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Time-dependent geometry and energy distribution in a spiral vortex layer

J. R. Angilella* and J. C. Vassilicos†

Department of Applied Mathematics and Theoretical Physics, University of Cambridge, Silver Street,
Cambridge CB3 9EW, United Kingdom

~Received 2 June 1998!

The purpose of this paper is to study how the geometry and the spatial distribution of energy fluctuations of
different length scales in a spiral vortex layer are related to each other in a time-dependent way. The numerical
solution of Krasny@J. Comput. Phys.65, 292 ~1986!#, corresponding to the development of the Kelvin-
Helmholtz instability, is analyzed in order to determine some geometrical features necessary for the analysis of
Lundgren’s unstrained spiral vortex. The energy distribution of the asymptotic solution of Lundgren charac-
terized by a similar geometry is investigated analytically~1! in the wavelet radius-scale space, with a wavelet
selective in the radial direction, and~2! in the wavelet azimuth-scale space, with a wavelet selective in the
azimuthal direction. Energy in the wavelet radius-scale space is organized in ‘‘blobs’’ distributed in a way
determined by the Kolmogorov capacity of the spiralDKP@1,2# ~which determines the rate of accumulation of
spiral turns!. As time evolves these blobs move towards the small scale region of the wavelet radius-scale
space, until their scale is of the order of the diffusive length scaleAnt, where t is the time andn is the
kinematic viscosity. In contrast, energy in the wavelet azimuth-scale space is not localized, and is characterized
by a shear-augmented viscous cutoff proportional toAnt3. An accelerated viscous dissipation of the enstrophy
and energy of Lundgren’s spiral vortex is found forDK.1.75, but not forDK<1.75.
@S1063-651X~99!00605-4#

PACS number~s!: 47.27.2i
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I. INTRODUCTION

Experimental as well as numerical analyses of the sm
scales of fully turbulent flows have shown that intense v
ticity is organized into thin vortex tubes~see for example,
Cadot, Douady, and Couder@1#; She, Jackson, and Orsza
@2#; Ruetsch and Maxey@3#; Vincent and Meneguzzi@4#;
Jiménez et al. @5#!. These structures are remarkable in th
their lifetime is relatively long, but their contribution to th
spectrum of turbulence as well as their role in energy tran
and dissipation is still unknown. A complete understand
of the physical properties of these vortices requires an a
rate knowledge of their structure. Different formation pr
cesses may lead to different structures. They may be for
following a Kelvin-Helmholtz instability@6,1,7,8#, which is
known to lead to spiral vortex layers likely to diffuse into
tubular filament. An asymptotic solution of such a spi
structure has been proposed by Lundgren@9# in the limit of
long times. Another formation process, based on the de
bilization of Burgers’s strained vortex layer@10,11#, has
been proposed by Passotet al. @12# and also leads to vorte
tubes.

Spiral vortices are barely observed in the small scale
turbulent flows~see, however, the experimental analyses
Cadot, Douady, and Couder@1# and Nicolleau and Vassilico
@13#!. This might be due to insufficient resolution, but also
the fact that they are transient structures, as they diffuse
a vortex tube~Lundgren@9,8#!, and that this process may b
accelerated by the geometry of the spiral~Vassilicos@14#,

*Present address: LEMTA~CNRS UMR 7563!, 2 Av. de la Foreˆt
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Flohr and Vassilicos@15#, Angilella and Vassilicos@16#!.
One of the main effects of the winding up of a vortex layer
the generation locally in the flow of an entire range of leng
scales~Lundgren@9#, Moffatt @17#, Gilbert @18,19#, Vassili-
cos and Hunt@20#!, from the overall length scale of the struc
ture to a minimal scale imposed by molecular diffusion.

The multiscale distribution of kinetic energy in a spir
vortex sheet is remarkable in that the scales involved
linked to specific positions within the structure, in a wa
determined by the geometry of the spiral. It is this geome
cal link between position and scale that motivates the wa
let analysis we perform in Sec. III, as it enables us to unf
the distribution of energy in the wavelet position-scale sp
~Farge@21#, Meneveau@22#!.

To analyze the dynamical properties of a spiral vort
sheet we need to know its geometry. Several kinds of spi
exist in nature, such as the spiral of Archimedes@the equa-
tion of which is r;f in polar coordinates (r ,f)#, the loga-
rithmic spiral @r;exp(af)#, or the algebraic spira
~r;f2a, a.0!. The Birkhoff-Rott equation, which govern
the evolution of vortex sheets@6#, has spiral vortex shee
solutions with a geometry depending on initial condition
For example, it has a logarithmic spiral solution~Kambe
@23#!, with strength that diverges at infinity, and another s
lution in the form of a semi-infinite algebraic spiral vorte
sheet~Kaden’s spiral@6#!. An efficient tool to determine the
category of a spiral is the Kolmogorov capacity~fractal di-
mension!. Indeed, it has been shown that among the th
spirals quoted above~Archimedes, logarithmic, or algebraic!
only the algebraic spiral has a nontrivial well-defined Ko
mogorov capacity~Vassilicos and Hunt@20#!. This means
that when covering the algebraic spiral with boxes of sizel,
the minimal numberN( l ) of boxes required to cover th
structure satisfies
5427 ©1999 The American Physical Society
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N~ l !.N~L !S l

L D 2DK

for h! l !L, ~1!

whereDKP]1,2@ is the Kolmogorov capacity,L is the over-
all length scale of the structure, andh is the scale below
which this power law is no longer satisfied. For examp
fractals have a well-defined Kolmogorov capacity~see Fal-
coner@24#!. In the case of the algebraic spiral defined byr
;f2a we have~Vassilicos and Hunt@20#!

DK511
1

a11
. ~2!

Note that relation~2! is valid for a spiral with a relatively
small number of resolved turns~see the Appendix of@20#!.

In this paper we will apply this tool to a numerical sol
tion of the Birkhoff-Rott equation corresponding to a doub
branched spiral~Sec. II!, in order to determine its geometr
~logarithmic or algebraic!. We will then investigate the time
dependent energy distribution in the vortex solution
Lundgren@9# ~Sec. III! with a geometry similar to that de
termined in Sec. II, in both the wavelet radius-scale a
wavelet azimuth-scale spaces. Finally, we will analyze
decay of enstrophy and energy of this vortex layer~Sec. IV!.
We now briefly present Lundgren’s spiral vortex.

Lundgren@9# proposed a family of long-time asymptot
solutions of the Euler and Navier-Stokes equations involv
spiral vortex sheets. In the case of inviscid fluids and fo
two-dimensional double-branched spiral the asymptotict
→1`) solution reads

v~r ,f,t !52pg~r !@d„f2V~r !t…1d„f2p2V~r !t…#,
~3!

wherev denotes vorticity,d is a delta function,g(r ) is the
vorticity averaged over a circle of radiusr, andV(r ) is an
angular frequency characteristic of a differential rotation.
writing that the flux of vorticity across a disk of radiusr
equals the circulation along its perimeter we have~Lundgren
@9#!

4prg~r !5
d

dr
@2pr 2V~r !#. ~4!

