Low Mach number prediction of the acoustic
signature of fractal-generated turbulence

Sylvain Laizet ** Veronique Fortuné” Eric Lamballais
John Christos Vassilicos®

& Turbulence, Mizing and Flow Control group,
Department of Aeronautics, Imperial College London,
South Kensington Campus, London SW7 2AZ, UK

b Department of Fluid Flow, Heat Transfer and Combustion, Institute PPRIME,
Université de Poitiers, ENSMA, CNRS,
Téléport 2 - Bd. Marie et Pierre Curie B.P. 30179
86962 Futuroscope Chasseneuil Cedex, France

Abstract

In this work, we compare the acoustic properties of a fractal square grid with those of
a regular grid by means of a hybrid approach based on Lighthill’s analogy and Direct
Numerical Simulation (DNS). Our results show that the sound levels corresponding
to our fractal square grid of three fractal iterations are significantly reduced by
comparison to a regular grid of same porosity and mesh-based Reynolds number.
We also find a well-defined peak at a Strouhal number between 0.2 and 0.3 in the
acoustic spectrum of our fractal square grid which is absent in the case of our
regular grid. We explain this effect in terms of a new criterion for quasi-periodic
vortex shedding from a regular or fractal grid.
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1 Introduction

Recent research on turbulence generated by fractal grids [11, 21, 25] showed
that such flows have some unusual properties which could be interesting for
noise reduction. Experimental measurements [22, 23] undertaken in an ane-
choic chamber have shown that a reduction in sound pressure levels was ob-
tained at low frequencies, while an increase in sound pressure levels was ob-
tained at high frequencies, and overall, a slight reduction in sound pressure
levels was recorded with inclined fractal spoilers relative to inclined solid and
regular grid spoilers.

Our aim in the present work is to use DNS for the investigation of the acoustic
field generated by a fractal grid and compare with that of a regular grid. A
fractal square grid and a regular grid (see figure 1) of equal blockage ratio
and mesh-based Reynolds number are investigated and compared in order to
capture the influence of the shape of the grid on the acoustic field, but also to
attempt to understand how the acoustic field is modified when it is generated
at different scales simultaneously.

Identifying the mechanisms responsible for the production of sound by turbu-
lent flows remains to date an extremely difficult task, even for very extensively
studied problems, like jet noise. Experimental studies are generally not suffi-
cient when knowledge about the physical mechanisms of noise production is
required. DNS allow the calculation of all unsteady flow quantities and can
help to investigate the aerodynamically generated sound. The direct compu-
tation of sound by solving the compressible Navier-Stokes equations provides
both the aerodynamic field and the acoustic field simultaneously [7, 6, 1], but
the very high cost of this direct approach remains a limiting factor. As a re-
sult, flow-generated acoustic fields are often predicted via a hybrid approach
[24, 10], using acoustic analogies or wave extrapolation methods.

In the present work, DNS of turbulent flows generated by a regular and a
fractal grid are carried out as in [17], thanks to a novel efficient parallel version
of a solver called Incompact3d which solves the incompressible Navier-Stokes
equations [13, 14, 15]. The acoustic radiation from the flow across the grids
is then evaluated thanks to a hybrid approach based on the Lighthill acoustic
analogy.

2 Flow simulations

The main goal of the flow simulations reported in this section is to provide
the velocity and pressure fields necessary for the evaluation of the acoustic
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Fig. 1. Scaled diagrams of the two different grids used in this numerical study: a
reqular grid (left) and a fractal square grids with an aspect ratio t, of 8.5 (right),
where t, is the ratio between the biggest and smallest lateral thicknesses.

sources and associated sound radiation for each grid.

2.1 Numerical methods

To solve the incompressible Navier-Stokes equations, we use the in-house nu-
merical code Incompact3d which is based on sixth-order compact schemes for
spatial discretization and a third-order Adams-Bashforth scheme for time ad-
vancement. To treat the incompressibility condition, a fractional step method
requires to solve a Poisson equation. This equation is fully solved in spectral
space via the use of relevant 3D Fast Fourier transforms (FFT). With the help
of the concept of modified wavenumber introduced by [18], the divergence free
condition is ensured up to machine accuracy.

