
J. Fluid Mech. (1997), vol. 342, pp. 377–401. Printed in the United Kingdom

c© 1997 Cambridge University Press

377

Breaking waves and the equilibrium range of
wind-wave spectra

By S. E. B E L C H E R1 AND J. C. V A S S I L I C O S2

1Department of Meteorology, University of Reading, Reading RG6 6AH, UK
2Department of Applied Mathematics and Theoretical Physics, University of Cambridge,

Silver Street, Cambridge CB3 9EW, UK

(Received 11 October 1996 and in revised form 27 February 1997)

When scaled properly, the high-wavenumber and high-frequency parts of wind-
wave spectra collapse onto universal curves. This collapse has been attributed to a
dynamical balance and so these parts of the spectra have been called the equilibrium
range. We develop a model for this equilibrium range based on kinematical and
dynamical properties of breaking waves. Data suggest that breaking waves have high
curvature at their crests, and they are modelled here as waves with discontinuous
slope at their crests. Spectra are then dominated by these singularities in slope.
The equilibrium range is assumed to be scale invariant, meaning that there is no
privileged lengthscale. This assumption implies that: (i) the sharp-crested breaking
waves have self-similar shapes, so that large breaking waves are magnified copies of
the smaller breaking waves; and (ii) statistical properties of breaking waves, such as
the average total length of breaking-wave fronts of a given scale, vary with the scale
of the breaking waves as a power law, parameterized here with exponent D.

The two-dimensional wavenumber spectrum of a scale-invariant distribution of
such self-similar breaking waves is calculated and found to vary as Ψ (k) ∼ k−5+D .
The exponent D is calculated by assuming a scale-invariant dynamical balance in the
equilibrium range. This balance is satisfied only when D = 1, so that Ψ (k) ∼ k−4, in
agreement with recent data. The frequency spectrum is also calculated and shown to
vary as Φ(σ) ∼ σ−4, which is also in good agreement with data. The theory also gives
statistics for the coverage of the sea surface with breaking waves, and, when D = 1,
the fraction of sea surface covered by breaking waves is the same for all scales. Hence
the equilibrium described by our model is a space-filling saturation: equilibrium at
a given wavenumber is established when breaking waves of the corresponding scale
cover a given, wind-dependent, fraction of the sea surface.

Although both Ψ (k) and Φ(σ) vary with the same power law, the two power laws
arise from quite different physical causes. As the wavenumber, k, increases, Ψ (k)
receives contributions from smaller and smaller breaking waves. In contrast, Φ(σ) is
dominated by the largest breaking waves through the whole of the equilibrium range
and contains no information about the small-scale waves. This deduction from the
model suggests a way of using data to distinguish the present theory from previous
work.

1. Introduction
Since the pioneering work of Phillips (1958) there has been considerable interest

in the high-wavenumber and the high-frequency tails of the wavenumber and the
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frequency spectra of ocean waves. These parts of the spectra, with wavenumber or
frequency greater than about three times the values at the peaks in the spectra, are of
inherent scientific interest because data show that, when scaled properly, they collapse
onto universal curves (e.g. Phillips 1977, p. 140). Phillips (1958) called this a saturation
range, whereas Kitaigorodskii (1983) and Phillips (1985) used the term equilibrium
range. The smaller-scale waves that control these parts of the spectra are important
because they largely determine the momentum exchange between the atmosphere
and the ocean (e.g. Makin, Kudryatsev & Mastenbroek 1995). And recently this
equilibrium range has increased in practical significance following developments in
remote sensing.