This last relation manifests the fact that vorticity is not
passive scalar, but is the curl of velocity. Equation~3! is a
long-time asymptotic solution of the vorticity equation pr
vided V(r ) is monotonically decreasing~see Lundgren@9#!.
One can check that the jump in tangential velocity across
vortex sheet is 2pg(r )/@ uV8(r )ut# ~Saffman@6#, Pullin and
Saffman@25#!.

Following Lundgren@9# we expand thed functions into
Fourier modes to get

v~r ,f,t !52g~r ! (
n52`

1`

e2in@f2V~r !t#. ~5!

Integration of Eq.~5! in the case whereV(r );r 21/a ~fol-
lowing the method of Vassilicos and Brasseur@26#! shows
that the radial component of velocity scales asO(t22), and
that the azimuthal component reads
,

-

f

d
e

g
a

y

e

uf~r ,f,t !5 (
n52`

1`

un~r ,t !e2inf, ~6!

with

u0~r !5rV~r ! ~7!

and

un~r ,t !5~2a21!
r

t

1

2in
e22inV~r !t1OS 1

t2D , nÞ0 ~8!

in the limit t→1`. We therefore neglect the radial move
ment of the fluid in the limitt→1`, so that the kinetic
energy per unit mass is12 uf

2 . This inviscid solution can eas
ily be extended to the viscous case~see Sec. III!. Figure 1
shows a plot of the azimuthal velocityuf(r ,f,t) versusr for
two different times, obtained from Eqs.~6!–~8!, and for an
arbitrary decreasing angular frequencyV(r ) ~300 azimuthal
Fourier modes are used!. As time advances, velocity jump

FIG. 1. One-dimensional cut through the azimuthal veloc
field uf of Lundgren’s spiral vortex sheet, plotted from Eqs.~6!–
~8!, for two different timest1 and t2.t1 , and for an arbitrary de-
creasing angular frequencyV(r ). Velocity unit isRV(R). Discon-
tinuities correspond to the position of the vortex sheet. The das
line shows the azimuthal moden50 @i.e., rV(r )#. As time ad-
vances, velocity jumps decrease, and will eventually vanish du
viscosity.
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~which can be thought of as velocity fluctuations! decrease
and will eventually vanish due to viscosity.

At this stage it is important to focus our study with
specific choice of the angular velocityV(r ). Indeed, the
choice V(r );r 21/a is arbitrary and has to be justified b
means of experimental or numerical observations. To do t
we analyze in the next section a numerical solution of
Birkhoff-Rott equation corresponding to the development
the Kelvin-Helmholtz instability. This numerical solution
provided by the desingularization procedure of Kras
@27,28#. The choice ofV(r ) is important for two reasons
First, the mathematical calculation of the wavelet transfo
of the velocity relies heavily on the form of the phase ofun ,
that is, V(r )t. Secondly, the angular velocity determin
some geometrical characteristics of the spiral, in particu
its Kolmogorov capacity~fractal dimension!, which, as dis-
cussed in Sec. IV, can seriously affect dissipative propert
A logarithmically decreasingV(r ) leads to a logarithmic
spiral, which is known to have a Kolmogorov capacityDK
51 ~Vassilicos and Hunt@20#!. In contrast, if V(r ) is a
decreasing power law the corresponding spiral has a no
tegral Kolmogorov capacity.

II. GEOMETRICAL PROPERTIES OF KRASNY’S SPIRAL
VORTEX SHEET

A flat infinite vortex sheet of constant strength is know
to be linearly unstable to infinitesimal two-dimensional d
turbances ~‘‘Kelvin-Helmholtz’’ instability !. Moore @29#
showed that the accumulation of vorticity at every seco
inflection point of sinusoidal perturbations leads to a sin
larity at a finite timetc of the order ofL/U, whereU is the
jump in tangential velocity of the vortex sheet andL is the
wavelength of the disturbance. By modifying the Birkho
Rott equations in such a way as to avoid the blow up of
strength of the sheet att5tc , Krasny@27,28# could compute
an evolution of the sheet fort.tc . This procedure is base
on the introduction of a desingularization parameterd, such
that the strength of the layer is bounded by a finite va
which tends to1` asd→0. For t.tc the vortex sheet rolls
up around points where the strength is maximum, and ta
the form of a spiral~see Fig. 2!. The spiral obtained from this
desingularization procedure is referred to as Krasny’s sp
in this paper.

A. Kolmogorov capacity

We have run a box-counting algorithm on the vortex sh
displayed in Fig. 2, obtained from Krasny’s numerical pr
cedure. Results are shown in Fig. 3, where the minimal nu
ber of boxesN( l ) required to cover the structure with boxe
of size l is plotted versusl. For short times (t.tc) we have
N( l ); l 21, so that DK51. During the roll-up process (t
.tc)N( l ) tends to a law of the form

N~ l !; l 21.33,

corresponding toDK'1.33. This law holds forUt/L>2.5
and is valid over one decade of scales (l /LP@0.02,0.2#). We
conclude from Eq.~2! thata'2, in agreement with the mea
surements of Moffatt@30# operated on a one-dimensional c
through Krasny’s spiral. Note that this result is in contrad
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tion to the analysis of Everson and Sreenivasan@31#, who
concluded that Krasny’s spiral is close to a logarithmic o

The fact that this spiral is of the formr;f2a suggests
that the roll up is due to a differential rotation of angul
frequencyV(r );r 21/a, so that the equation of the spira
might be approximated by

f5V~r !t;r 21/at. ~9!

In order to check that the points of the interface revo
around the center of the spiral with a well-defined angu
frequencyV(r ) we have plotted the coordinates of an ind
vidual point versus time~Fig. 4!. Clearly, for t.L/U the
point revolves around the center of the spiral@which is lo-
cated at (x,y)5(0,0)# as its distance to the center does n
vary significantly in time, in agreement with the fact th
there is almost no radial movement. Note that the traject
is in fact elliptic, and this effect might be due to the stretc
ing induced by the periodic boundary conditions. The an

FIG. 2. Evolution of the interface between two adjacent strea
using a desingularization procedure@27#, for t.tc . The desingular-
ization parameter isd/L50.25.

FIG. 3. Plot of the minimal number of boxes of sizel required to
cover the vortex sheet of Fig. 2.



is
e
ii

-
lid

o
c

e-
,

s at
the

p

2

5430 PRE 59J. R. ANGILELLA AND J. C. VASSILICOS
lar frequency of such points can be measured, and Fig. 5
plot of r 1/2V(r ) versusr for a large number of points on th
interface, att54.5L/U. It appears that in the range of rad
r /LP@0.02,0.2# we have

V~r !.Cr21/2, ~10!

whereC.1.8UL21/2. The exponent of this power law, to
gether with the range of scales over which this law is va
are in agreement with the estimation ofa obtained fromN( l )
~Fig. 3!.

B. Stretching of the spiral

In order to further check the validity of Eqs.~9! and~10!
for Krasny’s spiral, and in particular the time dependence
f, we calculate the total length of the layer predicted by su
a roll-up process:

FIG. 4. Evolution of the Cartesian coordinates~x,y! of a point of
the interface displayed in Fig. 2. Fort.tc the trajectory of the point
is close to a circle of radiusr 5(x21y2)1/2.const. The three length
scalesx, y, andr are plotted in units ofL.

