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Abstract

A careful data analysis of far downstream turbulent flows generated by conventional and multiscale grids shows that these decaying
flows are very clearly different from both Saffman and Loitsyansky turbulence. The analysis also shows that there are marked
differences between the far downstream turbulence behaviors generated by different types of grid. There is an inflow condition
dependence on both the normalised energy dissipation and the conserved large-scale invariant.
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1. Introduction

A few years ago, Lavoie, Djenidi, and Antonia (2007) in-
vestigated potential effects of inflow conditions on the decay of
approximately homogeneous isotropic turbulence. Inflow con-
ditions refer to the way the turbulence is generated. In the wind
tunnel experiments of these authors, the turbulence was pas-
sively generated by square-mesh biplane grids placed at thetest
section entry. A particular aspect of the potential dependence
on inflow conditions is whether the power-law decay of the far-
downstream turbulence depends on them. Quantitatively, the
question is whether the decay exponentn in

u2
∼ (x − x0)−n (1)

(whereu2 stands for two thirds of the turbulent kinetic energy
and x is the streamwise distance along the tunnel,x0 being a
virtual origin) differs for different inflow conditions as claimed
by George (1992), and if so, how variable can it be.

Lavoie et al. (2007) tried four different conventional passive
grids (with square or with round bars with/without a small heli-
cal wire) and two different test sections (one with and one with-
out a secondary contraction to improve isotropy). They did not
find any significant effect of inflow conditions on the decay ex-
ponentn other than that of anisotropy which does, itself, depend
on inflow conditions and persists far downstream.

Krogstad and Davidson (2011) carried out a similar wind tun-
nel study but with two multiscale grids and one conventional
grid. Their grids were all monoplanar and their two multi-
scale grids were chosen from one of the three design families
of multiscale grids introduced by Hurst and Vassilicos (2007),
specifically the family of fractal cross grids. These grids are
very different in design from the low-blockage space-filling
fractal square grids which have been used in the vast major-
ity of subsequent works on multiscale/fractal-generated turbu-
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lence and which revealed the possibility of a decaying turbu-
lence without the expected high Reynolds number dissipation
scaling A ≡ εℓ/u3

≈ Constant (see equation 2) but instead
A ∼ Re−1

λ
(read introduction of Valente and Vassilicos (2011)

and references therein where, among much else, the conse-
quence ofA ∼ Re−1

λ
on fast turbulence decay is also explained).

Perhaps the reason why the multiscale/fractal cross grid type
of design has mostly been neglected (except in studies where
they were used to enhance the Reynolds number, see Kinzel,
Wolf, Holzner, Lüthi, Tropea, and Kinzelbach (2010); Geipel,
Henry Goh, and Lindstedt (2010)) is that Hurst and Vassilicos
(2007) did not make any strong or unexpected claim about the
dependence ofu2 on x− x0 in decaying turbulence generated by
them. Their conclusion on these grids was just a double neg-
ative: “the turbulence decay observed is not in disagreement
with power-law fits and the principle of large eddies”.

Sketches of the multiscale cross grids used by Krogstad and
Davidson (2011) can be seen in their figure 1 and are described
in their section 2 where they are labeledmsg1 andmsg2. We
do not need to repeat the description here except to say that
each multiscale cross grid has three different mesh sizes, the
smallest one beingM3 = 15mm for msg1 and M3 = 21mm
for msg2. Krogstad and Davidson (2011) were careful to de-
sign their two multiscale cross grids and one conventional grid
in such a way that the longitudinal integral length-scale ofthe
turbulence at a 2m distance from the grid location is the same
ℓ0 ≈ 23.65mm±0.25mm for all three grids. The ratio betweenℓ0
and the distance between the tunnel walls is smaller than 1/75.

A description of the wind tunnel used by Krogstad and
Davidson (2011) can be found in Krogstad and Davidson (2010,
2011). The grids were placed in the tunnel contraction, specif-
ically 1.2m upstream from the start of their test section, and
their turbulence measurements were taken using single and two
component hot-wire anemometry fromx ≈ 60l0 till x = 400ℓ0
which means 93M3 ≤ x ≤ 629M3 for msg1 and 67M3 ≤ x ≤
446M3 for msg2. In the case of their conventional grid (refered
to ascg), 60ℓ0 ≤ x ≤ 400ℓ0 corresponds to 40M ≤ x ≤ 240M
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whereM is the mesh size of the grid.
In the next two sections we apply a careful analysis to the

data published by Krogstad and Davidson (2011) which demon-
strates that, in the far-region where these authors measure, the
multiscale cross grids and the conventional grid produce sig-
inicantly different turbulence behaviors, all of which are very
clearly different from both Saffman and Loitsyansky turbu-
lence.

