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Time-dependent geometry and energy distribution in a spiral vortex layer
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The purpose of this paper is to study how the geometry and the spatial distribution of energy fluctuations of
different length scales in a spiral vortex layer are related to each other in a time-dependent way. The numerical
solution of Krasny[J. Comput. Phys65, 292 (1986], corresponding to the development of the Kelvin-
Helmholtz instability, is analyzed in order to determine some geometrical features necessary for the analysis of
Lundgren’s unstrained spiral vortex. The energy distribution of the asymptotic solution of Lundgren charac-
terized by a similar geometry is investigated analyticéllyin the wavelet radius-scale space, with a wavelet
selective in the radial direction, ar(@) in the wavelet azimuth-scale space, with a wavelet selective in the
azimuthal direction. Energy in the wavelet radius-scale space is organized in “blobs” distributed in a way
determined by the Kolmogorov capacity of the spPale[1,2] (which determines the rate of accumulation of
spiral turn3. As time evolves these blobs move towards the small scale region of the wavelet radius-scale
space, until their scale is of the order of the diffusive length sale wheret is the time andv is the
kinematic viscosity. In contrast, energy in the wavelet azimuth-scale space is not localized, and is characterized
by a shear-augmented viscous cutoff proportional#t®. An accelerated viscous dissipation of the enstrophy
and energy of Lundgren’s spiral vortex is found @g>1.75, but not foD<1.75.
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PACS numbes): 47.27—i

I. INTRODUCTION Flohr and Vassilicod15], Angilella and Vassilicod16]).
One of the main effects of the winding up of a vortex layer is
Experimental as well as numerical analyses of the smalthe generation locally in the flow of an entire range of length
scales of fully turbulent flows have shown that intense vor-scales(Lundgren[9], Moffatt [17], Gilbert[18,19, Vassili-
ticity is organized into thin vortex tubesee for example, cos and Hunf20]), from the overall length scale of the struc-
Cadot, Douady, and Coud¢t]; She, Jackson, and Orszag ture to a minimal scale imposed by molecular diffusion.
[2]; Ruetsch and Maxey3]; Vincent and MeneguzZi4]; The multiscale distribution of kinetic energy in a spiral
Jimenez et al. [5]). These structures are remarkable in thatvortex sheet is remarkable in that the scales involved are
their lifetime is relatively long, but their contribution to the linked to specific positions within the structure, in a way
spectrum of turbulence as well as their role in energy transfetletermined by the geometry of the spiral. It is this geometri-
and dissipation is still unknown. A complete understandingcal link between position and scale that motivates the wave-
of the physical properties of these vortices requires an accuet analysis we perform in Sec. lll, as it enables us to unfold
rate knowledge of their structure. Different formation pro- the distribution of energy in the wavelet position-scale space
cesses may lead to different structures. They may be formedrarge[21], Meneveal22]).
following a Kelvin-Helmholtz instability{6,1,7,8, which is To analyze the dynamical properties of a spiral vortex
known to lead to spiral vortex layers likely to diffuse into a sheet we need to know its geometry. Several kinds of spirals
tubular filament. An asymptotic solution of such a spiralexist in nature, such as the spiral of Archimedé® equa-
structure has been proposed by Lundgrghin the limit of  tion of which isr~ ¢ in polar coordinatesr( ¢)], the loga-
long times. Another formation process, based on the destaithmic spiral [r~exp(¢)], or the algebraic spiral
bilization of Burgers's strained vortex laygi0,11, has (r~¢~ %, a>0). The Birkhoff-Rott equation, which governs
been proposed by Passsttal. [12] and also leads to vortex the evolution of vortex sheet$], has spiral vortex sheet
tubes. solutions with a geometry depending on initial conditions.
Spiral vortices are barely observed in the small scales ofor example, it has a logarithmic spiral solutigambe
turbulent flows(see, however, the experimental analyses of23]), with strength that diverges at infinity, and another so-
Cadot, Douady, and CoudEt] and Nicolleau and Vassilicos lution in the form of a semi-infinite algebraic spiral vortex
[13]). This might be due to insufficient resolution, but also tosheet(Kaden'’s spiral 6]). An efficient tool to determine the
the fact that they are transient structures, as they diffuse intoategory of a spiral is the Kolmogorov capacifyactal di-
a vortex tubg(Lundgren[9,8]), and that this process may be mension. Indeed, it has been shown that among the three
accelerated by the geometry of the spifdhssilicos[14], spirals quoted abovArchimedes, logarithmic, or algebraic
only the algebraic spiral has a nontrivial well-defined Kol-
mogorov capacity(Vassilicos and Hun{20]). This means
*Present address: LEMTACNRS UMR 7563, 2 Av. de la Fore  that when covering the algebraic spiral with boxes of $jze
de Haye, 54504 Vandoeuvre, France. the minimal numbem(l) of boxes required to cover the
TAuthor to whom correspondence should be addressed. structure satisfies
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[ —Dg 3r
N(I)zN(L)(E) for p<l<L, (1)
whereDy €]1,7 is the Kolmogorov capacity, is the over- > 25
all length scale of the structure, anglis the scale below 8
which this power law is no longer satisfied. For example, ¢ 5|
fractals have a well-defined Kolmogorov capadisge Fal- g
coner[24]). In the case of the algebraic spiral definedrby g
~ ¢~ * we have(Vassilicos and Hunf20]) N 157
D=1 ! 2 ir
T .
Note that relation(2) is valid for a spiral with a relatively 05,

small number of resolved turrisee the Appendix df20]).

In this paper we will apply this tool to a numerical solu-
tion of the Birkhoff-Rott equation corresponding to a double- 3r
branched spiralSec. I), in order to determine its geometry
(logarithmic or algebraic We will then investigate the time-
dependent energy distribution in the vortex solution of
Lundgren[9] (Sec. Il) with a geometry similar to that de-
termined in Sec. Il, in both the wavelet radius-scale and
wavelet azimuth-scale spaces. Finally, we will analyze the
decay of enstrophy and energy of this vortex laffec. 1\).

We now briefly present Lundgren’s spiral vortex.
Lundgren[9] proposed a family of long-time asymptotic
solutions of the Euler and Navier-Stokes equations involving
spiral vortex sheets. In the case of inviscid fluids and for a
two-dimensional double-branched spiral the asymptotic (
— + ) solution reads 05

0 0.2 0.4 - 0.6 0.8 1
Iz
o(r,¢,t)=2my(r)[o(¢—Q(r)t)+ o(p—m—Q(r)1)],
3 FIG. 1. One-dimensional cut through the azimuthal velocity

field u, of Lundgren’s spiral vortex sheet, plotted from E¢®)—
where w denotes vorticity S is a delta function;y(r) is the  (8), for two different timest; andt,>t,, and for an arbitrary de-
vorticity averaged over a circle of radiusand()(r) is an  creasing angular frequen€y(r). Velocity unit isRQ(R). Discon-
angular frequency characteristic of a differential rotation. Bytinuities correspond to the position of the vortex sheet. The dashed
writing that the flux of vorticity across a disk of radius line shows the azimuthal mode=0 [i.e., rQ(r)]. As time ad-
equals the circulation along its perimeter we héivendgren ~ vances, velocity jumps decrease, and will eventually vanish due to
[9]) viscosity.

