
Under consideration for publication in J. Fluid Mech. 1

Related self-similar statistics of the
turbulent/non-turbulent interface and the

turbulence dissipation

Y. Zhou and J.C. Vassilicos

Turbulence, Mixing and Flow Control Group,
Department of Aeronautics, Imperial College London

London, SW7 2AZ, United Kingdom

(Received ?; revised ?; accepted ?. - To be entered by editorial office)

The scalings of the local entrainment velocity vn of the turbulent/non-turbulent interface
and of the turbulence dissipation rate are closely related to each other in an axisymmetric
and self-similar turbulent wake. The turbulence dissipation scaling implied by the Kol-
mogorov equilibrium cascade phenomenology is consistent with a Kolmogorov scaling of
vn whereas the non-equilibrium dissipation scaling reported for various turbulent flows
in Vassilicos (2015), Dairay et al. (2015), Goto & Vassilicos (2016a) and Obligado et al.

(2016) is consistent with a different scaling of vn. We present results from a DNS of a
spatially developing axisymmetric and self-similar turbulent wake which supports this
conclusion and the assumptions that it is based on.

1. Introduction

The study of the turbulent/non-turbulent (TNT) interface starts with the seminal
work of Corrsin & Kistler (1955) who studied it in a boundary layer, a plane wake
and a circular jet. In defining this interface they recognised that vorticity is a defining
characteristic of fluid turbulence so that the interface separates vortical from potential
flow. They also understood that the non-vortical fluid can only become turbulent by
viscous diffusion of vorticity from the vortical side of the interface and they identified
the laminar superlayer as part of the inner structure of the thin TNT interface. Another
part of this inner structure was identified about fifty years later because of the advent
of Direct Numerical Simulations (DNS) and Particle Image Velocimetry, a sort of buffer
layer between the fully turbulent region of the flow and the viscous superlayer which is
sometimes referred to as turbulent sublayer (see da Silva et al. (2014)).
Corrsin & Kistler (1955) argued that the thickness of the viscous superlayer scales with

the Kolmogorov length-scale ηK of the turbulence. The DNS study by Taveira & da Silva
(2014) supported this scaling for shear-free turbulence and planar turbulent jets. Whilst,
with the exception of shear-free turbulence, the thickness of the TNT interface generally
seems to be close to the Taylor microscale (see da Silva et al. (2014)), recent DNS of
turbulent mixing layers (Watanabe et al. (2015)) and turbulent wakes (Watanabe et al.

(2016)) report that the thickness of the interface scales with ηK . Given that the viscous
superlayer spreads by viscous processes, its local propagation velocity is proportional to
ηK divided by the viscous time η2K/ν and therefore scales as the Kolmogorov velocity
uη ∼ ν/ηK where ν is the kinematic viscosity of the fluid. This scaling of the local
propagation velocity, the local entrainment velocity, has been confirmed in oscillating
grid turbulence by Holzner & Lüthi (2011) both experimentally and computationally
and in the DNS of a turbulent mixing layer by Watanabe et al. (2015).
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Corrsin & Kistler (1955) also studied the statistics of the location of the TNT interface
and suggested that these statistics scale with the length-scale characterising the mean
velocity profile, for example the wake or jet width in the case of a turbulent wake or
jet. LaRue & Libby (1976) obtained some experimental evidence for such a scaling by
comparing two streamwise positions in a planar wake. One might indeed expect that the
way the TNT interface fluctuates and spreads with downstream distance in a wake or
jet does indeed have a critical influence on the way the wake/jet mean width grows with
streamwise distance.

A parallel line of enquiry and analysis which goes back to Townsend (1976) has now
established (Townsend (1976), George (1989), Nedić et al. (2013), Dairay et al. (2015),
Obligado et al. (2016)) that the wake/jet width’s dependence on streamwise distance
is intimately related to the turbulence dissipation scalings in self-preserving turbulent
free shear flows. There must therefore be a comparably intimate relation between the
scalings of the turbulent/non-turbulent interface and those of the turbulence dissipation,
at least in self-similar turbulent shear flows. In this paper, which is concerned with the
particular case of the axisymmetric and self-similar turbulent wake, we develop this point
and argue that the turbulence dissipation scalings are closely related to the scalings of
the local thickness and local entrainment velocity in ways which lead to some non-trivial
conclusions.

Some basic theoretical considerations concerning the relation between turbulence dis-
sipation scalings and the scalings of the local propagation velocity of the TNT interface
are developed in section 2. In section 3 we use DNS to assess the assumptions and results
of section 2 and we conclude with a discussion and a summary of our main results in
section 4.

2. What is the relation between the local entrainment velocity and

the turbulence dissipation?

One might think that the answer to this question is well known and simple and consists
in saying that the local entrainment velocity scales as ν/ηI as per Corrsin & Kistler (1955)
where the interface thickness ηI is a length-scale, such as for example the Kolmogorov
microscale ηK ∼ (ν3/ǫ)1/4, which depends on the turbulence dissipation rate ǫ. In this
section we argue that this answer is too simplistic, if not strictly speaking wrong in
general, and we develop a more detailed and complete answer to the question.
It is both rare to find and difficult to obtain fully resolved spatio-temporal 3D data of

a turbulent flow. It can also be cumbersome and time-consuming to store and analyse
such data. We therefore develop methods of analysis which can be applied to 2D planar
cuts through the flow, specifically planes orthogonal to the axis of rotational symmetry
of an axisymmetric turbulent flow. In this paper we apply our methods to the self-similar
axisymmetric turbulent wake.

