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The transient dynamics of stirred tanks whose impeller speed undergoes smooth, or
step changes are investigated. First, a low-order model is developed, linking the impeller
torque with the “extent” of the solid-body rotation in the tank, derived from an angular
momentum balance in a control volume around the impeller. Utilisation of this model
enables the prediction of the torque “spike” appearing after an impulsive change of
the shaft-speed, and of the torque evolution during a quasi-steady transition. For the
case of a small impulsive change in the shaft speed, a characteristic spin-up time is also
proposed. Torque measurements performed in an unbaffled stirred tank show considerable
agreement with the theoretical predictions.

1. Introduction

Stirred tank reactors have received considerable attention over the last decades, arising
from their many applications in the process and pharmaceutical industries. After initia-
tion of the stirring, fluid is discharged from the impeller, subsequently reaching the tank
walls and finally recirculating back to the impeller region. The discharged fluid carries
angular momentum which, if not adequately destroyed (e.g. with the use of wall-baffles),
generates circulation of the fluid bulk in the direction of the impeller rotation. On the
rear side of the impeller blades three-dimensional roll vortices are formed, connected with
high values of turbulence kinetic energy and shear rate.
One of the most extensively studied features of stirred tanks is their power consump-

tion, as it is directly linked with process efficiency. Numerous investigators (for a review
see Maynes & Butcher (2002)) have studied the dependence of power consumption on
aspects such as impeller and vessel shape and size at a variety of regimes, ranging from
laminar to fully turbulent. This has led to the development of correlation formulae (see for
instance Nagata (1975); Furukawa et al. (2012)), enabling accurate power consumption
predictions for most of the commonly used configurations.
The bulk of the above studies focus on the steady-state regime, since this is where

in practice stirred tanks operate. There are situations, however, where transient power
consumption is of interest, as for instance after impulsive increases of the shaft speed,
e.g. when initiating the impeller rotation, or when adjusting the shaft speed. In that
case spikes in the power/ torque of the shaft appear (Maynes & Butcher (2002); Steiros
et al. (2017b)), which may considerably wear the mechanical components of the mixer.
Second, prediction of transient power consumption can be useful in the design of systems
where the shaft operates at a time-varying speed, for instance following square or
sinusoidal waves. Such cases have been shown to promote turbulence intensities and
mixing compared to the conventional steady-state operation (Gao et al. (2004); Roy &
Acharya (2011); Woziwodzki (2011)), and can therefore be of interest to a variety of
applications.
Literature concerning transient power consumption in stirred tanks is limited: Nagata

† Email address for correspondence: k.steiros13@imperial.ac.uk

Page 1 of 24



2 K. Steiros

(1975) postulated that immediately after the start of impeller operation in a quiescent
fluid, the normalised power will reach the maximum possible value, and conducted
experiments to measure it. Maynes et al. (1999) and Maynes & Butcher (2002) performed
a more in depth analysis of the time-evolution of the power consumption after an
impulsive increase of shaft speed from zero, by conducting power measurements of various
rotating bluff-bodies in stirred tanks of different sizes. Three stages were identified in the
full transition period: First, a “build-up” regime, where the normalised power remains
relatively constant, and the flow field in the vicinity of the bluff body was supposed
similar to the one corresponding to rotation in an infinite medium. Second, a “decay”
regime, starting the moment when the discharged fluid from the bluff body recirculates
back for the first time. During this regime the normalised power drops, until it finally
reaches the steady-state regime, where the angular momentum production by the bluff
body is equal to the angular momentum destruction by the tank walls. From these
data, correlation formulae were developed, predicting the power values and time scales
corresponding to the different transition stages, for various sizes of bluff bodies and tanks.
Yoshida et al. (2001) and Woziwodzki (2011) conducted torque measurements in cases
where the impeller rotated by a small angle in a forward-reverse manner, with the angular
velocity following sinusoidal and triangle waves respectively. The instantaneous torque
was assumed to be given by a linear sum of a drag and an inertial term, which scaled
with the square of the shaft angular velocity and the shaft acceleration, respectively. The
relative contribution of the two terms was tuned using data fitting from the experimental
data.
In the above works, the proposed predictions are limited to correlations, restricted

to the special case studied and not taking into account the underlying physics of the
problem. In this article, we propose a theoretical framework, based on angular-momentum
balance, under which we develop analytical relations for the prediction of the power
consumption of stirred tanks whose shaft speed undergoes impulsive, or smooth changes.
The predictions are subsequently experimentally validated.
The structure of the article is as follows: In section 2 a theoretical framework is

developed which is used to create a model for the prediction of the impeller torque/
power number, immediately after an impulsive change in shaft speed. The model is
subsequently experimentally validated. In section 3, the above model is used to derive
an ordinary differential equation which describes the transient power number of stirred
tanks, in quasi-stationary conditions. Predictions of this equation are then experimentally
validated. In section 4 the implications of the above analysis on the steady-state power
number of unbaffled tanks in turbulent conditions and the applicability of the models
are discussed. Finally, section 5 draws the conclusions of this study.

2. Power number immediately after an impulsive change of shaft

speed

This section introduces a model based on angular-momentum balance for the prediction
of the power number immediately after an impulsive change in shaft speed, starting from
a previous steady state. The results are subsequently experimentally validated.

2.1. “Extent” of the solid body rotation in the tank

Combining the tangential momentum equation with the continuity equation, and
multiplying the resulting equation by r we obtain the angular-momentum transport
equation in the tank in conservative form, i.e.
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where ui is the fluid velocity in cylindrical coordinates, τij is the stress tensor (i and
j can be r, φ or z), ρ is the fluid density and p is the pressure field. Note that in the
above equation we have assumed an axisymmetric gravitational potential. We consider
a stationary and ergodic process, we time average eq 2.1 and integrate it in a cylindrical
volume around the impeller (see fig 1), i.e.

∫ tm

0

∫ hv

−hv

∫ rout

0

∫ 2π

0

(·)
r

tm
dφdrdzdt (2.2)

where tm is a time when the terms of equation 2.1 are statistically converged and rout
and hv are the radius and mid-height respectively, of the cylindrical control volume. Note
that in that case time averaging is identical to ensemble averaging 〈·〉 (i.e. averaging over
many realisations). After the integration we obtain

Timp = 〈

∫

S

ρruφun dS −

∫

Sin

rτzφniei dS −

∫

Sout

rτrφ dS〉 (2.3)

where Timp is the ensemble-averaged impeller torque, un = uini, ni being the ith
component of the unity vector normal to the boundary area of the cylindrical volume,
S, and ei is the ith component of the axial unit vector. Sin and Sout are the boundary
areas corresponding to the impeller inlet (〈un〉 < 0, cylinder bases) and outlet (〈un〉 > 0,
cylinder side) respectively, with S = Sin + Sout (see fig 1). Note that in the integration
we made use of the periodicity in φ. Assuming that the contribution of the viscous terms
is negligible (a realistic assumption in turbulent tanks as shown in Başbuğ et al. (2017)),
equation 2.3 can be written in the form

Timp = ṁ (Lout − Lin) (2.4)

which is Euler’s turbine equation. In the above equation ṁ = 〈
∫

Sout

ρun dS〉 =

−〈
∫

Sin

ρun dS〉 is the ensemble-averaged mass flow rate of the impeller. The quantity
Lk, where k can be either in or out, is the ensemble-averaged angular momentum
entering or exiting the impeller region normalised by the mass flow rate, and is given by

Lk =
〈
∫

Sk

ρruφun dS〉

〈
∫

Sk

ρun dS〉
. (2.5)

