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The spectral and particle dispersion characteristics of steady multiscale laminar thin-layer flows are
investigated through numerical simulations of a two-dimensional layer-averaged model. The model
assumes a semiparabolic velocity profile and is solved using a semi-Lagrangian spline method. The
main features of the flows are turbulentlike and consistent with previous experimental studies. The
Eulerian wavenumber spectra and the Lagrangian frequency spectra oscillate around power laws
that reflect the self-similarity of the forcing. In the weak forcing regime, the exponents of these
power laws can be related to the multiscale geometry and the intensity scaling of the forcing. The
Lagrangian spectra also show low-frequency plateaus, which arise from the slow motions far away
from the applied forces. The absolute dispersion of tracer particles in these steady planar flows
presents a ballistic stage followed by a diffusive regime, which results from the decorrelated
motions of particles lying on streamlines of different periods. Relative dispersion shows an
additional intermediate stage consisting of several separation bursts, which originate from the
intense strain regions imposed by the different forcing scales. While these bursts can cause locally
superquadratic mean square separation, the trapping by steady recirculation regions rules out an
intermediate relative dispersion power law regardless of the number of scales in the flow.
© 2009 American Institute of Physics. �doi:10.1063/1.3241994�

I. INTRODUCTION

One of the outstanding features of turbulent flows is
the presence of a wide range of length and time scales.
The geometrical picture of multiscale motion underlies
Richardson’s idea of a continuous eddy cascade as well as
Kolmogorov’s 1941 theory,1 which yields predictions for the
turbulent energy spectrum and structure functions in the form
of power laws. However, the relations between the spa-
tiotemporal structure of turbulent flows and their prominent
statistical characteristics are not yet fully understood. Two
major difficulties in this direction are finding adequate geo-
metrical descriptions of turbulent flows and establishing con-
nections between Eulerian and Lagrangian statistics. Never-
theless, there has already been some success in applying
geometrical statistics to the study of fundamental problems
in turbulence. For instance, Constantin and Procaccia con-
nected the fractal dimensions of the graphs of the hydrody-
namic fields to the scaling exponents of their structure
functions.2 More recently, Davila and Vassilicos found a re-
lation between Richardson’s pair-separation exponent and
the fractal dimension of the set of straining stagnation
points.3 This relation was later explained by Goto and
Vassilicos,4 who developed a pair-dispersion model based on
sudden separations within a persistent, self-similar flow field.

The above connections between the multiscale structure
of turbulent flows and some of their notable characteristics
have already been validated in kinematic and direct numeri-
cal simulations.3,4 On the experimental side, some of the

theories have been tested on the electromagnetically forced
thin-layer flows of Rossi et al.5–7 Their experimental setup
allows for fully controlled generation of quasi-two-
dimensional multiscale flow topologies through fractal forc-
ing arrangements. The resulting steady laminar flows, which
may be regarded as kinematic, have proved similar to turbu-
lent flows in several ways. First, their energy spectra fluctu-
ate around power laws over the range of wavenumbers cor-
responding to the multiple forcing scales. These power laws
have been related to the sets of multiscale stagnation points.5

Second, particle pairs carried by these flows initially separate
ballistically, then algebraically, and finally diffusively. The
presence of an intermediate algebraic regime has also been
explained in terms of the multiscale stagnation point struc-
ture of the flows.5,6 Lastly, the Lagrangian frequency spectra
of the flows show low-frequency plateaus followed by ap-
proximate power laws. In a first attempt toward understand-
ing these power laws, their exponents have been connected
to the algebraic pair-separation exponents and the power
laws of the Eulerian wavenumber spectra.7

The turbulentlike features of multiscale laminar flows
might as well be studied through numerical simulations of
analogous thin-layer flows with fractal forcing. The numeri-
cal approach facilitates parametric studies and the testing of
alternative forcing configurations. Because thin-layer flows
tend to be quasi-two-dimensional when the applied forces
are horizontal and small, they have traditionally been simu-
lated using reduced, two-dimensional models.8–10 When the
applied forces are large or vertical forcing is significant,
three-dimensional numerical simulations become necessary
for capturing the complexities of the flow.11,12 Since the fluida�Electronic mail: martin.priego@imperial.ac.uk.

PHYSICS OF FLUIDS 21, 107101 �2009�

1070-6631/2009/21�10�/107101/12/$25.00 © 2009 American Institute of Physics21, 107101-1

Downloaded 09 Oct 2009 to 129.31.219.13. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp

http://dx.doi.org/10.1063/1.3241994
http://dx.doi.org/10.1063/1.3241994
http://dx.doi.org/10.1063/1.3241994


responds approximately linearly to small forces, the weak
forcing regime is actually most convenient for understanding
the scaling properties of multiscale planar laminar flows.

In this contribution, we investigate the characteristics of
steady multiscale laminar flows through numerical simula-
tions of a layer-averaged two-dimensional model. The com-
putations are carried out using a semi-Lagrangian spline
code. After testing the model and numerical method, we ex-
amine the steady flows obtained for several forcing configu-
rations. We extend the experimental setups by allowing for
different types of self-similarity as well as for scaling of the
forcing intensity. The Eulerian wavenumber spectra exhibit
power laws, whose exponents we relate to the geometry
and scaling of the forcing using similarity arguments. The
Lagrangian frequency spectra show low-frequency plateaus
followed by power laws, which we also connect to the self-
similarity of the forcing. Particles released in the simulated
flows disperse from their initial positions first ballistically
and then diffusively. In the case of particle pairs, we corrobo-
rate the existence of an intermediate stage characterized by
several separation bursts. After inspecting both the multi-
scale and single-scale cases, we lastly associate the bursts
with the intense strain regions created by the different forc-
ing scales. The attained understanding of the properties of
steady multiscale flows will be useful for a follow-up study
of the time-dependent case, where connections between Eu-
lerian and Lagrangian statistics and related spatiotemporal
features will be explored.

II. MULTISCALE THIN-LAYER FLOWS

A. Experimental and theoretical setups

In the experiment of Rossi et al.,5 a thin horizontal layer
of brine is forced by the combined effect of a uniform hori-
zontal electric current and a multiscale vertical magnetic
field created by a multiscale arrangement of magnets placed
below the tank. The parameters of the experimental setup are
summarized in Table I.