2. Decaying homogeneous isotropic turbulence with three
different inflow conditions

Krogstad and Davidson (2011) established that their turbu-
lent flows were reasonably homogeneous atx beyond 2m in
terms of longitudinal profiles of variances, skewnesses andflat-
nesses of the streamwise fluctuating velocity component. Their
centreline mean streamwise flowU remains constant to within
less than±0.1% for all three grids fromx = 2m till about
x = 8m, though it deviates a very little bit formsg2 beyond
x = 6.5m. As a result, they chose to design their three grids in
such a way that they all generate turbulence with nearly same
longitudinal integral length-scaleℓ0 at x = 2m. The positions
x = 80ℓ0 fall around 1.9m for all the grids. (Krogstad and
Davidson (2011) in fact recorded, and in a few instances used
for their analysis, a few measurements at closer distances to the
grid, i.e. x as small as about 41ℓ0.) The longitudinal length-
scaleℓ grows as the turbulence moves downstream, but the ra-
tio betweenℓ and the distance between the tunnel walls remains
very small, less than about 1/40 at 8m from the grid location.

They also calculated ratios< u2
x > / < u2

y >, < u2
x > / <

u2
z > and u2/ < u2

x > and found small levels of anisotropy
“comparable, if not better, than in most other experiments”. In
particular,u2/ < u2

x > hovers between 0.95 and 1.02 throughout
the regions where they recorded their measurements. Hence
any anisotropy-related dependence on inflow conditions as in
Lavoie et al. (2007) can, most probably, be ruled out.

In figure 1a we plot< u2
x > /U

2 versus (x − x0)/ℓ0 for all
three grids as well as fits of the data by< u2

x > /U
2
∼ ( x−x0

ℓ0
)−n.

The decay exponentsn and virtual originsx0 in these fits
are estimated simultaneously by direct application of a non-
linear least-squares regression algorithm (‘NLINFIT’ routine
in MATLAB T M). This fitting method is closely related to the
one used by Lavoie et al. (2007) and we apply it to nearly
the same range where Krogstad and Davidson (2011) applied
their own fitting methods. Specifically, we apply our fit to the
range 80ℓ0 < x < 330ℓ0 which is a range ofx from about
1.9m to 8m. This means that, for each grid, we exclude data
points obtained by Krogstad and Davidson (2011) at values of
x smaller than 80ℓ0 where according to these authors the tur-
bulence is not sufficiently homogeneous, and we also exclude,
exactly like Krogstad and Davidson (2011) do, the data points
furthest downstream where noise starts to be significant. (In-
cluding data points fromx ≈ 1.5m (i.e. 60ℓ0) as in Krogstad
and Davidson (2011) makes little difference as the values ofn
remain the same to within±0.01.)

We give the values ofn and x0 thus obtained in table 1
(method I). These values agree fairly well with the various val-
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Figure 1: Data and best-fit power laws for: (a)< u2
x > /U

2
mean versus (x−x0)/ℓ0

(b) Reλ/Reλ1 versus (x − x0)/ℓ0. (u) cg, (a) msg1, (�) msg2. The vertical
dashed lines mark the start and end of the admissible data range used in the
least-squares fits.

ues ofn andx0 obtained by Krogstad and Davidson (2011) by
their three different fitting methods for all three grids except
for their value ofx0 for msg1 and their value ofn for msg1
when they use one of their three fitting methods, the regression
method (see their table 1). The values ofn which they obtain
for msg1 with their other two fitting methods are close to our
value ofn for msg1.

At this point it is helpful to recall some basic theoretical con-
siderations. Homogeneous turbulence in the wind tunnel de-
cays according toU d

dx
3
2u2 = −ǫ whereǫ is the turbulent kinetic

energy dissipation per unit mass. To obtain (1) and the numeri-
cal value ofn, one needs some more information aboutu2 andǫ.
This information usually consists of the following three ingredi-
ents when the homogeneous turbulence can also be considered
fairly isotropic (see Batchelor and Townsend, 1948; Batchelor,
1953; Rotta, 1972): (i) a finite invariant of the von Kárman-
Howarth equation, (ii) the assumption that the decay of large
eddies is self-similar and (iii) the empirical assumption that