We start by defining a characteristic local entrainment velocity vn, i.e. characteristic
local propagation velocity of the TNT interface, in terms of the time-averaged area A of
the fully turbulent region in a plane normal to the axis of symmetry of the flow and the
time-averaged length L of the TNT interface in the same plane. This axis of symmetry is
aligned with the streamwise direction and coincides with the centreline for the flow. At a
streamwise distance x from the wake generator, the rate of change of A = A(x) is given
by the integral of the local propagation velocity of the TNT interface over the entire
length of the interface. We can express this integral as Lvn where the characteristic local
entrainment velocity vn is in fact an average local propagation velocity in a sense defined
exactly in the Appendix. As the rate of change of A = A(x) can be approximated by
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U∞dA/dx far enough from the wake generator, we write

U∞

dA

dx
= Lvn (2.1)

where U∞ is the freestream velocity. This equation is derived in the Appendix from first
principles, namely incompressibility and the motion of iso-lines.

The instantaneous radial distance RI of the TNT interface from the centreline is a
function of streamwise distance x, azimuthal angle φ around the centreline and time t
and is defined in a 2D plane normal to the centreline. At a distance x from the wake
generator where the turbulent wake is statistically axisymmetric around the centreline,
the probability density function (pdf) of RI is independent of φ and only a function of
x. To determine this pdf P (RI ;x) one can collect statistics over time and φ in a 2D
plane and test whether this pdf scales with the wake width δ(x), as first suggested by
the intermittency results of Corrsin & Kistler (1955) and as one might expect in the
self-similar region of the turbulence wake, i.e. whether P (RI ;x) = δ−1p(RI/δ). Such a
pdf of RI would suggest† that A(x) ∼ δ2(x) allowing us to determine the scalings of vn
from

U∞δ
dδ

dx
∼ Lvn. (2.2)

Sreenivasan et al. (1989) introduced and demonstrated the idea that the TNT interface
is fractal with a well-defined fractal dimension, which in the case of our 2D planes would
be the fractal dimension D of the TNT interfacial line in the plane, D being such that
1 6 D < 2. The length L of the interfacial line in the 2D plane at x can therefore be
estimated in terms of D, δ(x) and a characteristic thickness ηI(x) of the interface as
follows:

L ∼ δ(ηI/δ)
1−D. (2.3)

To close equations (2.2) and (2.3) so that vn(x) can be obtained from δ(x) we follow
Corrsin & Kistler (1955) and adopt ηI ∼ ν/vn. This yields

vn/U∞ ∼ (
δU∞

ν
)

1−D
D (

dδ

dx
)1/D. (2.4)

The dependence of the wake width δ on streamwise distance x is critically depen-
dent on the scalings of the centreline turbulence dissipation rate ǫ0(x) (see Vassilicos
(2015); Dairay et al. (2015) and references therein). Dairay et al. (2015) showed, for the
axisymmetric self-similar turbulent wake, that

δ(x)/θ ∼ (
x− x0

θ
)β (2.5)

and

u0(x)/U∞ ∼ (
x− x0

θ
)α (2.6)

where θ is the momentum thickness, x0 is a virtual origin, u0 is the centreline velocity

† The word “suggest” can be replaced by the word “imply” if the interface has only one
intersection with nearly every single radial line at nearly every single time in the 2D plane

normal to the x-axis. In such a case, A(x) is the time average of 1

2

∫
2π

0
R2

I(φ, x, t)dφ where
RI(φ, x, t) describes the TNT interfacial curve in that 2D plane at x at time t. Given axisym-
metry and ergodicity, it is then possible to write A(x) = π

∫
∞

0
R2

IP (RI , x)dRI which directly

implies A(x) ∼ δ2(x) if P (RI ;x) = δ−1p(RI/δ).
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deficit; the exponents β = −α/2 = 1+m
3+m are determined by the scalings of ǫ0, i.e.

ǫ0(x) ∼ (
U∞Lb√
K0δ

)mK
3/2
0 /δ (2.7)

where Lb is the size of the wake generator and K0 is the centreline turbulent kinetic
energy. The exponent m = 0 corresponds to the well-known classical scaling of the tur-
bulence dissipation which is consistent with the Kolmogorov equilibrium theory (see
Dairay et al. (2015) and Vassilicos (2015)). The exponent m = 1 corresponds to the non-
equilibrium dissipation scalings found in various high Reynolds number turbulent flows
(Vassilicos (2015), Goto & Vassilicos (2015)). And m = 1/2 is the exponent reported by
Dairay et al. (2015); Dairay & Vassilicos (2016)) for the kind of moderate Reynolds num-
ber axisymmetric self-similar turbulent wakes which we study in the following section.

The scalings of vn, obtained from (2.4) and (2.5), are given by

vn/U∞ ∼ (
U∞Lb

ν
)

1−D
D (

x− x0

θ
)−γe (2.8)

where γe =
β(D−1)

D + 1−β
D .

We need to compare these scalings with those of the Kolmogorov velocity uη ∼ ν/ηK ∼
(νǫ0)

1/4 and to do this we need (2.7), (2.5) and the scalings of K0 which can be obtained
from (2.5), (2.6) and the Townsend-George relation† K0 ∼ U∞u0dδ/dx (see Dairay et al.

(2015)). We obtain

uη/U∞ ∼ (
U∞Lb

ν
)−1/4(

x− x0

θ
)−γη (2.9)

where γη = β(1+m)
4 + ( 3−m

8 )(β + 1).
The dissipation scaling (2.7) implied by the Kolmogorov equilibrium cascade phe-

nomenology (see Vassilicos (2015), Dairay et al. (2015) and Obligado et al. (2016)) cor-
responds to m = 0 which implies β = 1/3 and therefore γη = 7/12 and γe = (1+D)/3D.
There is one and only one value of D for which γη = γe and therefore vn/uη is inde-
pendent of x and this is D = 4/3. This value of D is also the one for which vn and uη

have the same dependence on global Reynolds number U∞Lb/ν. Interestingly, this value
of D corresponds to the fractal dimension observed experimentally by Sreenivasan et al.