The quantity Lin or its non-dimensional form lin = Lin/ΩR2, where Ω = 2πN is the
angular velocity of the shaft and R = D/2 is the impeller radius, can be used to quantify
the “extent” of the steady-state solid body rotation in the tank: in the special case in
which there is no solid body rotation it can readily be shown that lin = 0. As the solid
body rotation grows, lin grows as well and as the fluid’s tangential velocity approaches
that of the impeller we have Lin → Lout, while Lout → ΩR2. Therefore in that case
lin → 1. Note that lin cannot describe the solid body rotation with the same angular
velocity as the impeller’s, since in that case the mass flow rate vanishes and lin is not
defined, i.e. lin 6= 1.
The above can be understood better using the fact that the ensemble-averaged solid

body rotation in the tank can be modelled as a Rankine vortex (see fig 1), as shown by

Page 3 of 24



4 K. Steiros

Rc

u
✁
= r

u
�
= Rc

2
/r

RT

Lin

Lout

Timp

rin
rout

n

hv

Sout

Sout

Sin

Sin

Figure 1: Left: Combined Rankine vortex model in a stirred tank. The grey zone denotes
the “forced vortex”, while the white zone the “free vortex”. Right: cylindrical control
volume around the impeller where the angular-momentum budget is performed for the
formulation of Euler’s equation. The total control volume boundary is S = Sin + Sout.

Nagata (1975). This is a cylindrically rotating zone where the fluid rotates with the same
angular velocity as the impeller (forced vortex) for r < Rc < R, where Rc is the forced
vortex radius, followed by a region where the angular momentum is assumed constant
(free vortex) at larger radii.
For the free vortex model to hold, two conditions must be met, i.e. a prevalent

tangential motion in the tank (in fact the secondary recirculatory flows are neglected)
and negligible viscous effects; in other words small local Ekman (the ratio of viscous
acceleration to Coriolis force) and Rossby (the ratio of non-linear inertial acceleration
to Coriolis force) numbers. In that case the flow also satisfies the Taylor-Proudman
constraint of columnar motion (i.e. no axial velocity variation) and thus, the tangential
velocity is expected to be a function of the radial distance only. Nagata (1975) suggested
that the above conditions can be thought realistic in the bulk of an unbaffled tank
operating at a turbulent regime. Indeed, his measurements showed that the tangential
velocity distribution approaches a Rankine profile in turbulent unbaffled tanks stirred
by radial impellers, while the axial variation of the tangential velocity is small, with
the exception of the zones near the vessel top and bottom walls, where the wall friction
acts. The above have led to the widespread use of the Rankine vortex, for instance when
modelling the free surface shape of uncovered unbaffled tanks (see for instance Nagata
(1975); Busciglio et al. (2013)). It is important to note that the Rankine vortex profile
has been used/ validated for “standard” configurations (i.e. DT ≈ H, 0.3 < D/DT < 0.5,
where DT and H are the tank’s diameter and height respectively). It is therefore not
certain that the model holds in drastically different geometries (for instance when the
tank height is very large).
We may therefore model the ensemble-averaged tangential fluid velocity in an unbaffled

turbulent tank as 〈uφ〉 = Ωr for r < Rc (forced vortex) and 〈uφ〉 = ΩR2
c/r for r > Rc

(free vortex). Decomposing the velocity in its mean and fluctuating parts, i.e. ui =
〈ui〉+u′

i, we may further assume that in the impeller inlet (Sin in fig 1) the contribution
of the cross term 〈u′

nu
′

φ〉 is very small when calculating lin, and neglect it. As shown in
Başbuğ et al. (2017), this assumption is realistic for transitional and turbulent unbaffled
tanks stirred by radial turbines (lin changes by less than 1% if 〈u′

nu
′

φ〉 is neglected). From
the above, equation 2.5 reduces to
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where the lower limit of integration for the radial coordinate is not zero since the blade
does not pump fluid for r < Rc (forced vortex), while the factor 2 in the numerator and
denominator is due to the two bases of the control volume. From equation 2.6 it is clear
that lin becomes zero when there is no solid body rotation in the tank (Rc = 0), while
lin tends to 1 when the fluid approaches the angular velocity of the impeller (for Rc = R
the mass flow rate vanishes and equation 2.6 is not valid).

2.2. Power number dependence on solid body rotation

Using equation 2.4, we may develop a low-order model linking the impeller power
number with lin. For this, we first assume that the quantities ṁ/ṁ∞ and Lout/L∞,
where the subscript ∞ signifies evaluation of the quantities when there is no solid body
rotation in the tank (or in an infinite medium), can be adequately modelled as functions
of lin, instead of the full velocity and pressure distributions.

Regarding the mass flow rate, we expect that it is a decreasing function of lin (keeping
the shaft velocity constant). That is, because as lin increases, the solid body rotation
increases as well, and thus the relative blade velocity decreases. In the limiting case of
lin → 1 we have ṁ → 0 since the relative velocity of the blades approaches zero. We
model this behaviour with a decreasing power law, i.e.

ṁ = ṁ∞ (1− lin)
a

(2.7)

where a > 0 is an arbitrary exponent. Note that when a = 0, ṁ = ṁ∞ no matter the
operating conditions (ideal impeller behaviour), while when a = 1 we assume a linear
drop of the mass flow rate.
For the quantity Lout we expect that it is an increasing function of lin for flat and

forward-swept turbines. That is, because as the solid body rotation expands in the tank,
the fluid separation from the impeller occurs at larger radii (see fig 2), causing in turn
larger discharged tangential fluid velocities. In the limit of lin → 1 we have Lout → ΩR2,
as the separation point approaches the blade tip. We model this behaviour as linear, i.e.

Lout = L∞ + (ΩR2 − L∞)lin . (2.8)

In the above equation if L∞ = ΩR2, then Lout = ΩR2 no matter the input conditions
(ideal impeller behaviour). Note that in the above models we have assumed that the fluid
rotates in the same sense as the impeller, i.e. lin > 0. Furthermore, we have assumed
that the fluid is pumped in a “canonical” way from the blades’ tip back to the impeller
hub, as depicted in fig 1. For this to happen, the fluid’s tangential velocity in-between
the blades has to be smaller than the impeller’s, imposing lin < 1. Therefore, equations
2.7 and 2.8 can be considered valid for lin ∈ [0, 1).
Substituting equations 2.7 and 2.8 to 2.4 we obtain

Timp = ṁ∞L∞(1− lin)
1+a . (2.9)

If both sides of equation 2.9 are multiplied with 2π/ρN2D5, we obtain the following
expression for the power number of the impeller

Np = Np∞ (1− lin)
1+a

(2.10)
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Figure 2: Schematic diagram of the roll vortices’ separation at the rear side of the blades,
after Winardi & Nagase (1994).

where Np∞ = Np∞(Re) is the power number of the impeller under conditions of zero
solid body rotation in the tank. Note that Re = ND2/ν for stirred tanks, where ν is the
kinematic viscosity of the fluid. In equation 2.10 lin ∈ [0, 1) and a > 0. In the special
case of a = 0 (ideal impeller) the impeller performance (e.g. mass flow rate, output swirl)
is supposed not to be affected by the solid body rotation. By repositioning of its terms,
equation 2.10 becomes

Timp =
4

π3
ρRNp∞R2(RΩ)1−a(RΩ −RΩlin)

1+a . (2.11)