FIG. 5. Determination of the angular velocityV(r ) ~in units of
U/L! of the points of the interface att54.5L/U. We have plotted
r 1/aV(r ) with a52 ~as suggested by the box-counting analysis!.
a

,

f
h

Ls~ t !5E
spiral

ds,

whereds is the elementary arc length on the spiral:

ds25dr21~rdf!25dr2F11S rt
dV

dr D 2G . ~11!

In the limit t→0 we haveds.dr and

Ls~ t !.2E
0

L/2

dr5L. ~12!

In the limit t→1` we haveds.rt udV/drudr, and the total
length of the spiral reads

Ls~ t !.2tE
0

L/2

udV/drurdr ,

and by making use of approximation~10! we get

Ls~ t !.L32.5tU/L. ~13!

The time range for which the law~13! is valid is such that
rt udV/dru@1 for all r P]0,L/2] @from Eq. ~11!#. This con-
dition is verified as soon ast@(L/2)1/aa/C, that is, whent
@0.8L/U. Therefore, the transition between regimes~12!
and ~13! should occur at about one convective timeL/U,
which is also the order of the critical timetc . Figure 6 shows
Ls(t) computed from the spiral of Fig. 2, together with pr
dictions ~12! and ~13!. These predictions are well verified
despite the fact that approximation~10! is not valid in the
vicinity of the center of the spiral (r /L,0.02) and at the
periphery of the spiral (r /L.0.2).

These results suggest that after vorticity concentrate
the inflection point and reaches a value prescribed by
desingularization parameterd, the sheet starts winding u
into a spiral of the formf5V(r )t, with V(r ) given by Eq.
~10!.

FIG. 6. Evolution of the length of the vortex sheet of Fig.
~solid line!, together with predictions~12! and ~13! ~dashed lines!.
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C. Choice of the angular frequency

The analysis of Krasny’s spiral performed in this secti
suggests a power-law choice for the angular frequencyV(r ),
i.e.,

V~r !5V0S r

RD 21/a

, ~14!

whereR is the radius of the overall structure andV0 is the
angular frequency of points located atr 5R. It also suggests
thata'2, but we will not focus on this value in the remain
der of this paper, and will more generally assumea.0 ~un-
less otherwise specified!.

Note that the desingularization parameter used in
present work is of the order of the length scaleL of the initial
disturbance (d/L50.25), so that the desingularization pr
cedure might influence the dynamics of the interface at th
scales where we observe a well-defined Kolmogorov cap
ity ~Fig. 3! corresponding to a power-law angular frequen
~Fig. 5!. Smaller values ofd lead to smaller spirals, i.e.
spirals with an overall length scale of the order ofd, with the
same value ofDK.1.33 but in the approximative rang
@0.1d,d# ~see also Moffatt@30#!. Therefore, the measures o
DK and V(r ) performed in this section will have to be in
terpreted with care. Future mathematical analyses of K
ny’s desingularization procedure might enable us to cla
this point.

In the next section we study the time-dependent rela
between spiral geometry and spatial distribution of ene
fluctuations by operating a wavelet analysis on the velo
field uf(r ,f,t) @Eqs.~6!–~8!# with V(r ) given by Eq.~14!.

III. WAVELET ANALYSIS OF LUNDGREN’S SPIRAL
VORTEX

In this section we perform a one-dimensional wave
analysis on a radial cut through Lundgren’s spiral vor
~‘‘radial wavelet,’’ Sec. III A!, then on an azimuthal cu
~‘‘azimuthal wavelet,’’ Sec. III B!. We define the wavele
transform as follows. Ifx denotes a spatial coordinate, th
wavelet transform of a functionf (x) is

f̃ ~x,l !5
1

R E
2`

1`

f ~x8!uS x82x

l Ddx8, ~15!

whereu is the wavelet,l is the scale of the wavelet, and th
length scaleR is introduced for dimensional purposes. In t
radial wavelet analysisx denotes the radiusr, and in the
azimuthal wavelet analysisx is the arc lengths. The wavelet
we choose is defined by

u~x!5sin~mx!e2x2/25
eimx2e2 imx

2i
e2x2/2, ~16!

which is the imaginary part of the complex Morlet wavele
By taking the imaginary part we ensure the condition

E
2`

1`

u~x!dx50,
e

e
c-

s-
y

n
y
y

t
x

.

which is required for the wavelet transform to conserve
ergy, i.e.,

E
0

1`E
2`

1`

u f̃ ~x,l !u2
dx

x2 dl5KE
2`

1`

u f ~x!u2dx,

with K a finite constant~see, for example, Gasquet and W
tomski @32#, Farge@21#, Hunt et al. @33#!. The parameterm
in Eq. ~16! is a constant which determines the number
oscillations of the wavelet. The moments of orderp.0 of
the wavelet are such that

E
2`

1`

r pu~r !dr;mp exp~2m2/2!,

so that they can be set as small as desired by choosinm
large enough. We use this property of the Morlet wavele
the calculation of the radial wavelet transform ofu0 ~Appen-
dix A!. But our other motivation in choosing this wavelet
that it allows for the method of stationary phases to be c
veniently applied, as we do below.

A. Radial wavelet analysis

1. Energy in the wavelet radius-scale space

We start from Eq.~6!. Using definition~15! the wavelet
transform ofun(r ,t)e2inf ~for a fixed azimuthf! reads

ũn~r ,f,l !5
1

R E
0

R

un~r 8,t !e2infuS r 82r

l Ddr8, ~17!

where (r ,f) are the polar coordinates of the position of t
wavelet andl is the wavelet scale parameter. In Eq.~17! the
summation is not performed over#2`,1`@ because we have
chosen to place the wavelet at radiir P@0,R# and to observe
length scalesl such thatl !r and l !R2r ~see below!, so
that the summation can be reduced to the interval@0,R#. We
show in Appendix A that the wavelet transform ofu0
5rV(r ) is negligible in the limit wherel !r and l !R2r .
For nÞ0, we insert expression~8! to get

ũn~r ,f,l !.
1

R
e2inf

2a21

2int E
0

R

r 8e22inV~r 8!tuS r 82r

l Ddr8.

~18!

In Appendix B we calculate the above integral with th
method of stationary phases, and obtain

ũn~r ,f,l !.A~16 i !V0R~V0unut !23/2e2infS r̄ l tn

R D 211/2a

3e2~1/2!@~ r̄ l tn2r !/ l #2
e6 ic~ r̄ l tn!, ~19!

in the limits l !r and l !R2r , andV0t@1, where

r̄ l tn5RS 2unuV0t l

amR D a/~a11!

, ~20!

and
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A5
2a21

4&
ApF 1

a S 1

a
11D G21/2

is a nondimensional real constant. The phasec in Eq. ~19! is
defined in Eq.~B4! of Appendix B and is stationary in th
vicinity of r̄ l tn . Note thatũn1ũ2n is real, in agreement with
the fact that bothuf ~6! and the wavelet~16! are real. We
also deduce from Eq.~19! that the energy of thef-averaged
ũn scales asunu2(a14)/(a11), so that asa→0 (DK→2) the
mode unu51 contains the largest amount of energy. In t
following we approximate the energy ofũf(r ,f,l ) by taking
into account only the modeunu51, and compare our analyti
cal results with full numerical integration ofũf(r ,f,l ).