A ≡ ǫℓ/u3 (2)

remains constant during decay (ℓ = ℓ(x) is the longitudinal inte-
gral length-scale). This constancy can be thought of as resulting
from the assumed independence ofA on turbulence intensity
andReλ.
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Vassilicos (2011) proved that there are four different cases of
finite invariants of the von Kárman-Howarth equation depend-
ing on conditions at infinity. A case where no known finite in-
variant exists; a case where the Loitsyansky invariant is the only
known finite invariant and where self-similar decay of largeed-
dies impliesu2ℓ5 = const during decay; a case where only one
known finite invariant exists and where self-similar decay of
large eddies impliesu2ℓm+1 = const with 2 ≤ m < 4 (2≤ m en-
sures that the spectral tensor does not diverge at zero wavenum-
ber as stated in Rotta (1972), in the Appendix of Krogstad and
Davidson (2011) and in Vassilicos (2011)); and a case where
two finite invariants exist and where, as a consequence, self-
similar decay of large-eddies is impossible.

Using the constancies ofA andu2ℓm+1, the second and third
of these four cases imply

n = 2(m + 1)/(m + 3) (3)

where 2≤ m ≤ 4 and therefore 6/5 ≤ n ≤ 10/7. Note that
m does not have to be an integer. Also, there is no known way
to rule out the fourth case and therefore no known theoretical
reason for measured values ofn to necessarily lie inside the
range 6/5 ≤ n ≤ 10/7.

Two out of the three present grids have returned values of
n which are below 6/5 = 1.2 (see table 1 under method I).
However, this does not imply that the present turbulence mea-
surements do not fall under the second or third cases identified
by Vassilicos (2011). Indeed, as Krogstad and Davidson (2010,
2011) have observed,A varies slowly withx and is therefore
not strictly constant. If this is so, then (3) needs to change.

In figure 2 we plot the values ofA obtained by Krogstad and
Davidson (2011) for their three grids as functions of (x− x0)/ℓ0
wherex0 is taken from table 1 (method I). (Krogstad and David-
son (2011) assumed small-scale isotropy and calculatedA from
measurements of< ( ∂ux

∂x )2 > using ǫ = 15ν < ( ∂ux
∂x )2 > and

integrations of measured longitudinal correlation functions to
educeℓ.) To bring out more clearly the differences between
grids we in fact plotA/A1 whereA1 is the value ofA obtained at
the smallest distancex from each grid. We then follow Krogstad
and Davidson (2010) and fit the power lawA ∼ ( x−x0

ℓ0
)−p in the

range 60ℓ0 < x < 330ℓ0 of this data. These fits are shown in
figure 2 and the values ofp are reported in table 1.

If A = const is replaced byA ∼ (x−x0)−p then the implication
of u2ℓm+1 = const changes from (3) to

n = (1− p)2(m + 1)/(m + 3) (4)

where 2≤ m ≤ 4. With our estimates ofn and p we can now
use (4) to derive values ofm for each grid. They are given in
table 1 (under method I) and, having now taken into account the
slight variations ofA, they are all between 2 and 4. Similarly,
the values ofn′ ≡ n/(1− p) lie all between 6/5 and 10/7 (see
table 1 under method I).

These values ofm raise the possibility that the three decay-
ing nearly homogeneous and nearly isotropic turbulent flows
of Krogstad and Davidson (2011) may be three different in-
stances of the third case identified by Vassilicos (2011) where
only one known finite invariant exists and where self-similar
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Figure 2: Data and best-fit power laws forA/A1 versus (x − x0)/ℓ0. (u) cg,
(a) msg1, (�) msg2. The vertical dashed lines mark the start and end of the
admissible data range used in the least-squares fits.

decay of large eddies impliesu2ℓm+1 = const with 2 ≤ m < 4.
The Saffman invariant corresponds tom = 2 but none of the
grids used by Krogstad and Davidson (2011) returns such a
value ofm. In figure 3a we plot< u2

x > ℓ
m+1/(U2ℓm+1

0 ) versus
(x − x0)/ℓ0 with the values ofm given under method I in table
1 for each one of the three different turbulent flows. This figure
should be compared with figure 3c which is a reproduction of
figure 10 in Krogstad and Davidson (2011) where they plotted
< u2

x > ℓ
3/(U2ℓ30) versus (x − x0)/ℓ0, except that we have offset

the data vertically so as to see more clearly the differences in
behavior between each grid. Assuming the turbulence is suffi-
ciently homogeneous and isotropic and equally so for all three
flows (as claimed by Krogstad and Davidson, 2011), it is clear
that the Saffman prediction is not satisfied in these flows. In-
stead,

u2ℓm+1 = const (5)

with m > 2.5 for all grids in the range 100ℓ0 ≤ x − x0 ≤ 400ℓ0.
Furthermore, different grids give rise to different values ofm
reaching up tom ≈ 3 with method I (see table 1).