Equation 2.11 may be interpreted as follows: Np∞ = Np∞(Re) is a drag-like coefficient of
the impeller, while RΩ and RΩ−RΩlin are the two characteristic velocities which affect
the impeller torque. Specifically, RΩlin can be interpreted as the characteristic velocity
of the solid body rotation, in the sense that lin quantifies the extent of the solid body
rotation (as explained in section 2.1) and RΩ its (limiting) speed. Therefore RΩ−RΩlin
can be thought as the characteristic relative velocity of the blades, a standard scaling
quantity for bodies performing linear motion. The other velocity, RΩ, is that of the
impeller tip and its presence in equation 2.11 arises from the fact that there are forces
affecting the flow field which scale with the rotational velocity itself (i.e. centrifugal and
Coriolis forces). In the special case of a = 1 we assume that these forces either do not
affect the drag of the rotating body or, more generally, that their effects scale with the
characteristic relative velocity of the blades. Based on equation 2.11 we may define the
following torque coefficient for a mixing impeller

Cm =
2Timp

RAρ(RΩ)1−a(RΩ − rwωw)1+a
(2.12)

where rwωw is the characteristic tangential velocity of the fluid and A is the frontal area
of the blades. If we assume that rwωw scales with RΩ (self-similar regime), equation 2.12
becomes

C ′

m =
2Timp

RAρ(ΩR)2
(2.13)

which is essentially the conventional definition of power number for mixing impellers, i.e.
the conventional power number can be considered a function of Re exclusively, only if
the flow is self-similar with increasing Re.
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2.3. Power number immediately after an impulsive change of shaft speed

Using the previous analysis we can have an estimate of the impeller torque/ power
immediately after an impulsive change of the shaft speed. This is based on the assumption
that after an impulsive speed change there exists a time interval during which the quantity
Lin is constant and equal to what it was before the speed change. Simply put, if the
impeller operates at a steady rotational frequency N0 (henceforth referred to simply as
speed) corresponding to Lin0 and if at t = 0 we instantaneously change the shaft speed
to N2, then until t = tp, we assume that Lin2 = Lin0. Note that the subscripts 0 and 2 of
a quantity determine at which shaft speed it is evaluated and, in the case of normalised
quantities, with which speed it is normalised.
The above assumption is linked with the recirculating pattern in the tank, i.e. the

cycle where fluid is discharged from the impeller, reaches the wall and then returns to
the impeller region (see fig 1). Therefore, for the duration of one recirculation cycle after
a change of shaft speed (0 < t < tp), the ensemble-averaged tangential velocity profile at
the top and bottom boundaries of the impeller control volume stays unchanged (see fig
1), since the discharged fluid after the impulsive change has not reached there yet. This
means that 〈uφ(r)〉 in equation 2.5 is the same as before the speed change. Assuming
a Rankine vortex, the angular-momentum profiles at the top and bottom boundaries of
the control volume are 〈ruφ〉 = Ω0r

2 for r < Rc and 〈ruφ〉 = Ω0R
2
c for r > Rc, before as

well as immediately after the change in shaft speed. Before the speed change, fluid is not
pumped for r < Rc, since the relative velocity there is zero. Therefore, we can deduce
from equation 2.5 (assuming that the contribution of the cross term 〈u′

nu
′

φ〉 is negligible

when calculating Lin, see section 2.1) that Lin0 = Ω0R
2
c . However, immediately after

the speed increase the relative blade velocity is greater than zero for r < Rc, and some
fluid is subsequently pumped, leading to Lin2 < Lin0 from equation 2.5. Therefore, the
assumption that Lin2 ≈ Lin0 implies that the fluid which is pumped in the forced vortex
region (r < Rc), after the speed change, is negligible. This could be realistic in turbulent
conditions, given that then, the mass flow rate scales with D3 (Nagata (1975)), and
therefore smaller radii pump significantly less fluid.
From the above, in the special case of N0 = 0, Lin2 = Lin0 = 0 and using equation

2.10 we obtain

Np2 = Np∞2 (2.14)

whereNp2 corresponds to the power number after the impulsive speed increase and before
the solid body rotation in the tank changes (0 < t < tp). If N0 > 0 then Np∞0, lin0 and
Nps0 are defined (Nps being the steady-state power number), while lin2 = lin0N0/N2

given that we assumed Lin2 = Lin0. Using equation 2.10 we obtain

Nps0 = Np∞0 (1− lin0)
1+a

(2.15a)

Np2 = Np∞2

(

1− lin0
N0

N2

)1+a

. (2.15b)

Substituting lin0 from equation 2.15a to 2.15b we obtain

Np
1

1+a

∞0 −Np
1

1+a

2 R
1

1+a

∞0

Np
1

1+a

∞0 −Np
1

1+a

s0

=
N0

N2

(2.16)

where R∞0 = Np∞0

Np∞2
. Equation 2.16 gives an estimate of the power number immediately
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after the impulsive change in shaft speed, Np2, for a given a > 0. Note that equation 2.16
is valid for N2 > Nw, where Nw is the mean rotational frequency of the fluid in-between
the blades (Nw < N0). This is because equation 2.10 is not valid if the fluid has the same
or larger angular velocity compared to the impeller, as explained in section 2.2. In the
limiting case of N2 = Nw we expect Np2 = 0 and therefore equation 2.16 becomes

Nw = N0

[

1−

(

Nps0
Np∞0

)
1

1+a

]

. (2.17)

The above equation gives an estimate of the mean tangential velocity of the fluid in-
between the blades during steady conditions.
If during a steady state (with N0 > 0) the impeller immediately stops, i.e. N2 = 0,

then for a limited time interval the impeller blades behave approximately like stationary
bluff bodies in a shear flow with a mean velocity gradient of 2πNw and a median velocity
of πNwR. In that case we expect that the torque scales with N2

w, much like a wall-baffle.
Using equation 2.17 we obtain

Npstop ∝

[

1−

(

Nps0
Np∞0

)
1

1+a

]2

(2.18)

where in Npstop the normalisation speed is N0. The above predictions can be summarised
as follows



















Np2 = Np∞2, N0 = 0

Np
1

1+a

∞0
−Np

1
1+a

2
R

1
1+a

∞0

Np
1

1+a

∞0
−Np

1
1+a

s0

= N0

N2
, N0 > 0, N2 > Nw

Npstop ∝
[

1−
(

Nps0

Np∞0

)
1

1+a

]2
, N2 = 0 .

(2.19)

Listed below are the necessary assumptions for equation 2.19 to be valid.
(i) The torque due to shear stresses on the boundaries of the control volume of fig 1

is negligible (Euler’s equation).
(ii) The quantities ṁ/ṁ∞ and Lout/L∞ are functions of lin, as shown in equations

2.7 and 2.8.
(iii) For an impulsive change of shaft speed from N0 to N2 there is a time interval,

starting the moment of speed change, where Lin2 = Lin0.