By taking the half of the square ofũ11ũ21 and making
use of Eq.~B1! we obtain the wavelet energy at positio
(r ,f) and scalel, in the limits l !r , l !R2r andV0t@1:

einviscid~r ,f,l !.2A2~V0R!2~V0t !23S r̄ l

RD 411/a

3expF2S r̄ l2r

l D 2G$11sin@4f22c~ r̄ l !#%,

~21!

where r̄ l denotesr̄ l t1 @Eq. ~20!#, that is,

r̄ l5RS 2V0t l

amRD a/~a11!

. ~22!

FIG. 7. Contour plot of the energy in the wavelet radius-sc
space, from Eq.~23!, for V0t510p ~a! and V0t520p ~b!. The
Kolmogorov capacity isDK54/3 (a52). The energy is organized
in blobs located in the vicinity of the curvel;dr ~dashed line!,
wheredr is the distance between consecutive coils of the spiral
distancer from the center@Eq. ~24!#. Stars on the left hand sid
indicate the position of the coils of the spiral atV0t520p, and
stars on the right hand side indicate it atV0t510p. The accumu-
lation point~center of the spiral! corresponds tor 50. As t increases
the blobs are closer to the curvel;dr . Both r and l are nondimen-
sionalized by the radius of the spiral~R!, and energy is nondimen
sionalized by (V0R)2.
Finally, by making use of Eq.~22! the wavelet energy forl
!r , l !R2r , V0t@1 in the inviscid case becomes

einviscid~r ,f,l !.B~V0R!2~V0t !~a22!/~a11!S l

RD ~4a11!/~a11!

3expF2S r̄ l2r

l D 2G$11sin@4f22c~ r̄ l !#%,

~23!

where

B52A2S 2

amD ~4a11!/~a11!

is a nondimensional constant.
We first notice from the exponential term in Eq.~23! that

the kinetic energy is not distributed uniformly in the wave
radius-scale space, and that the kinetic energy correspon
to a given scalel is located in the vicinity of (r̄ l ,l ), wherer̄ l
is given by Eq.~22!. Conversely, the kinetic energy corre
sponding to a given radiusr is located in the vicinity of the
point (r ,dr ) in the wavelet radius-scale space, wheredr is
the distance between consecutive coils of the spiral at a
tancer from the center, that is~dropping constants of orde
unity!,

dr;
R

V0t S r

RD 1/a11

. ~24!

Figure 7 is a contour plot of the energyeinviscid(r ,f,l ) in the
wavelet plane~r,l! for two different times and for a fixed
anglef, as obtained from Eq.~23!. The Kolmogorov capac-
ity is DK54/3 (a52). For comparison, Fig. 8 shows th

e

a

FIG. 8. Contour plot of the energy in the wavelet radius-sc
space, obtained by computing 100 Fourier modes, and by ta
into account the contribution of the velocity induced by the po
vortex @rV(r )#. Plot ~a! corresponds toV0t510p and plot ~b!
corresponds toV0t520p. The Kolmogorov capacity isDK5

4
3

(a52). Dashed lines correspond to the curvel;dr , wheredr is
the distance between consecutive coils of the spiral at a distanr
from the center@Eq. ~24!#. Notations and units are the same as
Fig. 7.
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energy obtained from a numerical computation of the wa
let transform of Eq.~6!, with 100 azimuthal Fourier modes
including the moden50 @that is, rV(r )#. The energy is
organized in ‘‘blobs’’ which are asymptotically centered o
the curvel;dr . Changing the azimuthf makes the blobs
shift along the curvel;dr , but does not change the overa
distribution of the blobs. This is an effect of the ter
sin@4f22c(r̄ l)# in Eq. ~23! which determines the periodicit
of the blobs along the curvel;dr .

The energyeinviscid(r ,l ) corresponds to velocity fluctua
tions of length scalel at a distancer from the center of the
spiral, and Eq.~23! shows that these fluctuations are loc
ized in the sense thatl;dr (t), wheredr (t) is the distance
between the consecutive coils of the spiral at thatr @Eq.
~24!#. Keepingr fixed, the distancedr (t) between consecu
tive coils decreases with time@Eq. ~24!# because of the spi
ral’s differential rotation. Also, the velocity fluctuation a
this radius decreases as 1/t, and the combination of these tw
effects leads to a decay of the energy at„r ,d(r )… of the form
einviscid„r ,d(r )…;t23 @from Eq. ~23!#. Keeping l fixed, the
wavelet energy of length scalel moves outwards in space a
it is localized aroundr̄ l;ta/(a11) @from Eq. ~22!#. In the
wavelet radius-scale space this transfer mechanism is i
trated by the movement and distortion of the curvel;dr
towards thel 50 axis as time advances~see Figs. 7 and 8!. In
real fluids this mechanism is broken by viscous dissipati

Clearly, the structure of kinetic energy in the wave
radius-scale space reflects the complex spatial structur
the Lundgren spiral. Such a structure could not be found
Fourier analysis, since the Fourier spectrum contains no
tial information. Indeed, the Fourier spectrum of a on
dimensional cut of velocity along the azimuthf can be ob-
tained by integrating the kinetic energyeinviscid(r ,f,l ) over
all radii r. †This is not exactly the Fourier spectrum, as
contains terms involving the wavelet. Nevertheless, it can
thought of as the Fourier spectrum ‘‘smoothed’’ by t
wavelet ~see, for example, Farge@21#!.‡ One can easily
check from Eq.~23! that thisr integration would make the
exponential term exp$2@(r̄ l2r)/l#2% and the sine term vanis
~these two terms are responsible for the structure ofeinviscid!.
Indeed,einviscid is of the form

einviscid~r ,f,l !.F~ t !l ~4a11!/~a11!GfS r̄ l2r

l D ,

with Gf localized around 0. Hence,

einviscid~ l ,f![E
0

R

einviscid~r ,f,l !dr

. l ~4a11!/~a11!11E
~ r̄ l2R!/ l

r̄ l / l

Gf~y!dy

; l ~4a11!/~a11!11,

because2( r̄ l2R)/ l @1 and r̄ l / l @1 and Gf is localized
around 0. Therefore, the resulting ‘‘Fourier’’ spectrum h
no structure~it is only a power law ofl! and both the spatia
information and the scale information are necessary to
serve these blobs.
-

s-

.
t
of
a
a-
-

e

b-

In the next section we generalize the calculation of
wavelet radius-scale energy~23! to the viscous case and dis
cuss the effect of viscosity.

2. Viscous cutoff in the radial direction

The effect of the viscous diffusion of the coils of th
spiral is that the reduction of the scales, and therefore
displacement of the blobs of energy in the wavelet radi
scale space, will eventually stop and the energy carried
by the blobs will then be transformed into heat. In order
investigate this effect we generalize expression~23! to the
viscous case. We start from the asymptotic (t→1`) solu-
tion of the viscous vorticity equation~Lundgren@9#!

v~r ,f,t !.2g~r ! (
n52`

1`

e2in@f2V~r !t#e2~4/3!n2V82nt3,

~25!

which corresponds to the double-branched inviscid spiral
lution ~3!–~5! in the limit n→0. In particular,g(r ) andV(r )
are still related by the kinematic relation~4!.

