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Abstract

A Direct Numerical Simulation (DNS) study of an axisymmetric turbulent wake

generated by a square plate placed normal to the incoming flow is presented. It

is shown that the new axisymmetric turbulent wake scalings obtained recently

for a fractal-like wake generator (Dairay et al., 2015), specifically a plate with

irregular multiscale periphery placed normal to the incoming flow, are also present

in an axisymmetric turbulent wake generated by a regular square plate. These new

scalings are therefore not caused by the multiscale nature of the wake generator

but have more general validity.
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1. Introduction

Axisymmetric turbulent wakes have been extensively studied experimentally

and numerically (see for example Johansson et al., 2003). A problem of particular

interest remains however the prediction of the scaling laws for the wake’s width

δ and the centreline velocity deficit u0 along the streamwise distance x. For the
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turbulent axisymmetric and self-preserving wake, these scalings laws can be de-

rived from knowledge of the dissipation rate ε scalings (Townsend, 1976; George,

1989). In a recent study, Nedić et al. (2013) proposed an extension of the theory

established in George (1989) assuming the non-equilibrium dissipation scaling

(see Vassilicos, 2015, for details)

ε =Cε
K3/2

δ
with Cε ∼ Rem

G/Rem
l (1)

where K is the turbulent kinetic energy, ReG is a global Reynolds number deter-

mined by the inlet conditions and Rel is a local Reynolds number based on local

velocity and length scales. This theory has recently been tested in detail and re-

vised by Dairay et al. (2015). Invoking an assumption of constant anisotropy,

Dairay et al. (2015) have shown that it is possible to derive scaling laws for u0

and δ for any values of the exponent m in (1) (this assumption actually replaces

the usual assumption of self-similarity of every single term of the turbulent ki-

netic energy equation which turns out to be incorrect for some of the terms).

They obtain δ (x)/θ = B((x− x0)/θ)β
and, u0(x)/U∞ = A((x− x0)/θ)α

where

θ is the momentum thickness, U∞ is the freestream velocity, x0 is a virtual ori-

gin, β = (1+m)/(3+m), α = −2β = −2(1+m)/(3+m), B ∼ (Lb/θ)
2m

3+m and

A = B−2. In Dairay et al. (2015), these predictions have been found to be in

agreement with both numerical and experimental data for an axisymmetric turbu-

lent wake generated by an irregular plate. The aim of this paper is to use DNS data

to interrogate the existence of the new non-equilibrium dissipation law (1) and its

wake-law consequences in a more “conventional” turbulent wake generated by a

square plate.
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Ly = 15Lb

Lz = 15Lb

Figure 1: Schematic view of the computational domain.

2. Flow configuration and numerical methods

In the present study, a turbulent wake is generated by a square plate of surface

area A placed normal to the incoming flow (see figure 1 for illustration). The sur-

face area of the square plate is the same as the one of the irregular plate used in

Dairay et al. (2015). In the Cartesian coordinate system (O;x,y,z), the domain is

Ω = [−xp,Lx − xp]× [−Ly/2,Ly/2]× [−Lz/2,Lz/2] where xp = 10Lb is the lon-

gitudinal location of the plate, the origin O is located at the centre of the plate and

Lx×Ly×Lz = 120Lb×15Lb×15Lb where Lb =
√

A is the reference length of the

flow (see figure 1). For the sake of simplicity the radial distance r =
√

y2 + z2

and the polar angle ϕ = arctan(y/z) are also introduced hereinafter. Mean quan-

tities 〈 f 〉(x,r) of a field f (x,r,ϕ, t) are estimated by averaging over time and

over the homogeneous polar direction ϕ in the cylindrical coordinate system

(x,r,ϕ). The mean streamwise velocity component 〈ux〉(x,r) is denoted U . The

momentum thickness θ is defined by θ 2 = (1/U2
∞)

∫ ∞
0 U∞ (U∞ −U)rdr = const.
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Figure 2: Streamwise evolution of the ratio ∆x/η . The Kolmogorov microscale η has been com-

puted on the basis of the maximum value of ε(x,r) along r.

and the wake’s width is here characterised by the integral wake’s width δ , with

δ 2(x) = (1/u0)
∫ ∞

0 (U∞ −U)rdr where u0(x) = U∞ −U(x,r/Lb = 0) is the cen-

treline velocity deficit. The global Reynolds number ReG based on the reference

length Lb and the freestream velocity U∞ is ReG = 5000. The local Reynolds num-

ber Rel is defined by Rel(x) =
√

K0(x)δ (x)/ν where K0 is the turbulent kinetic

energy at a centreline location.