2.51

azimuthal velocity

1.5¢

—+ oo

d
Amry(r)= q[2ar20(n)]. 4 Ug(r,bt)= > Un(r,t)e??, (6)

This last relation manifests the fact that vorticity is not ayit,
passive scalar, but is the curl of velocity. Equati@ is a
long-time asymptotic solution of the vorticity equation pro- Uo(r)=rQ(r) (7)
vided Q(r) is monotonically decreasin@ee Lundgref9]).
One can check that the jump in tangential velocity across thand
vortex sheet is 2Zy(r)/[|Q'(r)|t] (Saffman[6], Pullin and
Saffman[25]).

Following Lundgren[9] we expand thes functions into
Fourier modes to get

Un(r,t)=(2a—1)

1 ) 1
—2inQ(r)t -
2ine +0 tz)’ n#=0 (8)

r
t
in the limit t— +. We therefore neglect the radial move-
ment of the fluid in the limitt— +, so that the kinetic
energy per unit mass i%sufﬁ. This inviscid solution can eas-
ily be extended to the viscous ca&ze Sec. I). Figure 1
Integration of Eq.(5) in the case wher€)(r)~r Y« (fol-  shows a plot of the azimuthal velocity,(r, ¢,t) versus for
lowing the method of Vassilicos and Brass¢@6]) shows two different times, obtained from Eq)—(8), and for an

that the radial component of velocity scales@&?), and  arbitrary decreasing angular frequerieyr) (300 azimuthal
that the azimuthal component reads Fourier modes are uspdAs time advances, velocity jumps

+ o0

o(r,¢,t)=2y(r) Z g2inlé—Q(nt]. )
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(which can be thought of as velocity fluctuatiprdecrease ' ' ‘ ' ‘ ' ' '

and will eventually vanish due to viscosity. oz
At this stage it is important to focus our study with a = WL=05
< e . . U2
specific choice of the angular velocif@(r). Indeed, the
choice Q(r)~r Y is arbitrary and has to be justified by UL =15
means of experimental or numerical observations. To do this,

we analyze in the next section a numerical solution of the v

Birkhoff-Rott equation corresponding to the development of
the Kelvin-Helmholtz instability. This numerical solution is UL =25
provided by the desingularization procedure of Krasny
[27,28. The choice of()(r) is important for two reasons.
First, the mathematical calculation of the wavelet transform
of the velocity relies heavily on the form of the phaseaugf
that is, Q(r)t. Secondly, the angular velocity determines UUL =45
some geometrical characteristics of the spiral, in particular
its Kolmogorov capacityfractal dimensiojy which, as dis-

-10 -08 -06 -04 -02 00 02 04 06 08 10

cussed in Sec. IV, can seriously affect dissipative properties. L
A logarithmically decreasindg)(r) leads to a logarithmic
spiral, which is known to have a Kolmogorov capadiy FIG. 2. Evolution of the interface between two adjacent streams

=1 (Vassilicos and Hunf20]). In contrast, ifQ(r) is a _usir_lg adesingular@zation procedu&], for t>t.. The desingular-
decreasing power law the corresponding spiral has a nonirzation parameter ig/L =0.25.

tegral Kolmogorov capacity. ) . .
9 9 pacity tion to the analysis of Everson and Sreenivafat], who

concluded that Krasny’s spiral is close to a logarithmic one.
The fact that this spiral is of the form~ ¢~ ¢ suggests

that the roll up is due to a differential rotation of angular
A flat infinite vortex sheet of constant strength is known frequencyQ(r)~r =%, so that the equation of the spiral

to be linearly unstable to infinitesimal two-dimensional dis-might be approximated by

turbances (“Kelvin-Helmholtz” instability). Moore [29] _ e

showed that the accumulation of vorticity at every second $=Q(rt~r "t ©

inflection point of sinusoidal perturbations leads to a singuy, order to check that the points of the interface revolve

larity at a finite timet,. of the order ofL/U, whereU is the  5.5nq the center of the spiral with a well-defined angular

jump in tangential velocity of the vortex sheet abds the  fo4,ency()(r) we have plotted the coordinates of an indi-
wavelength of the disturbance. By modifying the Birkhoff- vidual point versus timeFig. 4). Clearly, fort>L/U the

Rott equations in such a way as to avoid the blow up of theqint revolves around the center of the spirahich is lo-
strength of the sheet at=t., Krasny[27,28 could compute 5104 at ¢ y)=(0,0)] as its distance to the center does not
an evolution of the sheet fdr>t.. This procedure is based 5y significantly in time, in agreement with the fact that
on the introduction of a desingularization paramefesuch  here is almost no radial movement. Note that the trajectory
that the strength of the layer is bounded by a finite valugg i tact elliptic, and this effect might be due to the stretch-

which tends tot+< as 6—0. Fort>{. the vortex sheet rolls g inquced by the periodic boundary conditions. The angu-
up around points where the strength is maximum, and takes

the form of a spiralsee Fig. 2 The spiral obtained from this 1000 : :
desingularization procedure is referred to as Krasny's spira N h
in this paper. o N

Il. GEOMETRICAL PROPERTIES OF KRASNY'S SPIRAL
VORTEX SHEET

A. Kolmogorov capacity

We have run a box-counting algorithm on the vortex sheet 190
displayed in Fig. 2, obtained from Krasny’s numerical pro-
cedure. Results are shown in Fig. 3, where the minimal num=
ber of boxeN(l) required to cover the structure with boxes

of sizel is plotted versu$. For short timest=t.) we have liu=03
N(I)~17%, so thatDx=1. During the roll-up processt ( 10 3:UL =25 ]
>t )N(I) tends to a law of the form T
N(H)~17133
N
corresponding td~1.33. This law holds folJt/L=2.5 14 L L .
and is valid over one decade of scaled (€[0.02,0.3). We 10 10 10 10

conclude from Eq(2) thata~2, in agreement with the mea- n

surements of Moffatf30] operated on a one-dimensional cut  FIG. 3. Plot of the minimal number of boxes of sizequired to
through Krasny'’s spiral. Note that this result is in contradic-cover the vortex sheet of Fig. 2.
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o FIG. 6. Evolution of the length of the vortex sheet of Fig. 2