As pointed out by Lundgren@9#, the exponential term in
Eq. ~25! enables us to calculate the radiusr(t) below which
all the modes are damped by viscosity, andr(t) can be
thought of as the radius below which the spiral structure
been smoothed out and no longer exists:

r~ t !5RS V0Ant3

R D a/~a11!

5RS V0Ant3

R D 22DK

. ~26!

By integrating Eq.~25! in the way performed for the inviscid
case by Vassilicos and Brasseur@26# we get

uf~r ,f,t !5 (
n52`

1`

un~r ,t !e2inf, ~27!

with

u0~r !5rV~r !

and

un~r ,t !5~2a21!
r

t

1

2in
e2 inV~r !tF11OS n2V82~r !nt3

nV~r !t D G
3e2~4/3!n2V82nt3, nÞ0 ~28!

in the limit t→1`. BecausenV(r )t@1, a sufficient condi-
tion for the order term~O! in Eq. ~28! to be negligible is
n2V82nt3,1. Therefore, expression~28! is valid every-
where outside the inviscid core of the spiral@i.e., for all r
@r(t)#.

Under this condition the energy in the wavelet radiu
scale space can be readily calculated by means of the me
of stationary phases, and reads

e~r ,f,l !5einviscid~r ,f,l !expS 2
2

3
m2

nt

l 2 D . ~29!

We therefore observe that viscosity is responsible for a c
off Ant in the wavelet radius-scale space, because the en
e(r ,f,l ) is negligible for anyr and f where l !Ant, and
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where l @Ant we have e(r ,f,l ).einviscid(r ,f,l ). This
means that energy transfers occurring at a positionr as a
result of the spiral vortex sheet’s differential rotation st
when the intercoil distancedr @Eq. ~24!# is of the order of
the radial diffusive length scaleAnt. This is in agreemen
with Moore and Saffman@34#, who noticed that the coils o
the spiral are thickened by viscous diffusion, so that the d
crete jumps in the flow field are replaced by smoothed
gradients of thicknessAnt ~Moore and Saffman@34#!. The
position of the coil wheredr;Ant is given byr; r̄ l with l
5Ant, that is,r;r(t). Hence, the ‘‘image’’ of the viscous
core in the wavelet radius-scale space is the region defi
by

r ,r~ t !

and

l ,Ant.

Figure 9 shows a sketch of this region, together with blobs
energy located on the curvel;dr . Energy dissipation occur
only in the vicinity of the pointA5„r(t),Ant…. Indeed, there
is no dissipation in the area$r !r(t) and l !Ant% because
gradients have been smoothed out in the core, and there
dissipation in the area$r @r(t) or l @Ant% because viscous
effects are negligible there@Eq. ~29!#.

B. Azimuthal wavelet analysis

The radial wavelet analysis of the preceding section is
analysis of the effect of the differential rotation on the rad
distribution of energy. In order to investigate the effect of t
differential rotation on the azimuthal distribution of energ
we perform a wavelet analysis similar to the one of S
III A, but with a wavelet selective in the azimuthal directio
For a fixed radiusr we calculate the wavelet transform o
u(r ,f) as defined in Eq.~15!, but by integrating over the
domainsP@r (f2p),r (f1p)# instead ofxP] 2`,1`@ :

FIG. 9. Sketch of the blobs of kinetic energy in the wave
radius-scale space~r,l!, at a fixed timet. The gray area defined b
r ,r(t) andl ,(nt)1/2 is the image of the inviscid core of the spir
in the wavelet radius-scale space. Most of the energy dissipa
occurs in the vicinity of the pointA(t)5„r(t),(nt)1/2

….
-
t

ed

f

no

n
l

,
.

ũ~r ,f,l !5
1

R E
r ~f2p!

r ~f1p!

uS s82s

l Du~r ,f8!ds8, ~30!

where the arc lengthss and s8 are such thats82s5r (f8
2f) and ds85rdf8. Integration is performed over th
circle of radiusr centered at the origin. For alln the wavelet
transform of the modee2infun(r ) is

ũn~r ,f,l !5un~r ,t !
r

R E
f2p

f1p

uS r
f82f

l De2inf8df8.

By performing the change of variablesy5r / l (f82f) we
get

ũn~r ,f,l !5
l

R
e2infun~r ,t !E

2pr / l

pr / l

ei ~2nl/r 2m!ye2~1/2!y2
dy.

In the limit wherer @ l the above integral is increasingly we
approximated by

E
2`

`

ei ~2nl/r 2m!ye2~1/2!y2
dy5~p/2!1/2exp@2 1

2 ~2nl/r2m!2#,

so that

ũn~r ,f,l !.~p/2!1/2
l

R
e2infun~r ,t !expF2

r

l S n2
rm

2l D 2G .
~31!

In contrast with the radial wavelet analysis the azimut
wavelet transform of the first azimuthal mode (unu51) does
not dominate over the other azimuthal modes. It is the m
n̄;rm/(2l ) which carries the largest contribution i
ũ(r ,f,l )5(nũn(r ,f,l ), and as r @ l the contribution of
other modes is exponentially small. We therefore appro
mate the wavelet transform ofu(r ,f,l ) by

ũ~r ,f,l !.ũn̄~r ,f,t !1ũ2n̄~r ,f,t !.

By taking the half of the square ofũ(r ,f,l ) we obtain the
energy in the wavelet azimuth-scale space

e~r ,f,l !.p~2a21!2S l 2

mRtD
2

sin2S mr

l
@f2V~r !t# D

3expF2
2

3 S mr

l D 2

V82~r !nt3G , ~32!

for l !r . We first observe that the exponential drop off in E
~32! represents the cutoff induced by viscosity, and that
energy has therefore been mostly dissipated at the le
scalesl such that

S mr

l D 2

V82~r !nt3@1,

that is,

l !V~r !tAnt.

t

n



ra
r

s
ct

gt

th

o

he
e

o

ac
n
di

s
f
Th
er

y
e

-

he

f

nal

r

ce
eed

en-

ha-
y
rp-
iral
a-

yze
an

of
ity

PRE 59 5435TIME-DEPENDENT GEOMETRY AND ENERGY . . .
The viscous length scaleV(r )tAnt drops out quite naturally
from this azimuthal wavelet analysis. It depends on the
dius r and is much larger thanAnt because of the shea
induced by the differential rotation~Rhines and Young@35#,
Flohr and Vassilicos@15#!. Hence, the viscous diffusion i
shear augmented in the azimuthal direction, and this effe
proportional to the local strain rateV(r ).

For scales much larger than the viscous cutoff len
scaleV(r )tAnt we observe that the energy~32! is not local-
ized in the wavelet azimuth-scale space, in contrast with
wavelet radius-scale analysis. Indeed, forl @V(r )tAnt we
can drop the exponential viscous term in Eq.~32!, and the
remaining term is a combination of a power function and
a sine function off andl which displays activity everywhere
in the (f,l ) space. This significant difference between t
wavelet radius-scale and the wavelet azimuth-scale wav
analyses enables us to draw interesting conclusions as t
distribution of energy in the spiral vortex.