The finite difference code Incompact3d (Laizet and Lamballais, 2009; Laizet

et al., 2010) is used to solve the incompressible Navier-Stokes equations. The

modelling of the plate is performed by an Immersed Boundary Method, follow-

ing a procedure proposed by Parnaudeau et al. (2008). Inflow/outflow bound-

ary conditions are assumed in the streamwise direction with a uniform fluid ve-

locity U∞ without turbulence as inflow condition and a 1D convection equation

as outflow condition. The boundary conditions in the two spanwise directions

are periodic. The computational domain is discretized on a Cartesian grid of

nx×ny×nz = 3841×480×480 points. In terms of Kolmogorov microscale η , as
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illustrated in figure 2, the spatial resolution is at worst ∆x = ∆y = ∆z ≈ 7η (where

the turbulence is at its most intense) and at best ∆x = ∆y = ∆z ≈ 0.8η (at the

end of the computational domain where the turbulence has decayed). In the range

10 ≤ x/Lb ≤ 100, which is the range of interest of our study, the spatial resolution

is always below 4η . In a recent resolution study, Laizet et al. (2015) have shown

that a spatial resolution of 7η or 5η is sufficient to reproduce experimental results

with an error margin of about 10% or 5% respectively (for one-point first and

second order statistics). They also showed that quantities such as the turbulence

dissipation rate require a resolution of at least 4η to be well captured. For the

spatial derivatives, sixth-order centred compact schemes (Lele, 1992) are used.

To control the residual aliasing errors, a small amount of numerical dissipation is

introduced only at scales very close to the grid cutoff. This very targeted regu-

larization is ensured by the differentiation of the viscous term that is sixth-order

accurate (Lamballais et al., 2011). The time integration is performed using an ex-

plicit third-order Adams-Bashforth scheme with a time step ∆t = 5×10−3Lb/U∞

(corresponding to a CFL number of 0.16 and ensuring ∆t < 0.014τη where τη is

the Kolmogorov time-scale). Full details about the code “Incompact3d” can be

found in Laizet and Lamballais (2009); Laizet et al. (2010); Laizet and Li (2011)

(see also the link www.incompact3d.com).

The collection of data for the turbulent statistics is done over a time T =

3850Lb/U∞, corresponding to approximately 25 seconds of the experiments in

Nedić et al. (2013) and to 423 cycles based on the Strouhal number St =

fvsLb/U∞ = 0.11 associated with the vortex shedding frequency fvs (see Nedić

et al., 2013). This time is also the same as the one used in Dairay et al. (2015)

ensuring good convergence of the DNS statistics.
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Figure 3: Streamwise evolution of the wake width δ/Lb.

The streamwise evolution of δ is plotted in figure 3. At x = 100Lb (the most

distant streamwise location that we are considering in the present paper), δ ≈
2.12Lb. This means that the domain half-width is Ly/2= Lz/2= 7.5Lb ≈ 3.54δ at

x = 100Lb. According to Redford et al. (2012), the critical value needed to ensure

that the lateral boundary conditions do not affect the wake development is Lz/2 =

Ly/2 ≈ 2.95δ . The lateral dimensions of our domain therefore appear sufficiently

large to avoid any significant contamination from the lateral boundaries even at

x = 100Lb.

The DNS data can first be used to assess the validity of the local isotropy as-

sumption commonly used in the experimental framework. In figure 4 we compare

εiso = 15ν
〈

(∂u′x/∂x)2
〉

with the actual dissipation rate ε f ull = 2ν
〈

si jsi j

〉

where

si j = (1/2)
(

∂u′i/∂x j +∂u′j/∂xi

)

. It is clear from figure 4 (right) that εiso/ε f ull

lies between 0.96 and 1.04 in the range 10 ≤ x/Lb ≤ 100.
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Figure 4: Centreline evolution of the full and isotropic dissipation (left) and of the ratio εiso/ε f ull

(right).
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Figure 5: Streamwise evolution of the radially averaged coefficient of variance cv for the mean

velocity, turbulent kinetic energy and the dissipation profiles for the square plate case compared to

the irregular plate data of Dairay et al. (2015).

7



3. Axisymmetry of wake statistics

A quantitative evaluation of the statistical axisymmetry of the flow generated

by the square plate can been obtained by computing the mean values of the co-

efficient of variance cv(x,r)≡ 100

√

(

1/Nϕ

)

∑ϕ (S(x,r,ϕ)−〈S〉(x,r))2/〈S〉(x,r)
where Nϕ is the number of polar angles and S stands for mean flow, turbulent ki-

netic energy or dissipation rate of turbulent kinetic energy. The streamwise vari-

ations of the radially averaged coefficient of variance cv(x) ≡ (1/Nr)∑r cv(x,r)

are plotted in figure 5 while the irregular plate data of Dairay et al. (2015) are

added for comparison. Figure 5 shows that, at x = 10Lb, there is already less

than 4% variation in all statistics demonstrating the good axisymmetry of the flow

generated by the square plate at x > 10Lb.