Previous studies have suggested different forms for the equilibrium range of the
wavenumber spectrum, Ψ (k), and the frequency spectrum, Φ(σ). All of these forms
have a power-law variation with wavenumber k or frequency σ. For example,
for the wavenumber spectrum Phillips (1958) suggested Ψ (k) ∼ const × k−4, and
Kitaigorodskii (1983) and Phillips (1985) have proposed Ψ (k) ∼ const× u∗g−1/2k−7/2

(where u∗ is the friction velocity and g is the gravitational acceleration). Meanwhile, a
recent survey of data by Banner (1990) revealed that Ψ (k, θ0) ∼ const× (U0/cp)

1/2k−4,
where θ0 is the wind direction, U0 is a reference surface wind speed and cp is the
phase speed of waves at the peak in the spectrum. Similarly, power-law forms have
been proposed for the high-frequency part of the frequency spectrum. Phillips (1958)
suggested Φ(σ) ∼ const×g2σ−5. And the models of Kitaigorodskii (1983) and Phillips
(1985) give Φ(σ) ∼ const × u∗gσ−4, which agrees well with measurements made by
Toba (1973) and other data presented in Phillips (1985). So, although the theoretical
models of Kitaigorodskii (1983) and Phillips (1985) seem to agree with the data
for Φ(σ), their models for Φ(σ) were derived from the theoretical results for Ψ (k)
that do not agree with current data. In contrast, Phillips’ (1958) model gives a k−4

variation, which agrees with the current data, but his inferred frequency spectrum
does not. Hence no current theory can give the variation of both the wavenumber
and frequency spectra in the equilibrium range that agree with current best estimates
from data. The aim of the present paper is to develop a theory for the equilibrium
range of wind waves that is consistent with Ψ (k) ∼ k−4 and Φ(σ) ∼ σ−4.

To examine this question consider first how the sea surface could be reconstructed
from the wavenumber spectrum. One approach is to model the sea surface as a
collection of sinusoidal waves with amplitudes chosen to give the correct spectrum
and to assume that the phases of the sinusoidal waves are random so that the surface
has a Gaussian probability distribution (Pierson 1955). When the spectrum has a
power-law variation, such a surface has a fractal geometry (a result originally found
by Orey 1970, and more recently discussed in the context of ocean waves by Glazman
& Weichman 1989).

Although the random-phase model does capture some aspects of the sea surface,
important elements are missing. Firstly, measurements of the probability density
function of the surface elevation show a marked non-Gaussian behaviour; see, for
example, the measurements made by Kinsman, which are shown in Phillips (1977,
p. 185). The deviations from a Gaussian distribution are qualitatively consistent with
the wave crests being sharper than the wave troughs. Secondly, quantitative analysis
of time series of surface-elevation data using wavelet transforms show crests that
are sharper than the troughs and indicate that occasionally there are wave crests
with large curvature, and hence nearly discontinuous slopes (Shen, Wang & Mei
1994). Such waves are probably on the point of breaking (at least according to the
development shown by the photographs in Rapp & Melville 1990).
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Figure 1. The wave field as a superposition of sinusoids plus sharp-crested breaking waves.

Following Shen et al. (1994), the picture that we propose is of the surface waves be-
ing composed of smooth-crested waves, together with breaking waves with sharp crests
(figure 1). In contrast, most previous models of the equilibrium range (e.g. Phillips
1958, 1985; Kitaigorodskii 1983) have assumed that the sea surface is a collection
of sinusoidal water waves that propagate according to the linear dispersion relation.
Wave breaking certainly becomes more frequent at small scales as shown, albeit
indirectly, by the high values of dissipation of wave energy at high frequencies in
wave forecast models (see e.g. Komen, Hasselmann & Hasselmann 1984). Here we
assume that the geometry and dynamics of breaking waves play the controlling role
in the equilibrium range and we develop a model for the equilibrium range based on
geometrical and dynamical properties of such breaking waves.

1.1. Properties of breaking waves

Sharp-crested breaking waves play a central role in the calculations developed in this
paper and so experimental measurements of breaking waves are now reviewed and
interpreted to motivate the idealized model used in our calculations. A review of the
recent developments in breaking waves is given by Banner & Peregrine (1993), and
a review of the role of breaking waves in the air–sea interaction has been written by
Melville (1996).