C. Characteristic scales of energy distribution

The energy distribution in the wavelet radius-scale sp
is localized~Sec. III A!. In contrast, the energy distributio
in the wavelet azimuth-scale space is not localized, as it
plays activity everywhere in this space~Sec. III B!. This sug-
gests that between two coils located at radiir andr 1dr , the
typical scale of velocity fluctuations isdr rather than the
perimeter 2pr .

For a fixed radiusr the intercoil distancedr decreases a
the vortex sheet rolls up@see Eq.~24!#, so that the energy o
fluctuations is distributed on smaller and smaller scales.
distribution of energy in the wavelet radius-scale space th
fore changes, and we calculate its rate of change]e/]t from
Eqs.~29! and~23!. For a given scalel we consider the energ
at the coil of radiusr̄ l . We then calculate the rate of chang
of e( r̄ l ,f,l ) from results~29! and ~23!. By noticing that

]c~ r̄ l !

]t
52V~ r̄ l !,

and focusing wherer 5 r̄ l , we are led to

]e

]t
~ r̄ l ,f,l !.ē~ l !F4V~ r̄ l !C~r ,f!2

2

3
m2

n

l 2 S~r ,f!G
1O„~V0t !23/~a11!

…, ~33!

where

C~r ,f!5cos@4f22c~ r̄ l !#, ~34!

S~r ,f!512sin@4f22c~ r̄ l !#, ~35!

and

ē~ l !5B2~V0R!2~V0t !~a22!/~a11!S l

RD ~4a11!/~a11!

3expS 2
2

3
m2

nt

l 2 D
-

is

h

e

f

let
the

e

s-

e
e-

is the maximum energy of a given scalel. From Eq.~33! we
deduce that the energy transfer at scalel and positionr̄ l has
two different regimes, according to whether the ratio

Re~ l !5
l 2V~ r̄ l !

n
~36!

is large or not. Re(l) plays the role of a local Reynolds num
ber, and indicates whether the scalel is inviscid or not. Re(l)
is the ratio of the diffusive time needed to smooth out t
intercoil distancel, namely,l 2/n, to the corresponding cir-
cumferential convective timeV( r̄ l)

21. When Re(l)@1 the
characteristic time of energy variations at scalel is the cir-
cumferential convective time~turnover time!. Note that this
time is alsol /u, where l 5dr is the characteristic scale o
velocity fluctuations, andu;r /t is the typical value of ve-
locity fluctuations at radiusr ~see Introduction!. Note also
that results should differ in the case of a three-dimensio
strained spiral vortex layer.

The analysis of]e/]t shows that, at a distancer from the
center, energy is transferred from the scaledr to other scales
over a turnover timeV(r )21. However, this energy transfe
can also be thought of in terms ofscale displacementin the
wavelet radius-scale space. Indeed, a given scalel is associ-
ated with a positionr̄ l . Because this radius increases witht
@Eq. ~22!# the scalel moves outwards in the physical spa
towards the periphery of the spiral. We can define the sp
of the scalel by ] r̄ l /]t, that is,

] r̄ l

]t
5

2

m~a11!
lV~ r̄ l !,

and a typical duration of the scale movement is

l

] r̄ l /]t
;

1

V~ r̄ l !
,

which is the convective time around the coil of radiusr̄ l ,
and has also been found to be the characteristic time of
ergy transfer of scalel.

IV. ENSTROPHY AND ENERGY DECAY OF LUNDGREN’S
SPIRAL VORTEX

The enstrophy decay depends on two different mec
nisms~Flohr and Vassilicos@15#!. First, the shear induced b
the differential rotation accelerates the diffusion, as it sha
ens the gradients of the vorticity field. Second, the sp
structure resulting from the roll up is likely to have anom
lous diffusive properties~Vassilicos@14#, Flohr and Vassili-
cos @15#, Angilella and Vassilicos@16#!. In this section we
calculate the enstrophy of the structure in order to anal
these effects. We integrate the squared vorticity within
annular area$r 0<r<R%:

^v2&5
1

pR2 E
r 0

RS E v2~r ,f,t !df D r dr , ~37!

where r 0 is a small radial scale chosen such thatr 0!r(t)
andR is the overall length scale of the structure. Because
the absence of radial movement there is no flux of vortic
through the boundaries of the domain$r 0<r<R%. Follow-
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ing Lundgren@9#, we calculate thef integral in Eq.~37! by
using the Fourier series inf of v @Eq. ~25!#, and applying
the Plancherel identity. Equation~37! becomes

^v2&.
2

R2 (
n50

1` E
r 0

R

4g~r !2e2~8/3!n2V82nt3r dr . ~38!

The vortex strengthg(r ) is linked to the angular frequenc
by Eq. ~4!, and reads

g~r !5
1

2 S 22
1

a DV0~r /R!2~1/a!. ~39!

In Eq. ~38! the contribution of the moden50 can be readily
calculated and is a constant depending only on the par
etersV0 , a, R, andr 0 . We focus on the contribution of th
modesn.0 which is calculated by making use of the chan
of variables

X5n2V82~r !nt35n2~V0R1/a!2
1

a2 r 22/a22nt3, ~40!

r 5S X

n2~V0R1/a!2~1/a2!nt3D 21/~2/a12!

, ~41!

and reads

^v2&.
~2a21!2

a~11a! S 1

a2D ~a21!/~a11!

3V0
2~V0

2R22nt3!~a21!/~a11!

3(
n

n2~a21!/~a11!E
n2V82~R!nt3

n2V82~r 0!nt3

3e28X/3X22a/~a11!dX. ~42!

We now perform time asymptotics by noticing that the abo
integral reads

E
n2V82~R!nt3

n2V82~r 0!nt3

e28X/3X22a/~a11!dX

5S 8

3D ~a21!/~a11!FGS a21

a11
,
8

3
n2V82~R!nt3D

2GS a21

a11
,
8

3
n2V82~r 0!nt3D G ,

where G~•••! denotes the incomplete gamma function~see
@36#!. These two gamma functions are exponentially smal
soon asn2V82(R)nt3@1, that is,

n@N5
aR

V0Ant3
~43!

~see also Flohr and Vassilicos@15#!. This enables us to trun
cate the series in Eq.~42!, so that summation is now re
stricted to indices 1<n<N. For these indices the firs
gamma function is constant at leading order, and equa
G„(a21)/(a11)…, and the second one is exponentia
m-

e

s

to

small becauser 0!r(t) implies that for alln.0 we have
n2V82(r 0)nt3@1. Finally enstrophy reads

^v2&.C1V0
2~V0

2R22nt3!~a21!/~a11! (
1<n<N

n2~a21!/~a11!,

~44!

where

C15
~2a21!2

a~11a! S 8

3a2D ~a21!/~a11!

GS a21

a11D
is a constant of order unity which only depends on the
ometry of the spiral. At this stage we notice that ifN@1, i.e.,
V0(aR)21Ant3!1, the sum in Eq.~44! can be approxi-
mated byu12N(3a21)/(a11)u. For a, 1

3 this term is constant
at leading order, and we get

^v2&;V0
2S V0t

Re1/3D 3~322DK!

for 1!V0t!Re1/3 and DK.1.75, ~45!

where we have made use of relation~2! and introduced the
Reynolds number based on the circumferential velocityV0R
and the radiusR ~see also Flohr and Vassilicos@15#!:

Re5
R2V0

n
. ~46!