The geometry of the forcing, depicted in Fig. 1, can be
described by means of iterative relations for the horizontal
side lengths lm of the magnets and the coordinates �xm ,ym� of
the centers of the oppositely oriented magnet pairs. The mag-
nets in each pair are separated by a distance equal to their
side length. The experimental setup consists of three scales:
m=0, 1, and 2. The relations between scales m and m+1 take
the form

lm+1 = lm/R , �1a�

xm+1 = xm � �1 + R−1�lm, �1b�

ym+1 = ym � lm, �1c�

where R is the geometric scaling factor. In the experimental
configuration, the plus-minus signs in the last two equations
coincide for pairs lying in the first or third quadrants and are
opposite otherwise. In our investigations, we consider the
alternative combinations of the plus-minus signs that lead to
the four self-similar patterns shown in Fig. 2. We denote
these theoretical cases by C=1, 2, 3, and 4, in correspon-
dence with the number of scaled copies of each magnet of a
given scale introduced in the subsequent scale.

In the experiment, the heights hm of the magnets do not
scale with lm and the vertical distances dm from the centers of
the magnets to the middle of the brine are adjusted in order
to obtain similar forcing profiles across scales. For greater
self-similarity, in our theoretical cases we set hm and dm

equal to the side length lm.
Finally, in the experiment all magnets have the same

remanent field B0. In contrast, we allow for scaling of the
remanent field by introducing an intensity factor Q and the
iterative relation

TABLE I. Parameters of the laboratory multiscale flows.

R Geometric scaling factor 4

B0 Remanent magnetic field 0.68 T

I Electric current 0.04–1 A

� Brine density 1103 kg m−3

� Brine kinematic viscosity 1.326�10−6 m2 s−1

� Brine electrical conductivity 16.6 S m−1

lb Brine layer side length 1700 mm

hb Brine layer thickness 5 mm

l0 Large magnet side length 160 mm

h0 Large magnet height 60 mm

d0 Large magnet distance to brine 72.5 mm

l1 Medium magnet side length 40 mm

h1 Medium magnet height 40 mm

d1 Medium magnet distance to brine 33.7 mm

l2 Small magnet side length 10 mm

h2 Small magnet height 10 mm

d2 Small magnet distance to brine 8.5 mm

FIG. 1. �Color online� Forcing setup of the laboratory multiscale flows. The
electric current flows uniformly from left to right. The magnetic field points
out of the paper above north-up magnets and into the paper above south-up
magnets.
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Bm+1 = Bm/Q . �2�

This scaling factor enhances the tuning of the properties of
the multiscale flows. In fact, it theoretically enables the si-
multaneous adjustment of the Eulerian wavenumber spec-
trum and the Lagrangian frequency spectrum.

B. Governing equations

The movement of a conducting fluid in the presence of
an electromagnetic field is governed by the equations of
magnetohydrodynamics �see, e.g., Ref. 13�. These consist of
the Navier–Stokes equations and the low-frequency Maxwell
equations coupled through the Lorentz force and Ohm’s law.
However, in the experiment referenced here the dynamics are
greatly simplified because the fluid has negligible influence
on the imposed electric and magnetic fields. Assuming the
fluid to be incompressible and Newtonian, the governing
equations reduce to

�u�

�t
+ u�

�u�

�x�

= −
1

�

�p

�x�

+ �
�2u�

�x� � x�

+ f� + g�, �3a�

�u�

�x�

= 0, �3b�

�f� = ���	J�B	, �3c�

where Greek subscripts refer to the three Cartesian compo-
nents and summation over repeated indices applies. The ve-
locity and pressure fields are denoted by u� and p, while �
and � are the density and kinematic viscosity of the fluid.
The hydrodynamic fields are subject to no-slip boundary
conditions at the bottom wall, x3=0, and free-surface bound-
ary conditions at the liquid-air interface, x3=h�x1 ,x2�.
The two rightmost terms in the momentum equation �3a�

represent the actions of the Lorentz force �f� and the gravi-
tational force �g�. In Eq. �3c� for the former, B� is the mag-
netic field, J� is the electric current density, and ���	 is the
totally antisymmetric tensor. Because the current induced by
the flow is negligible in the experiment, the current is that
resulting from the imposed electrostatic field. Likewise, the
magnetic field is that due to the permanent magnets, the con-
tribution of the electric currents being negligible.

The shallowness of the fluid layer relative to the hori-
zontal length scales leads to further simplification of the dy-
namics of the laboratory flows. When the fluid layer is very
thin and the forcing is weak, the flow becomes approxi-
mately two dimensional and represents a balance between
the incompressible component of the forcing and the viscous
friction arising from the bottom wall. Hence, the length
scales present in the flow are roughly those of the forcing.

C. Asymptotic thin-layer flow

We now describe the asymptotic thin-layer regime, for it
underlies the two-dimensional model introduced in Sec. III.
Derivations for slightly different setups can be found in Refs.
14 and 15, while a more rigorous analysis has been carried
out by Nazarov.16 For simplicity, we consider the forcing to
depend only on the horizontal coordinates and neglect its
vertical component, which is very small in the experiment.

Let F and U be typical values for the intensity of the
forcing and the flow speed and let hb and L represent the
mean thickness of the fluid layer and a horizontal length
scale. The ratio of these two lengths defines the small param-
eter 
=hb /L. The natural scaling of the coordinates and vari-
ables is given by

xi

L
→ xi,

x3


L
→ x3,

Ut

L
→ t,

f i

F
→ f i,

�4�
ui

U
→ ui,

u3


U
→ u3,

h


L
→ h,

p

�LF
→ p .

Here and in what follows, Latin subscripts refer to the two
horizontal components �1 and 2� and Greek indices still refer
to all three Cartesian components. The incompressibility
equation �3b� is not altered by the above normalization,
whereas the momentum equation �3a� becomes


2 Re� �ui

�t
+ u�

�ui

�x�
� = − Ha2 �p

�xi
+ 
2 �2ui

�xj � xj
+

�2ui

�x3
2

+ Ha2 f i, �5a�


4 Re� �u3

�t
+ u�

�u3

�x�
� = − Ha2 �p

�x3
+ 
4 �2u3

�xj � xj
+ 
2�2u3

�x3
2

−

2 Re

Fr2 . �5b�

We define the Reynolds number Re=UL /� as the ratio of
inertial forces to viscous horizontal forces and assume that it
is moderate in the sense that 
2 Re�1. The Hartmann num-
ber squared Ha2=F
2L2 /�U represents the ratio of forcing to
viscous vertical forces and is thus of order 1 in the thin-layer
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FIG. 2. �Color online� Forcing setups of the theoretical multiscale flows
with R=4 and �a� C=1, �b� C=2, �c� C=3, and �d� C=4.
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limit. The Froude number squared Fr2=U2 /g
L, which com-
pares inertial to gravitational forces, is assumed to be very
small. In fact, to keep the perturbations of the free surface
small, we assume that the forcing is much weaker than grav-
ity in the sense that F /
g=Ha2 Fr2 /
2 Re�1.