Laboratory experiments have been used to examine geometrical properties of
breaking waves. Bonmarin (1989) used a mechanical wavemaker to generate waves
with wavelengths on the order of a metre and examined how some geometrical
properties of the waves varied as the waves broke. These experiments show that
immediately preceeding and during breaking there is a region of high curvature at the
wave crest. Shen et al. (1994) generated wind waves in a laboratory flume, producing
dominant waves with wavelengths of the order of 0.5 m, they also obtained field
data with dominant wavelengths of the order of 5 m. They then performed wavelet
analyses on time series of the surface elevation measured at a point in these wave
fields. Their analysed data show wave crests with very high curvature, which suggests
that such sharp crests occur in wind-generated waves and are not an artifact of
Bonmarin’s mechanical method of generating breaking waves. These experiments
suggest an idealized model that is used here to represent the breaking waves. The
curvature at the breaking-wave crest is taken to be infinite, so that the slope of the
water surface is discontinuous at the crest. Such waves are denoted here as Λ-crests.
In two dimensions the wave field therefore has lines of breaking-wave fronts along
which the slope is discontinuous.
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Further information on the properties of breaking waves is provided by the in-
teresting experiments performed by Duncan (1981), who generated continuously
overturning breaking waves with wavelengths of the order of 0.5 m by towing a
submerged hydrofoil through water. These experiments show that the geometry of
quasi-steady breaking waves is statistically self-similar, so that on average the larger
breakers are magnified copies of the smaller breakers. In addition Duncan’s (1981)
experiments show that, amazingly, the breaking region itself is a fixed fraction of the
cross-sectional area of the wave, and so is also statistically self-similar. Although we
know of no direct evidence that the transient breakers in wind-generated waves are
also self-similar, Duncan’s (1981) experiments are at least suggestive. Hence we use
self-similar Λ-crests to model the transient breaking waves on the ocean.

Duncan (1981) used his measurements to determine a scaling for the rate that wave
energy is dissipated by a continuously breaking wave. Melville (1994) re-examined
data on unsteady breakers and suggested that this scaling remains valid for transient
breakers produced in the laboratory, although he does urge caution since some of
the measurements are prone to substantial error. Nevertheless, that there is some
agreement between the two scalings suggests that experiments with continuously
breaking waves give at least some illustration of the properties of transient breakers.
In §3 we use the form of the scaling derived by Duncan (1981) to estimate dissipation
of wave energy by transient breaking waves.

Ding & Farmer (1994) tracked breaking waves in a field experiment using an array
of hydrophones. These experiments confirm that breaking in an active wind sea
occurs on a wide range of scales. Hence our model of the equilibrium range is a
summation of self-similar Λ-crests with a whole distribution of lengthscales.

The model developed here is based on the assumption that the equilibrium range
of the wind waves is scale-invariant. This assumption is used extensively in this
paper and has three major implications: it implies that Λ-crests must be statistically
self-similar; it establishes how the distribution of Λ-crests can vary with scale; and it
has implications for the dynamical balance that is possible in the equilibrium range.
These aspects are addressed next.

1.2. Scale invariance, self-similarity and spectra

Spectra have traditionally been used to identify characteristic frequencies or wavenum-
bers where significant wave activity is concentrated. But when a spectrum takes a
power-law form, e.g. Ψ (k) ∼ k−p, then there exists no privileged or characteristic
Fourier mode in the range of wavenumbers where this power law holds. To under-
stand this statement consider the ratio of the energy in wavenumbers between k and
k + dk to the energy between the scaled wavenumbers sk and s(k + dk). This ratio
is k−pdk/(sk)−pd(sk) = sp−1, which does not depend on the reference wavenumber k
but only on the scaling factor s: hence no wavenumber is special. The absence of
characteristic wavenumbers or frequencies in power-law spectra suggests that char-
acteristic length- or timescales are also absent from the geometry and dynamics of
the underlying wave field. Such geometry and dynamics are called here scale invari-
ant†. Experimentally measured wavenumber and frequency spectra show equilibrium
ranges with power-law forms, which suggests that the geometry of the sea surface
and the dynamical balance in the equilibrium range might both be scale invariant.