FIG. 4. Evolution of the Cartesian coordinates)) of a point of ~ (solid line), together with prediction§l2) and (13) (dashed lines
the interface displayed in Fig. 2. Fort. the trajectory of the point
is close to a circle of radius= (x*+y?)Y?=const. The three length

scalesx, y, andr are plotted in units of. Ls(t)=] IdS,
spiral

lar frequency of such points can be measured, and Fig. 5 is a
plot of r2Q(r) versusr for a large number of points on the wheredsis the elementary arc length on the spiral:
interface, at=4.5_/U. It appears that in the range of radii

2
"/l <10:02,03 we have ds?=dr?+(rd¢)?=dr? 1+ ”99)_ (12)
Q(r)=cr 12 (10 dr
whereC=1.8UL Y2 The exponent of this power law, to- In the limit t—0 we haveds=dr and
gether with the range of scales over which this law is valid,
are in agreement with the estimationaebbtained fromN(I) L2
(Fig. 3. Lg(t)=2 dr=L. (12

0

B. Stretching of the spiral L
g P In the limit t— + o we haveds=rt|dQ/dr|dr, and the total

In order to further check the validity of Eq&) and(10) length of the spiral reads
for Krasny’s spiral, and in particular the time dependence of

¢, we calculate the total length of the layer predicted by such L2
a roll-up process: Lg(t)=2t fo [dQ/dr|rdr,

1

10 T

and by making use of approximati¢h0) we get
L(t)=LX2.5U/L. (13

Y . J The time range for which the laWl3) is valid is such that
~ ’-{:' rt|dQ/dr|>1 for all r €]0,L/2] [from Eq. (11)]. This con-
= ; KXY dition is verified as soon as>(L/2)Y*a/C, that is, whert
éﬁ S ,% >0.8L/U. Therefore, the transition between regimds®)
T~ . and (13) should occur at about one convective timéJ,
10" b . i which is also the order of the critical timg. Figure 6 shows
) L¢(t) computed from the spiral of Fig. 2, together with pre-
dictions (12) and (13). These predictions are well verified,
despite the fact that approximatid¢t0) is not valid in the
vicinity of the center of the spiralr(L<0.02) and at the
107 , ‘ periphery of the spiralr(L>0.2).
10° 10° 10 These results suggest that after vorticity concentrates at
the inflection point and reaches a value prescribed by the
FIG. 5. Determination of the angular velociy(r) (in units of ~ desingularization parametes, the sheet starts winding up
U/L) of the points of the interface at=4.5_/U. We have plotted into a spiral of the formp={(r)t, with Q(r) given by Eq.
rY«Q(r) with «=2 (as suggested by the box-counting analysis  (10).

/L
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C. Choice of the angular frequency which is required for the wavelet transform to conserve en-

The analysis of Krasny's spiral performed in this section€9Y: i.e.,
suggests a power-law choice for the angular frequéngy),

ie B 2 X o 2
e o] ez di=k | [f0ol%dx,

-1l
Q(r)=QO(§) ' (149 with K a finite constantsee, for example, Gasquet and Wi-

tomski[32], Farge[21], Hunt et al. [33]). The parametem

whereR is the radius of the overall structure afi, is the  in EQ. (16) is a constant which determines the number of

angular frequency of points locatedrat R. It also suggests ~oscillations of the wavelet. The moments of orgeer 0 of

that a~2, but we will not focus on this value in the remain- the wavelet are such that

der of this paper, and will more generally assuare0 (un-

less otherwise specified f
Note that the desingularization parameter used in the

present work is of the order of the length schlef the initial

disturbance §/L =0.25), so that the desingularization pro- so that they can be set as small as desired by choasing

cedure might influence the dynamics of the interface at thosgirge enough. We use this property of the Morlet wavelet in

scales where we observe a well-defined Kolmogorov capaghe calculation of the radial wavelet transformuf (Appen-

ity (Fig. 3) corresponding to a power-law angular frequencydix A). But our other motivation in choosing this wavelet is

(Fig. 5. Smaller values ofs lead to smaller spirals, i.e., that it allows for the method of stationary phases to be con-
spirals with an overall length scale of the ordersfvith the  veniently applied, as we do below.

same value ofDx=1.33 but in the approximative range
[0.16,6] (see also Moffatf30]). Therefore, the measures of
Dy andQ(r) performed in this section will have to be in-

+ o0
rPo(r)dr~mP exp —m?/2),

A. Radial wavelet analysis

terpreted with care. Future mathematical analyses of Kras- 1. Energy in the wavelet radius-scale space
ny’s de_singularization procedure might enable us to clarify \ye start from Eq(6). Using definition(15) the wavelet
this point. . , __transform ofu,(r,t)e?"® (for a fixed azimuthe) reads
In the next section we study the time-dependent relation
between spiral geometry and spatial distribution of energy 1 (R _ vt
fluctuations by operating a wavelet analysis on the velocity Un(r,é,1)= ﬁfo un(r’,t)ez'”¢0<|— dr’, (17

field u,(r,¢,t) [Eqgs.(6)—(8)] with Q(r) given by Eq.(14).

, where {,¢) are the polar coordinates of the position of the

lll. WAVELET ANALYSIS OF LUNDGREN'S SPIRAL wavelet and is the wavelet scale parameter. In Efj7) the

VORTEX summation is not performed ovéro,+o[ because we have

In this section we perform a one-dimensional waveletchosen to place the wavelet at radi [0,R] and to observe
analysis on a radial cut through Lundgren’s spiral vortexlength scaled such thatl <r andl<R~—r (see below, so
(“radial wavelet,” Sec. IllA), then on an azimuthal cut thatthe summation can be reduced to the intgf0a]. We
(“azimuthal wavelet,” Sec. 1l1B. We define the wavelet Show in Appendix A that the wavelet transform of
transform as follows. I denotes a spatial coordinate, the =r€}(r) is negligible in the limit wherd <r and|<R—r.

wavelet transform of a functiof(x) is Forn+0, we insert expressiof8) to get
¥ o X' —X T L ong2am (R e[ T
f(X,|):§fﬂc f(x")e I—)dX', (15 Un(r,d’,l)—ﬁe " Zint or e “nBrtg i dr’.
(18

where @ is the wavelet) is the scale of the wavelet, and the
length scaleR is introduced for dimensional purposes. In the
radial wavelet analysix denotes the radius, and in the

In Appendix B we calculate the above integral with the
method of stationary phases, and obtain

azimuthal wavelet analysisis the arc lengtls. The wavelet — 2412
: ; ~ . _ i It
we choose is defined by Un(r, b, 1) =A(1+i1)QoR(Qq|N|t) 3/2ezm¢(ﬁ“)
) 2 g/mx— g imx 2 w @ (V2L =n112a i (T in) (19)
f(x)=sin(mx)e =——>%; ¢ , (16) e e ,

in the limits|<r andl<R—r, andQqt>1, where
which is the imaginary part of the complex Morlet wavelet.
By taking the imaginary part we ensure the condition o (2|n|QOt| ) al(a+1)
Itn= T AP

amR ' (20

fﬂoa(x)dx: 0,

o and
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FIG. 8. Contour plot of the energy in the wavelet radius-scale