2.4. Experimental Validation

2.4.1. Experimental apparatus

The validation experiments were conducted in an unbaffled, acrylic tank, which was
octagonal in shape (see fig 3). The inner diameter of the tank was DT = 2RT = 45
cm, while its height was equal to its diameter, i.e. H = DT . The tank was filled with
water and a lid was used to prevent free-surface displacement. The impeller used was a
four-bladed, flat-blade turbine, mounted in the tank at mid-height. Four versions of the
impeller were used by switching different sets of blades on the impeller hub (fig 4). These
comprised of regular-rectangular blades (R) commonly used in industry, fractal blades
with one and two iterations (F1, F2) whose details are shown in Steiros et al. (2017b),
and perforated blades (PC). As shown in Steiros et al. (2017a) these blade types generate
considerably different flow properties (mass flow rates, turbulence intensities, tip vortices)
and could thus help us investigate the generality of the model. All blade types had the
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Figure 3: Side and top views of the stirred tank used in the experiments. TM:
torquemeter, M: motor, FG: function generator. DT = H = 45 cm. C = H/2. D ≈ DT /2.
t = 4 mm.
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Figure 4: Regular (R), perforated (PC), fractal1 (F1) and fractal2 (F2) blades used in
the experiments. W = 95 mm. h = 4h1 = 16h2 = 44.8 mm. Wpc = 98.5 mm. hpc = 50.4
mm. All blades had the same area, A = 4228 mm2, and thickness, tb = 4 mm.

same frontal area, A = 4228 mm2 and same thickness tb = 4 mm. The regular impeller
had a diameter of DR = 223 mm, while the perforated-blade impeller DPC = 230 mm.
Regarding the two fractal impellers, their diameter is dependent on the axial position,
and for this reason their mean diameter (which was equal to the diameter of the regular
impeller) was used as a reference.

The impellers were driven by a stepper motor (Motion Control Products), in mi-
crostepping mode (25,000 steps per rotation), to ensure smooth movement. The motor
was controlled by a function generator (33600A, Agilent). The torque of the impellers
was measured with an in-line torque transducer (TM306, Magtrol). For the acquisition
of the torque signal the default acquisition system was used (DSP 6001, Magtrol), which
allowed a maximum acquisition rate of 25 Hz. When higher acquisition rate was necessary,
a National Instruments data acquisition system was used (USB-6211, NI), and the
acquisition frequency was set to 1 kHz. Throughout the text it will be made clear under
which of the two acquisition frequencies the signal was acquired. The rotational speed was
monitored with an optical encoder (60ppr) embedded in the torque transducer. Torque
due to friction was monitored when the tank was empty and no blades were attached
to the shaft, and was then removed from the actual measurements. Both friction and
hydrodynamic torque measurements were found to be reproducible.
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Figure 5: Measured power number response after three different types of impulsive steps
in the shaft speed (N0 is the starting speed andN2 the end-speed) for the regular impeller.
The red part of the signal signifies the plateau location.

2.4.2. Validation experiments

To validate equation 2.16 torque measurements were performed for the four impeller
types shown in fig 4. The acquisition frequency was set to 25 Hz. First, the steady-state,
Nps, and infinite medium, Np∞, power numbers were experimentally determined for the
four impellers, and are plotted in fig 6. For Np∞, as also shown in Steiros et al. (2017b),
this was done by performing impulsive steps from zero shaft speed to different end-
speeds, and then monitoring the plateau which appears in the power number time series
immediately after the acceleration. This plateau value is Np∞, as shown in equation
2.14. An example of the power number response after such steps can be seen in fig 5
(case of N0 = 0). The measured Nps and Np∞ for the different impellers are shown as
dashed lines in fig 6. We observe that for all blades the steady-state power number has
a declining trend, which is typical for turbulent conditions in unbaffled tanks (see for
instance Steiros et al. (2017b); Nagata (1975); Laity & Treybal (1957)). Indeed, impeller
speed of 1 6 N 6 4 Hz corresponds to 50, 000 6 Re 6 200, 000 which is sufficient for a
fully turbulent regime. The infinite medium power number remains relatively constant for
all the tested impellers, at least for the highest speeds, as expected in the fully turbulent
regime (see Steiros et al. (2017b)).
Knowing the values of Nps and Np∞, we may use equation 2.16 to obtain a prediction

for the plateau power number after an arbitrary step-change in shaft speed, from N0

to N2 Hz. In fig 6 these predictions are also plotted (solid lines) corresponding to
different step-changes. For each case, two solid lines are plotted: One for a = 0 and
one for a = 1. These values of a were chosen because they have a physical significance:
Imposing a = 0 we assume that the impeller performance (e.g. the mass flow rate) is not
affected by the solid body rotation (see section 2.2), and an overestimation of the power
number is thus expected. Choice of a = 1 suggests that all blade forces are proportional
to the characteristic relative velocity of the blades (see section 2.2). To validate these
predictions, the impeller was rotated at a steady speed of N0 ∈ {1, 2, 3} Hz, and at a given
time it was instantly accelerated to N2 ∈ {1.5, 2, 2.5, 3, 3.5, 4} Hz insofar as N2 > N0.
The power number signal immediately after the acceleration demonstrated a plateau (see
for instance fig 5), whose value was recorded and compared with the predictions. These
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Transient torque in stirred tanks 11

R PC F1 F2
0.15 0.21 0.48 0.61

Table 1: Optimal value of the exponent a, calculated from a least square fit of the data
in fig 6, for each turbine type.

plateau values are plotted in fig 6 for each pair of N0 and N2. We observe that in all cases
the measurements agree with the predictions, with the a = 0 line effectively acting as an
upper boundary to the measurements, as predicted, and with the a = 1 line a bottom
boundary. The optimal values of a are shown in table 1 for each turbine, calculated from
a least square fit of the data in fig 6. The value differs for each case, suggesting that the
exponent a is not “universal”, but rather impeller dependent. This could possibly be due
to the fact that a expresses how much each impeller type departs from the “ideal” impeller
(in the sense that its mass flow rate and output angular momentum are not affected by
the level of solid body rotation in the tank), or simply because the assumptions which
were performed for the development of the model are valid to a different extent for each
impeller type. In that case, the exponent a would effectively act as a fitting coefficient
in order to account for the inaccuracy of the model and would depend not only on the
impeller type, but on all the geometrical parameters of the configuration.
For the validation of equation 2.17 it is necessary to measure the mean fluid velocity

in-between the blades during a steady-state operation. Ideally, this would require com-
plicated velocity measurements. A qualitative but simpler alternative is the following:
First, the impeller’s torque is monitored during an abrupt decrease of shaft speed from
a steady state of N0 Hz, to a smaller speed of N2 Hz. This enables the measurement of
the shaft torque immediately after the deceleration. The above procedure is repeated for
different pairs of starting, N0, and end-speeds, N2. Then, using linear interpolation of
the data we may determine for every starting speed, N0, the necessary end-speed, Ñ2,
so that the torque immediately after the deceleration takes zero value. This end-speed is
approximately the mean fluid velocity in-between the blades, i.e. Nw = Ñ2.
The above torque measurements were performed for the R and PC impellers. Unlike

the cases of speed-increase, strong blade vibrations were present immediately after
decelerating the impeller, contaminating the signal, especially for the cases where the
torque approached the zero value after the deceleration. Examples of this can be seen in
fig 7a. For this reason, the acquisition frequency was set to 1 kHz so that the torque values
after the deceleration could be determined as accurately as possible. A low pass filter
with a cut-off frequency of 100 Hz was used to reduce noise. Examples of the measured
torque values immediately after the deceleration for different pairs of N0 and N2 can
be seen in fig 7b. As described above, linear interpolation was performed (solid lines) to
determine Nw for each N0. In fig 8 the values of Nw are plotted, determined with the
experimental method described above, along with the predictions of equation 2.17, with
a taken from table 1. For both blade types the predictions agree qualitatively with the
measurements, with a maximum overestimation of 8%.