† Scale invariance and self-similarity are often used synonymously in the literature. Here
‘self-similar’ is used to mean that waves of different sizes are, statistically, geometrically similar in
shape; whereas ‘scale invariance’ is used to denote the more general notion of absence of privileged
length- or timescales.
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Hence the most decisive assumption made in this paper is that, in the equilibrium
range of wind waves, both the geometry and the dynamical balance are scale-invariant.
This assumption has two implications for the geometry of the surface waves. The
first implication is that sharp-crested breaking waves are, on average, geometrically
self-similar (otherwise a special lengthscale would be introduced). But the sea surface
is composed of breaking waves of a whole range of scales, and the second implication
concerns M(l)dl, which is defined to be the number of breaking waves with sizes
between l and l + dl per unit area of sea surface. One simple reason to motivate why
M(l) might vary with l is that the number of breaking waves that can be fitted into
a unit area without overlapping is proportional to l−2, which yields M(l)dl ∝ l−2.
The actual variation is likely to be different and physically M(l) is determined
by the dynamics of the wave field, i.e. the dynamical interplay between wind and
waves, wave–wave interactions and dissipation due to wave breaking. However the
assumption of scale invariance is enough to determine the functional form of M(l).

In general, dimensional considerations require that M(l) depends on l and a
reference lengthscale l0, so that M(l)dl = l−2

0 M̂(l/l0)d(l/l0), where M̂(l/l0) is a di-
mensionless function of l/l0. The assumption of scale invariance of the sea-surface

geometry means that the ratio M̂(l1/l0)/M̂(l2/l0) for two different crest sizes l1 and l2
is independent of l0, i.e. l0 is not a characteristic lengthscale (cf. the argument given
above that if the spectrum varies as a power law then it is scale invariant). This
condition of scale invariance can be written

d

dl0

{
M̂(l1/l0)

M̂(l2/l0)

}
= 0. (1.1)

The only solution to this equation is that M̂(l) varies as a power-law dependence on
the crest size l, which we write for later convenience as

M̂(l) = (l0/l)
D+2. (1.2)

The lengthscale l0 is defined to be the ‘outer’ lengthscale of the equilibrium range,
i.e. the lengthscale of the largest breaking waves. Equation (1.2) introduces the scaling
exponent D that we use to parameterize the scale-invariance of the sea surface. A
sum of self-similar Λ-crests with a distribution like (1.2) will then be scale invariant
and so will lead to spectra that vary as power laws.

1.3. Development of the model

The geometry of a spatial configuration must be quite particular for that geometry
to be statistically scale invariant. Yet the correct description and parameterization of
scale-invariant geometries is not generally known. Nor is the relation of power-law
spectra to these scale-invariant geometries generally well understood, although there
are a few special cases where they are, e.g. fractal Brownian motions (Orey 1970),
statistically homogeneous and isotropic sharp interfaces (Vassilicos & Hunt 1991),
spiral interfaces (Gilbert 1988; Vassilicos 1995). Here we perform calculations that
add to this list and the scale-invariant geometry of the sea surface is parameterized
by the exponent D and a relationship is established between D and the wavenumber
spectrum.

In §2 a kinematic analysis is used to calculate the two-dimensional wavenumber
spectrum of a scale-invariant distribution of self-similar sharp-crested breaking waves.
The model is constructed in a number of stages. First, a one-dimensional slice through
the two-dimensional wave surface is considered, and in §2.2 we explain how the
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discontinuity in the slope at the sharp crests leads to a one-dimensional spectrum that
decays as k−4. In §2.3 we explain how a scale-invariant variation in the distribution
of a set of sharp-crested waves with their discrete scales changes the power-law decay
of the one-dimensional wavenumber spectrum. These arguments are generalized in
§2.4 to account for sharp-crested waves with a continuous range of scales. Finally
in §2.5 these calculations are further generalized to compute the two-dimensional
wavenumber spectrum of the two-dimensional sea surface that carries a continuous
distribution of breaking-wave fronts. The key result is that the two-dimensional
wavenumber spectrum varies as k−5+D . Purely kinematical ideas cannot fix D, so in §3
we develop dynamical ideas based on the assumption that the dynamical processes are
scale invariant and on the notion that the high-wavenumber part of the spectrum is in
a local balance and thence fix the value of D. Physical interpretation of these results
and the wavenumber spectrum is given in §4. Then in §5 the frequency spectrum is
calculated using the one-dimensional kinematical theory together with the value of D
determined in §3. Finally we draw conclusions in §6.