(1989) and most recently by Mistry et al. (2016) in the far axisymmetric jet (see also
references in Mistry et al. (2016) to other papers where such fractal dimension values are
found). This value 4/3 of D is a direct consequence of the Kolmogorov length-scale’s ν3/4

dependence on ν as it also is in the arguments given for it by Sreenivasan et al. (1989).
In conclusion, if m = 0 and D = 4/3, then vn ∼ uη and ηI = ν/ue ∼ ηK in the sense

that vn and uη on the one hand and ηI and ηK on the other have the same dependencies
on U∞Lb/ν and x and therefore scale together. This is the case classically envisaged.

However, there are flow regions in various flows where the turbulence dissipation scal-
ing is not the one implied by the Kolmogorov equilibrium cascade but has a new non-
equilibrium form (see Vassilicos (2015), Goto & Vassilicos (2015), Dairay et al. (2015)
and Obligado et al. (2016)). Such a flow region exists for example in high enough global
Reynolds number self-similar axisymmetric turbulent wakes in the range of streamwise
distances between about 10Lb and O(100Lb) where the turbulence dissipation scales as

† This relation can actually not be found in Townsend (1976) and George (1989) but Townsend
(1976) correctly predicted that K0 is proportional to the Reynolds shear stress (the Townsend
relation) and George (1989) was the first to predict that the Reynolds shear stress scales as
U∞u0dδ/dx (the George relation). These two relations together give K0 ∼ U∞u0dδ/dx which
was ironically predicted by neither Townsend (1976) nor George (1989) who had K0 ∼ u2

0.
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(2.7) with m = 1 (Dairay et al. (2015); Obligado et al. (2016); Dairay & Vassilicos
(2016)). (The m = 0 scaling appears further downstream (Redford et al. (2012)) and
for reasons different from the Kolmogorov equilibrium cascade, see Goto & Vassilicos
(2016b).) The value m = 1 implies β = 1/2 and therefore γη = 5/8 and γe = 1/2 for any
value of D. In this case

vn/uη ∼ (
U∞Lb

ν
)

1−D
D

+1/4(
x− x0

θ
)1/8 (2.10)

demonstrating clearly that the local entrainment velocity is fundamentally different from
uη. As in the previous case, though, vn and uη have the same Reynolds number depen-
dence if D = 4/3 but not otherwise.

Interestingly, if one defines a Taylor length-scale velocity uλ = ν/λ instead of uη =
ν/ηK , and if one takes λ to scale according to ǫ0 ∼ νK0/λ

2 then (2.7), (2.5) and m = 1
yield uλ ∼ (U∞Lb

ν )−1/2(Lb/θ)(
x−x0

θ )−1/2 which has the exact same dependence on x as
vn. The ratio vn/uλ is independent of x and depends on Reynolds number according to

vn/uλ ∼ (
U∞Lb

ν
)

1−D
D

+1/2. (2.11)

The implication for the characteristic thickness is ηI = ν/vn ∼ λ(U∞Lb

ν )−( 1−D
D

+1/2)

where λ ∼ (U∞Lb

ν )−1/2δ. The thickness ηI is therefore effectively λ in the high Reynolds
number non-equilibrium case m = 1 only if D = 2. Otherwise, ηI and λ have the same
dependence on x but different dependencies on Reynolds number U∞Lb

ν , in fact ηI/λ is

an increasing function of U∞Lb

ν but ηI/δ ∼ (U∞Lb

ν )
1−D
D is a decreasing function of U∞Lb

ν .
The conclusion is that, when m = 1, the characteristic thickness ηI sits between λ and

δ and grows with x in the same way as λ.

3. DNS of an axisymmetric turbulent wake

In this section we test the assumptions made and results obtained in the previous
section with a DNS of a spatially developing axisymmetric turbulent wake generated by
a bluff plate placed normal to the incoming laminar free stream. The length Lb is the
square root of the area of the plate. In such wakes, the turbulence is clearly axisymmetric
for x/Lb > 5 and the profiles of the mean flow, turbulent kinetic energy, turbulence
dissipation and Reynolds shear stress are self-similar for x/Lb larger than 10 or 20 (see
Dairay et al. (2015); Dairay & Vassilicos (2016)). The relations (2.5), (2.6) and (2.7) are
therefore valid for x/Lb > 10 and, more specifically, the turbulence dissipation scaling
is given by (2.7) with m = 1 in the range x/Lb = 10 to x/Lb = O(100) provided that
the Reynolds number U∞Lb

ν is large enough, for example 40000 as in the laboratory
experiments of Nedić et al. (2013), Dairay et al. (2015) and Obligado et al. (2016).
At normalised distances x/Lb beyond O(100) one expects to find (2.7) with m = 0 as
suggested by the DNS of temporally evolving wakes of Redford et al. (2012).
Unfortunately, current state-of-the-art DNS of spatially developing axisymmetric tur-

bulent wakes cannot reach such high Reynolds numbers and such far downstream dis-
tances. The massively parallel such DNS of Dairay et al. (2015) reached U∞Lb