3. Transient power number during a quasi-stationary regime

We now model the power number of the impeller-tank system during a transient
process. This is done by simplifying the terms of the following expression, derived by
angular-momentum balance in the whole tank volume, i.e.
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Figure 6: Plateau power number of different end-speeds, N2, for different starting shaft
speeds N0. Symbols: measurements. (�) N0 = 0 Hz. (◮) N0 = 1 Hz. (⊲) N0 = 2 Hz.
(�) N0 = 3 Hz. Dashed lines: Fits from the data for Np∞ (top dashed line) and Nps
(bottom dashed line). Solid lines: predictions using equation 2.16 for a = 0 (upper line)
and a = 1 (bottom line).
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(a) Examples of the torque signal after
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case.
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Figure 7: Example of the measurement method of Nw for the regular impeller: First, the
plateau in torque after a sharp deceleration from various steady-state shaft speeds N0

to given end-speeds N2 is measured (fig 7a). Then, the necessary shaft speed to achieve
T = 0, i.e. Nw, is found using linear interpolation for each N0 (red squares in fig 7b).
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Figure 8: Variation of the mean fluid rotational frequency in-between the blades, Nw

with steady-state shaft speed, N0. Squares: Regular impeller. Diamonds: Perforated-
blade impeller. Filled symbols: Measured values using the procedure described in fig 7.
Empty symbols: Predictions using equation 2.17.

dLT

dt
= Timp − Tw (3.1)

where LT = 〈
∫

V
rρuφ dV 〉 is the ensemble-averaged (i.e. averaged over many realisations)

total angular momentum in the tank and Tw is the ensemble-averaged wall torque.

3.1. Quasi-steady transition

Equation 3.1 can be simplified under the assumption of quasi-stationarity: In a tran-
sient process the impeller adds angular momentum to the fluid, while the wall removes
angular momentum from it. In other words, during a time δt there is an increase (or
decrease) of LT equal to (Timp−Tw)δt. We now assume that instead of a smooth change
of LT with time, its change happens in steps which occur with a period of δts seconds
(see cartoon of fig 9). From the above, at t+ δts there is a surplus (or deficit) of angular
momentum compared to the previous state, equal to (Timp − Tw)δts, which needs to
be distributed/homogenised throughout the tank. We may monitor the progress of this
“homogenisation” with the parameter (see cartoon of fig 9) LS =

∫

V
〈ρruφ−ρrũφ|LT

〉2dV ,
where 〈ũφ|LT

〉 is the ensemble-averaged tangential velocity distribution corresponding to
the particular steady state in which the total ensemble-averaged angular momentum in
the tank is LT . We assume that the time needed for the difference in angular momentum
to be homogenised (i.e. for LS to become zero) is δth. If δts > δth, then, for δts − δth
seconds during each period δts the flow is stationary, and the tangential velocity is given
by 〈uφ〉 = 〈ũφ|LT

〉. If δth
δts

≪ 1 then we refer to the flow as being quasi-stationary, i.e.
at every moment the ensemble-averaged solid body rotation is identical to the ensemble-
averaged solid body rotation of a given steady state.
In the impeller-tank system we assume that if a deviation from an equilibrium point

(dLT

dt = 0) happens at t = t0, the flow becomes quasi-stationary at t > tq. Then, for t > tq,
at any given instant the impeller rotates at a speed of N2 Hz, while the instantaneous
ensemble-averaged tangential velocity corresponds to the steady state of an (arbitrary)
impeller speed of N1 Hz which we refer to as the quasi-steady shaft speed. Note that the
subscripts 1 and 2 refer to the shaft speed where a quantity was evaluated, and in the
case of non-dimensional quantities, with which shaft speed it was normalised.
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Figure 9: Hypothetical evolution of LT and LS after an increase of shaft speed. Dashed
line: “Actual” continuous increase of LT . Solid black line: Increase of LT in steps with a
period of δts seconds. Solid red line: Evolution of LS with time. δth is the time needed
for the surplus angular momentum to be distributed throughout the tank. t0 marks the
moment where the shaft speed increases, and tq the onset of the quasi-steady regime.

3.2. Formulation of the equation

We now attempt to simplify each of the terms of equation 3.1 separately. Assuming
a quasi-steady regime, the impeller torque term in equation 3.1, Timp, can be simplified
in the following way: First, we note that at any given instant the flow field corresponds
to a steady-state solid body rotation of shaft speed N1, while the shaft rotates with a
shaft speed N2. We may therefore model the instantaneous impeller power number as the
value immediately after an impulsive change of shaft speed from N1 to N2 Hz, i.e. with
equation 2.19 (where instead of the index 0 we have 1). In the special case where the
instantaneous impeller speed is larger than the instantaneous mean fluid speed in-between
the blades, i.e. N2 > Nw, and considering that since we have assumed a quasi-stationary
flow, the solid body rotation is developed, i.e. N1 > 0, we have for the instantaneous
non-dimensional torque (i.e. power number) Np2 = 2π

ρN2
2
D5Timp

2π

ρN2
2D

5
Timp =

1

R∞1

[

Np
1

1+a

∞1 −

(

Np
1

1+a

∞1 −Np
1

1+a

s1

)

N1

N2

]1+a

(3.2)

where R∞1 = Np∞1

Np∞2
.

Second, the inertial term, dLT

dt , can be modelled in a quasi-stationary regime by
assuming that the tangential velocity distribution is given by the Rankine vortex profile
(〈uφ〉 = Ωr if r < Rc and 〈uφ〉 = ΩR2

c/r if r > Rc, see section 2.1). Then, the
instantaneous ensemble-averaged flow field is characterised by a Rankine vortex flow
corresponding to the quasi-steady shaft speed N1. Considering a cylindrical vessel with
radius RT and height H we obtain

LT = 〈

∫

V

rρuφ dV 〉 = 2πHρ

(

∫ Rc

0

Ω1r
3 dr +

∫ RT

Rc

Ω1R
2
cr dr

)

. (3.3)

We further assume that in the impeller inlet (Sin in fig 1), the contribution of the cross
term 〈u′

nu
′

φ〉 is very small when calculating lin, and can be therefore neglected. This
assumption is realistic for transitional and turbulent unbaffled tanks, as discussed in
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section 2.1. We may therefore use equation 2.6, i.e. lin1 = R2
c/R

2. Then, from equation
3.3 we obtain

2π

ρN2
2D

5

dLT

dt
=

1

N2
2

d(IN1)

dt
(3.4)

where I = π3

8

H
R

[

(RT

R )2 − 1

2
lin1
]

lin1 is a moment of inertia dependent coefficient. lin1 can
be calculated by writing equation 2.10 for the case of the steady state corresponding to
N1, i.e. Nps1 = Np∞1(1− lin1)

1+a. In that case I becomes

I =
π3

8

H

R

{

(

RT

R

)2

−
1

2

[

1−

(

Nps1
Np∞1

)
1

1+a

]}{

1−

(

Nps1
Np∞1

)
1

1+a

}

. (3.5)

Finally, we model the wall torque term in equation 3.1, Tw. Since we have consid-
ered a quasi-stationary flow, the ensemble-averaged, instantaneous, transient solid body
rotation in the tank is assumed identical to the ensemble-averaged solid body rotation
corresponding to a steady state of shaft speed equal to N1 Hz. We now assume that
the wall torque is mainly due to the friction caused by the interaction of the solid body
rotation with the wall. Therefore, we may conclude that the instantaneous, ensemble-
averaged wall torque is equal to the ensemble-averaged steady wall torque corresponding
to an impeller rotating at a speed of N1 Hz. Then, since in the steady state the wall
torque equals the impeller torque we have Tw = Ts1, or

2π

ρN2
2D

5
Tw = Nps1

(

N1

N2

)2

(3.6)

given that Nps1 = 2π
ρN2

1
D5Ts1. Substituting equations 3.2, 3.4 and 3.6 to equation 3.1 we

have

1

N2
2

d(IN1)

dt
=

1

R∞1

[

Np
1

1+a

∞1 −

(

Np
1

1+a

∞1 −Np
1

1+a

s1

)

N1

N2

]1+a

−Nps1

(

N1

N2

)2

(3.7)

which describes the evolution of the quasi-steady speed, N1(t). The unknown functions
Nps(Re) and Np∞(Re) and the unknown exponent a have already been determined
experimentally from torque measurements (see section 2.4). Knowing these, along with
the geometrical parameters in the tank, enables us to solve equation 3.7 numerically.
Then, in conjunction with equation 3.2, we can have an estimation of the evolution
of the transient impeller power number in a stirred tank. Below we summarise all
necessary assumptions for equation 3.7 to be valid. To these we have to add the necessary
assumptions for equation 2.19 to be valid (see section 2.3).