The modelling of the grids is performed by an Immersed Boundary Method
(IBM). The present IBM is a direct forcing approach that ensures the no-slip
boundary condition at the wall of the grid. The idea is to force the velocity to
zero at the wall of the grids, as our particular Cartesian mesh does conform
with the geometries of the grids. Note finally that the pressure and velocity
mesh are staggered by half a mesh to avoid spurious pressure oscillations
introduced by the IBM. More details about the present code and its validation,
especially the original treatment of the pressure in spectral space, can be found
in [13].

Because of the size of the simulations, the parallel version of Incompact3d
has been used. Based on a highly scalable new 2D decomposition library and
a distributed FFT interface, this code can be used on thousands of computa-

tional cores. More details about this efficient parallel strategy can be found in
[15].



2.2 Description of the grids

The fractal square grid consists of different sized squares placed in a fractal-
square-like pattern (see figure 1, right). The fractal grid is completely char-
acterised by: (i) its number of fractal iterations, here N = 3; (ii) its number
47 of square patterns at iteration j (j = 0,1,2 for N = 3); (iii) its lengths
L; = R} Ly and lateral thicknesses t; = RJty (in the plane of the grid, nor-
mal to the mean flow) of the bars making the squares at iteration j. Here,
R, =0.343, R, =1/2, Ly = 0.5L,, where L, and L, (with L, = L) are the
lateral sizes of the computational domain (see figure 2); (iv) its thickness ratio
t. = to/ts = tmaz/tmin = 8.5, i.e. the ratio between the lateral thickness of the
bars making the largest square and the lateral thickness of the smallest.

The blockage ratio o of the two grids, defined as the ratio of their total area
in the lateral plane to the area T? = L, x L,, is ~ 32%. The fractal square
grid considered here does not have a well-defined mesh size. This is why [11]
introduced an effective mesh size for multiscale grids, M sy = %\/1 -0
where P is the perimeter length in the (y — z) plane of the zero-thickness
fractal grid, i.e. where all thicknesses ¢; have been artificially set to zero for
the calculation of P. The multiscale nature of the fractal grid influences M,y
via the perimeter P which can be extremely long in spite of being constrained
to fit within the area 7? = L, x L.. However, this definition of M.ss also

returns the regular mesh size M, when applied to the regular grid.

The effective mesh size is fully determined by our choices of parameters char-
acterising the fractal grid and it turns out that M.;r = (40/3)t,in. The regular
grid considered here has its mesh size M equal to the effective mesh size of
the fractal grid. The lateral thickness of the bars ¢, making the regular grid
is uniquely determined by o = %’(2 — tﬁb) and M. In terms of minimum lat-
eral thickness t,,;, of the fractal grid it is ¢, = 2.6t,,;,. Note finally that the

streamwise thickness of the bars for both grids is 2.4%,,;,.
2.8  Numerical parameters

The computational domain is L, X L, X L, = 460.8%,,i,, X 115.2¢,,;, X 115.28,,4,
discretized on a Cartesian mesh of n, X n, x n, = 2305 x 576 x 576 mesh
nodes. It is split in 3,456 computational cores. For each grid, the simulation
is performed with a Reynolds number Rey;, s = 4000 (based on M.ss and the
streamwise upstream velocity U, this Reynolds number value corresponds to
a velocity of about 2.5m/s in a wind tunnel at usual ambient conditions).

Inflow /outflow boundary conditions are used in the z-direction and periodic
boundary conditions in the y direction for —L,/2 and L,/2 and in the z
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Fig. 2. Schematic view of the flow configuration for the fractal square grid.

direction —L,/2 and L,/2. The time step At = 0.015¢,,;,/Us is low enough
to satisfy the CFL condition. The streamwise position of the grids (z, = 10,
from the inflow boundary of the computational domain, see figure 2) has been
carefully chosen to avoid any spurious interactions between the modelling of
the grid and the inflow boundary condition (see figure 2 for a schematic view
of the flow configuration). The inflow profile is a uniform flow field U, without
any turbulence perturbations.