FIG. 7. Contour plot of the energy in the wavelet radius-scale>Pace obtained by computing 100 Fourier modes, and by taking

space, from Eq(23), for Qot=107 (a) and Qot=20m (b). The into account the contribution of the velocity induced by the point
Kolmogorov capacity i« =4/3 (a=2). The energy is organized VOrtex[r€(r)]. Plot (&) corresponds tdet=10m and plot @2

in blobs located in the vicinity of the curvie- or (dashed ling ~ Corresponds tdlet=20m. The Kolmogorov capacity iy =3
wheredr is the distance between consecutive coils of the spiral at 4¢ = 2)- Dashed lines correspond to the cufvedr, wheredr is
distancer from the centefEq. (24)]. Stars on the left hand side the distance between consecutive coils of t_he spiral at a dlstan_ce
indicate the position of the coils of the spiral 8%t=20m, and frpm the centefEq. (24)]. Notations and units are the same as in
stars on the right hand side indicate it@gt=10m. The accumu- "19- -

lation point(center of the spiralcorresponds to=0. Ast increases . .

the blobs are closer to the curlie &r. Bothr andl are nondimen- ~ Finally, by making use of Eq22) the wavelet energy for
sionalized by the radius of the spir@®), and energy is nondimen- <I', |<R—r, Q¢t>1 in the inviscid case becomes
sionalized by (,R)2.

€inviscid( > &,1)=B(QR)2(Qt) (¢~ 2@t D)

| )(4a+ Di(a+1)

2a-1 [1(1 _\]"* R
A= Va|=[=+1 — 2
4v2 al\a rn-r ,
xexr{—(l—) {1+siM4¢—2y(r))]},

is a nondimensional real constant. The phase Eq. (19) is 23)
defined in Eq.(B4) of Appendix B and is stationary in the
vicinity of ry;, . Note thafli,+U_, is real, in agreement with \yhere
the fact that bothu, (6) and the wavelet16) are real. We
also deduce from Eq19) that the energy of the-averaged ) (4at1)i(a+l)
~ —(a+4)/(at+1) B=2A¢ —
U, scales asgn| , so that asx—0 (Dx—2) the am
mode|n|=1 contains the largest amount of energy. In the
following we approximate the energy Gf;(r, ¢,l) by taking is a nondimensional constant.
into account only the mode| =1, and compare our analyti- We first notice from the exponential term in E§J3) that
cal results with full numerical integration @f,(r,#,!). the kinetic energy is not distributed uniformly in the wavelet

By taking the half of the square @f, +tT_; and making radius-scale space, and that the kinetic energy corresponding
use of Eq.(B1) we obtain the wavelet energy at position to a given scal¢ is located in the vicinity of (1), wherer,
(r,¢) and scald, in the limitsl<r, |<<R—r andQqt>1: is given by Eq.(22). Conversely, the kinetic energy corre-
sponding to a given radiusis located in the vicinity of the
point (r,dr) in the wavelet radius-scale space, whéreis
the distance between consecutive coils of the spiral at a dis-
tancer from the center, that i§dropping constants of order
unity),

7\ 4+1a
einviscid(r r¢u [ ) = ZAZ(QOR)Z(QOt) _3( ' )

e

wherer, denotes ;1 [Eq. (20)], that is,

= 24

(21 or~ 0t

{1+sin4¢—24(r)1},
R ( r )l/a+l
Figure 7 is a contour plot of the energyiscid(r, ¢,!) in the
alat1) wavelet plane(r,l) for two different times and for a fixed
T R(ZQO“) 22) angle ¢, as obtained from Eq23). The Kolmogorov capac-
: amR ' ity is Dx=4/3 («=2). For comparison, Fig. 8 shows the
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energy obtained from a numerical computation of the wave- In the next section we generalize the calculation of the
let transform of Eq(6), with 100 azimuthal Fourier modes, wavelet radius-scale ener@®3) to the viscous case and dis-
including the moden=0 [that is, rQ(r)]. The energy is cuss the effect of viscosity.

organized in “blobs” which are asymptotically centered on
the curvel ~ 6r. Changing the azimutlp makes the blobs

shift along the curvé~dr, but does not change the overall  The effect of the viscous diffusion of the coils of the
distribution of the blobs. This is an effect of the term gpjrg| is that the reduction of the scales, and therefore the
sin4¢—2¢(r)] in Eq. (23) which determines the periodicity gisplacement of the blobs of energy in the wavelet radius-
of the blobs along the curve- ér. scale space, will eventually stop and the energy carried out
The energyeiniscio(,1) corresponds to velocity fluctua- py the blobs will then be transformed into heat. In order to

2. Viscous cutoff in the radial direction

tions of length scalé at a distance from the center of the

investigate this effect we generalize expressi@8) to the

spiral, and Eq(23) shows that these fluctuations are local-yjscous case. We start from the asymptoties(+ =) solu-

ized in the sense that- or(t), whereér(t) is the distance
between the consecutive coils of the spiral at thdEqg.

(24)]. Keepingr fixed, the distancér (t) between consecu-
tive coils decreases with timdq. (24)] because of the spi-

ral's differential rotation. Also, the velocity fluctuation at
this radius decreases a$,ldnd the combination of these two

effects leads to a decay of the energyraé(r)) of the form
€inviscidT» 8(r))~1t~2 [from Eq. (23)]. Keeping! fixed, the

tion of the viscous vorticity equatiofLundgren[9])

+ oo

o(r,d,t)=29(r) 2 ezin[¢—9(r)t]e—(4/3)n29’th?’,
n=—o

(29

which corresponds to the double-branched inviscid spiral so-

lution (3)—(5) in the limit »— 0. In particular,y(r) and{(r)

wavelet energy of length scalenoves outwards in space as are still related by the kinematic relatigd).
it is localized around;~t*(@*1) [from Eq. (22)]. In the As pointed out by Lundgref9], the exponential term in
wavelet radius-scale space this transfer mechanism is illugq. (25) enables us to calculate the radjp@) below which
trated by the movement and distortion of the cutvedr all the modes are damped by viscosity, gnd) can be
towards thd =0 axis as time advancésee Figs. 7 and)8In  thought of as the radius below which the spiral structure has
real fluids this mechanism is broken by viscous dissipation.been smoothed out and no longer exists:

