fitting methods, the regrassi
In figure 1a we plok u2 > /U? versus K — Xo)/{o for all  method (see their table 1). The valuesnafvhich they obtain
three grids as well as fits of the data by > /U2 ~ (%)‘“. for msgl with their other two fitting methods are close to our
The decay exponents and virtual originsxy in these fits  value ofn for msgl.
are estimated simultaneously by direct application of a-non At this point it is helpful to recall some basic theoreticahe
linear least-squares regression algorithm (‘NLINFIT' tioe  siderations. Homogeneous turbulence in the wind tunnel de-
in MATLAB ™). This fitting method is closely related to the cays according tt) & 3u? = —e wheree is the turbulent kinetic
one used by Lavoie et al. (2007) and we apply it to nearlyenergy dissipation per unit mass. To obtain (1) and the nimer
the same range where Krogstad and Davidson (2011) applieghl value of, one needs some more information ahdnde.
their own fitting methods. Specifically, we apply our fit to the This information usually consists of the following thregiadi-
range 80y < x < 330 which is a range ok from about  ents when the homogeneous turbulence can also be considered
1.9mto 8m. This means that, for each grid, we exclude datefairly isotropic (see Batchelor and Townsend, 1948; Bdtuhe
points obtained by Krogstad and Davidson (2011) at values 0of953; Rotta, 1972): (i) a finite invariant of the von Karman-
x smaller than 86 where according to these authors the tur-Howarth equation, (ii) the assumption that the decay ofdarg
bulence is not sfiiciently homogeneous, and we also exclude,eddies is self-similar and (i) the empirical assumptibatt
exactly like Krogstad and Davidson (2011) do, the data jgoint
furthest downstream where noise starts to be significant. (I A= el/u® (2)
cluding data points fronx ~ 1.5m (i.e. 6Q) as in Krogstad
and Davidson (2011) makes littleftirence as the values of  remains constant during decdy= ¢(x) is the longitudinal inte-
remain the same to within0.01.) gral length-scale). This constancy can be thought of astiregu
We give the values ofi and Xy thus obtained in table 1 from the assumed independencefobn turbulence intensity
(method I). These values agree fairly well with the varioas v andRe;.
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Vassilicos (2011) proved that there are foufelient cases of
finite invariants of the von Karman-Howarth equation depen
ing on conditions at infinity. A case where no known finite in-
variant exists; a case where the Loitsyansky invarianeotily
known finite invariant and where self-similar decay of laegle
dies impliesu?¢® = const during decay; a case where only one
known finite invariant exists and where self-similar decdy o
large eddies implieg?/™! = const with 2 < m< 4 (2< men-
sures that the spectral tensor does not diverge at zero wanen

ber as stated in Rotta (1972), in the Appendix of Krogstad and
Davidson (2011) and in Vassilicos (2011)); and a case where
two finite invariants exist and where, as a consequence, self

similar decay of large-eddies is impossible.
Using the constancies @ andu?/™?, the second and third
of these four cases imply
n=2(m+1)/(m+3) 3)

where 2< m < 4 and therefore & < n < 10/7. Note that
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Figure 2: Data and best-fit power laws f&fA; versus K — X)/fo. (®) cg,
(A) msgl, (O) msg2. The vertical dashed lines mark the start and end of the
admissible data range used in the least-squares fits.

decay of large eddies implie8™! = const with 2 < m < 4.

m does not have to be an integer. Also, there is no known wayhe S@man invariant corresponds ta = 2 but none of the
to rule out the fourth case and therefore no known theoieticegrids used by Krogstad and Davidson (2011) returns such a

reason for measured values mfto necessarily lie inside the
range 65 < n < 10/7.

value ofm. In figure 3a we plok uZ > ¢™*/(U?(*) versus
(X = Xo)/to with the values ofm given under method | in table

Two out of the three present grids have returned values cf for each one of the threeftBrent turbulent flows. This figure

n which are below 5 = 1.2 (see table 1 under method I).

should be compared with figure 3¢ which is a reproduction of

However, this does not imply that the present turbulence-medigure 10 in Krogstad and Davidson (2011) where they plotted

surements do not fall under the second or third cases idehtifi
by Vassilicos (2011). Indeed, as Krogstad and Davidson(201
2011) have observed varies slowly withx and is therefore
not strictly constant. If this is so, then (3) needs to change

In figure 2 we plot the values & obtained by Krogstad and
Davidson (2011) for their three grids as functionsxof (xo) /{0

wherexg is taken from table 1 (method ). (Krogstad and David-

son (2011) assumed small-scale isotropy and calcukafeaim
measurements of (4%)2 > usinge = 15v < (%%)? > and
integrations of measured longitudinal correlation fuoies to
educel.) To bring out more clearly the fierences between
grids we in fact ploA/A; whereA; is the value ofA obtained at
the smallest distancefrom each grid. We then follow Krogstad
and Davidson (2010) and fit the power law~ (%)*p in the
range 60, < x < 330 of this data. These fits are shown in
figure 2 and the values gfare reported in table 1.