ν = 5000 and
x/Lb = 100 with about 109 grid points. The spatial resolution ∆x = ∆y = ∆z = Lb/32
of the DNS’s uniform Cartesian grid was always below 4ηK between x/Lb = 10 and
x/Lb = 100. The results for m = 0 and m = 1 of the previous section are therefore
beyond the reach of such DNS. However, in their moderate Reynolds number turbulent
wake, Dairay et al. (2015) reported an intermediate dissipation scaling (2.7) withm = 1/2
between x/Lb = 50 and x/Lb = 100. In this work we use the exact same DNS code and
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β α γη γe

m = 0 1/3 −2/3 7/12 1+D
3D

m = 1/2 3/7 −6/7 ≈ 0.61 3

7
+ 1

7D

m = 1 1/2 −1 5/8 1/2

Table 1. Values of the exponents β in equation (2.5), α in equation (2.6), γη in equation (2.9)
and γe in equation (2.8) for different turbulence dissipation scalings (2.7): m = 0 in the classical
scaling case, m = 1/2 in the moderate Reynolds number non-equilibrium case and m = 1 in the
high Reynolds number non-equilibrium case. D is the fractal dimension of the TNT interfacial
line in the y − z plane; 1 6 D < 2.

same flow configuration and parameters as Dairay et al. (2015) to test the assumptions
made and results obtained in the previous section in the range 50 6 x/Lb 6 100 and
for m = 1/2. Dairay et al. (2015) validated their simulations of spatially developing
axisymmetric turbulent wakes against experimental data.

The previous section’s relations (2.5) to (2.9) remain valid for m = 1/2 but with
β = 3/7, γe = 3/7 + 1/(7D) and γη ≈ 0.61 (see table 1). In this section we use the DNS
to verify our assumptions (i) P (RI ;x) = δ−1p(RI/δ) and A ∼ δ2 (subsection 3.1) and
(ii) the fractal nature of the TNT interface with (2.3) and ηI ∼ ν/vn (subsection 3.2);
and to test our results (2.8) with γe = 3/7+1/(7D) and (2.9) with γη ≈ 0.61 (subsection
3.3).

A detailed description of the DNS code and flow configuration is given in Dairay et al.

(2015) and references therein and we do not repeat it here for economy of space. The
incompressible Navier-Stokes equations are solved with the massively parallel version
of the code Incompact3d which is based on sixth-order compact schemes for spatial
discretisation on a Cartesian mesh and a third-order Adams-Bashforth scheme for time
advancement. An immersed boundary method is used to model the wake-generating bluff
plate following the procedure of Parnaudeau et al. (2008). The plate is the same as the
one used in the DNS and experiments of Dairay et al. (2015) and Nedić et al. (2013): it
has an irregular (fractal-like) periphery which results in higher local Reynolds numbers in
the flow for the same global Reynolds number U∞Lb

ν . In the present case, the local Taylor
length-based Reynolds number Reλ varies slowly and remains close to 55 throughout the
range 50 6 x/Lb 6 100. The DNS of Goto & Vassilicos (2015) suggest that the non-
equilibrium dissipation exponent m = 1 appears most clearly at values of Reλ larger
that about 100 or so. The absence of m = 1 in the present DNS and those of Dairay
et al. (2015); Dairay & Vassilicos (2016) is consistent with this observation.
We adopt inflow/outflow boundary conditions in the streamwise direction with uniform

streamwise velocity U∞ without turbulence at the inlet and a one-dimensional convection
equation at the outlet. The streamwise and two lateral directions are all orthogonal to
each other and the streamwise size of the computational domain is Lx = 120Lb whereas
the lateral sizes are Ly = Lz = 15Lb. The plate is located at a distance 10Lb from the
inlet. We collect several variables, including the instantaneous fluid velocity components
u in the x direction, v in the y direction and w in the z direction and the modulus ω of
the instantaneous vorticity vector ∇ × (u, v, w) at every grid point of seventeen lateral
planes separated by a streamwise distance 5Lb from x/Lb = 20 to x/Lb = 100. These
planar data are collected every fifth time step in a simulation run of 200000 time steps
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Figure 1. Definition of interface with examples of the ω field in a y−z plane (left) and A/(LyLz)
versus ωth/ωmax (right). The two plots are given at two different values of x/Lb (x/Lb = 60 on
the left and x/Lb = 90 on the right) to give a feel of the fact that the interface is well-defined at
all the values of x/Lb considered here. These plots are very similar at all streamwise positions
where we saved planar data.

which corresponds to approximately 109 vortex shedding periods. The initial condition
of our simulation is a fully developed instantaneous field obtained and stored by Dairay
et al. (2015).

3.1. DNS results: radial position of interface and area of turbulent region

We define the intersection between the TNT interface and one of our 2D planar cuts in
effectively the same way that various authors have defined the TNT interface in terms
of a volume fraction in 3D space (see da Silva et al. (2014), Watanabe et al. (2015),
Watanabe et al. (2016). We define the area At containing all the points in the y−z plane
where ω is larger than a certain threshold ωth at time t. Figure 1(left) shows an example
of an instantaneous snapshot of the ω field in the y − z plane at x/Lb = 60. Similar
ω field snapshots can be obtained at other x/Lb locations. The area At takes different
values for different choices of ωth, but the presence of the TNT interface means that At

will be approximately constant over a significant range of thresholds. Figure 1(right) is a
plot of A (normalised by LyLz so as to have an area fraction) defined as the time-average
of At conditional on ωth(t)/ωmax(t) where ωmax(t) is the maximum value of ω at time t
in the plane considered and where ωth(t)/ωmax(t) is kept constant even though ωmax(t)
varies with t. Plots of instantaneous values of At/(LyLz) versus ωth/ωmax(t) look very
similar. A plateau is clearly visible in figure 1(right) between ωth/ωmax = 4 · 10−4 and
10−2. A similar plateau is also clearly present at all the other streamwise locations where
we saved planar data, however over slightly different ranges of ωth/ωmax for different
locations (e.g. between 2 · 10−4 and 10−2 at x/Lb = 50). (We have repeated the exact
same procedure with ωth(t)/ωav(t) where ωav(t) is the instantaneous average of ω in the
y − z plane considered, and with ωth/ω(x, 0, 0) where ω(x, 0, 0) is the time-average of ω
at the intersection of the centreline and the y− z plane considered and all our results in
this paper remain the same except that the actual values of ωth(t)/ωmax(t), ωth(t)/ωav(t)
and ωth/ω(x, 0, 0) are of course different.)
Given the plateau in plots such as figure 1(right), it is possible to define the TNT