Clearly, the structure of kinetic energy in the wavelet
radius-scale space reflects the complex spatial structure of QO\/Eg ol(a+1) Qo\/ﬁg 2~ Dk
the Lundgren spiral. Such a structure could not be found in a R =R R . (28)
Fourier analysis, since the Fourier spectrum contains no spa-
tial information. Indeed, the Fourier spectrum of a one-By integrating Eq(25) in the way performed for the inviscid
dimensional cut of velocity along the azimu#hcan be ob- case by Vassilicos and Brassg@f] we get
tained by integrating the kinetic ener@y,isci«(r, ¢,l) over
all radii r. [This is not exactly the Fourier spectrum, as it
contains terms involving the wavelet. Nevertheless, it can be
thought of as the Fourier spectrum ‘“smoothed” by the
wavelet (see, for example, Fargg21]).] One can easily with
check from Eq.(23) that thisr integration would make the
exponential term eXp-[(r,—r)/I]? and the sine term vanish
(these two terms are responsible for the structure,Qf.io)-
Indeed,ejnyisciq IS Of the form

p(t)=R<

“+ 00

U¢(r,¢,t): 2_ un(r’t)eZir‘lqﬁ'

(27)

Uo(r)=rQ(r)

and

Un(r,t)=(2 —1)Ei “nemt1+0
n=r m ““Yt2in®

Einviscid ' .1 =F (1)l (4“+1)/(“+1)G¢<|—) , nQ(r)t

nzﬂ’z(r)vt3)

% e—(4/3)n2(1'21/t3'

n+0 (29)

with G, localized around 0. Hence, in the limit t— + . Becausen()(r)t>1, a sufficient condi-

o tig?) fg)r ghe ordﬁr tefrn{O) in EqQ. (2%)2t§) be nel%ligible is
o — o n“Q'“vt°<1. Therefore, expressiof28) is valid every-
Ciniscid | #) Jo Cinscid 11 4.1)dr where outside the inviscid core of the spifak., for all r
>p(t)].
Under this condition the energy in the wavelet radius-
scale space can be readily calculated by means of the method
of stationary phases, and reads

T/

|
:|(4a+1)/(a+1)+lJ G¢(y)dy
(=R

~|(4a+D)l(a+1)+1

2 vt
_ _f2
because— (r,—R)/I>1 andT,/I>1 and G, is localized e(r’¢’|)_ei”ViS°id(r’¢’l)exi{ 3M |2>' (29

around 0. Therefore, the resulting “Fourier” spectrum has

no structurg(it is only a power law of) and both the spatial We therefore observe that viscosity is responsible for a cut-
information and the scale information are necessary to obeff Jrt in the wavelet radius-scale space, because the energy
serve these blobs. e(r,,1) is negligible for anyr and ¢ wherel</»t, and
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radius (r) - 1 (r(¢+m [S'—s , ,
U(r,¢.)=1 0| ——|ulr,¢")ds, (30
r(¢—m)

where the arc lengths and s’ are such thas' —s=r(¢’
—¢) and ds'=rd¢’. Integration is performed over the
circle of radiusr centered at the origin. For ailthe wavelet
transform of the mode?"%u,(r) is
r (o+w ' — o,
Hn(r,¢,l)=un(r,t)§f 6 ¢I—¢ e’ dg’.

d—

r

: By performing the change of variablgs=r/l(¢’ — @) we
(v o2 or scale (I) get

FIG. 9. Sketch of the blobs of kinetic energy in the wavelet |
radius-scale spadg,l), at a fixed timet. The gray area defined by Tp(r, o= —e2i”¢un(r,t)
r<p(t) andl<(vt)¥?is the image of the inviscid core of the spiral R
in the wavelet radius-scale space. Most of the energy dissipation
occurs in the vicinity of the poinf(t) = (p(t), (»t)*?). In the limit wherer >1 the above integral is increasingly well
approximated by

arl

el (2nlir=myg—(1/2y*qy,
—arr/l

where I> st we have e(r,é,1)=enyiscidr»#,!). This B
means that energy transfers occurring at a positias a ei<2n'/f—m>ye—(1/2>y2dy:(W/z)lfzexg_%(2n|/r—m)2],
result of the spiral vortex sheet’s differential rotation stop/—=

when the intercoil distancér [Eq. (24)] is of the order of

the radial diffusive length scalgvt. This is in agreement SO that

with Moore and Saffmaf34], who noticed that the coils of | ; 2
the spiral are thickened by viscous diffusion, so that the dis- ~ _ 12 42in B IO
cretepjumps in the flow figld are replaced by smoothed out Un(r, ¢,1)=(/2) ﬁe ¢un(r,t)ex;{ I (n 2 ) }
gradients of thickness/vt (Moore and Saffmari34]). The (31
position of the coil wheresr ~ /vt is given byr~T, with |

= /ut, that is,r ~p(t). Hence, the “image” of the viscous

core in the wavelet radius-scale space is the region definely , ; )
not dominate over the other azimuthal modes. It is the mode

In contrast with the radial wavelet analysis the azimuthal
avelet transform of the first azimuthal mode|(=1) does

by n~rm/(21) which carries the largest contribution in
TU(r,¢,1)=2,0,(r,¢,1), and asr>| the contribution of
r<p(t) other modes is exponentially small. We therefore approxi-
mate the wavelet transform of(r, ¢,l) by
and

U(r,¢,1)=Tg(r,é,t) +U_x(r,¢,1).
| <\/t.

Figure 9 shows a sketch of this region, together with blobs o
energy located on the curVe- r. Energy dissipation occurs 12 \2 mr

only in the vicinity of the pointA=(p(t),\/»t). Indeed, there e(r,p,)=m(2a— 1)2<—) sinz(—[¢—ﬂ(r)t])
is no dissipation in the arem<p(t) and|</vt} because MRt !

gradients have been smoothed out in the core, and there is no 2 2
dissipation in the are& > p(t) or I>/vt} because viscous Xexp{ ( Q'2(ryvtd
effects are negligible theigeqg. (29)].

By taking the half of the square @f(r,¢,I) we obtain the
gnergy in the wavelet azimuth-scale space

3

: (32)

for I <r. We first observe that the exponential drop off in Eq.
B. Azimuthal wavelet analysis (32) represents the cutoff induced by viscosity, and that the
gnergy has therefore been mostly dissipated at the length

The radial wavelet analysis of the preceding section is a
Y b 9 scaled such that

analysis of the effect of the differential rotation on the radial
distribution of energy. In order to investigate the effect of the 5
differential rotation on the azimuthal distribution of energy, (E) Q2 utds>1
we perform a wavelet analysis similar to the one of Sec. | ’
[l A, but with a wavelet selective in the azimuthal direction.