(i) The steady-state tangential velocity is modelled by the Rankine vortex profile.
(ii) The transition is quasi-steady.
(iii) The cross term 〈u′

nu
′

φ〉 is negligible in the impeller inlet region (Sin in fig 1), when
calculating lin.
(iv) The impeller rotates faster than the fluid in the tank (N2 > Nw).
(v) The wall torque is mainly due to the solid body rotation - wall interaction.
(vi) The tank is cylindrical.
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3.3. Impulsive shaft speed change by a small amount

In the case where, starting from a steady state of shaft speedN0, at t = 0 we impulsively
increase the speed to N2 Hz, where N2 → N0, equation 3.7 accepts an analytical solution
under the following further assumptions. First, we assume that Np∞ = const (and
R∞1 = 1), i.e. a turbulent regime. Second, we assume that lin = const (i.e. the solid
body rotation does not expand) and thus, from equation 2.10 we have Nps = const. This
assumption is valid in the turbulent regime, as there, the Nps of unbaffled tanks drops
very weakly with Re (Nagata (1975); Steiros et al. (2017b)) and we have assumed an
infinitesimal shaft speed (and therefore Re) change. In that case equation 3.7 becomes

I

Np∞

dN∗

dt∗
= [1− (1− β

1
1+a )N∗]1+a − βN∗2 (3.8)

where t∗ = N2t
∗ is the number of impeller rotations, N∗ = N1/N2 and β = Nps/Np∞.

Since N∗ → 1, we can drop the non-linearity of equation 3.8 by linearising it around its
equilibrium point N∗ = 1. In that case equation 3.8 becomes

I

Np∞

dN∗

dt∗
=
[

β
a

1+a (a+ 1)− β(a− 1)
]

(1−N∗) . (3.9)

Solving equation 3.9 we obtain the following expression for N2 −N1.

N2 −N1

N2 −N0

= e−t/τ (3.10)

i.e. an exponential decay with a characteristic spin-up time

τ =
I

N2Np∞
[

β
a

1+a (a+ 1)− β(a− 1)
] . (3.11)

We may gain more insight regarding the spin-up time if we express equation 3.11 for
the two limiting cases, i.e. a = 0 and a = 1 (see sections 2.2 and 2.4). In that case, the
non-dimensional spin-up time becomes

N2τ =
I

Np∞ +Nps
(3.12a)

N2τ =
I

2(Np∞Nps)1/2
(3.12b)

where equations 3.12a and 3.12b correspond to a = 0 and a = 1 respectively. It is now
clear that the non-dimensional spin-up time is proportional to the moment of inertia-like
coefficient, I, (which depends on the size of the tank, among others), and inversely
proportional to a characteristic power number of the transition, involving both the
steady-state and the infinite medium power numbers, which represents the rate angular
momentum is being pumped in the tank. In the extreme cases of a = 0 and a = 1 the
characteristic power number becomes an arithmetic and a geometric average, respectively.
In appendix A equations 3.12a and 3.12a are compared with the characteristic spin-up
time scale associated with Ekman pumping.

3.4. Experimental validation

Torque experiments were conducted in the stirred tank of fig 3 for the regular impeller
only. The acquisition frequency was set to 25 Hz. The power number predictions of
equations 3.7 and 3.2 were validated for three different cases. First, in the late transition
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after an impulsive increase of shaft speed when the fluid in the tank is quiescent. Second,
by varying the shaft speed with a triangular function and third, by varying the shaft
speed with a sinusoidal function.
Particular attention should be paid to the shape of the tank, as it is octagonal (see

fig 3) and not the conventional cylindrical, a fact which could possibly affect the validity
of equation 3.7. Specifically, angles/corners in the tank shape create recirculation zones
which could potentially destroy the statistical axisymmetry of the flow. As these zones
expand, they progressively create a “baffling” effect, i.e. they increase the steady-state
power number and break the solid body rotation (see Steiros et al. (2017b); Myers
et al. (2002)). The above become more pronounced as the wall-angles become more
acute. Therefore, in our case of considerably obtuse angles we could assume that the
recirculation regions are confined in the vicinity of the tank corners and that the
statistical axisymmetry is retained in a cylinder of radius equal to the inner radius of the
octagon, RT . This cylinder size is used henceforth when calculating the various terms
of equation 3.7. A way to test the sensitivity of the flow field to the wall-angles is to
compare the steady-state power number produced by an octagonal tank, with the two
extreme cases: a cylindrical unbaffled tank with an axisymmetric solid body rotation (no
baffling effect), and a cylindrical baffled tank in which the solid body rotation is almost
non-existent (large baffling effect). As shown in Steiros et al. (2017b), when considering
a flat-blade impeller and a turbulent regime, insertion of baffles in a cylindrical tank
increases the power number by over four times, whereas if the tank remains unbaffled,
but its shape changes to octagonal, the power number increases by around 35%. This
suggests a close resemblance of the octagonal and cylindrical tanks’ flow fields.

3.4.1. Late transition after an impulsive increase in shaft speed

Three end-shaft speeds were investigated, i.e. 2, 3 and 4 Hz. The impeller starting
speed was zero in all cases. The experiments were repeated ten times for each case,
and ensemble averaging was performed to reduce the signal fluctuations. In fig 10 the
measured ensemble-averaged power numbers, 〈Np〉, are plotted over the number of
impeller rotations, t∗ = tN2, for the three different end-speeds. The power numbers
exhibit a plateau (t∗ < 5), then an abrupt drop, and finally reach the steady state
(t∗ > 40), in accordance with the observations of Maynes & Butcher (2002). We observe
a good collapse between the three curves, suggesting a self-similarity of the flow fields.
In the plateau and steady-state regions the curves deviate from each other slightly,
suggesting a small Re dependence, consistent with earlier remarks (see section 2.4).
In fig 10 the numerical solution of equations 3.2 and 3.7 is also plotted, using a = 0.15,

which is the optimal exponent for the R impeller, as shown in section 2.4. The model’s
starting point was chosen after the abrupt drop in power number (t∗ = 7.5), i.e. after
the discharged fluid has recirculated back to the impeller region, as the flow cannot not
be quasi-stationary before this point. As shown in the plot, good agreement is achieved
between the prediction and the measurements.

3.4.2. Triangular and sinusoidal variation of the shaft speed

The shaft speed was varied using a triangle and a sinusoidal function, always between
a minimum shaft speed N2min = 1 Hz and a maximum shaft speed N2max = 5 Hz
(see fig 11). Experiments were performed for five wave period values, i.e. Tp = 4, 10,
20, 30 and 40 s, to examine the sensitivity of the quasi-steady region to the impeller
acceleration. Measurements were conducted for a few periods before recording, so that
initial phenomena had subsided. Phase averaging was then performed over several periods
to reduce signal fluctuations due to measurement errors and turbulence. Note that since
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Figure 10: Ensemble-averaged power numbers after impulsive changes of shaft speed,
over the number of impeller rotations t∗. Solid lines: Measurements, from N0 = 0 to
different end-speeds, N2, as shown in the legend. Dashed black line: Numerical solution
of equations 3.7 and 3.2, starting at the late transition (t∗ = 7.5).