interface location in a y−z plane with any normalised threshold ωth(t)/ωmax(t) between
= 4 · 10−4 and 10−2. Once such a threshold has been chosen, it is then possible to obtain
the radial positions RI(x, φ, t) of the interface from its intersections with radial straight
lines at various azimuthal angles φ in the y − z plane at x. These radial straight lines
start from the centreline’s position y = z = 0 in this plane. Relatively rarely is there
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more than one intersection between one of these straight lines and the TNT interface. In
such cases the value of RI that we take is the largest one.

Statistics of RI at a given streamwise location x/Lb can be obtained by sampling over
φ and time t. An example is the average interfacial radius RI(x) which is a function only
of x (averages over φ and t having been taken). An example of such average interfacial
radii is give in figure 2(left). For this plot, the threshold defining the TNT interface is
ωth/ωmax = 4 · 10−4 but we have checked that RI(x) does not vary significantly if larger
values of this normalised threshold are chosen up to about 7 · 10−3.

Figure 2(left) concentrates attention in the range x/Lb = 50 to 100 where Dairay et al.

(2015) found the m = 1/2 dissipation scaling and shows that RI(x) ∼ δ(x) in agreement
with original claims by Corrsin & Kistler (1955). More specifically,

RI(x) ≈ 1.6δ(x) (3.1)

in our case.
The definition of the wake width of an axisymmetric turbulent wake is

δ2(x) =
1

u0

∫ ∞

0

(U∞ − U)rdr (3.2)

where U = u is the mean streamwise velocity averaged over φ and t and therefore function
of x and radius r, and u0(x) equals U∞−U(x, r = 0) where r = 0 marks the intersection
of the plane with the centreline. Following the practical procedure taken in Dairay et al.

(2015) the integral in (3.2) is carried out up to r = 7Lb, and U∞ in u0(x) and in (3.2) is
replaced by u(x, r = 7Lb). This takes care of the finite size of the computational domain
and avoids negative values of U∞ − U . The plots in figure 2, where both RI(x) and A
are normalised by δ(x), are obtained with this procedure for δ(x) as are all other plots
in this paper where δ(x) is required.

Figure 2 supports both scalings, RI(x) ≈ 1.6δ(x) and A(x) ∼ δ2(x), the latter scaling
being an important assumption in the theoretical arguments of section 2. The quality of
these scalings does not change significantly with normalised threshold ωth/ωmax. More
generally, we find that the PDF P (RI ;x) takes a self-similar form normalised by δ(x) in
the investigated range 50 6 x/Lb 6 100 (see figure 3), namely

δ(x)P (RI ;x) = p(RI/δ(x)) (3.3)

where the function p(RI/δ(x)) is well approximated by a Gaussian of RI

δ(x) − 1.6 with a

variance of 1.1 in the range −3/2 < RI

δ(x) − 1.6 < 3/2. Corrsin & Kistler (1955) were the

first to suggest that this PDF may have an approximate Gaussian form.
Figure 3 includes two plots, one of P (RI ;x) versus RI at different values of x/Lb and

one of δ(x)P (RI ;x) versus RI/δ(x) which demonstrates the collapse according to (3.3).
These particular plots have been obtained with normalised thresholds ωth/ωmax which
vary between 6 · 10−4 and 10−3 at different streamwise positions x/Lb for reasons which
are explained in subsection 3.2. However there is no appreciable difference if these plots
are obtained with the same threshold for all streamwise locations as long as ωth/ωmax is
chosen between 4 · 10−4 and 7 · 10−3.

3.2. DNS results: fractal nature of the TNT interface and ηI ∼ ν/vn

We now test the assumption that the intersection of the TNT interface with a y − z
plane is a fractal line over some range of length-scales. To test this assumption we use
the well-known box-counting algorithm (Mandelbrot (1982), Sreenivasan et al. (1989),
Mistry et al. (2016)) and count the number of squares of side-size ηB required to cover
the TNT interfacial line in the 2D plane. We repeat this counting for about a fifth of all
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Figure 2. RI(x)/δ(x) (left) and A(x)/δ2(x) (right) versus x/Lb. These plots were obtained
with ωth/ωmax = 4 · 10−4 at all x.
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Figure 3. Interfacial radial location PDF: P (RI ;x) versus RI at different values of x/Lb (left)
δ(x)P (RI ;x) versus RI/δ(x) (right) for different values of x/Lb. The normalised threshold
ωth/ωmax used to define the TNT interface at each x/Lb varies between 6 · 10−4 and 10−3

according to figure 5(left). There is no appreciable difference if these plots are obtained with
the same ωth/ωmax at all x/Lb as long as ωth/ωmax is chosen between 4 · 10−4 and 7 · 10−3 (see
figure 1).

our time-samples and then calculate the average number of such squares of size ηB . This
average number is N(ηB) and it is obtained for a range of ηB values from ηK to a few
times δ. An example of the outcome of this procedure is given in figure 4(left).