2.4 Allustration of the turbulent flows

An illustration of the flow obtained in both cases is given in figure 3, where en-
strophy isosurfaces are plotted. These isosurfaces are the enstrophy normalised
by its maximum over the y — z plane at the x—position considered, and as a
result the decay of the turbulence is not visible on these plots. The one obvious
difference in these visualizations between the turbulent flow generated by the
regular grid and the turbulent flow generated by the fractal square grid is that
the latter is clearly more intermittent. The fact is also that these two different
types of turbulent flows are generated in different ways. In the regular grid
case, same-size wakes interact within a couple of mesh sizes from the grid and
mix together in a uniform fashion close to the grid. In the fractal grid case,
[16, 21, 17] suggested that the smallest bars on the grid generate the smallest
wakes which meet and mix together at the smallest distance from the grid,
whereas larger bars generate larger wakes which meet and mix at a further
distance from the grid, and that this process repeats itself from the smallest
to the largest turbulence-generating scales on the grid in a way which causes
the turbulence to progressively intensify over a protracted distance from the
grid. The turbulence generation followed by the turbulence decay are clearly
visible in figure 4 (left) for both grids. In this figure, we plot the maximum
of the turbulent kinetic energy k.. over every (y — z) plane as a function



Fig. 3. Turbulent flows generated by the regular grid (top) and by the fractal grid
(bottom). Specifically, 3D isosurfaces of (in blue) the absolute value of the enstrophy
vector normalised by its mazrimum over the y — z plane at the x-position considered
and of (in green) the x—component of the vorticity normalised by its maximum over
the y — z plane at the z-position considered. The value on both isosurfaces is 0.7.

of the streamwise coordinate x. It is clear from this figure that the present
fractal grid generates higher turbulent kinetic energy than the regular grid,
even very close to the grid. This trend is confirmed in figure 4 (right) where
we plot the streamwise evolution along the centreline of the Reynolds number
Rey = u/\/v based on the Taylor micro-scale. Note that the spatial resolution
in the present simulation is such that the mesh lengths Ax = Ay = Az < 4n
in the entire domain, where n = 3%~/ is the Kolmogorov scale, and ¢ is



the turbulent kinetic energy dissipation rate per unit mass. The fractal square
grid generates values of Re, about three times larger than the regular grid
in the downstream centreline region 200 < x /., < 450 for the same Rey;, .
and the same blockage ratio. The experimental results obtained by [11] with
fractal square grids also showed a significant enhancement of Re) values over
the extent of the downstream decay region which they were able to probe.
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Fig. 4. Streamwise evolution of the mazximum of the turbulent kinetic energy (left)
and the Reynolds number based on the Taylor micro-scale (right) along the centreline
for the two grids.

A detailed analysis of the flow dynamics can be found in [17]. The main re-
sults of their study are as follows: (i) fractal square grids generate protracted
regions of higher vorticity and turbulence intensity than regular grids (except
very close to the grid and perhaps also extremely far downstream where the
turbulence generated by either grid has decayed so much that the local tur-
bulent Reynolds numbers have become comparably small); (ii) the vorticity
field is more intermittent or more clustered when generated by fractal square
grids than by regular grids, at least in the downstream region accessed by the
simulations; (iii) the flow holds clear geometrical imprints of the turbulence-
generating grids quite far downstream, especially for the fractal square grids;
(iv) two turbulent regions can be clearly observed, one where the turbulence
progressively amplifies closer to the grid followed by one where the turbulence
decays.

In the following section, we investigate the sound production associated with
the turbulent flow for both grids.