The asymptotic, thin-layer solution of Eq. �4� subject to
incompressibility and the aforementioned boundary condi-
tions can be obtained by elementary means. To lowest order
in 
, the velocities, the pressure, and the evolution of the free
surface are given by

ui = −
Ha2

2
� �p

�xi
− f i�x3�2h − x3� , �6a�

u3 =
Ha2

6

�

�xi
�� �p

�xi
− f i�x3

2�3h − x3�� , �6b�

p =

2 Re

Ha2 Fr2�h − x3 −
1

Bo

�2h

�xi � xi
� , �6c�

�h

�t
=

Ha2

3

�

�xi
�h3� �p

�xi
− f i�� . �6d�

Here, the Bond number Bo=�gL2 /	 compares gravity to sur-
face tension forces, with 	 being the surface tension coeffi-
cient. When Bo�1 and Ha2 Fr2 /
2 Re�1, the pressure is
hydrostatic and the free surface reacts rapidly, yet slightly, to
cancel the compressible part of the forcing. The resulting
steady flow is horizontal and varies along the vertical coor-
dinate according to the semiparabolic profile �6a�. This type
of parallel, profiled flow is the basis of the reduced two-
dimensional model.

III. NUMERICAL SIMULATION

A. Two-dimensional layer-averaged model

The results of Sec. II are valid provided the fluid layer is
very thin compared to length scales of the flow �
�1�, the
Reynolds number is moderate �
2 Re�1�, and the forcing
and surface tension forces are very weak compared to the
gravitational force �Ha2 Fr2 /
2 Re�1 and Bo�1�. Since the
last two conditions are invariably met in the experiment, the
fluctuations of the free surface are very small in the labora-
tory flows. However, the first two conditions are generally
not satisfied, especially at the smaller scales �i.e., for small
L�. As a result, inertial and horizontal viscous effects ne-
glected in the asymptotic analysis are likely to be present in
laboratory flows. For those cases where special care might be
taken to realize all the above conditions, but also for funda-
mental studies of multiscale planar laminar flows, an ap-
proximate two-dimensional model is very desirable. For thin
film flows, such models are typically derived by prescribing
the form of the horizontal velocity distribution across the
fluid layer and subsequently averaging the governing equa-
tions along the vertical direction.14,15

In light of the asymptotic results, we assume that the
horizontal velocity distributions across the layer are given by
the semiparabolic profiles

uix3�2hb − x3�/hb
2, �7�

where ui now denote the horizontal velocities at the free
surface. Given that the fluctuations of the free surface are
very small, we neglect them along with the vertical velocity.
Substituting the velocity profiles in the Navier–Stokes equa-
tion �3a� and averaging across the layer yields the two-
dimensional model equation

�ui

�t
+

4

5
uj

�ui

�xj
= −

3

2�

�p

�xi
+ �

�2ui

�xj � xj
+

3

2
�f i − �ui� , �8�

again subject to incompressibility. Here, �=2� /hb
2 is the bot-

tom friction coefficient and p and f i are actually the averages
of the pressure and forcing across the layer. This model is
essentially the two-dimensional Navier–Stokes equations
with some modified coefficients and an additional linear term
representing viscous friction from the bottom wall. The
model resembles other modified Navier–Stokes equations
that have proved suitable for the type of flow considered
here.8–10 A possible advantage of the averaged model is that
it accounts for the assumed velocity profile globally.

We numerically solve the reduced model using the semi-
Lagrangian spline code described in the Appendix. The code
actually solves the equivalent vorticity equation

�


�t
+

4

5
uj

�


�xj
= �

�2


�xj � xj
−

3

2
�
 +

3

2
� , �9a�

�2�

�xi � xi
= − 
, ui = �ij

��

�xj
. �9b�

Here, � is the streamfunction, 
=�ij�uj /�xi is the vorticity,
and �=�ij� f j /�xi is the vorticity forcing. In the laboratory
flows f1 vanishes because the current is parallel to the
x1-axis, so that � reduces to �f2 /�x1. We carry out our simu-
lations in a biperiodic domain with the same side length lb

as the experimental tank using splines of order �=7 and
n=2048 grid points along each direction. This resolution cor-
responds to about 12 collocation points along the side of the
smallest magnets and therefore captures all the length scales
of the flow.

B. Comparison with experiment

We test our model and numerical methods by computa-
tionally reproducing one of the experimental flows of Rossi
et al.5 We consider the well-documented case with electric
current I=0.3 A and remaining parameters as specified in
Table I. The layer-averaged model cannot be expected to
provide accurate results for the smallest scales in this mod-
erately forced flow, but our ultimate aim is only to under-
stand how the fundamental characteristics of multiscale lami-
nar flows arise. In Fig. 3, we show the results for the steady
state eventually achieved in a simulation carried out with
time step �t=6.667 ms. The multiscale pattern of stream-
lines and the spatial distribution of velocity are in visual
agreement with the laboratory measurements �see Fig. 9 in
Ref. 5�. The maximum speed of the simulated flow,
16.31 mm s−1, is about 5% higher than the experimental
value, 15.6 mm s−1. We deem this agreement satisfactory for
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our purposes and ascribe the discrepancies to the three-
dimensional effects disregarded in the modeling.