In fact there is another way to extract values forn andm from
the data (method II), and this way gives even better defined
invariants and even greater differences between the far down-
stream turbulence decays originating from the conventional grid
and the multiscale cross grids. Method II is based on figure 1b.
This figure is a log-log plot ofReλ/Reλ1 versus (x−x0)/l0 where
Reλ1 is the value ofReλ at the smallest distance from each grid
on this plot andx0 is the virtual origin obtained from our non-
linear fit of figure 1a. The first inescapable observation is that
the streamwise distributions ofReλ are clearly different for the
conventional grid and for the multiscale grids.

The power law form (1) impliesλ2
∼ (x − x0) in decaying

homogeneous isotropic turbulence (Batchelor (1953)). If so, it
would follow thatReλ ∼ (x − x0)(1−n)/2, so that a best fit of the
data in figure 1b gives values ofn. We apply this power law
fit to the very same range 80l0 < x < 330l0 used in method
I for our fit of the turbulence intensity data in figure 1a. The
values ofn thus obtained, the resulting values ofm using (4)
and the resultingn′ ≡ n/(1 − p) are given in table 1 under
method II. In figure 3b we use these new values ofm to plot
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Table 1: Estimation of quantities via least squares fit

Grid p n x0(m) m n′ α

Method I
cg 0.126 1.13 0.23 2.67 1.29 1.90

msg1 0.101 1.18 0.28 2.79 1.31 1.14
msg2 0.072 1.23 0.33 2.94 1.33 0.62

Method II
cg 1.15 2.85 1.32 1.68

msg1 1.24 3.38 1.37 0.86
msg2 1.25 3.14 1.35 0.57

< u2
x > ℓ

m+1/(U2ℓm+1
0 ) versus (x−x0)/ℓ0 and find that they yield

even better defined invariants (5) than method I (compare with
figure 3a) for msg1. The difference between values ofm for
conventional grids and values ofm for multiscale grids is un-
mistakable and even greater with method II than with method
I.

We must conclude that the decay of approximately homoge-
neous turbulence far from its inflow conditions remains depen-
dent on these inflow conditions. The decay exponentn and the
conserved finite invariantu2ℓm+1 both clearly change when the
turbulence-generating grid is changed. These inflow conditions
may have to do with the geometry of the grids or/and with the
inlet Reynolds numbers as the mean speed in the tunnel was
13.5m/s when the conventional grid was tested, 14.0m/s when
msg1 was tested and 15.5m/s whenmsg2 was tested.

The mesh size determines the distance between the wakes
of the bars and the bar thickness determines the width of these
wakes. The Reynolds numbers characterising these wakes (cal-
culated as the mean flow speed multiplied by the bar thickness
and divided by the kinematic viscosity of the air) take the values
3.6×103 in the case ofcg; 3×103, 1.5×103 and 7.5×102 in the
case ofmsg1; and 3.32×103, 1.66×103 and 8.3×102 in the case
of msg2. Unlike conventional grids, multiscale grids impose
more than one Reynolds number on the flows they generate and
a number of different distances from the grid where wakes of
different sizes meet. Of course the largest wakes are affected by
the wakes generated by the smaller ones. But it is clear that the
turbulence undergoes different generation mechanisms extend-
ing over different streamwise distances with different grids. It is
indeed remarkable that memory of these mechanisms remains
in the values ofn andm as far downstream as where Krogstad
and Davidson (2011) took their measurements.