3 Methodology for acoustic prediction

The acoustic fields generated by the flow across each grid are evaluated via
a hybrid approach based on the Lighthill analogy [19]. Lighthill’s equation is
an exact reformulation of the Navier-Stokes equations in order to obtain an
inhomogeneous wave equation describing the sound generated in a medium



at rest by the fluctuating stresses embedded in a localised domain, called the
source domain. The associated solution can be obtained with the use of a
Green function. As in our configuration the source domain also involves solid
boundaries, we use the following formulation of the integral solution, following
[4] and [5]

1 0 x—yl\ dV
o (X,t) = — Ti; b= 1
Pa(x,1) 4m 8xi8xjv ! <y Co x —y| .
_18/ 0 t_‘x_y| n ds
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(puwiuj + pdy; — Tij) (y,t - Y]

for the acoustic pressure p, in the ambient medium, at the observer position x
and the time ¢. p is the pressure, p the density, u the velocity field in the source
domain V', S the surface of the solid boundaries and n the outward normal
from the fluid, T;; = puju; + (p — c2p)di; — 7;; is the Lighthill source term,
where 7;; are the viscous stresses and cg is the sound velocity in the ambient
medium. The viscous contribution is negligible for flows with relatively high
Reynolds numbers, and the approximated value of the Lighthill source term
T;; =~ pu;u; is generally retained for isothermal flows at low Mach numbers.
Note that the source quantities in the integrands of equation (1) have to be
evaluated at retarded times ¢t — |x —y|/co.

For a far field location at an observer point (|x| > |y|), [4] showed that (1)
can be approximated by

1 xz; 0
W(x,1) = iy I / T, dv 2
P (X ) 471'03 |X|3 8t2v [ ]] ( )
1 10
T I jx| ot [pui] i dS (3)
s
S
where [...] denotes the fact that the source quantities are evaluated at retarded
times.

As stated by [4], the sound field can be viewed as the sum of three contribu-
tions: (i) the volume integral corresponding to (2) and representing the effects
of the hydrodynamic fluctuations in the flow domain; (ii) the first surface inte-
gral corresponding to (3) representing the effect of mass flow rate fluctuations



through the surface and (iii) the second surface integral corresponding to (4)
representing a flux of momentum and pressure through the surface. If there is
zero normal velocity at the surface, only the surface integral associated with
the pressure remains.

From the equation of the acoustic pressure, dimensional analysis can be carried
out in order to evaluate the scaling of the acoustic intensity I with the acoustic
Mach number of the flow Ma. For compact sources, it is shown in [19, 4, 3]
that the volume integral contribution (2) induces a scaling of I as Ma®, while
the surface contributions associated with (3) and (4) induce scalings of [
as Ma* and Ma® respectively. In the present configuration of grid-generated
turbulence, we consider only a flow at low Mach number, so the contributions
of the surface integrals (3) and (4) are expected to be dominant, according
to the Mach scaling laws. We choose to use a control surface S surrounding
the actual solid surface of the grid (because the latter is very complex to
define accurately). In such case where a shifted control surface S is used, the
contributions of momentum flux through the control surface in (4) have to be
retained, but the surface integral (3) associated with the mass flow rate is zero
because the flow is stationary upstream of the grid (this contribution is also
zero because the acoustic sources are estimated via incompressible DNS data).
Finally, the formulation that we have retained here to estimate the acoustic
pressure is only based on the surface integral (4).

It is important to note at this point that the present methodology based on
the estimation of surface integrals actually accounts for the sound generation
by the turbulent flow itself. In fact the surface integrals are not the actual
physical sources of sound, but represent the diffraction by the solid surface of
the sound generated by the turbulent flow. It is well known that the diffraction
process is the main contributor to the sound production, for a flow at low Mach
number, as shown by [9] in the case of the sound radiated by a flow around a
cylinder.

The present acoustic methodology was successfully tested on the sound ra-
diated by a flow of constant velocity U over a circular cylinder of diameter
D (see figure 5). For simplicity, a low Reynolds number was considered with
Re = UD/v = 150 allowing us to perform a purely 2D calculation in a compu-
tational domain of L, x L, = 20D x 12D using the mesh n, x n, = 361 x 217.
For this simple model problem, accurate reference data DNS have been made
available by [12] through a direct computation of sound approach. Using the
incompressible acoustic sources from the present 2D DNS combined with the
acoustic prediction tool, a good agreement with the reference data of [12] has
been shown by [8]. In this work, we consider the sensitivity of the prediction
with respect to the distance between the location of the control surface and
the body surface. As the distance between the control surface and the body
surface is quite small, a reliable acoustic prediction can be obtained by taking
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Fig. 5. Acoustic prediction of the sound generated by the flow around a circular
cylinder of diameter D, based on the surface integrals of equation 4. At the top,
map of spanwise vorticity and surfaces used as control surfaces (cylinder in black
and shifted surface with a diameter 2D in dashed line) ; at the bottom, acoustic
pressure signals vs. distance of the cylinder centre obtained by using the solid surface
as control surface in cyan, and that obtained by using the shifted surface as control
surface in red.