In Fig. 3�b�, we present the Eulerian wavenumber spec-
trum E�k� and the Lagrangian frequency spectrum �L��� of
the simulated flow. Both densities integrate to the specific
kinetic energy of the flow,

	
u
2� = 2�
0

�

E�k�dk = 2�
0

�

�L���d� , �10�

and are made dimensionless using the side length of the
largest magnets, l0, and the large-scale velocity,
u0=15.46 mm s−1. We define the latter as the maximum ve-
locity in a simulation with the same parameters forced only

at the largest scale. Thus, u0 provides a measure of the large-
scale velocity independent of the scaling and geometrical
parameters. We obtain the Lagrangian spectrum by following
10242 ideal particles released as a regular grid into the steady
flow. In the intermediate wavenumber and frequency ranges,
both spectral density curves might be interpreted as power
laws multiplied by bounded oscillatory functions. Like in the
corresponding laboratory measurements �see Fig. 14 in Ref.
5 and Fig. 2 in Ref. 7�, the exponents of the two power laws
are not far from �2.5. The Lagrangian spectrum shows an
additional low-frequency plateau, which also agrees with the
experimental findings. We analyze and provide simple expla-
nations for the spectral properties of flows of this type in
Sec. IV.

In Fig. 3�c�, we plot particle dispersion results based on
the tracking of 10242 initially equilateral triangles of side
length of 0.3972 mm released uniformly into the steady
flow. The evolution of mean square particle displacement
	
X�t�−X�0�
2� is qualitatively similar to the experimental
one �see Fig. 1 in Ref. 7�. In both cases, an initial ballistic
regime of quadratic growth is followed by a diffusive stage
of linear growth, which does not saturate in the displayed
time interval. However, the two results differ in scale be-
cause the experimental one only accounts for particles tra-
versing the central flow region, where the forcing is concen-
trated. The evolution of mean square relative dispersion
	��t�2�, calculated using the side lengths of the tracked tri-
angles, moderately resembles that of the laboratory flow �see
Fig. 5 in Ref. 6�. The initial plateau conceals the quadratic
growth of relative dispersion at the very outset, which can be
revealed by subtracting the squared initial separation, as we
do in Sec. V B. This ballistic regime is followed by an inter-
mediate algebraic stage with exponent slightly below 2 and,
lastly, by a diffusive regime. In contrast, the exponent of the
intermediate stage in the experiment is approximately 2.7.
We ascribe this discordance partly to the differences between
the simulated and laboratory flows, but mainly to the sam-
pling procedure used for the experimental results, which only
accounts for particle pairs crossing the central region. We
defer the detailed study of particle dispersion characteristics
to Sec. V.

IV. SPECTRAL CHARACTERISTICS

We now study the spectral characteristics of steady two-
dimensional multiscale flows in the theoretical settings de-
scribed in Sec. II A. These forcing configurations have
clearer self-similarity than the experimental one, and thus
their scaling properties are more easily obtained. We carry
out our simulations with electric current I=0.01 A and time
step �t=0.2 s. With such weak forcing, the steady flows
approximately result from the balance between the incom-
pressible component of the forcing and the viscous friction
arising from the bottom wall. We examine three different
combinations of geometric scaling factor R and intensity
scaling factor Q: R=4 and Q=1, R=
8 and Q=1, and
R=4 and Q=
2. For each of these combinations, we con-
sider the four self-similar magnet arrangements denoted by
the multipliers C=1, 2, 3, and 4 �see Fig. 2�. The resulting
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FIG. 3. �Color online� Simulation results for the experimental flow with
current I=0.3 A: �a� velocity magnitude �bright=fast , dark=slow� and
streamlines in the central square of side length lb /2, �b� Eulerian wavenum-
ber �solid line� and Lagrangian frequency �dashed line� spectra, and �c�
absolute �solid line� and relative �dashed line� particle dispersions.
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flow fields for the cases with R=4 and Q=1 are shown in
Fig. 4. The streamline patterns clearly expose the multiscale
topology of the flows, while the velocity magnitude fields
reflect to good extent the self-similarity of the forcing. In-
deed, in the weak forcing case, the velocity field is roughly a
superposition of scaled translations of the velocity field cre-
ated by a single pair of magnets. This trivial observation is
key to our understanding of the spectral properties of these
flows.

A. Eulerian wavenumber spectra

Given the approximate proportionality between the sole-
noidal component of the forcing and the fluid velocity, the
features of their spectra should be the same in the weak
forcing regime. This must actually be the case whenever in-
terscale energy transfers and horizontal viscous dissipation
are relatively small.

Likewise to the energy spectrum, we define the spectral
density of the forcing F�k� so that it integrates to half of the
mean square specific forcing,

	
f
2� = 2�
0

�

F�k�dk . �11�

In Fig. 5�a�, we present the spectra of the different forcings,
normalized using the side length of the largest magnets, l0,
and the large-scale forcing, f0=99.90 �m s−2, defined as the
maximum specific force caused by the largest magnet pair.
The three different forcing scales appear as three humps in
the spectral density curves. In the intermediate region, each
curve may be fitted by a power law �kl0�−p multiplied by a
bounded oscillatory function. The exponent p must then be
related to the similarities of the forcing.

In order to determine the scaling of the forcing spectrum,
we first notice that the force caused by the magnets of scale
lm mainly contributes to wavenumbers close to lm

−1, say, be-
tween lm

−1 and lm+1
−1 . Because the magnets are well separated,

their contributions to the mean square forcing are nearly ad-
ditive. Consider now the difference in contribution between
the magnets of scale lm and those of scale lm+1= lm /R. The
effective area of influence of the larger scale forcing is R2 /C
times that of the smaller, while the local force intensity is
larger by a factor Q at the larger scale. As a result, the con-
tribution of the larger scale to the mean square forcing is
Q2R2 /C times that of the smaller scale. Assuming that the
contributions from the different forcing scales to the spec-
trum are additive, we obtain that the spectral density between
scales lm

−1 and lm+1
−1 must be greater than that between lm+1

−1 and
lm+2
−1 by a factor of Q2R3 /C. Consequently, within the inter-

mediate, self-similar wavenumber range, the scaling of forc-
ing spectrum is given by

F�k� � f0
2l0�kl0�−p with p = 3 −

log C/Q2

log R
, �12�

where we include the large-scale characteristic values for
dimensional consistency. For accuracy, the above power law

(c)

(a)

(d)

(b)

FIG. 4. �Color online� Velocity magnitude �bright=fast , dark=slow� and
streamlines of the theoretical multiscale flows in the central square of side
length of lb /2. The scaling and geometrical parameters are R=4, Q=1, and
�a� C=1, �b� C=2, �c� C=3, and �d� C=4.
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FIG. 5. �Color online� �a� Forcing wavenumber spectra and �b� uncompen-
sated and �c� compensated Eulerian wavenumber spectra of the theoretical
multiscale flows. The compensating power is p=3−log�C /Q2� / log R. The
scaling and geometrical parameters are R=4 and Q=1 �solid line�, R=
8
and Q=1 �dashed line�, and R=4 and Q=
2 �dotted line� and C=1, 2, 3,
and 4 from bottom to top in �a� and �b�.
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should be multiplied by an oscillatory function of kl0 with
fixed lower and upper bounds.