For all the 2D planes between x/Lb = 50 and 100 tried here, there is a well-defined
range of sizes ηB where N(ηB) can be fitted as N(ηB) = Nδ(ηB/δ)

−D with D > 1. The
exponent D is the fractal dimension of the TNT interfacial line in the 2D y − z plane
and we find it to be equal to 6/5 ± 0.02 at all the streamwise locations that we have
interrogated (see figure 4). At smaller length-scales ηB , the dimension D is close to 1 as
it should be. This finding supports the assumption that the TNT interfacial line is fractal
in every 2D lateral plane between x/Lb = 50 and 100. Its non-integer fractal dimension
is defined over a range of scales which spans one decade. †

Even thoughD = 6/5±0.02 irrespective of streamwise position in the streamwise range
tested, Nδ varies significantly with x if we keep the value of ωth/ωmax the same for all our

† We checked that the TNT interface is equally wrinked in parts of x − y and x − z planes
extending from x/Lb = 50 to x/Lb = 100 by confirming that the fractal dimension of the TNT
interfacial line in such planes is also well defined over an equally broad range of scales and also
equal to 6/5± 0.02.
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2D planes (the same happens when we use ωth/ωav or ωth/ω(x, 0, 0) instead of ωth/ωmax).
There is no irrefutable reason why the downstream evolution of the interface should be
traced with the same threshold ωth/ωmax (or ωth/ωav or ωth/ω(x, 0, 0)) at all streamwise
positions x. The dynamics of the interfacial region are actually such that the normalised
threshold range over which the time-average area A has a plateau in figure 1(right) varies
a little with x and ωmax varies with both time and x too. However, Nδ should remain
constant with x for a self-similar turbulent wake. We therefore identify a set of different
normalised thresholds ωth/ωmax for different streamwise positions, see figure 5(left), for
which Nδ is approximately constant, see figure 5(right). These normalised thresholds are
all within the minimal range 4 · 10−4 and 7 · 10−3 which is part of the range where A
has a plateau for any x/Lb between 50 and 100. We have checked that the value of D
remains within 6/5± 0.02 with these thresholds. (The results are effectively the same if
ωth/ωav or ωth/ω(x, 0, 0) is used instead of ωth/ωmax with a similar variation in ωth/ωav

and ωth/ω(x, 0, 0) by a factor of about less than 2 but different actual values for ωth/ωav

or ωth/ω(x, 0, 0).)
The fractal nature of the TNT interfacial line enters the theoretical considerations of

section 2 via the length L in equations (2.3) and (2.2). We therefore calculate an estimate
of the time-averaged interfacial length at resolution ηB . This is L(ηB) = ηBN(ηB) and
an example is given in figure 4(right). A maximum value of lnL(ηB) is clearly visible in
figure 4(right) and it is present at all streamwise positions. This maximum demarcates
the scales ηB which are small enough to resolve the line as a set of points from the
scales ηB which are large enough for the line to be perceived as continuous. We take this
maximum value of L(ηB) to be the actual time-average length of the interface L. (We
verified this way of estimating L against a way based on the marching squares algorithm,
fully independently of the box-counting algorithm, and found good agreement.) In figure
6(left) we plot L(x)/Lb as a function of x/Lb. We find, as expected, that L is an increasing
function of x.

Equation (2.3) in section 2 follows from L ∼ L(ηB) for ηB = ηI . Indeed, L ∼ L(ηI) =
ηIN(ηI), N(ηI) = Nδ(ηI/δ)

−D and Nδ = Const yield (2.3). But the other important
assumption in section 2 is that L ∼ L(ηI) with ηI ∼ ν/vn. To verify this assumption, we
calculate vn from equation (2.2) with L estimated as described in the previous paragraph.
We then calculate L(ηI) = ηIN(ηI) = Nδδ(ηI/δ)

1−D with ηI = ν/vn and compare it
to L. The results of this comparison are given in figure 6. We find that L/L(ηI) is
approximately constant with x, in support of the way we use ηI ∼ ν/vn.
In conclusion, our DNS supports all the assumptions made in section 2, in particular

A ∼ δ2 (as shown in subsection 3.1) and L ∼ δ(ηI/δ)
1−D with ηI ∼ ν/vn. The actual

value of ηI for which L is equal (rather than just proportional) to L(ηI) is a value close
to λ as can be inferred from figure 4. However, ηI does not scale with λ (nor does it scale
with ηK) but with ν/vn. We checked that (ν/vn)/λ and (ν/vn)/ηK are not constant and
in fact vary significantly with x. The range of length-scales where the TNT interfacial line
in the 2D planes x/Lb = 50 to 100 is fractal is bound from below by an inner length-scale
proportional to ν/vn and from above by a multiple of δ.

3.3. DNS results: Kolmogorov and local entrainment velocities

Having found DNS support for the assumptions made in section 2 we now use our DNS
to assess the main results of the theoretical arguments in that section, namely equations
(2.8) and (2.9). As shown by Dairay et al. (2015), the dissipation scaling in the range
x/Lb = 50 to 100 of the axisymmetric turbulent wake of our DNS is such that m = 1/2
which mean that we need to assess equations (2.8) and (2.9) against our DNS results with
γe = 3/7+1/(7D) for (2.8) and γη ≈ 0.607 for (2.9) (see table 1). Indeed,m = 1/2 implies
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Figure 4. Time-average number N(ηB) of squares of side-size ηB needed to cover the TNT
interfacial line in the 2D plane x/Lb = 60 versus ηB/Lb (left) and ηBN(ηB) versus ηB/Lb

for the 2D plane x/Lb = 80 (right). The left and right ln− ln plots are given for different
streamwise positions to give an impression of variability. The fractal dimension is well-defined
over one decade and found to equal 6/5 ± 0.02 in the range x/Lb = 50 to x/Lb = 100. The
values ηB = ηK , λ and δ are indicated in the plots for reference.
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the dotted line in the right plot represents the power law dependence on x given by (2.8) with
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Figure 8. vn/uη versus x/Lb. For comparison the dotted line represents
(x − x0)

γη−γe = (x − x0)
0.059 which is the x-dependence predicted for vn/uη from (2.8)

and (2.9) if m = 1/2, D = 6/5 and x0 is the same virtual origin as the one in (2.5) and (2.6).