0 Tp 2Tp

t

N2min

N2max

N
2

Figure 11: Types of time varying shaft speeds used in the experiments. Dashed line:
sinusoidal wave. Solid line: triangle wave. N2min = 1 Hz. N2max = 5 Hz. Tp ∈
{4, 10, 20, 30, 40} s.

the experimental conditions did not differ from one period to another, phase averaging
was equivalent to ensemble averaging.
In fig 12 the measured ensemble-averaged shaft power numbers corresponding to the

triangle case are plotted, versus the number of shaft rotations t∗ =
∫

N2 dt (t∗ =
0 corresponds to the start of the wave’s acceleration branch). We observe that the
accelerating branches of the signals corresponding to Tp > 20 s collapse, suggesting
self-similarity of their flow fields, while for smaller period values the signals deviate,
presumably because the fluid in the tank does not respond in the same way to the
shaft acceleration and self-similarity is lost. The prediction of equations 3.7 and 3.2
using a = 0.15 is also plotted in fig 12 with the solid blue line, for a constant steady
acceleration of the shaft, corresponding to the accelerating branch of the triangle function
of Tp = 40 s, i.e. dN2/dt = 0.2 s−2. The prediction follows very well the measurements,
showing that the underlying assumptions of equation 3.7 are valid in this region. For very
large t∗ the prediction tends asymptotically to the steady-state power number of shaft
speed equal to the prediction’s (calculated by extrapolating the measured values of fig

Page 18 of 24



Transient torque in stirred tanks 19

0 20 40 60 80 100

t∗

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

N
p

1© 2© 3© 4© 5©

Figure 12: Ensemble-averaged power numbers over the number of impeller rotations.
Solid black lines: Measurements corresponding to the triangle speed variation. 1: Tp = 4
s, 2: Tp = 10 s, 3: Tp = 20 s, 4: Tp = 30 s, 5: Tp = 40 s. Solid blue line: Prediction using
equations 3.7 and 3.2 for a steady acceleration equal to the Tp = 40 s case’s. Dashed
black line: steady-state power number of the same instantaneous shaft speed as the
prediction’s (blue line). Red points: End of shaft acceleration - start of shaft deceleration
for the measurements.

6a). This suggests that if a steady shaft acceleration is performed for a large number of
shaft rotations, the flow effectively “catches up” with the impeller.
In fig 13 the measured ensemble-averaged power numbers of the triangle and sinusoidal

speed waveforms are plotted over the number of shaft rotations divided by Tp, spanning
2.1 wave periods. Only the cases of Tp = 4, 20 and 40 s are presented. The predictions of
equations 3.7 and 3.2 are also plotted for a = 0.15. For both waveforms we observe that
the predictions and measurements agree best around the wave peak; this is still quite
poor for Tp = 4 s, improves for Tp = 20 s and becomes very good for Tp = 40 s, as then the
impeller speed changes with a slow enough pace for the flow to follow and be considered
quasi-stationary. In the deceleration branch of the waves the solution starts to diverge
from the measurements: This is expected, since the value a = 0.15 was experimentally
determined for shaft accelerations (see section 2.4), and may therefore not be valid for
decelerations. Moreover, one of the assumptions for equation 3.7 to be valid, is that the
instantaneous impeller speed is larger than the mean fluid speed between the blades, i.e.
N2 > Nw, which requires the power number to be positive (energy being given to the flow
rather than being extracted). Therefore, for Np < 0 the predictions cannot be considered
valid. The agreement is also inadequate in the start of the acceleration branch, possibly
because the flow field has not become quasi-steady yet. It is noteworthy to mention that
the prediction is more accurate during the first wave period (t∗/Tp < 3 s−1) than during
the second one. This is because while the prediction was picked to start from a realistic
initial condition, the first deceleration branch causes a large discrepancy between the
prediction and the measurements, essentially imposing a wrong initial condition for the
second period.
To check the overall sensitivity of the predictions to the initial conditions, a prediction

corresponding to a = 0.15 was calculated, but with a wrong initial condition (blue line
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Figure 13: Ensemble-averaged power numbers versus the number of impeller rotations
for triangle and sinusoidal wave variation of the shaft speed (see fig 11). Black solid
lines: measurements. Red lines: predictions using equations 3.2 and 3.7. Dashed lines:
predictions using equation 3.2, assuming N1 = const. Blue line: prediction using
equations 3.7 and 3.2 starting from a wrong initial condition. The white regions signify
the acceleration branches of the waves, while the gray regions the deceleration branches.

in fig 13). After some impeller rotations the curves corresponding to wrong and correct
initial conditions converge, showing that the model can provide sensible predictions even
with arbitrary initial conditions.
Finally, in fig 13 the predictions of the power number of equation 3.2 are plotted with

dashed lines, assuming that the quasi-steady speed, N1, stays constant with time, i.e.
assuming that the flow does not adapt to the impeller speed change at all. The value
which was chosen for N1 for each case was the one which made these predictions match
best with the experiments at the start of acceleration. We observe that for Tp = 4 s the
predictions agree qualitatively with the measurements during the whole wave period, and
especially during the first stage of impeller acceleration (t∗/Tp < 0.75 s−1) they collapse
with the data. This suggests that for such small wave period values the fluid cannot
effectively respond to the changes in the speed of the impeller. For the larger Tp cases,
the agreement of the N1 = const predictions with the measurements becomes unrealistic.
This signifies that the impeller now accelerates slow enough for the flow to adapt.

4. Discussion

4.1. Power number drop in unbaffled tanks at turbulent conditions

Equation 2.10, which models the dependence of the power number on the solid body
rotation, can help us draw qualitative conclusions regarding the behaviour of the steady-
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state power number of unbaffled stirred tanks at turbulent conditions. In the steady state
the impeller torque equals the torque exerted on the tank wall by the fluid. In that case
we have

Nps = Np∞(1− lin)
1+a , (4.1a)

Nps = Cw

(

Uw

πDN

)2

(4.1b)

where equation 4.1a is the low-order model of section 2.2 (equation 2.10), linking the
impeller power number with the “extent” of the solid body rotation, and 4.1b corresponds
to the power number of the wall, assuming that the wall torque is proportional to the
square of the characteristic fluid tangential velocity near the wall. Cw is a skin friction-like
coefficient of the wall, while Uw/πDN is the non-dimensional mean tangential velocity
near the wall due to the solid body rotation. The latter is an increasing function of lin,
as can be readily verified if we model the tangential velocity distribution in the tank as
a Rankine vortex.
It has been experimentally observed that the steady-state power number of unbaffled