If A = constisreplaced byA ~ (x—Xg) P then the implication
of u/™1 = const changes from (3) to

n=1Q-p2m+1)/(m+3) 4)

where 2< m < 4. With our estimates af and p we can now
use (4) to derive values ah for each grid. They are given in

< UZ > £3/(U263) versus K — Xo)/ Lo, except that we havefiset
the data vertically so as to see more clearly théedénces in
behavior between each grid. Assuming the turbulencefts su
ciently homogeneous and isotropic and equally so for aflehr
flows (as claimed by Krogstad and Davidson, 2011), it is clear
that the S&man prediction is not satisfied in these flows. In-
stead,

u2¢™?! = const

(5)

with m > 2.5 for all grids in the range 109 < X — o < 400¢.
Furthermore, dferent grids give rise to fferent values ofm
reaching up tan ~ 3 with method I (see table 1).

In fact there is another way to extract valuesri@ndm from
the data (method II), and this way gives even better defined
invariants and even greaterfidirences between the far down-
stream turbulence decays originating from the conventignic
and the multiscale cross grids. Method Il is based on figure 1b
This figure is a log-log plot oRe; /Re; 1 versus k—xo)/lp where
Re,; is the value oRe, at the smallest distance from each grid
on this plot andxg is the virtual origin obtained from our non-
linear fit of figure 1a. The first inescapable observation & th
the streamwise distributions &, are clearly diferent for the
conventional grid and for the multiscale grids.

table 1 (under method I) and, having now taken into accountth  The power law form (1) implies® ~ (x — Xo) in decaying

slight variations ofA, they are all between 2 and 4. Similarly,
the values ofY = n/(1 - p) lie all between 65 and 197 (see
table 1 under method I).

These values afn raise the possibility that the three decay-

homogeneous isotropic turbulence (Batchelor (1953))olfits
would follow thatRe; ~ (x — %0)""/2, so that a best fit of the
data in figure 1b gives values af We apply this power law
fit to the very same range B0< x < 330, used in method

ing nearly homogeneous and nearly isotropic turbulent flows for our fit of the turbulence intensity data in figure 1a. The

of Krogstad and Davidson (2011) may be threfeatent in-
stances of the third case identified by Vassilicos (2011)rethe
only one known finite invariant exists and where self-simila

3

values ofn thus obtained, the resulting valuesrafusing (4)
and the resultingy n/(1 — p) are given in table 1 under
method Il. In figure 3b we use these new valuesrto plot



Table 1: Estimation of quantities via least squares fit

Grid p n Xo(m) m n’ @
Method |
cg 0.126 1.13 0.23 267 129 1.90
msgl 0.101 1.18 0.28 2.79 1.31 1.14
msg2 0.072 1.23 0.33 294 1.33 0.62
Method Il
cg 1.15 285 132 1.68
msgl 1.24 3.38 1.37 0.86
msg2 1.25 3.14 135 0.57

< ug > (™1/(U260Y) versus k—Xo)/¢o and find that they yield
even better defined invariants (5) than method | (compate wit
figure 3a) for msgl. The fierence between values of for
conventional grids and values of for multiscale grids is un-
mistakable and even greater with method Il than with method
.

We must conclude that the decay of approximately homoge-
neous turbulence far from its inflow conditions remains aepe
dent on these inflow conditions. The decay expomeantd the
conserved finite invarian¢™*! both clearly change when the
turbulence-generating grid is changed. These inflow cadit
may have to do with the geometry of the gridgaord with the
inlet Reynolds numbers as the mean speed in the tunnel was
135m/swhen the conventional grid was tested,dv/swhen
msgl was tested and 15m/swhenmsg2 was tested.