For a.1/3(DK,1.75) we have u12N(3a21)/(a11)u
.N(3a21)/(a11), and by making use of Eq.~43! we obtain

^v2&;V0
2S V0t

Re1/3D 23/2

for 1!V0t!Re1/3 and DK<1.75.

~47!

The energyE(t) of velocity fluctuations can be calculate
similarly by integrating the modesnÞ0 in the Fourier rep-
resentation ofu(r ,f,t) @Eqs.~27! and ~28!#, and reads

E~ t !;~RV0!2 Re22/3S V0t

Re1/3D 2~523DK!

for 1!V0t!Re1/3and DK.1.75, ~48!

E~ t !;~RV0!2 Re22.3S V0t

Re1/3D 21/2

for 1!V0t!Re1/3 and DK<1.75. ~49!

Results~45! and ~48! show that forDK.1.75 the decay of
enstrophy and energy is accelerated by the space-fil
property of the spiral~see Vassilicos@14#, Flohr and Vassili-
cos @15#!, whereas results~47! and ~49! show that forDK
<1.75 the decay is not sensitive to this space-filling pro
erty. This is to be linked with the fact that the energy spe
trum of Lundgren’s vortex scales ask22 at large wave num-
ber k for all DK<1.75 ~Lundgren@9#, Gilbert @18,19#!, but
scales ask4DK29 for DK.1.75 ~see Malik and Vassilicos
@37#, and Appendix C of this paper!. Therefore, forDK
.1.75, the larger theDK the more singular the vorticity and
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velocity fields, and the more sensitive they are to visco
dissipation. A similar behavior has been observed
rolled-up vortexpatches~Gilbert @18#!, as the power of the
spectrum of the velocity induced by a rolled-up vortex pa
is observed to depend onDK for DK.1.5, and to be inde-
pendent ofDK for DK,1.5. As noticed by Gilbert@18#, a
spiral vortex patch withDK,1.5 is too ‘‘weak’’ a singularity
to induce an energy spectrum different from that of an i
lated discontinuity. Similarly, in the case of the vortex sh
investigated in this paper we observe anomalous diffus
properties only forDK.1.75.

One can also check from Eq.~48! @or similarly from Eq.
~45!# that the rate of energy decaydE(t)/dt is such that

dE~ t !

dt
;Re2~DK22!,

so that it is asymptotically independent of Re in the lim
whereDK→2 ~i.e.,a→0!. This result could be linked to the
fact that the dissipation rate of kinetic energy in turbule
flows is independent of the viscosityn when n→0. Never-
theless, the problem of turbulence is exceedingly comp
and the properties of the dissipation rate of energy in tur
lent flow cannot be reduced without care to the properties
a single vortical structure. Further analyses, like topolog
analyses of dissipative zones in turbulent flows, could
useful to investigate this point.

Note that a similar result has also been observed by F
and Vassilicos@15# about the rate of decay of the variance
a scalar patch wrapped around a vortex.

V. CONCLUSION

We have investigated the distribution of energy in
rolled-up vortex layer by making use of the asymptotic sp
vortex model of Lundgren@9#, in the unstrained case.

In order to choose the angular frequencyV(r ) in
Lundgren’s model we have investigated some geometr
properties of a numerical solution of the Birkhoff-Rott equ
tion ~Krasny @27,28#! corresponding to a rolled-up vorte
sheet. This solution is observed to be close to an algeb
rather than logarithmic~Kambe @23#!, spiral. This observa-
tion is in agreement with the one-dimensional measurem
of Moffatt @30#, and in contradiction to the analysis of Eve
son and Sreenivasan@31#. The Kolmogorov capacity of
Krasny’s spiral has been measured and is found to be c
to DK51.33. This suggests that the equation of the spiral
be approximated byf5V(r )t for times much longer than
the critical time of the vortex sheetL/U, with V(r )
;r 21/2. This approximation implies that the length of th
vortex sheet increases liket for t.L/U, and this prediction
has also been verified for Krasny’s spiral.

However, the ratio of the desingularization parameterd to
the overall length scale of the spiral being of order 1, th
conclusions have to be taken with care, as the desingula
tion procedure might influence the dynamics of the interfa
at those scales where we observe a well-defined Kolmogo
capacity~Fig. 3! corresponding to a power-law angular fr
quency~Fig. 5!.

Because rolled-up vortex layers are strongly nonhomo
neous we have analyzed the spectral distribution of ene
s
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by means of the wavelet transform. This tool enables us
unfold the energy in both the wavelet radius-scale space~r,l!
and the wavelet azimuth-scale space (f,l ). In the~r,l! space
the energye(r ,f,l ) ~for a fixed azimuthf! is organized in
blobs located in the vicinity of the curvel;dr , wheredr
denotes the distance between the two adjacent coils close
the radiusr @Eq. ~24!#. As time advances, this curve move
towards the small scale region of the wavelet radius-sc
space, in a way determined by the Kolmogorov capacity
the spiral. This process is broken when the intercoil dista
dr reaches the diffusive length scaleAnt, that is, when the
viscous core of the spiral reaches the coil of radiusr. In the
physical space the diameterr(t) of the inviscid core is given
by Eq. ~26!. In the wavelet radius-scale space the invisc
core of the spiral corresponds to the rectangle domain$r
,r(t) and l ,Ant% ~see Fig. 9!. The right top corner of this
rectangle~point A in Fig. 9! is the only point of the wavele
radius-scale space where dissipation takes place. The
placement of the curvel;dr can be investigated in terms o
the displacement of the scalel in the wavelet radius-scale
space. Indeed, a given scalel @Ant moves vertically in this
space, and the typical duration of this movement is the tu
over timeV( r̄ l)

21, where r̄ l is the radius such thatl 5dr .
By investigating the rate of energy variation]e/]t we ob-
served that the characteristic time of energy variation at s
l is either V( r̄ l)

21 or l 2/n according to whether viscou
effects dominate or not.

In the wavelet azimuth-scale space (f,l ) the energy
e(r ,f,l ) ~for a fixed radiusr! is not localized, as it displays
activity everywhere, in contrast with the wavelet radius-sc
analysis. Moreover, in the wavelet azimuth-scale space
cutoff induced by viscosity is the shear-augmented diffus
length scaleV(r )Ant3, and is much larger thanAnt.

The decay of enstrophy and energy of Lundgren’s vor
is sensitive to its spiral geometry. In particular, an anomal
decay is observed when the Kolmogorov capacityDK is
large enough. ForDK.1.75, the larger theDK the faster the
decay of energy and enstrophy. These properties are
agreement with the fact that the energy spectrum
Lundgren’s vortex sheet differs from that of an isolated v
tex sheet only forDK.1.75. Indeed, forDKP]1.75,2@ and
large wave numbersk, the energy spectrum of Lundgren
vortex scales ask2p with p5924DKP]1,2@ , so that the
structure is more singular than an isolated vortex sheet in
case, and therefore more sensitive to viscous dissipation

As in the analysis of rolled-up passive scalar patch
~Flohr and Vassilicos@15#!, the time range of this anomalou
decay~‘‘spiral time range’’! is 1!V0t!Re1/3, where Re is
the Reynolds number defined in Eq.~46!, and is therefore
rather short in practice, unless Re@103.