By the argument above, we would expect the Eulerian
wavenumber spectrum E�k� to follow the same scaling as the
forcing spectrum, that is,

E�k� � u0
2l0�kl0�−p with p = 3 −

log C/Q2

log R
. �13�

Here, u0 is again the characteristic velocity of the largest
scale, which for these theoretical flows with I=0.01 A is
0.4123 mm s−1. Formula �13� corrects and generalizes the
relation p=const−1 / log R put forward by Hascoët et al.10 In
Fig. 5�b�, we plot the Eulerian wavenumber spectra of the
flows. The energy curves closely resemble those of the forc-
ing except at the highest wavenumbers, where the energy
decays more rapidly. This lack of proportionality between
the energy and forcing spectra at the small scales is due to
the higher influence of inertial and viscous horizontal forces,
as seen in Sec. II C. The validity of the proposed scaling in
the intermediate wavenumber range is confirmed in Fig. 5�c�,
which shows the energy spectra compensated by �kl0�p with
p given by Eq. �13�. Indeed, the compensated curves oscil-
late about horizontal lines except at the smallest scales.

The observed scaling of the Eulerian wavenumber spec-
trum is thus an elementary consequence of the self-similarity
of the forcing and the approximate linearity between weak
forcing and fluid velocity. Based on this understanding, we
interpret the �2.5 exponent measured in the moderately
forced laboratory flows in the following way.5 The experi-
mental flows have scaling parameters R=4 and Q=1, while
the multiplier C takes the values of 4 from the large to the
medium scale and 2 from the medium to the small scale.
According to the scaling �13�, the corresponding exponents
would be �2 and �2.5. Because of horizontal viscous ef-
fects and stronger interscale energy transfers at moderate
forcing, the exponents seen in Fig. 3�b� are slightly above
and below �2.5, roughly yielding a �2.5 spectrum across
the intermediate wavenumber range.

B. Lagrangian frequency spectra

We analyze the Lagrangian frequency spectrum using
the same framework as for the wavenumber spectrum. In
order to calculate the Lagrangian spectra, we track 10242

particles released as a regular grid into the steady flows. As
intermediate products, we obtain unbiased estimates for the
Lagrangian velocity correlations,

RL�t� = 	uL�0� · uL�t��/	
u
2� , �14�

where uL�t� denotes the Lagrangian velocity of a fluid ele-
ment at time t. In Fig. 6, we show the Lagrangian correlation
estimates for the different flows. The general features
of these functions are similar to the experimental ones
reported in Ref. 7. The correlation curves first cross zero at
t�2l0 /u0 and oscillate thereafter while slowly decaying. The
Lagrangian correlation time, defined as the semi-infinite in-
tegral of RL�t�, thus takes values of the order of the charac-
teristic time l0 /u0 of the large scale. However, the mecha-
nism leading to the long-time Lagrangian decorrelation is
rather peculiar because almost every particle trajectory is pe-
riodic in these steady planar flows. Hence, the asymptotic
decay of the correlation function is possible because the par-
ticle ensemble spans infinitely many streamlines with incom-
mensurate periods. A study of the decorrelation rate and its
relation to the shearing action of the multiscale flows is,
however, beyond the scope of this work.

We obtain the Lagrangian frequency spectra �L��� by
Fourier transforming the Lagrangian covariances. We actu-
ally premultiply these covariance estimates by a cubic
B-spline window to mitigate the spectral corruption caused
by their finiteness in time.17 We present the resulting
Lagrangian frequency spectra in Fig. 7�a�. Like those of the
laboratory flows,7 they consist of low-frequency plateaus fol-
lowed by approximate power laws and, ultimately, faster
downfalls.

Once again, we attribute the intermediate power laws to
the similarities of the forcing and their reflection on the ve-
locity field. When the forcing is weak, the magnet pairs of
side length lm cause local velocities um of order u0 /Qm. Since
the spatial scale of variation of these steady velocities is lm,
their characteristic Lagrangian frequency must be um / lm. By
the same argument as for the wavenumber spectrum, the
spectral density between frequencies um / lm and um+1 / lm+1 is
greater than that between um+1 / lm+1 and um+2 / lm+2 by a factor
of QR3 /C. Because the two considered frequency ranges are
related by R /Q, the expected scaling of the Lagrangian spec-
trum is then given by

�L��� � u0l0��l0/u0�−q with q = 3 −
log C/Q4

log R/Q
. �15�

We test this prediction in Fig. 7�b�, where we plot the spectra
compensated by ��l0 /u0�q with q given by Eq. �15�. The
compensated curves for Q=1 fluctuate around horizontal
lines in the intermediate frequency range, though they
slightly decay due to the greater influence of inertial and
horizontal viscous forces at small scales. In contrast, in the
cases with Q=
2 the compensated curves rise noticeably
toward the higher frequencies. The reason for this deviation
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FIG. 6. �Color online� Lagrangian velocity correlation of the theoretical
multiscale flows. The scaling and geometrical parameters are R=4 and
Q=1 �solid line�, R=
8 and Q=1 �dashed line�, and R=4 and Q=
2 �dot-
ted line� and C=1, 2, 3, and 4 from smaller to greater fluctuations.
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from the predicted scaling can be found by reinspecting the
velocity fields presented in Fig. 4. Although Q=1 in those
flows, the velocities above the large magnets are somewhat
smaller than those above the medium and small magnets.
This shows that the velocity on top of each magnet pair is
actually affected by the larger magnet pairs, which can
modify the local velocity and frequency scales used in the
derivation of law �15�. This effect is more pronounced the
larger the value of Q, and thus the predicted scaling seems
approximately valid for Q=1 but fails to work for the cases
with Q=
2. However, we shall be content with this under-
standing of the Lagrangian spectrum and not pursue a precise
relation for its scaling, as it would depend on the geometrical
details of the forcing configuration.