For a fixed radiug we calculate the wavelet transform of that is,

u(r,¢) as defined in Eq(15), but by integrating over the

domainse[r(¢—m),r(¢+ )] instead ofxe] —oo, +oo[ I<Q(r)t\/ﬁ.
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The viscous length scal@(r)t\/»t drops out quite naturally is the maximum energy of a given scald=rom Eq.(33) we
from this azimuthal wavelet analysis. It depends on the radeduce that the energy transfer at sdaded positionr; has
dius r and is much larger thar/vt because of the shear two different regimes, according to whether the ratio
induced by the differential rotatiofRhines and Youn{35], 2 —

Flohr and Vassilicog15]). Hence, the viscous diffusion is Re(l)= 17Q ()
shear augmented in the azimuthal direction, and this effect is v

proportional to the local strain rat@(r). .
For scales much larger than the viscous cutoff lengtHS large or not. Réf plays the role of a local Reynolds num-

scaleQ(r)t\/rt we observe that the energ$?) is not local- _ber, and i_ndicates w_hether the scals inviscid or not. Rdj
ized in the wavelet azimuth-scale space, in contrast with thi® the ratio of the diffusive time needed to smooth out the
wavelet radius-scale analysis. Indeed, FerQ(r)tyst we Mtercoil distancd, namely, /v, ‘°,§he corresponding cir-
can drop the exponential viscous term in Eg2), and the cumferen_tla] convective t|mé2(r_|) i, When Rel)>1 the
remaining term is a combination of a power function and ofCh""raCte”_St'C time Of_ energy varlatlon_s at scale the cir-

a sine function ot andl which displays activity everywhere cumferential convective timé&urnover timeg. Note that this

in the (¢,l) space. This significant difference between thet'mle !:[5 a]ﬁ:soi/ u't' wherel;fr /'ts.thfh Cr}{araa?”sﬁ'c sc?le of
wavelet radius-scale and the wavelet azimuth-scale waveli(gcoc' y fluctuations, an@i~r/t 1S the typical value of ve-
t

(36)

analyses enables us to draw interesting conclusions as to t ity fluctuations at .radule (see Introduction Not_e alsc_)
distribution of energy in the spiral vortex. at results should differ in the case of a three-dimensional

strained spiral vortex layer.
o o The analysis obe/dt shows that, at a distanedrom the
C. Characteristic scales of energy distribution center, energy is transferred from the scéieo other scales

The energy distribution in the wavelet radius-scale spacever a turnover timé)(r) ~1. However, this energy transfer
is localized(Sec. Il A). In contrast, the energy distribution can also be thought of in terms s€ale displacemenn the
in the wavelet azimuth-scale space is not localized, as it diswavelet radius-scale space. Indeed, a given daal@ssoci-
plays activity everywhere in this spat®ec. Il B). This sug-  ated with a positiom, . Because this radius increases with
gests that between two coils located at radindr + 6r, the  [EQ. (22)] the scald moves outwards in the physical space
typical scale of velocity fluctuations iér rather than the towards the periphery of the spiral. We can define the speed
perimeter 27r. of the scald by dr,/ét, that is,

For a fixed radius the intercoil distanceér decreases as _
the vortex sheet rolls ufsee Eq(24)], so that the energy of ﬁ: 2 Q)
fluctuations is distributed on smaller and smaller scales. The at m(at+l) -
distribution of energy in the wavelet radius-scale space there- . . .
fore changes, and we calculate its rate of charg/ét from  and a typical duration of the scale movement is

Eqgs.(29) and(23). For a given scalewe consider the energy | 1
at the coil of radiug,. We then calculate the rate of change —_
of e(r|,¢,l) from results(29) and(23). By noticing that arifat - Q(n)
) which is the convective time around the coil of radiys
=2Q(T)), and has also been found to be the characteristic time of en-
at ergy transfer of scale
and focusing where=r,, we are led to IV. ENSTROPHY AND ENERGY DECAY OF LUNDGREN'S
SPIRAL VORTEX
oe _ 2 oV
E(r_la¢v|)ze(|) 4Q(r_|)C(r,q5)—§m 72S(r.¢) The enstrophy decay depends on two different mecha-
nisms(Flohr and Vassilico§l5]). First, the shear induced by
+O((Qgt) ~3Mat Dy, (33) the differential rotation accelerates the diffusion, as it sharp-
ens the gradients of the vorticity field. Second, the spiral
where structure resulting from the roll up is likely to have anoma-
lous diffusive propertieg$Vassilicos[14], Flohr and Vassili-
C(r,p)=cog 4d—24(T))], (34)  cos[15], Angilella and Vassilicog16]). In this section we

calculate the enstrophy of the structure in order to analyze

. these effects. We integrate the squared vorticity within an
S(r,¢)=1=sif4¢=24(r)], (9 annular aredrosrsR}:g | ’

and ) 1
()=Tr?

i fwz(r@,t)dqb)rdr, (37
0

I ) (4a+1)/(a+1)

Al =R2 2 (a=2)/(a+1)| _ . i
e() =B (2oR)"(l) (R whererg is a small radial scale chosen such thg&p(t)

andR s the overall length scale of the structure. Because of
Xexp{ 2 , Vt) the absence of radial movement there is no flux of vorticity

3z through the boundaries of the domdiny<r<R}. Follow-
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ing Lundgren[9], we calculate thep integral in Eq.(37) by
using the Fourier series ih of w [Eq. (25)], and applying
the Plancherel identity. Equatid37) becomes

small because,<p(t) implies that for alln>0 we have
n2Q'2(ry) vt®> 1. Finally enstrophy reads

) o o o <w2>zClQS(QgR_ZVts)(a_l)/(a+l)l<;<N n2(a—1)/(a+1),
(w?)= ?nzo Jro4y(r) e BPIN gy (38) (a4
The vortex strengthy(r) is linked to the angular frequency where
by Eq.(4), and reads (2a-1)?( 8 (a=Dla+1) |41
1 1 " a(l+a) 3a? at+l
y(r>=—(2——>Qo<r/R>‘<1’a>. 39 N
2 o is a constant of order unity which only depends on the ge-

ometry of the spiral. At this stage we notice thali1, i.e.,

Oo(aR) " 1/rt3<1, the sum in Eq(44) can be approxi-
Mhated by|1— NG~ D@+ 1| For o<1 this term is constant
at leading order, and we get

In Eq. (38) the contribution of the mode=0 can be readily

calculated and is a constant depending only on the para
eters()y, a, R, andry. We focus on the contribution of the
modesn>0 which is calculated by making use of the change

of variables

1
X=n?Q'4(r)vt®=n?(QoRY")*—r 2« 2ut?,  (40)

X —1(2la+2)
r= ( nZ(QORlla)2(1/a2) Vts) , (41)
and reads

20—1)2/ 1 \(e=Dl(a+1)
(=22 2

0[(1+ 0[) o

X Q5(QIR Zptd)la-DitatD)

XE nz(“—l)/(owrl)jnzg,z(ro)vt3

n n2Q/2(R)wt3
X e—8X/3x—2a/(a+ 1)d X. (42)

, [ Qo 3(3-2Dy)
(@09~ Q5| o

for 1<Qyt<Re’® and D>1.75, (45)

where we have made use of relati®) and introduced the
Reynolds number based on the circumferential veloQigjR
and the radiuR (see also Flohr and Vassilic§$5)):

R2Q),
Re=——. (46)

For a>1/3(Dx<1.75) we have |1—NGe-Dia+1)
=NGe~D/(e+1) "and by making use of Eq43) we obtain