4. Similarity of the axisymmetric turbulent wakes

The axisymmetry of the flow generated by the square plate has been carefully

checked. The next step of the analysis is to investigate the similarity proper-

ties of mean flow statistics. Self-similar forms are considered for the mean ve-

locity, Reynolds shear-stress, turbulent kinetic energy and dissipation profiles as

follows: U∞ −U(x,r) = u0(x) f (r/δ ), Rxr(x,r) = 〈u′xu′r〉(x,r) = R0(x)g12(r/δ ),

K(x,r) = K0(x)h(r/δ ) and ε(x,r) = D0(x)e(r/δ ) where f (0) = 1. Streamwise

mean velocity U profiles scaled by the centreline velocity deficit u0 and the wake

width δ are plotted in figure 6 for different streamwise distances. In the same way

as for the irregular plate case in Dairay et al. (2015), these profiles are clearly self-

similar for x ≥ 10Lb. Reynolds shear stress 〈u′xu′r〉, turbulent kinetic energy K and

dissipation rate ε profiles are respectively plotted in figures 7 (left), 8 (top left)

and 9 with R0, K0 and D0 set to be the maximum values along r of 〈u′xu′r〉(x,r),
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Figure 6: Mean flow profiles at different streamwise distances plotted using similarity scalings.

The data of Dairay et al. (2015) are added for comparison.

K(x,r) and ε(x,r). These figures strongly suggest that these three quantities are

self-similar in the region x/Lb ≥ 20.

In addition, figure 7 (right) shows that the DNS data support the prediction

of George (1989) that R0 ∼ U∞u0
d
dx

δ at least in the region x/Lb ≥ 20. However,

in agreement with Dairay et al. (2015), the square plate data do not endorse the

scaling K0 ∼ u2
0 predicted by George (1989) and Townsend (1976) as can be seen

in figure 8 (top right).

In fact, K0 scales in the same way as R0 in the region x/Lb ≥ 20 (see figure 8

(bottom centre)) in agreement with the assumption of constant anisotropy intro-

duced by Dairay et al. (2015) for an axisymmetric wake generated by an irregular

plate. In a very different context, Pantano and Sarkar (2002) have also observed a

constant anisotropy with respect to the Mach number value in compressible shear

layers (they did not study the anisotropy of the Reynolds stress along r = δ (x) as

in the present study but they compared the peak turbulent intensities in different

experiments and DNS). For the square plate case considered in this study, even
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Figure 7: Reynolds shear stress profiles at different streamwise distances plotted using similarity

scalings with R0 = maxr Rxr (left) and R0 ∼ u0U∞ (dδ/dx) (right). The data of Dairay et al. (2015)

are added for comparison.

if the ratio of the r.m.s. of u′x to the r.m.s. of u′r along r = δ (x) plotted in figure

10 (left) is slightly increasing with streamwise distance, the fact that K0 scales in

the same way as R0 and not with u2
0 is confirmed when comparing the streamwise

evolutions of both K0/R0 and K0/u2
0 in figure 10 (right).

In the following section we investigate the scalings and streamwise evolution

of the dissipation rate focusing only on the square plate case considered in this

study.

5. Streamwise evolution of the dissipation, wake width and velocity deficit

scalings

Figure 11 shows that Cε = εδ/K3/2 grows with streamwise distance x both on

and off the centreline, in clear disagreement with the equilibrium law Cε = const

(corresponding to m = 0 in equation (1)). This observation is consistent with

the findings of Dairay et al. (2015) concerning turbulent wakes generated by an
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Figure 8: Turbulent kinetic energy profiles at different streamwise distances plotted using simi-

larity scalings with K0 = maxr(K) (top left), K0 ∼ u2
0 (top right) and K0 ∼ R0 ∼ u0U∞ (dδ/dx)

(bottom centre) for both the square and irregular plate cases.
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Figure 9: Dissipation profiles at different streamwise distances plotted using similarity scaling

with D0 = maxr(ε) for both the square and irregular plate cases.
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A α x0A/θ B β x0B/θ

3.39 −0.89 0.61 0.54 0.45 0.61

Table 1: Best fits to u0/U∞ and δ/θ obtained for x ∈ [10Lb;100Lb].

irregular plate and also with Obligado et al. (2015) who measured non-constant

Cε in a high Reynolds number turbulent wake generated by a square plate.