The mesh size determines the distance between the wakes
of the bars and the bar thickness determines the width oéthes
wakes. The Reynolds numbers characterising these wales (ca
culated as the mean flow speed multiplied by the bar thickness
and divided by the kinematic viscosity of the air) take thieiga
3.6x10%in the case oég; 3x 10°, 1.5x 10° and 75x 10? in the
case ofnsgl; and 332x 103, 1.66x 10° and 83x 107 in the case
of msg2. Unlike conventional grids, multiscale grids impose
more than one Reynolds number on the flows they generate and
a number of dierent distances from the grid where wakes of
different sizes meet. Of course the largest wakesfégetad by
the wakes generated by the smaller ones. But it is clearhiat t
turbulence undergoesftirent generation mechanisms extend-
ing over diferent streamwise distances witlffdrent grids. It is
indeed remarkable that memory of these mechanisms remains
in the values oh andm as far downstream as where Krogstad
and Davidson (2011) took their measurements.
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3: Checks of invariant forms via plots @t/™: (a) m from method
I, (b) mfrom method II, (c)m = 2 corresponding to $iman turbulence. ®)
cg, (A) msgl, (O) msg2. For improved readability theg/msgl/msg2 data

were vertically dfset by (a) [20, 1.0, 0.0]x 1074, (b) [1.6, 2.5, 0.0]x 1074, (c)
[2.5, 0.5, —1.5] x 10~*.The left and right vertical dashed lines mark the start

3. Different far-field low- Re, turbulent flows

We obtained figures 3a,b by taking into account the slow
streamwise variation oA as suggested by Krogstad and David-

and end of the data range used to obtain the decay exponerthis is the
range not significantly féected by inhomogeneity (to the left) and noise (to the
right).

son (2010). This streamwise variation can result from thiswe USiNgRe: ~ (x—xo)*"/2 andA ~ (x — o) P we obtain

known dependence that the dimensionless dissipatiofias
on Re; whenRe, is below at least 100 (e.g. Burattini, Lavoie,
and Antonia, 2005). Indeed, the values:ef characterising the

three far-field turbulent flows of Krogstad and Davidson (01 Where

range between about 90 nearr 60y and 70 atx ~ 330.

A~ Re?

a=2p/(n-1).

(6)

(7)



Figure 4:Re,; dependence of the normalised energy dissipation rate & that

A here is 3\/2 in Krogstad and Davidson (2011), for example see their éigur
11). (®) cg, (A) msgl, (©) msg2. The solid lines are plots @ = const x Re}
with o taken from table 1, method Il. The axes are logarithmic.

0.9
0

Figure 5: Advection-dissipation balance®) cg, (A) msgl, (&) msg2.

The values ofr implied by this formula on the basis of expo-
nentsp andn obtained in the previous section are verffetient
for different grids, ranging from ~ 1.7 toa@ = 0.6 (usingn

~

differentRe, dependencies @4 for different grids, namely that
“the geometry of the grid appears to have a persistent infien
in the streamwise direction up tgM = 80". In fact the data of
Krogstad and Davidson (2011) extend this observation tdmuc
further distances downstream and to a wider range of grids.

This data also leads to the conclusion that the decay of the
three approximately homogeneous isotropic turbulent flofvs
Krogstad and Davidson (2011) is characterised by an invaria
quantity u>¢™?* in the region of the flonx > 80¢y,. The ex-
ponentm is significantly diferent from S&man’sm = 2 and
Loitsyansky’'sm = 4 and ranges between 2.7 and 3.4 for the
grids used by Krogstad and Davidson (2011). Their multescal
grids return values ahwhich are markedly larger than the val-
ues ofmreturned by their conventional grid. The streamwise
distributions ofRe, andA are also very clearly éierent.

However, in spite of the various homogeneous profiles
plotted in Krogstad and Davidson (2011), thmeg2-generated
turbulence is not homogeneous as far downstream as they
measure. In figure 5 we pIotUd%guz/e and find that, for
msg2, it is larger than 1.2 in the range whar&@™! is constant
with m ~ 3. On the other hand, the turbulence generatecgoy
does appear homogeneous in figure 5 in the range wiRére!
is constant withm ~ 2.75. Hence, whereassg? turbulence is
not homogeneous enough for the Karman-Howarth equation
to be applicable to itcg turbulence might be. Thesgl grid
which generates a turbulence wher@™* is constant with
m ~ 3.4 wherex — Xp > 90(y appears homogeneous in figure 5
only wherex — xg > 200¢p. This observation suggests that con-
siderations such as those of Vassilicos (2011) which aredas
on self-similar decay of large eddies and the Karman-Htwar
equation for homogeneous isotropic turbulence in an igfinit
domain without walls are, at the very least, notf®ient
(if at all appropriate) for explaining invariants such ag, (5
particularly as these invariants might hold over regionsctvh
cover both homogeneous and inhomogeneous turbulence. This
is an important point which calls for much future research.

obtained from method Il, see table 1). Figure 4 confirms how

dramatically dfferent the dependenciesAfon Re, are for the
multiscale grids and for the conventional grid.
Figure 4 also shows that (6)-(7) give rise to more or less re

a_
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