Regardless of the validity of the Lagrangian law �15�,
our analysis of the Eulerian wavenumber and Lagrangian
frequency spectra suggests that they follow different inter-
mediate scaling laws when Q�1. Theoretically, this would
enable the simultaneous adjustment of the power laws of the
two spectral densities. For instance, according to the scalings
�13� and �15�, the parameters C=4, R=2, and Q=
3 2 would
give rise to the inertial range spectra of turbulence,18

E�k�� �u0
3 / l0�2/3k−5/3 and �L���� �u0

3 / l0��−2. However, with
such a small value of R, either the self-similar range would
be very small �two octaves� or the forcing configuration de-
scribed by relations �1� and �2� would not be physically re-
alizable because the magnets of different scales would
overlap.

We attribute the low-frequency plateaus observed in the
Lagrangian spectra to the slow flows far away from the ap-
plied forces. In the considered flows, vorticity is generated in
opposite pairs above each magnet and remains confined to

the central region. As a result, the flow distant from the ori-
gin can be approximated by a multipole expansion based on
the vorticity moments.19 For simplicity, we use Green’s func-
tion for the Poisson equation in the plane, which is strictly
not valid in our periodic domain but reveals the essential
features. Thus, we approximate the streamfunction at points
r far from the origin but not too close to the boundary by

2���r� � − log r� 
�x�dx + �
i

ri

r2� xi
�x�dx

− �
i,j
� �ij

2r2 −
rirj

r4 �� xixj
�x�dx + O�r−3� ,

�16�

where �ij is the Kronecker delta. Because the forcing con-
figurations consist of antialigned force pairs, they are inca-
pable of creating circulation at infinity or hydrodynamic im-
pulse, so the two first terms in the expansion �16� vanish in
the resulting flows. Hence, the far velocity fields are domi-
nated by quadrupoles and the streamfunction decays like r−2.
The velocity field is then of order r−3 and has local length
scale r. Consequently, the annulus of radii r and r+dr con-
tains energy commensurate with r−5 and primarily contrib-
utes to a frequency band proportional to �r−4−4r−5dr ,r−4�. It
follows that the energy per unit frequency is roughly con-
stant in the distant flows, leading to flat Lagrangian spectra at
low frequencies.

V. PARTICLE DISPERSION CHARACTERISTICS

We now investigate the particle dispersion characteris-
tics of the weakly forced, two-dimensional multiscale
flows introduced in Sec. IV. The results are based on the
tracking of 10242 initially equilateral triangles of side length
��0�=1.660 mm released uniformly into the steady flows.
This initial separation corresponds to twice the distance be-
tween grid points and is still much smaller than the smallest
scale of the forcing and velocity fields. We numerically inte-
grate the trajectories X�t� of the vertices using a second-
order Runge–Kutta method and the spline representation of
the velocity field. We examine the evolution of mean square
particle displacement 	
X�t�−X�0�
2�, which characterizes
absolute dispersion, and that of the mean square side length
of the triangles 	��t�2�, which measures relative dispersion.

A. Absolute dispersion

In Fig. 8, we present the mean square displacements cor-
responding to the different forcing configurations, normal-
ized using the side length of the largest magnets, l0, and the
large-scale velocity, u0=0.4123 mm s−1. Like in the labora-
tory flows, the curves show an initial ballistic stage, with
	
X�t�−X�0�
2��u0

2t2, followed by a diffusive stage, where
	
X�t�−X�0�
2�� l0u0t. In all cases the transition between the
two regimes takes place at times of the order of l0 /u0, which
is close to the Lagrangian correlation time �see Sec. IV B�.
The observed dispersion thus complies with Taylor’s
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FIG. 7. �Color online� �a� Uncompensated and �b� compensated Lagrangian
frequency spectra of the theoretical multiscale flows. The compensating
power is q=3−log�C /Q4� / log�R /Q�. The scaling and geometrical param-
eters are R=4 and Q=1 �solid line�, R=
8 and Q=1 �dashed line�, and R
=4 and Q=
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analysis,1 but the diffusive regime arises here from the
decorrelated motions of particles lying on many different pe-
riodic streamlines.

The differences among the various absolute dispersion
curves are only noticeable in the ballistic regime. For very
small times, the mean square displacement is in fact propor-
tional to the specific kinetic energy, 	
X�t�−X�0�
2�
� 	
u
2�t2. A straightforward similarity argument, akin to
those of Sec. IV A, shows that in these weakly forced flows
the kinetic energy is connected to the scaling and geometri-
cal parameters by

	
u
2� � u0
2�

m

CmR−2mQ−2m. �17�

This approximate relation for the kinetic energy explains the
initial order of the dispersion curves in Fig. 8. In particular,
the initial growth rate of absolute dispersion increases with
the multiplier C and decreases with the scaling factors R
and Q.

B. Relative dispersion

In Fig. 9�a�, we plot the mean square dispersion of
particle pairs, calculated from the side lengths of the traced
triangles. As in the experimental flows, we find an initial
stage of relative constancy with underlying ballistic separa-
tion as well as a final diffusive stage of approximately linear
growth. However, between these two regimes it is not
a priori clear how to fit the relative dispersion curves, whose
shape actually depends on the scaling and geometrical
parameters.

The quadratic growth of relative dispersion at the very
beginning is evidenced by the flat initial segments in
Fig. 9�b�, where we plot the mean square dispersion dis-
counted for the initial separation and compensated by
�tu0 / l0�−2. At the outset pair-separation results from the local
strain rate, though incompressibility makes the initial growth
rate vanish when averaged over all possible pair orientations.
Mean square dispersion is therefore quadratic in time and
roughly proportional to the mean square velocity gradient,
	��t�2−��0�2����0�2	
�u
2�t2. By a similarity argument
analogous to that used for the kinetic energy, the predicted
scaling of the velocity gradient is

	
�u
2� � �u0/l0�2�
m

CmQ−2m. �18�

Owing to the lack of proportionality between forcing and
velocity at small scales �see Fig. 5�, this relation is not
strictly satisfied in these flows. Otherwise, the initial disper-
sion rate would be independent of the geometric scaling fac-
tor R, in discordance with the results in Fig. 9�b�. Nonethe-
less, the above relation qualitatively explains the influence of
the remaining parameters in the ballistic regime.