) ) QOt -3/2 s
(0°)~ Q5| zgm for 1<Qot<Re”® and Dy<1.75.
(47)

The energyE(t) of velocity fluctuations can be calculated

We now perform time asymptotics by noticing that the abovesimilarly by integrating the modes+0 in the Fourier rep-

integral reads

resentation ofi(r, ¢,t) [Egs.(27) and(28)], and reads

nZQrZ(ro)Vts eX/3y— 24l ) 2(5-3Dy)
e X~ 2el(at g x _ 2 pa-2/3 250
jHZSI’Z(R)Vts E(t) (RQ()) Re @g
a—1)/(a+1
:(§)< Her r ;112n2912(R)m3> for 1<Qgt<Re’and D>1.75, (48)
o
a-1 8 E(t)~(RQO)2Re_2'3(—,gﬂot)1/2
-r m,gnzﬂrz(ro)lfﬁ) , Rel

< cRal/3 <
where I'(---) denotes the incomplete gamma functiee for 1<Qot<Re’ and Dc=<1.75. (49)

[36)). Thezse t2WO gagnma funct_ions are exponentially small aResults(45) and (48) show that forD>1.75 the decay of
soon an“Q"“(R)»t°>1, that is, enstrophy and energy is accelerated by the space-filling
property of the spira{see Vassilico$14], Flohr and Vassili-
aR 43) cos[15]), whereas result$47) and (49) show that forDy
QO\/F =<1.75 the decay is not sensitive to this space-filling prop-
erty. This is to be linked with the fact that the energy spec-
(see also Flohr and Vassilicp$5]). This enables us to trun- trum of Lundgren’s vortex scales &s?2 at large wave num-
cate the series in Eq42), so that summation is now re- berk for all Dy=<1.75 (Lundgren[9], Gilbert[18,19), but
stricted to indices £n<N. For these indices the first scales ak*’«~% for D,>1.75 (see Malik and Vassilicos
gamma function is constant at leading order, and equal t637], and Appendix C of this paper Therefore, forDy
I'((a—1)/(a+1)), and the second one is exponentially >1.75, the larger th® the more singular the vorticity and

n>N=
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velocity fields, and the more sensitive they are to viscoudby means of the wavelet transform. This tool enables us to
dissipation. A similar behavior has been observed fomunfold the energy in both the wavelet radius-scale sggbe
rolled-up vortexpatches(Gilbert [18]), as the power of the and the wavelet azimuth-scale spaggl(. In the(r,l) space
spectrum of the velocity induced by a rolled-up vortex patchthe energye(r,¢,1) (for a fixed azimuthe) is organized in

is observed to depend dby for Dx>1.5, and to be inde- pjobs located in the vicinity of the curve~ dr, where or
pendent ofDy for D¢<1.5. As noticed by Gilberf18], a  genotes the distance between the two adjacent coils closest to
spi_ral vortex patch witlb<1.5 is_too “weak” asingularity_ the radiusr [Eq. (24)]. As time advances, this curve moves

to induce an energy spectrum different from that of an isoyg\yards the small scale region of the wavelet radius-scale
!ated (_1|scont|_nU|ty_. Similarly, in the case of the vortex'she_etspace’ in a way determined by the Kolmogorov capacity of
investigated in this paper we observe anomalous diffusiveyq spiral. This process is broken when the intercoil distance

proé))ﬁgIﬁZnogll)s/;OcrEeKilflrz% E(8) [or similarly from Eq. 5_r reaches the diffusi\_/e length scalet, that s, V\_/hen the
(45)] that the rate of energy decalE(t)/dt is such that viscous core of the spwal reaches thg C.OII.Of radl.gm Fhe
physical space the diameteft) of the inviscid core is given
dE(t) by Eg. (26). In the wavelet radius-scale space the inviscid
T~Re2(DK*2>, core of the spiral corresponds to the rectangle dorain
<p(t) andl<\/vt} (see Fig. 9. The right top corner of this

so that it is asymptotically independent of Re in the limit recFangIe(pomtA in Fig. 9) is _the_ on_ly point of the wavelet .
whereDy— 2 (i.e., a— 0). This result could be linked to the radius-scale space where d|SS|pat.|on tqkes plgce. The dis-
fact that the dissipation rate of kinetic energy in turbulentPl@ceément of the curve~ér can be investigated in terms of
flows is independent of the viscositywhen »—0. Never- the displacement of the scalein the wavelet radius-scale
theless, the problem of turbulence is exceedingly complexsPace. Indeed, a given scake /vt moves vertically in this
and the properties of the dissipation rate of energy in turbuspace, and the typical duration of this movement is the turn-
lent flow cannot be reduced without care to the properties over timeQ(r)) ~!, wherer; is the radius such thdt= ér.
a single vortical structure. Further analyses, like topologicaBy investigating the rate of energy variatiere/dt we ob-
analyses of dissipative zones in turbulent flows, could beserved that the characteristic time of energy variation at scale
useful to investigate this point. | is either Q(r;) ! or 1%/v according to whether viscous
Note that a similar result has also been observed by Flohsffects dominate or not.
and Vassilico§15] about the rate of decay of the variance of  |n the wavelet azimuth-scale space,l) the energy

a scalar patch wrapped around a vortex. e(r,¢,l) (for a fixed radiug) is not localized, as it displays
activity everywhere, in contrast with the wavelet radius-scale
V. CONCLUSION analysis. Moreover, in the wavelet azimuth-scale space the

cutoff induced by viscosity is the shear-augmented diffusive

We have investigated the distribution of energy in alength scale(r) w3, and is much larger thagt.

rolled-up vortex layer by making use of the asymptotic spiral )
vortex model of Lundgrefi9], in the unstrained case. The decay of enstrophy and energy of Lundgren’s vortex

In order to choose the angular frequenéy(r) in is sensi_tive to its spiral geometry. In particular, an anomalous
Lundgren’s model we have investigated some geometricdl€C@Y IS observed when the Kolmogorov capady is
properties of a numerical solution of the Birkhoff-Rott equa-arge enough. Foby>1.75, the larger th® the faster the
tion (Krasny [27,28) corresponding to a rolled-up vortex decay of energy and enstrophy. These properties are in
sheet. This solution is observed to be close to an algebrai@dreement with the fact that the energy spectrum of
rather than logarithmi¢kambe[23]), spiral. This observa- Lundgren’s vortex sheet differs from that of an isolated vor-
tion is in agreement with the one-dimensional measurement€x sheet only foD>1.75. Indeed, foDy €]1.75,7 and
of Moffatt [30], and in contradiction to the analysis of Ever- large wave numberk, the energy spectrum of Lundgren’s
son and Sreenivasaf81]. The Kolmogorov capacity of vortex scales a&™ P with p=9-4Dy¢e]1,2[, so that the
Krasny’s spiral has been measured and is found to be closgructure is more singular than an isolated vortex sheet in this
to D =1.33. This suggests that the equation of the spiral cagase, and therefore more sensitive to viscous dissipation.
be approximated byp=Q(r)t for times much longer than As in the analysis of rolled-up passive scalar patches
the critical time of the vortex sheet/U, with Q(r) (Flohr and Vassilico§15]), the time range of this anomalous
~r~ %2 This approximation implies that the length of the decay(“spiral time range”) is 1<Qt<Re"? where Re is
vortex sheet increases likeor t>L/U, and this prediction the Reynolds number defined in E@6), and is therefore
has also been verified for Krasny’s spiral. rather short in practice, unless R&0°.