correctly into account the momentum flux contribution through the control
surface as expressed in (4). For instance, it is clear from figure 5 that the
acoustic pressure obtained by using a shifted control surface (the line in red
in figure 5) compares very well with the acoustic pressure obtained by using
the cylinder’s solid surface as control surface (the line in cyan in figure 5).

The acoustic pressure in the present regular and fractal grid flow configurations

is obtained from the surface data recorded at two planes Sy / Ss, located at
one mesh node before/after the grid and parallel to the grid, as shown in figure

10



6 . The final formulation of the acoustic pressure that we use in the present
work can be expressed as

—4mey pa(x,t) =

X [Op dp
Al 8t]ds —/Mds
Sl - S2
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TR / o | P _/ o | P
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with (XY, Z) the coordinates of the observer point and R = v/ X2 + Y2 + Z2.
The computational estimations of the corresponding integrals have to be car-
ried out carefully so as to take into account the difference in propagation dis-
tance between two source points because their respective contributions must
be collected at different emission times so that they reach the observer point
at the same time. It is therefore necessary to perform interpolations of the
source fields known at discrete points and times to obtain the values at the
exact position and time imposed by the integrals at retarded times. The results
presented in the following section are obtained with the aid of an optimised
acoustic algorithm which was developed to give access to acoustic fields gener-
ated by unsteady flows [20]. It is based on an advanced time approach [2] and
an iterative selection of source-observer pairs involved in the sound generation
process at a given time-step. It has already been used to compute successfully
the sound radiated by a mixing layer [20] and a wake behind a cylinder [8].

4 Acoustic results

In this section, the procedure presented in the previous section is applied to
the computation of the acoustic fields radiated by the flow and pressure fields
from the DNS. From the simulation of each flow, 3200 source fields in the
two surfaces S; and S, located at one mesh node before and after the grid
(see figure 6) are stored during a time duration of 720 t,,;,,/Us.. Our acoustic
predictions are made for a flow with a Mach number Ma = Uy /co = 0.1. We
start by computing the acoustic fields radiated in an observer plane located

11



Fig. 6. Schematic visualization of S1 and Sy inside the computational domain. Sq is
located one mesh before the fractal grid and Sy is located one mesh after the fractal
grid.

at Z = 0. The observer plane of size 1000 t,;, X 1000 ¢, contains 10°
mesh nodes. Examples of these acoustic pressure fields at a given observer
time are shown in figure 7 for both the regular and the fractal grids. There are
clear differences between the two fields. Perhaps surprisingly, the fractal grid’s
acoustic field seems more regular than the regular grid’s, and the number of
wavefronts captured within the same area is lower in the case of the regular grid
(about 4 wavefronts) than in the case of the fractal grid (about 10 wavefronts).
The amplitudes of these wavefronts are also slightly larger for the fractal square
grid than for the regular grid.

Figure 8 shows the time evolution of the acoustic pressure at a given observer
location, the same location for both cases. As in figure 7 but even more clearly,
we observe that the pressure signal corresponding to the fractal grid is more
regular than for the regular grid, and that this regularity occurs at a relatively
high frequency and with comparatively high amplitude. In these figures the
contributions of the terms associated with the pressure and with the momen-
tum flux are also shown. We note that the contribution associated with the
momentum flux is dominant in the case of the flow generated by the fractal
grid, while both contributions play a significant role in the case of the regular
grid. Similar results are obtained for other observer locations.