The spiral investigated in this paper is not strained. W
believe that an axisymmetric strain field should modify t
distribution and the evolution of the energy in the wave
position-scale space, and introduce new characteristic t
scales due to the radial differential movement. In particu
the movement of the scales in the wavelet radius-scale s
might be significantly modified by the strain field. The
remarks suggest that the geometry of the spiral in
strained case plays an important role, and that it will
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interesting to extend the analysis presented in this pape
the strained case.
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APPENDIX A: WAVELET TRANSFORM OF r V„r …

In this appendix we calculate the wavelet transform
rV(r ) for a wavelet selective in the radial direction. W
have

ũ0~r ,f,l !5
1

R E
0

R

r 8V~r 8!uS r 82r

l Ddr8,

that is,

ũ0~r ,f,l !5V0R1/a21I 0 ,

where

I 05E
0

R

r 8121/auS r 82r

l Ddr8.

By operating the change of variabley5(r 82r )/ l we are led
to

I 05 lr 121/aE
2r / l

~R2r !/ l
~11 ly /r !121/au~y!dy.

If the scale is such that

r

l
@1,

and

R2r

l
@1,

then the above integral can be integrated only on the sup
of the wavelet, say@2a,1a#, wherea;1. In particular, we
haveu ly /r u!1 for all yP@2a,1a#, so that we can expan
the integral as

I 0. lr 121/aF E u~y!dy1S 12
1

a D l

r E yu~y!dy

1
1

2! S 12
1

a D S 2
1

a D S l

r D
2E y2u~y!dy1¯ G ,

where all the integrals are taken on the support of the wa
let. The above integrals approximate the moments of
wavelet. If the wavelet is of orderp @i.e., *yiu(y)dy50 for
i 50,1, . . . ,p and *yp11u(y)dyÞ0# the expansion is a
leading order

I 0; lr 121/aS l

r D
p11

, l !r .
to

e

f

rt

e-
e

Hence,ũ0 can be made as small as we want by choosin
large-order wavelet~e.g., a high-order derivative of th
Gaussian!. In the case of the Morlet wavelet the moments a
nonzero, but they are all proportional to exp(2m2/2), so that
by choosingm large enough we can get rid of the termũ0 .

APPENDIX B: CALCULATION OF ũn

In this appendix we calculate the wavelet transform ofun
for a wavelet selective in the radial direction, in the casen
Þ0. We start from Eq.~18!. Let

I n5E
0

R

r 8e22inV~r 8!tuS r 82r

l Ddr8.

The integralI n can be approximated in the limitl→0 by the
method of stationary phases@33# as follows. By inserting
expression~16! we are led to

I n5
1

2i E0

R

r 8eic1~r 8!e2~1/2!@~r 82r !/ l #2
dr8

1
1

2i E0

R

r 8e2 ic2~r 8!e2~1/2!@~r 82r !/ l #2
dr8,

where the phasesc1(r 8) andc2(r 8) read

c1~r 8!522nV~r 8!t1m
r 82r

l
, ~B1!

c2~r 8!512nV~r 8!t1m
r 82r

l
. ~B2!

Whenn,0, c1(r 8) has a minimum on@0,1`! andc2(r 8) is
monotone. Whenn.0, c2(r 8) has a minimum on@0,1`!
and c1(r 8) is monotone. In both cases the position of t
minimum is

r̄ l tn5RS 2unuV0t l

amR D a/~a11!

. ~B3!

The integral inI n for which the phase is monotone is neg
gible in comparison to the other integral. In the following w
note byc(r 8) the phasesc1(r 8) or c2(r 8) that has a mini-
mum, that is,

c~r 8!52unuV~r 8!t1m
r 82r

l
. ~B4!

We approximateI n by expandingc(r 8) in the vicinity of
r̄ l tn , and by integrating only over an interval centered
r̄ l tn :

I n.
61

2i
r̄ l tne2~1/2!@~ r̄ l tn2r !/ l #2

3E
r̄ l tn2e

r̄ l tn1e

e6 i @c~ r̄ l tn!11/2~r 82 r̄ l tn!2c9~ r̄ l tn!#dr8,

where 2e is the width of the interval, and the symbol6
denotes the opposite of the sign ofn. Becausec( r̄ l tn) is a
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minimum we havec9( r̄ l tn).0, and by operating the chang
of variabley5(r 2 r̄ l tn)@c9( r̄ l tn)#1/2 we get

I n.
61

2i
r̄ l tne2~1/2!@~ r̄ l tn2r !/ l #2

e6 ic~ r̄ l tn!

3@c9~ r̄ l tn!#21/2E
2e@c9~ r̄ l tn!#1/2

1e@c9~ r̄ l tn!#1/2

e6 iy2/2dy.

In the limit l→0 we havec9( r̄ l tn)→1`, so that the integra
in the above equation can be approximated
*2`

1` exp(6iy2/2)5*0
1` exp(6iy/2)y21/2dy5Ap(16 i ). Fi-

nally,

I n.
61

2i
Ap~16 i ! r̄ l tne2~1/2!@~ r̄ l tn2r !/ l #2

e6 ic~ r̄ l tn!

3@c9~ r̄ l tn!#21/2.

We insert this expression into Eq.~18! to get

ũn~r ,f,l !.
1

R
e2inf

2a21

2int

61

2i
Ap~16 i ! r̄ l tn

3e2~1/2!@~ r̄ l tn2r !/ l #2
e6 ic~ r̄ l tn!@c9~ r̄ l tn!#21/2.

~B5!
J

,

M

in
y

By making use of Eqs.~B4! and ~B3! to calculatec9( r̄ l tn)
we are led to Eq.~19!.

APPENDIX C: ENERGY SPECTRUM
OF LUNDGREN’S VORTEX

The energy spectrumE(k,t) of Lundgren’s vortex for
DK,1.75 has been calculated by Malik and Vassilicos@37#.
These authors use the method of Gilbert@18#. Equation~A5!
in @37# reads

E~k,t !;k2312~12a!/~11a!E
1

nu
n22~12a!/~11a!

5
a11

3a21
k2312~12a!/~11a!~nu

~3a21!/~a11!21!,

where nu;k and nu@1 ~see Gilbert @18#!. For DK
,1.75 (a.1/3) we get E(k,t);k22, and for DK.1.75
(a,1/3) we get E(k,t);k2(115a)/(11a), that is, E(k,t)
;k4DK

29
. The energy spectrum therefore scales ask2p with

1,p,2 for DK.1.75 and large wave numbersk, so that the
structure is more singular than an isolated vortex layer.
er.

s

:

,

on,

e,
p-

. A
@1# O. Cadot, S. Douady, and Y. Couder, Phys. Fluids7, 630
~1995!.

@2# Z. S. She, E. Jackson, and S. A. Orszag, Nature~London! 344,
226 ~1990!.

@3# G. R. Ruetsch and M. R. Maxey, Phys. Fluids A3, 1587
~1991!.

@4# A. P. Vincent and M. Meneguzzi, J. Fluid Mech.225, 1
~1991!.
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