However, the ratio of the desingularization parametey The spiral investigated in this paper is not strained. We
the overall length scale of the spiral being of order 1, thesdelieve that an axisymmetric strain field should modify the
conclusions have to be taken with care, as the desingularizalistribution and the evolution of the energy in the wavelet
tion procedure might influence the dynamics of the interfaceposition-scale space, and introduce new characteristic time
at those scales where we observe a well-defined Kolmogoroscales due to the radial differential movement. In particular,
capacity(Fig. 3) corresponding to a power-law angular fre- the movement of the scales in the wavelet radius-scale space
quency(Fig. 5). might be significantly modified by the strain field. These

Because rolled-up vortex layers are strongly nonhomogeremarks suggest that the geometry of the spiral in the
neous we have analyzed the spectral distribution of energgtrained case plays an important role, and that it will be
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interesting to extend the analysis presented in this paper tdence,ly can be made as small as we want by choosing a

the strained case.
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APPENDIX A: WAVELET TRANSFORM OF r€(r)

In this appendix we calculate the wavelet transform of
rQ(r) for a wavelet selective in the radial direction. We

have
Tjo(r,qs,l):%JORr’Q(r’w(r,I—_r)dr’,
that is,
To(r, ,1)=QoR" g,
where

!

R r—r
IOZJ rrl*llaa l_)drr.
0

By operating the change of variabje=(r' —r)/l we are led
to

_1pl-1a (R=0 1-1a
lo=Ir (1+1y/r) o(y)dy.
—r/l

If the scale is such that

and

large-order wavelet(e.g., a high-order derivative of the
Gaussiap In the case of the Morlet wavelet the moments are
nonzero, but they are all proportional to exp(?/2), so that

by choosingm large enough we can get rid of the tetiy.

APPENDIX B: CALCULATION OF T,

In this appendix we calculate the wavelet transfornu of
for a wavelet selective in the radial direction, in the case
#0. We start from Eq(18). Let

R
| :j r/e—zinﬂ(r’)ta
n

0

r'—r
",

The integrall,, can be approximated in the linit=0 by the
method of stationary phas¢83] as follows. By inserting
expressiorn(16) we are led to

R
|n:i_ rrel () g= (UL =Py
2i Jo

LR v o (Wi 2
+z r’e io(r )e (12)[(r" =) ]dr’,
0

where the phaseg;(r’') and y,(r') read

!

P(r"y=—=2nQ(r" )yt+m——,

I (B1)

!

1//2(r’)=+2nQ(r’)t+m—r ' .

| (B2)

Whenn<0, ¢4(r") has a minimum of0,+%) and,(r') is
monotone. Whem>0, #,(r’) has a minimum orn0,+~)
and ¢4(r’) is monotone. In both cases the position of the
minimum is

. 2|n|QOtI al(a+1)
tn=R| ——— : (B3)

amR

The integral inl, for which the phase is monotone is negli-

then the above integral can be integrated only on the suppogible in comparison to the other integral. In the following we

of the wavelet, sajy—a, +a], wherea~ 1. In particular, we

note byy(r') the phasess;(r’) or ,(r’) that has a mini-

have|ly/r|<1 for allye[—a,+a], so that we can expand mum, that is,

the integral as

1)1
|0:|r11/aU o(y)dy+ 1—;);fy0(y)dy

!

St =2|n| ()t me—

| ®4)

We approximatd , by expanding#(r’') in the vicinity of

1 1 1\(1)? T, and by integrating only over an interval centered at
+ (1=l === 2 e Titn s y g g only
2! 1 a)( a I’) Jy o(y)dy ' Mitn -
where all the integrals are taken on the support of the wave- _*l R (-T2
let. The above integrals approximate the moments of the In_jrltne "

wavelet. If the wavelet is of ordag [i.e., [y'6(y)dy=0 for

i=0,1,...p and [yP*1g(y)dy+0] the expansion is at

leading order

[ p+1
I0~Ir1‘1’“(F . l<r.

IT“f'l-*—e . — r T N2
Xf e 1 [¥(n) + VA" =r1n) " (i) Iq 7

Mtn—€

where Z is the width of the interval, and the symbal
denotes the opposite of the sign mf Because)(r,,) is a
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minimum we hava)”(r,) >0, and by operating the change
of variabley = (r —T;,)[ /' (T11n) 1Y% we get

-+

| = _z—iT.me*<1’2>[<'_'m*”"12ei‘W_W

Cqpp [V TP 2
XLy ()] 221 g
—el " (rin)]

dy.

In the limit] —0 we havey”(r,) — +°, so that the integral

TIME-DEPENDENT GEOMETRY AND ENERG . . .

5439

By making use of Eqs(B4) and (B3) to calculatey”(r}:,)
we are led to Eq(19).

APPENDIX C: ENERGY SPECTRUM
OF LUNDGREN’S VORTEX

The energy spectrunik(k,t) of Lundgren’s vortex for
Dk<1.75 has been calculated by Malik and Vassilit®3|.
These authors use the method of Gillja&]. Equation(A5)

in the above equation can be approximated byln [37] reads

J T2 exp(riy?2)= [ exp(tiy/2)y Ydy= @ (1*i). Fi-
nally,

*1 _ — 2
|n:7\/E(lii)r|me_(1/2)[(r|m_r)/l] e*i¢(rin)

X[ (Fin) 1712
We insert this expression into E(L8) to get

20—1 *1

Uy (r ¢>I):£e2‘“‘f’ ——m(1=i)T,
R 2int  2i T

2 4 _
X e—(1/2)[(l’|m—r)/|] e_lz//(r|m)[ lﬂ”(_r Itn)] 1/2.
(B5)

E(k,t)~k™3+21-al(1+a) fnun—Z(l—a)/(1+a)
1

a+1l

] k—3+2<1—a)/<1+a)(n<u3a—1>/(a+1>_ 1),

where n,~k and n,>1 (see Gilbert [18]). For Dy
<1.75 (@>1/3) we getE(k,t)~k 2, and for Dx>1.75
(a<1/3) we getE(k,t)~k (5% that is, E(k,t)
~Kk*Px"°_ The energy spectrum therefore scalek a8 with
1<p<2 for Dx>1.75 and large wave numbeksso that the
structure is more singular than an isolated vortex layer.
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