β = 3/7 which implies γe =
β(D−1)

D + 1−β
D = 3/7+1/(7D) and γη = β(1+m)

4 + 3−m
8 (β+1) ≈

0.607.
Figure 7(left) shows that the DNS returns an x-dependence of uη/U∞ which is in

good agreement with (2.9) and γη = 0.607 in the range x/Lb = 50 to 100. However, as

can be seen in figure 7(right), the agreement between (2.8) with γe = β(D−1)
D + 1−β

D =
3/7+1/(7D) = 0.5476 (forD = 6/5) and the DNS is less good even though the decreasing
downstream nature of vn/U∞ is well captured and is not too far from the data. These
data have been produced by calculating the local entrainment velocity vn from (2.2),
(2.5) and the previous subsection’s DNS estimate of L. The agreement with (2.8) where
γe = 0.5476 cannot be expected to be too good given that D varies around 6/5 from one
streamwise position to the other and given the uncertainty on how to exactly follow the
TNT interfacial line in terms of vorticity thresholds from one streamwise position to the
other. Even so, the prediction that vn/uη is not constant but a very slowly increasing
function of x is supported by our DNS (see figure 8).
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4. Conclusion and discussion

It is not always true that the local entrainment velocity vn scales with the Kolmogorov
velocity uη. As we have argued in this paper, this depends on the turbulence dissipation
scalings, at least in the case of self-similar axisymmetric turbulent wakes.

Recent studies have shown that the local entrainment velocity scales with the Kol-
mogorov velocity and that the thickness of the TNT interface scales with the Kolmogorov
length-scale in some turbulent flows (Holzner & Lüthi (2011), Watanabe et al. (2015),
Watanabe et al. (2016)). This conclusion may have been reached because the regions
of the flows studied are such that the turbulence dissipation scalings are classical, as
one may for example expect extremely far downstream in a turbulent wake (Redford
et al. (2012)), or because the effect can be imperceptible (see figure 8), as in nearer field
axisymmetric self-similar turbulent wakes when the Reynolds number is not high enough.

Our DNS study has concentrated in a region of a turbulent wake where the turbulent
flow is statistically axisymmetric and self-similar and where the dissipation scalings are
given by (2.7) withm = 1/2. We have presented theoretical arguments which demonstrate
that the local entrainment velocity and the thickness of the TNT interface do indeed
scale with the Kolmogorov velocity and length-scale respectively when m = 0. This
is the dissipation scaling usually considered, for example in textbooks (e.g. Tennekes &
Lumley (1972), Townsend (1976), Pope (2000)). However, the same theoretical arguments
lead to the conclusion that vn does not scale with uη when m 6= 0 and that vn has the
same dependence on downstream streamwise distance as ν/λ when m = 1 even though it
has a different dependence on global Reynolds number. The case m = 1 corresponds to
the non-equilibrium dissipation scaling found in various turbulent flows at high enough
Reynolds numbers (Vassilicos (2015); Goto & Vassilicos (2015); Obligado et al. (2016)).

Our theoretical arguments have been based on the idea, already present in Corrsin &
Kistler (1955), that interfacial statistics scale with the wake width δ(x) and in particular
that the time-averaged area A of the fully turbulent region in a plane normal to the
mean direction of the flow scales with δ2. Our DNS data have provided good support for
A ∼ δ2 in the range 50 6 x/Lb 6 100. This is the first time that such a result has been
obtained by any means, whether experimental or numerical. We have also shown that
the PDF of the radial interface location is self-similar and scales with δ, at least in that
range. This kind of result finds its roots in Corrsin & Kistler (1955) and has been verified
in various flows since then, such as turbulent jets (Watanabe et al. (2014), Mistry et al.

(2016)) and turbulent mixing layers (Attili et al. (2014)) but this is the first time that
it has been obtained in a DNS of a spatially evolving turbulent wake. Furthermore, we
find that the PDF of the radial interface location is approximately Gaussian in our flow,
in agreement with the original suggestion by Corrsin & Kistler (1955) and with similar
findings in various other turbulent flows including time-evolving wakes (Bisset et al.

(2002)), turbulent boundary layers (Chauhan et al. (2014), Borrell & Jiménez (2016),
turbulent jets (Westerweel et al. (2009), Watanabe et al. (2014), Gampert et al. (2014),
Mistry et al. (2016)) and turbulent mixing layers (Attili et al. (2014)).

The other important assumption of our theoretical arguments is that the TNT inter-
facial line in 2D planes normal to the mean direction of the flow has fractal properties.
Our DNS has provided support for this assumption and has returned a fractal dimension
D = 6/5± 0.02 at the streamwise locations x/Lb = 50 to 100 where our DNS study has
concentrated attention. The DNS results also support the scaling of the relevant inner
length-scale ηI with ν/vn, somehow echoing the arguments of Corrsin & Kistler (1955).

It is interesting that D is appreciably different from the more usual value 4/3 which
follows from a Kolmogorov scaling of the TNT interface (see paragraph under equation
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(2.9) in section 2). This finding is consistent with the non-Kolmogorov scalings of the
TNT interface when m 6= 0. In the flow region studied by our DNS, m = 1/2. In the
same flow region, m = 1 when the Reynolds number is sufficiently higher (see Vassilicos
(2015), Dairay et al. (2015), Obligado et al. (2016)).