The compensated plot also reveals that pair dispersion
has a superquadratic behavior in the intermediate stage punc-
tuated by several bumps. In line with Rossi et al.,5,6 we at-
tribute these bumps to major dispersion contributions from
the three different scales of the flow. The last, strong burst
prior to the diffusive regime nearly coincides in time in all
cases and is caused by the largest scale. The first, weak bump
is due to the smallest scale and is only appreciable in the
cases with R=
8. In support of this correspondence, the on-
set times of the first three bursts are approximately related by
the same factor R /Q relating the characteristic time scales
lm /um of the flows �see Sec. IV B for um�. As well, the size of
the intermediate bumps is roughly commensurate with the
multiplier C, which represents the number of medium scale
magnets. However, the combined action of the different flow
scales does not seem to invariably yield algebraic relative
dispersion in the intermediate regime. Furthermore, it is clear
from Fig. 9 that hypothetical power law fits to the midsec-
tions of the relative dispersion curves would have smaller
exponent the larger C and the smaller Q. In fact, the trend
suggests that all these exponents would be smaller than the
intermediate log-log slope of relative dispersion in the flow
forced only at the largest scale. Our explanation for this pe-
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culiarity is that, in these steady two-dimensional flows, the
early separations caused by the small scales are not signifi-
cantly augmented by the larger scales, in marked contrast
with Richardson dispersion in turbulent flows �see, e.g.,
Ref. 1�. Because the flows are stationary, fluid elements are
trapped within steady recirculation regions. For instance, in-
dividual pairs belonging to small-scale neighboring stream-
lines remain forever in those same streamlines, and thus they
cannot reach separations comparable to the large scale.

The outset of the diffusive regime is visible in both the
compensated and uncompensated plots. The final growth of
mean square dispersion is slightly faster than linear, but the
diffusive stage should eventually be reached and at some
point saturate. Like for absolute dispersion, the diffusive re-
gime arises from the collective divergence and convergence
of particle pairs. The two particles in each typical pair sepa-
rate and gather in a quasiperiodic fashion, with the basic
frequencies being those of the two streamlines involved.
Decorrelation across the different pairs leads to a linear rela-
tive dispersion law of the form 	��t�2����0�u0t. This is the
only dimensionally consistent linear-in-time law that can be
constructed from the large length scale l0 and the frequency
difference of two large closed streamlines separated by about
��0�, which is of order u0��0� / l0

2. The above diffusive law
neglects the influence of the smaller scales, which should be
included for accuracy. The dependence on initial separation
at such advanced separation stage is again due to the steadi-
ness of these two-dimensional flows.

We check the foregoing interpretation of relative disper-
sion in the multiscale flows by likewise inspecting its behav-
ior in the flow forced only at the largest scale. In Fig. 10, we
present dispersion results obtained from the long-time track-
ing of four groups of 2562 triangles released uniformly into
the single-scale steady flow. The initial side lengths of the
triangles in each group are related to the previously used
��0�=1.660 mm by a power of 4. For later convenience, in
Fig. 10 we normalize mean square separation using the prod-
uct ��0�l0. As in the multiscale flows, the dispersion curves
show initial plateaus with underlying quadratic growth of
mean square separation. This ballistic regime is succeeded
by a dispersion burst, which happens approximately at the
same time in the four curves. The burst is especially notice-
able when the initial separation is small, with the local
growth being significantly faster than quadratic in the bottom

two curves. In Fig. 11 we show the trajectories of the upper-
half triangles of initial side length 1.660 mm that contribute
most to the increase in mean square dispersion at time
5l0 /u0. While the displayed triangles are only 0.04% of the
total, they account for 95% of the separation rate. In view of
this figure, we attribute the burst to the triangles initially
located close to the magnets and the x2-axis. Regardless of
their initial size, these triangles are coherently stretched in an
exponential-like manner as they traverse the highly straining
central region in time proportional to l0 /u0. Obviously, the
sustained type of exponential separation behavior found in
chaotic systems is impossible in these integrable two-
dimensional flows. Based on this perception, we regard the
bumps in the multiscale dispersion curves as reflections of
the passages through the intense strain regions corresponding
to the different scales, thus occurring at times approximately
proportional to lm /um. Following the intermediate burst, the
diffusive stage quickly sets in and mean square separation
grows close to linearly. In this regime the single-scale dis-
persion curves normalized by ��0�l0 are much closer to each
other, in concordance with the stated approximate linear scal-
ing with initial separation.

The above results show that in this type of steady two-
dimensional flow, superquadratic local growth of mean
square separation can arise from persistent strain even in the
absence of multiple flow scales. While the addition of
smaller scales naturally enhances relative dispersion, it actu-
ally reduces the apparent dispersion exponent in the interme-
diate regime, since the separations induced by the smaller
scales are not significantly increased by the large scale. In
other words, a Richardson-like dispersion process across
scales does not seem possible in this type of flow without the
inclusion of time dependence or three-dimensional effects.
Therefore, if the flows studied here are not fundamentally
dissimilar from those of Rossi et al.,5,6 the intermediate sepa-
ration exponents measured in the experiment may also be
due to practically decoupled, severe straining at the different
scales. This explanation would be consistent with the in-
crease in the separation exponent with higher forcing inten-
sity, since the relative influence of the smaller scales dimin-
ishes as inertial forces become stronger.
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FIG. 10. �Color online� Relative dispersion of the theoretical single-scale
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VI. CONCLUSION

We have studied the spectral and particle dispersion
properties of a class of steady multiscale flows similar to the
electromagnetically controlled thin-layer flows of Rossi
et al.5–7 The forcing setups considered extend the experimen-
tal ones by allowing for different types of self-similarity as
well as scaling of the forcing intensity. In this way, they
facilitate assessing the influence of the scaling and geometri-
cal parameters on the fundamental characteristics of the
flows.

We have based our investigations on computations of a
two-dimensional layer-averaged model, which we have jus-
tified by analogy with the behavior in the thin-layer limit.
When the forcing is weak and the fluid layer is very thin, the
horizontal velocity is nearly proportional to the incompress-
ible component of the forcing and varies vertically according
to a semiparabolic profile. We have numerically solved the
model using a semi-Lagrangian spline code. By simulating
one of the laboratory flows, we have shown that our model
and numerical method reproduce the main flow features at
relatively weak forcing.