12
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Fig. 7. Acoustic pressure fields generated by the reqular grid at
top and by the fractal grid at bottom, in the observer plane
(=500 tmin < X < 500 tmin, —500 tmin < Y < 500 tyin, Z = 0), at the
observer time t = 81 tyin/Us. The centre of the regular/fractal grid is located at
(0,57.2t1in,0). The DNS computational domain is represented by a long rectangle
on the center right of the pressure fields, and the grid is represented by a vertical
line near the left size of the rectangle.
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Fig. 8. Sample of the time evolution of the acoustic pressure at the observer location
(250 timin, 433 tmin, 0), corresponding to location 2 in figure 9, for the regular grid
(top) and for the fractal grid (bottom).

From our pressure signals at various observer locations we can obtain the
frequency spectrum (in dB) corresponding to the Sound Pressure Level SPL =
10log10(p?,,,./P%) where p,,s is the root mean square of the pressure signal
at a given location and py = 2x107°Pa is the reference value in standard
atmospheric conditions. For the computation of this spectrum the pressure
signals are divided into seven overlapping sections windowed by a Hanning
function. We plot the SPL spectrum as a function of dimensionless Strouhal
number St = ft,,i,/Us where f is a frequency; see figure 9 where we plot the
SPL spectrum SPL(St) at four different locations relative to the grid for both
grids. The spectra corresponding to the fractal square grid and the regular
grid are the red and blue curves respectively.

Our main finding is twofold. Firstly, the sound levels corresponding to the
fractal grid are significantly reduced compared to those of the regular grid at
Strouhal numbers smaller than 0.2. This is the range of frequencies where most
of the sound lies in the case of the regular grid. Secondly, a well-defined peak
appears at St between 0.2 and 0.3 in the case of the fractal grid. This peak is
absent in the case of the regular grid and corresponds to the frequency of well-
defined oscillations observed in figure 8 (bottom). This is a comparatively loud
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peak reaching dB values higher than anything else in Figure 9. Note that the
location and intensity of the peak are independent of the observer location.
This peak observed in the sound levels can also be observed in the power
spectra of the streamwise fluctuating velocity very close to the fractal square
grid, as shown in figure 10 and previously observed in [17]. At a distance
of 5M.ss downstream from the fractal square grid on the centreline of the
flow, the power spectra of the turbulent kinetic energy exhibit a well-defined
peak at a frequency similar to the peak observed in the sound levels. Further
downstream from the grid, we observe a broad spectrum with an approximate
f~5/3 power-law shape for the fractal square grid but not for the regular grid.

Note that there is no peak in the frequency spectrum of the turbulent kinetic
energy at a distance 5M.¢; from the regular grid. This is a striking difference
from what is observed with our fractal grid and can be explained as follows.
Assuming that the peak at St between 0.2 and 0.3 originates from an approx-
imately periodic street of vortices separated by a streamwise distance Uy, / f;
where f, is the shedding frequency, then this vortex street can only exist if
the distance from the grid where two neighboring wakes meet is much longer
that about twice Uy, / fs. As shown in [21] the distance from the grid where the
wakes of two identical neighboring bars meet is approximately 0.5L? /t;. The
vortex street will therefore not have a chance to exist if 0.5L3/t; is smaller
or comparable to 2U,,/ fs. For a vortex street emanating from a bar of thick-
ness ¢; to be clearly present it is necessary that 2Us/fs < 0.5L? /t;. Using
Sty = f L this introduces a new dimensionless number (L;/t; )QSt and a
related necessary condition for presence of an approximately periodic vortex
street (assuming the Reynolds number allows it) which is (L;/t;)*Sts > 4.
One usually expects St, not to be too far from 0.2.

This criterion immediately explains why there is no peak in the frequency
spectrum of the turbulent kinetic energy downstream of the regular grid
where (L;/t;)* = (M/t,)* ~ 26.3. When applied to the fractal grid, this
criterion implies that only the wakes emanating from the smallest bars (of
length L, = L, /8 and thickness ty = t,,;,,) can have a quasi-periodic vortex
structure because (Lo /t3)?St, > 4. For the other size bars, (L;/t;)?St, and
(Lo/ty)*St, are larger though comparable to 4, hence no quasi-periodic vor-
tex street structure can be expected from these larger bars. The peak in the
frequency spectrum of the turbulent kinetic energy downstream of the regular
grid must therefore be at a frequency f which corresponds to the shedding
frequency of the smallest bars and is such that ft,:,/Us is around 0.2, as
indeed we find.