In the DNS of Redford et al. (2012) and Goto & Vassilicos (2016b) and the wind tun-
nel experiments of Valente & Vassilicos (2012, 2014) the dissipation scaling morphs quite
suddenly from m = 1 to m = 0 far enough downstream. The DNS of decaying periodic
turbulence of Goto & Vassilicos (2016b) suggest that this happens when the large-scale
coherent structures weaken enough for their presence to stop affecting turbulence statis-
tics significantly. This suggests that different local TNT interface scalings for vn and ηI
may exist in the presence or absence of engulfment (see Corrsin & Kistler (1955), da Silva
et al. (2014)), and that engulfment may be closely related to non-equilibrium turbulence
cascade and associated dissipation scaling exponents m 6= 0, in particular m = 1, whereas
the prevalence of nibbling (see Corrsin & Kistler (1955), da Silva et al. (2014)) may be
associated with the usual dissipation scaling exponent m = 0. We are currently pursuing
this new research direction and hope to report on it soon.
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Appendix A

In this appendix we present the proof of equation (2.1) and the related exact meaning
in which vn is an average local propagation velocity.

Integrating the incompressibility condition over the 2D region inside an iso-enstrophy
line in the y − z plane at a given streamwise coordinate x we have

∫

At(x)

(
∂u

∂x
+

∂v

∂y
+

∂w

∂z
)dydz = 0 (A1)

where At(x) is the region of the 2D plane covering the higher enstrophy side of the iso-
enstrophy line considered. The surface area of this region is At(x) =

∫

At(x)

dydz. Using

Gauss’s divergence theorem in the y − z plane we get
∫

At(x)

∂u

∂x
dydz = −

∫

At(x)

(
∂v

∂y
+

∂w

∂z
)dydz = −

∫

∂At(x)

(v, w) · ndl (A 2)

where n is the 2D unit vector in the y − z plane that is normal to the iso-line defining
the border ∂At(x) of the 2D region At(x) and pointing outwards.
Defining the normal fluid velocity Vf ≡ (v, w) ·n and the average normal fluid velocity

Ṽf ≡ L−1
t

∫

∂At(x)

Vfdl where Lt is the instantaneous length of the iso-enstrophy line

∂At(x), (A2) becomes
∫

At(x)

∂u

∂x
dydz = −LtṼf . (A 3)

Clearly, Ṽf is the average of Vf over the instantaneous iso-enstrophy line ∂At(x) and is,
as such, a function of time t and streamwise position x.



15

We now seek a formula for d
dx

∫

At(x)

udydz:

d

dx

∫

At(x)

udydz = lim
δx→0

1

δx







∫

At(x+δx)

u(x+ δx)dydz −
∫

At(x)

u(x)dydz







=

∫

At(x)

∂u

∂x
dydz + lim

δx→0

1

δx







∫

At(x+δx)

u(x+ δx)dydz −
∫

At(x)

u(x+ δx)dydz






.

(A 4)

The bracketed term in the second line of (A4) is the difference between the surface
integrals of u(x+δx) over At(x+δx) and At(x) respectively. The difference between these
two surface integrals is, to leading order, equal to the curvilinear integral

∫

∂At(x)

uVnδtdl

where δt ≡ δx/u and Vn is the instantaneous local velocity of the iso-line ∂At(x) normal
to itself in the y − z plane at x. Hence, (A4) becomes

d

dx

∫

At(x)

udydz =

∫

At(x)

∂u

∂x
dydz +

∫

∂At(x)

Vndl. (A 5)

Making use of (A3) and defining the average normal propagation velocity Ṽn ≡ L−1
t

∫

∂At(x)

Vndl

leaves us with

d

dx

∫

At(x)

udydz = L(t)(Ṽn − Ṽf ). (A 6)

Both Ṽn and Ṽf are functions of x and t and Ṽn − Ṽf is the line-averaged propagation
velocity of the iso-line ∂At(x) relative to the fluid. Averaging over time both sides of
(A6) and using the Reynolds decomposition u =< u > +u′ yields

d

dx
<

∫

At(x)

< u > dydz >=< L(t)(Ṽn − Ṽf ) > (A 7)

where <> denotes time average. (We set <
∫

At(x)

u′dydz >= 0 and confirmed that this

is indeed a very good approximation in our DNS, in fact increasingly so with increasing
x/Lb as the ratio of <

∫

At(x)

u′dydz > to <
∫

At(x)

< u > dydz > is less than 7 · 10−3 at

x/Lb = 50 and about 4 · 10−3 at x/Lb = 100.) At x/Lb ≫ 1, < u > −U∞ ≪ U∞, as for
example confirmed by Dairay et al. (2015), and (A7) simplifies and becomes (2.1), i.e.

U∞

dA

dx
=< L(t)(Ṽn − Ṽf ) >= Lvn (A 8)

which determines the exact sense in which vn is an average local propagation velocity:

vn =<

∫

∂At(x)

(Vn − Vf )dl > /L. (A 9)

To check how well the left hand side of (2.1) approximates the left hand side of (A7) we
have used the one saved 3D realisation in our disposal (one time shot) of our DNS flow
and have calculated the ratio of d

dx

∫

At(x)

udydz to U∞
dAt

dx for one particular time t but
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for all streamwise positions x/Lb between 50 and 100. This instantaneous ratio is within
1± 0.05 for the vast majority of values of x/Lb and equals 0.998 when averaged over x.

Whereas (A8) can only be used in turbulent wakes, (A6) and (A7) can also be used in
jets which opens an avenue for generalisation of this paper’s approach to other turbulent
shear flows.
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