tanks drops with Re for the highly turbulent regime (see for instance Nagata (1975),
Steiros et al. (2017b) and Laity & Treybal (1957)). Since in that regime Np∞ is constant,
equation 4.1a shows that lin must increase, i.e. the “extent” of the solid body rotation
increases in the tank. Equation 4.1b shows that this is only possible if the skin friction
coefficient of the wall drops (since Uw/πDN is an increasing function of lin and Nps
drops with Re). We may therefore interpret the drop of the power number in unbaffled
stirred tanks in the turbulent regime in the following way: As Re increases, the friction
coefficient of the walls, Cw, drops, in analogy to the flat-plate boundary layer behaviour
(Schlichting & Gersten (1979)). The impeller-tank system loses then its equilibrium, as
the impeller produces more angular momentum than the wall can destroy. As a result, a
stronger solid body rotation/ swirl is generated, with larger normalised fluid tangential
velocities near the wall, Uw/πDN . We note that the increasing trend of the normalised
tangential velocity with Re in turbulent unbaffled conditions has been experimentally
verified by Yoon et al. (2005) and Nagata (1975). The above results in an increase in wall
torque (as the wall velocities increase), and a decrease in impeller torque (as the relative
tangential blade velocity decreases). Subsequently, the system reaches a new steady state
with a decreased impeller power number. The above occur continuously as Cw decreases,
i.e. as Re increases, leading to the documented drop in impeller torque/ power number
(Nagata (1975); Steiros et al. (2017b); Laity & Treybal (1957)) and impeller drag (Steiros
et al. (2017b)) with increasing Re. In baffled vessels on the other hand, the power number
is constant in the turbulent regime (Nagata (1975); Laity & Treybal (1957)). From the
above discussion this implies that the solid body rotation and flow field are self-similar
in baffled tanks (i.e. lin = const), something verified by velocity measurements (see for
instance Nagata (1975)).

4.2. Applicability of the models

Equations 2.19 and 3.7, which predict the transient torque of stirred tanks, rely on
several assumptions, some of which may not be valid in special cases. It would be therefore
useful to investigate the applicability of these models, with respect to the conditions of
operation.
It is expected that the models do not hold in the laminar regime, as in that case the

necessary condition of a developed solid body rotation in the tank is not fulfilled (see
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Nagata (1975)). For the same reason, it is expected that the models do not hold, or
require a correction, in baffled tanks, as baffles tend to suppress the solid body rotation
in the tank and break the axial symmetry of the flow. Regarding the tank size, a small
departure from the “standard” size (see discussion in section 2.1) should not affect the
validity of the models, as long as it does not alter the solid body rotation in the tank,
which is assumed to follow a two-dimensional Rankine vortex profile. However, drastic
departures from the “standard” size, as for instance very tall/large tanks, could break
the two-dimensionality of the solid body rotation, rendering the models unrealistic. A
correction would be needed in such cases.
Another important aspect is the impeller type. An impeller change is expected to cause

a change in the coefficient a (see section 2.1), which takes into account the change in
the impeller pumping. Furthermore, the Rankine vortex profile, which models faithfully
the solid body rotation generated by radial impellers (see Nagata (1975)), may not be
valid for other impeller types, as for instance axial impellers, where the Rankine vortex
requires a correction coefficient to be valid (see Busciglio et al. (2013)). Such changes
need to be taken into account in the formulation of equations 2.19 and 3.7.
Finally, it is important to discuss the types of speed variation for which equations 2.19

and 3.7 can provide a sensible torque prediction. It was shown that when considering an
impulsive increase in the shaft speed, the models can predict the torque plateau (spike)
immediately after the speed increase, as well as the torque during the late transition. In
between these two stages, the models are not valid. Regarding smooth variations in the
shaft speed, the models were shown to adequately predict the transient torque when the
shaft acceleration was picked to be small enough so that the flow can be considered quasi-
steady. However, for sharper accelerations the model accuracy considerably declined.
When considering shaft decelerations, the models can be considered valid only when the
shaft speed remains larger than the mean fluid speed between the blades, as this was one
of the assumptions for the formulation of equations 2.19 and 3.7.

5. Summary

In this article analytical models for the prediction of the transient power number in
stirred tanks are developed and experimentally validated using torque measurements.
First, in section 2, a low order model based on angular-momentum balance in a control

volume around the impeller is developed, linking the impeller power number with the
parameter lin, which describes the “extent” of the fluid solid body rotation in the tank.
This model is subsequently used to predict the power number immediately after an
impulsive change in shaft speed. The predictions are then compared with experimental
data. Good agreement is found for all tested cases.
Second, in section 3, using angular-momentum balance in the whole tank and the above

model, an ordinary differential equation which describes the evolution of the impeller
power number in transient conditions, in a quasi-stationary regime, is developed. To
solve the above equation the impeller dependent parameters Nps, Np∞ and a are needed,
which are easily determined from simple torque experiments, along with the geometrical
parameters of the impeller-tank system. For the case of an impulsive change of the shaft
speed by a small amount, the equation is shown to have an analytical solution, providing
a characteristic spin-up time scale. To validate the models, torque experiments were
performed for the case of sinusoidal and triangle-wave variation of the shaft speed, as
well as impulsive increases of the shaft speed. For all cases the predictions show good
agreement with the measurements, when the underlying assumptions are valid.
Finally, using results obtained from the above models, an explanation of the reported
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drop of power number in unbaffled tanks at high Reynolds numbers is proposed. It is
suggested that the drop is linked to the decrease in the friction coefficient of the tank walls
with increasing Re, similar to a flat-plate boundary layer. Furthermore, the applicability
of the models is discussed.
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Appendix A. Ekman and impeller pumping during spin-up

The characteristic spin-up time scale, calculated in section 3.3, naturally depends on
the secondary circulatory flows in the tank, which transfer and “homogenise” the angular
momentum. The main circulatory motion is due to the impeller rotation, depicted in fig
1. However, another circulatory motion, that of Ekman pumping may be also present,
caused by the angular-velocity difference between the rotating fluid and the static top-
down walls (see Greenspan & Howard (1963); Benton & Clark (1974)). It would be
therefore interesting to compare the Ekman spin-up time scale, with that of the current
procedure, which includes the impeller pumping, i.e. equations 3.12a and 3.12b.
The effect of Ekman pumping has not been established yet for the spin-up of a stirred

tank, but it has been determined for the simpler case of a rotating tank, performing small
or large impulsive changes in its speed, when no impeller is present. If we assume that
the results of the rotating tank can be approximately applied to the stirred tank case as
well, we may estimate the characteristic spin-up time due to Ekman pumping of a stirred
tank as (see Greenspan & Howard (1963); Benton (1973))

τE = (d2/νΩ)1/2 (A 1)

where d is a characteristic length, commonly the tank diameter, i.e. d = DT . Considering
the water-tank of fig 3 and for the case of a fluid rotating at an angular velocity of
N = 5 Hz, equation A1 yields an Ekman spin-up time of τE ≈ 80 s, whereas the
characteristic spin-up involving an impeller rotating at N = 5 Hz can be calculated
using either equation 3.12a or 3.12b as τ ≈ 2 s, i.e. an order of magnitude smaller.
The above suggests that impeller pumping is much more important compared to Ekman
pumping in the spin-up of turbulent stirred tanks. This is because an impeller generally
pumps much more efficiently compared to an Ekman layer: In the case of a turbulent tank
stirred by a radial impeller rotating at an an angular frequency Ω, pumping velocity (i.e.
radial velocity in the discharged region of the impeller) is of the order U/ΩR = O(10−1)
(see Yoon et al. (2005)). For the case of a static tank with no impeller, in which the fluid
performs a solid body rotation with an angular frequency Ω, Ekman pumping velocity
is approximated as (see Benton & Clark (1974)) UE ≈ 0.3(νΩ)1/2, or equivalently

UE

ΩR
≈ 0.25Re−1/2 (A 2)

where Re = ND2/ν is the conventional Reynolds number of stirred tanks. Therefore, for
a turbulent tank of Re > 10, 000, Ekman pumping is estimated to be negligible compared
to the pumping produced by the impeller.
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