Like in the experiment, the Eulerian wavenumber spec-
tra of our theoretical flows oscillate around power laws over
the wavenumber range corresponding to the forcing scales.
Making use of the approximate proportionality between the
forcing and the fluid velocity, we have explained the expo-
nents of these power laws in terms of the parameters of the
forcing. There is qualitative agreement between the predicted
and observed exponents except at the small scales, where
inertial and viscous horizontal forces are more important and
proportionality fails. The obtained scaling is specific to the
selected self-similar forcing, though it does not depend on
the particular form of the largest forcing scale.

The Lagrangian frequency spectra show power laws as
well, though preceded by low-frequency plateaus. Again us-
ing elementary similarity arguments for this type of flow and
forcing, we have related the exponents of these power laws
to the scaling and geometrical parameters. In this case, be-
cause of the overlapping of the velocities associated with the
different scales, the predictions deteriorate as the relative in-
tensity of the smaller scales is decreased. We have also found
that the low-frequency plateaus arise from the slow motions
far away from the applied forces.

The absolute dispersion of particles carried by the flows
follows the Taylor phenomenology, with mean square dis-
placement initially growing ballistically and at some point
diffusively. The transition between these two well-known re-
gimes happens near the Lagrangian correlation time, which
we have found to be close to the characteristic time of the
largest scale. Given that almost all particle trajectories are
periodic in these steady planar flows, the decay of correlation
and the presence of a diffusive regime are somewhat surpris-
ing. These two features appear because the particle ensemble
spans infinitely many streamlines with incommensurate peri-
ods. However, we have not investigated the relation of these
properties with shear or other characteristics of the multi-
scale flows.

The relative dispersion of tracer particles also presents

ballistic and diffusive stages. Between these two regimes, the
shape of the mean square separation curves depends on the
forcing parameters and is not generally a power law. By
closely inspecting both the multiscale and single-scale cases,
we have verified that the intermediate regime is dominated
by a succession of exponential-like separation bursts origi-
nating from the intense strain regions imposed by the differ-
ent forcing scales. While these bursts can cause locally
superquadratic mean square separation, the trapping action
of steady recirculating regions at each scale precludes the
appearance of a well-defined relative dispersion power law.

In summary, we have qualitatively explained the spectral
and particle dispersion characteristics of steady multiscale
thin-layer flows using plain similarity arguments. Although
our analysis and results assume weak forcing, the insight
gained applies also to moderately forced flows. Thus, we
have been able to interpret experimental results using the
same framework. It is remarkable that some Lagrangian
properties yield to such simple analysis, which depends cru-
cially on the steadiness of the flows. We intend to carry out a
parallel study of time-dependent multiscale two-dimensional
flows focusing on relative dispersion, connections between
Eulerian and Lagrangian statistics and the role of sweeping.
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APPENDIX: COMPUTATIONAL METHOD

We solve the layer-averaged model �9� using a code ini-
tially developed for two-dimensional turbulence that com-
bines semi-Lagrangian advection with exponential time dif-
ferencing. We represent the vorticity and the streamfunction

in terms of the uniform periodic B-spline basis �B̃i
��i=1

n of
order � and maximum regularity:20,21


�x1,x2� = �
j1,j2=1

n


̃ j1,j2
B̃j1

� �x1�B̃j2
� �x2� , �A1a�

��x1,x2� = �
j1,j2=1

n

�̃ j1,j2
B̃j1

� �x1�B̃j2
� �x2� . �A1b�

By Eq. �9b�, the velocity components are then given by

u1�x1,x2� = �
j1,j2=1

n

�̃ j1,j2
B̃j1

� �x1�B̃j2
���x2� , �A2a�

u2�x1,x2� = − �
j1,j2=1

n

�̃ j1,j2
B̃j1

���x1�B̃j2
� �x2� . �A2b�

The B-coefficients 
̃ j1,j2
and �̃ j1,j2

are determined by the val-
ues of the fields at the points of the form ��i1

,�i2
�, with ��i�i=1

n

being the interior knot averages of the B-splines.
We discretize the Poisson equation �9b� by collocation at

the knot averages, and thus obtain the linear system
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�
j1,j2=1

n

�̃ j1,j2
�B̃j1

����i1
�B̃j2

� ��i2
� + B̃j1

� ��i1
�B̃j2

����i2
��

= − �
j1,j2=1

n


̃ j1,j2
B̃j1

� ��i1
�B̃j2

� ��i2
� , �A3�

which we solve using the discrete Fourier transform.
We discretize the linear part of the model �9a� analo-

gously and obtain the system of evolution equations

�
j1,j2=1

n �d
̃ j1,j2

dt
+

3

2
��
̃ j1,j2

− �̃ j1,j2
��B̃j1

� ��i1
�B̃j2

� ��i2
�

= �
j1,j2=1

n

�
̃ j1,j2
�B̃j1

����i1
�B̃j2

� ��i2
� + B̃j1

� ��i1
�B̃j2

����i2
�� , �A4�

where �̃ j1,j2
are the B-coefficients of the vorticity forcing. We

numerically integrate these evolution equations using a
second-order exponential time differencing method.22

The advective part of Eq. �9� is simply the transport of
vorticity by a scaled velocity. Thus, in a semi-Lagrangian
advective step, the final vorticity at a given collocation point
� should equal the initial vorticity at the departure point �
that reaches � by the end of the time step.23 Knowing the
solution at time t, we first calculate first-order estimates for
the departure points given by

�� = � − 4
5�tu��,t� . �A5�

We then compute a first-order approximation to the vorticity
at time t+�t in the form


���� = 
���,t� , �A6�

which in turn yields a first-order approximation u� to the
velocity at time t+�t. A second-order estimate for the depar-
ture points is then given by

��� = � − 2
5�t�u���� + u�� − 4

5�tu����,t�� . �A7�

These points lead to the following second-order estimate for
the vorticity at time t+�t:


����� = 
����,t� , �A8�

which completes the semi-Lagrangian advective step.
We blend the methods for the advective and linear parts

of the model using the second-order symmetric splitting of
Strang.24 At each time step, we first evolve the vorticity ac-
cording to the viscous and forcing terms for half a time step.
We subsequently advect the vorticity for one time step and
lastly repeat the linear half-step.
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