3. Different far-field low-Reλ turbulent flows

We obtained figures 3a,b by taking into account the slow
streamwise variation ofA as suggested by Krogstad and David-
son (2010). This streamwise variation can result from the well-
known dependence that the dimensionless dissipation rateA has
on Reλ whenReλ is below at least 100 (e.g. Burattini, Lavoie,
and Antonia, 2005). Indeed, the values ofReλ characterising the
three far-field turbulent flows of Krogstad and Davidson (2011)
range between about 90 nearx ≈ 60ℓ0 and 70 atx ≈ 330ℓ0.
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Figure 3: Checks of invariant forms via plots ofu2ℓm+1: (a) m from method
I, (b) m from method II, (c)m = 2 corresponding to Saffman turbulence. (u)
cg, (a) msg1, (�) msg2. For improved readability thecg/msg1/msg2 data
were vertically offset by (a) [2.0, 1.0, 0.0]×10−4, (b) [1.6, 2.5, 0.0]×10−4, (c)
[2.5, 0.5, −1.5] × 10−4.The left and right vertical dashed lines mark the start
and end of the data range used to obtain the decay exponentsn. This is the
range not significantly affected by inhomogeneity (to the left) and noise (to the
right).

UsingReλ ∼ (x − x0)(1−n)/2 andA ∼ (x − x0)−p we obtain

A ∼ Reαλ (6)

where

α = 2p/(n − 1). (7)
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Figure 5: Advection-dissipation balance. (u) cg, (a) msg1, (�) msg2.

The values ofα implied by this formula on the basis of expo-
nentsp andn obtained in the previous section are very different
for different grids, ranging fromα ≈ 1.7 to α ≈ 0.6 (usingn
obtained from method II, see table 1). Figure 4 confirms how
dramatically different the dependencies ofA on Reλ are for the
multiscale grids and for the conventional grid.

Figure 4 also shows that (6)-(7) give rise to more or less rea-
sonable fits of the data thus lending support to the idea that
much of the streamwise variation ofA comes from its depen-
dence onReλ. Increasing values of the dimensionless dissipa-
tion rateA with increasingReλ have also been reported in previ-
ous works with square bar grids at such relatively low Reynolds
numbers, see for example figure 1 in Burattini et al. (2005), ta-
ble 4 in Comte-Bellot and Corrsin (1971) and table 3 in Gad-
El-Hak and Corrsin (1974).

4. Conclusion

According to the published data in Krogstad and Davidson
(2011), multiscale cross grids and their equivalent (in terms of
ℓ0) conventional grid can produce very different far-field tur-
bulence with wide variations in the dimensionless dissipation
rate’s dependence onReλ. This would seem to confirm the ob-
servation already made by Burattini et al. (2005) on the basis of

differentReλ dependencies ofA for different grids, namely that
“the geometry of the grid appears to have a persistent influence
in the streamwise direction up tox/M = 80”. In fact the data of
Krogstad and Davidson (2011) extend this observation to much
further distances downstream and to a wider range of grids.

This data also leads to the conclusion that the decay of the
three approximately homogeneous isotropic turbulent flowsof
Krogstad and Davidson (2011) is characterised by an invariant
quantityu2ℓm+1 in the region of the flowx ≥ 80ℓ0. The ex-
ponentm is significantly different from Saffman’sm = 2 and
Loitsyansky’sm = 4 and ranges between 2.7 and 3.4 for the
grids used by Krogstad and Davidson (2011). Their multiscale
grids return values ofm which are markedly larger than the val-
ues ofm returned by their conventional grid. The streamwise
distributions ofReλ andA are also very clearly different.

However, in spite of the various homogeneous profiles
plotted in Krogstad and Davidson (2011), themsg2-generated
turbulence is not homogeneous as far downstream as they
measure. In figure 5 we plot−U d

dx
3
2u2/ǫ and find that, for

msg2, it is larger than 1.2 in the range whereu2ℓm+1 is constant
with m ≈ 3. On the other hand, the turbulence generated bycg
does appear homogeneous in figure 5 in the range whereu2ℓm+1

is constant withm ≈ 2.75. Hence, whereasmsg2 turbulence is
not homogeneous enough for the Kárman-Howarth equation
to be applicable to it,cg turbulence might be. Themsg1 grid
which generates a turbulence whereu2ℓm+1 is constant with
m ≈ 3.4 wherex − x0 ≥ 90ℓ0 appears homogeneous in figure 5
only wherex − x0 ≥ 200ℓ0. This observation suggests that con-
siderations such as those of Vassilicos (2011) which are based
on self-similar decay of large eddies and the Kárman-Howarth
equation for homogeneous isotropic turbulence in an infinite
domain without walls are, at the very least, not sufficient
(if at all appropriate) for explaining invariants such as (5),
particularly as these invariants might hold over regions which
cover both homogeneous and inhomogeneous turbulence. This
is an important point which calls for much future research.

We thank Per-Åge Krogstad for providing us with the post-
processed data published in Krogstad and Davidson (2011).
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