The peak frequency in the energy spectrum corresponds to the peak frequency
in the acoustic spectra, St = ft,,in/Us between 0.2 and 0.3. This peak in the
acoustic spectrum is most probably the signature of the near-periodic vortex
street emanating from the smallest bars on the fractal grid. The large number
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Fig. 9. Comparison of acoustic spectra measured for four different locations for both
grids.

of smallest bars on our fractal grid (larger than the number of (Lg,t) and
(Li1,t;) bars) may explain the high intensity of the narrow-frequency sound
they create. At frequencies higher than St ~ 0.3, the sound levels drop to
relatively low values and two harmonics can be observed at Strouhal numbers
approximately equal to 0.6 and 0.9. For an idea of the frequencies involved,
a Strouhal number of 0.3 corresponds to f = 5100H z for Uy, = 0.1¢y, ¢g =
340m/s and t;;, = 2mm in which case this peak is barely audible to the
human ear.
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Fig. 10. Power spectra of the streamwise velocity fluctuations in time for two differ-
ent streamwise location on the centreline of the flow for the regular grid (left) and
the fractal grid (right).

5 Conclusion

In this work, we have shown that the sound levels corresponding to our par-
ticular fractal grid are significantly reduced compared to those of the regular
grid at Strouhal numbers smaller than 0.2, and that a well-defined peak at
St between 0.2 and 0.3 exists in the case of our particular fractal grid. We
introduced a necessary condition for the existence of quasi-periodic vortex
streets with well-defined peak acoustic frequencies which is that (L;/t;)%St,
should be much larger than 4. Our regular grid does not satisfy this condition
and therefore wakes from its different bars mix together too early for a clear
periodic signal to be possible. On the other hand, our fractal grid is such that
quasi-periodic fluid motions from the smallest bars are possible but not from
the intermediate and larger ones. This new understanding of how peaks can
appear in acoustic spectra originating from flows generated by fractal grids
opens the possibility of designing fractal grids which are quieter than regular
ones at the low frequencies without the presence of loud noise peaks at specific
high frequencies. It also opens other possibilities, for example of creating a set
of particular tunes.

A couple of important questions remain which will have to be addressed in
future works.

(i) How does the fractal grid bring about the significant noise reduction at
frequencies smaller than St = 0.2 compared to a regular grid of same porosity
and same Reyy,,,?

(ii) The laboratory experiments of [22, 23] are different from the current nu-
merical experiments in two main respects: the grids where designed as spoil-
ers in the case of [22, 23] and had extra frames surrounding them; they were
mounted on a wall thus making the boundary conditions different from our
periodic ones. Nevertheless, both the laboratory and the numerical experi-
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ments suggest a noise reduction in particular ranges of frequencies. When the
fractal and the regular spoilers of [22, 23] were mounted at 90° to the wall and
to the incoming flow (as opposed to the 30° inclination which these authors
mostly studied) the fractal spoilers returned a noise reduction over all acces-
sible frequencies (including between 300 Hz and 10000H z). Hence, boundary
conditions as well as frames and different angles of attack can of course have
very important influences on the acoustic signatures of fractal (and regular)
grids and spoilers and will need to be addressed in detail in the future.

One of the difficulties, of course, is that the numerical studies required to ad-
dress these questions rely on High Performance Computing and must therefore
be limited in scope. Answers to the remaining open questions will require the
design of different grids (some with more fractal iterations, i.e. larger N, some
without perfect fractal iterative structure, i.e. Ry and R; being different at
different fractal iterations, some with different shapes of the main pattern of
the grid which is square here but [11] also tried other patterns, etc); and they
will also require DNS runs and Lighthill analogy calculations for a range of
velocities, Reynolds numbers and Mach numbers.

Our results indicate that it is possible to passively shape the acoustic signa-
tures of fractal aerodynamic objects such as spoilers, grids and fences just by
adjusting their fractal design. Our results therefore warrant further research
into this new topic.
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