To probe the relation between the dissipation law and the scaling laws of

u0 and δ , the DNS data have been fitted with the power laws u0(x)/U∞ =

A((x− x0A)/θ)α
and δ (x)/θ = B((x− x0B)/θ)β

where x0A and x0B are a pri-

ori different virtual origins, but the theory of course requires them to be the same.

The fitting method used here is exactly the same as in Dairay et al. (2015) which

is an improvement of the original method introduced in Nedić et al. (2013). It

returns approximately equal values of the two virtual origins.

The best fit values obtained for x ∈ [10Lb;100Lb] are reported in table 1 (see

also figure 12). The values of the exponents α = −0.89 and β = 0.45 are found
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to be in between the values α = −2/3 and β = 1/3 predicted by the equilib-

rium theory (corresponding to m = 0, i.e Cε = const., in equation (1)) and the

high Reynolds number non-equilibrium exponents α =−1 and β = 1/2 of Nedić

et al. (2013); Dairay et al. (2015); Obligado et al. (2015) (corresponding to m = 1

in equation (1)). In a recent numerical study, de Stadler et al. (2014) also re-

ported the high Reynolds number non-equilibrium exponents in the wake gen-

erated by a sphere. However, as they did not provide information on the turbu-

lence dissipation, the presence of the new dissipation law (1) in their turbulent

axisymmetric wakes could not be directly established. As in Dairay et al. (2015),

the question arises whether the exponents α and β can be explained by the non-

equilibrium predictions stated in section 1. In other words, could the wake laws,

observed in the range x ∈ [10Lb;100Lb] for the square plate, be also accountable

to the dissipation law Cε ∼
(

Rem
G/Rem

l

)

? The value m ≈ 0.7 returns indeed a

very good agreements with our data as illustrated by the constant value of the

product Cε ×
(

Rem
l /Rem

G

)

plotted in figure 13 (left) (see figure11 for compari-
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son). In addition, when using non-equilibrium similarity scaling with m = 0.7,

the dissipation profiles are found to be self-preserving for x > 20Lb as it is illus-

trated in figure 13 (right). Importantly, this value of m also returns satisfactory

agreement with the fitted exponents values when using the theoretical relations

α =−2(1+m)/(3+m) and β = (1+m)/(3+m) of Dairay et al. (2015). These

findings suggest that the wake’s width and the velocity deficit scalings are con-

sistent with a non-equilibrium dissipation law that does not exist only in wakes

generated by irregular plates but also in more conventionnal axisymmetric and

self-preserving wakes (at least for the streamwise extension considered in this

study).

Irregular and square plates actually have the same Strouhal number if they are

placed normal to the flow and have the same surface area (Nedić et al., 2015). In

this respect the large scale structures generated by both plates are not so different.

However they do have different energy levels (Nedić et al., 2015). But the main

point is that the turbulence has similar if not the same dissipation mechanism

in both cases and therefore same dissipation scalings which lead to same wake

scalings if the wake is axisymmetric and its U , K, ε and Rxr profiles are self-

similar. Concerning self-similarity, Johansson et al. (2003) have shown that self-

similarity of all terms in the mean momentum and Reynolds stress equations leads

to the classical dissipation scaling of Taylor (1935) and Kolmogorov (1941). It is

therefore fully consistent with our results that only a few but not all terms of these

equations are self-similar.

The non-equilibrium dissipation scaling law in these axisymmetric wakes is

also found in other turbulent flows such as turbulence generated by various types

of grids (see Vassilicos, 2015) and even Direct Numerical Simulations of both
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(left) and dissipation profiles

at different streamwise distances plotted using non-equilibrium similarity scaling with D
NEQ
0 =

(U∞l/ν)m (u0δ/ν)−m
K

3/2

0 /δ for m = 0.7.

decaying and forced periodic turbulence (see Goto and Vassilicos, 2015). We

are therefore not dealing with an uninteresting initial transient but with a non-

equilibrium behaviour which characterises some universality class of turbulent

flows.

6. Conclusion

DNS of a spatially developing turbulent wake generated by a square plate

shows that (i) the profiles of U , Rxr, K and ε are self-similar for x ≥ 20Lb; (ii) the

turbulent kinetic energy and the Reynolds shear stress scale together and do not

scale as u2
0, in agreement with an assumption of constant anisotropy introduced in

Dairay et al. (2015); (iii) for the streamwise extension considered in this study, the

wake width and velocity deficit scalings are in agreement with the non-equilibrium

dissipation law (1), where the exponent m may depend on distance from and/or

geometry of the wake generator.
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