2. Kinematics of sharp-crested breaking waves
Consider first a one-dimensional slice through the two-dimensional wave field, and

suppose that the elevation of the water surface at a given fixed time and at position
x along the slice is ζ(x). As discussed in §1, the surface elevation is modelled here
as a combination of smooth waves, denoted by ζs(x), together with sharp-crested
breaking waves (figure 1). Denote a breaking wave of horizontal scale ln (such that
ln < lm if n > m), and centred at xnm, by Λnm(x − xnm, ln). In principle the individual
sharp crests could have different shapes, hence the subscripts on Λnm. On dimensional
grounds, if ln is the only horizontal scale of the wave, then the Λ-crest is a function
of (x− xnm)/ln. The surface elevation can then be written

ζ(x) = ζs(x) +
∑
n,m

anmΛnm((x− xnm)/ln), (2.1)

where anm is the amplitude of the crest of size ln at xnm.
Using the convolution theorem, the one-dimensional wavenumber spectrum, Ψ1(k),

can be related to the Fourier transform of the wave elevation along the slice:

Ψ1(k) ≡
∫
ζ(x0)ζ(x0 + x) eikx dx =

(2π)2

Lx
|ζ̃(k)|2, (2.2)

where overbar denotes averaging over realizations and over the reference position x0

from 0 to Lx (Lx is the length of the record); ζ̃(k) is the Fourier transform of ζ(x),
defined by

ζ̃(k) =
1

2π

∫
ζ(x) eikx dx. (2.3)

Hence calculation of Ψ1(k) reduces to calculating the Fourier transform of the wave
elevation.

2.1. Fourier transform of a Λ-crest

The Fourier transform of a Λ-crest is now calculated. The main features of this
Fourier transform arise from the discontinuity in slope at the crest and the overall
scale ln; it is not necessary to define the shape of a Λ-crest more precisely.

Following Lighthill (1958, theorem 19), the behaviour of the Fourier transform of
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Λnm, denoted by Λ̃nm, at large k can be established by integrating by parts:

Λ̃nm(k, ln, xnm) =
1

2π

∫
Λnm((x− xnm)/ln) eikx dx

=
1

2π
lne

iφnm
1

(kln)2
{αnm + o(1)} as k →∞. (2.4)

Here αnm = [Λ′nm]+
− is the discontinuous change in slope at the crest. This analysis

shows explicitly that the discontinuity in slope at the Λ-crest leads to the Fourier
transform behaving as k−2 as kln → ∞. In (2.4) Λ̃nm is written as a magnitude
multiplied by a phase factor, with a phase φnm that is determined by the position of
the crest, φnm = kxnm. We assume that, at sufficiently high wavenumbers, ζ̃s is much
smaller than the contribution from the Λ-crests, so that the spectrum is dominated
by the contribution from the Λ-crests.

In the following calculation, we shall also need a qualitative understanding of the
behaviour of Λ̃nm at small k. There is no variation of the Λ-crest on lengthscales
greater than ln and so Λ̃ ∼ 0 for kln <∼ 1. Hence Λ̃nm first increases with kln from zero,

reaches a maximum when kln = O(1), and then decays as (kln)
−2 at larger values of

kln. This behaviour will be approximated here by

Λ̃nm(k, ln, xnm) =
1

2π
lne

iφnm
1

(kln)2
αnmH(kln − 1), (2.5)

where H is the Heaviside step function.

2.2. Spectrum of a set of Λ-crests

The next step is to use the Fourier transform of a single Λ-crest to calculate the
one-dimensional wavenumber spectrum. For illustration, consider first Λ-crests with
discrete scales, ln (a continuous range of scales is considered in §2.4).

At high wavenumbers, the Fourier transform of the wave surface is dominated by
the Fourier transform of the Λ-crests and so on using (2.1) and (2.5), we find

ζ̃(k) =
1

2πk2

∑
nm

αnmβnmH(kln − 1)eiφnm(k) + o(k−2), (2.6)

where βnm = anm/ln is the slope of the nmth wave. Hence, to begin calculating the
spectrum, write

|ζ̃(k)|2 =

(
1

2πk2

)2
∣∣∣∣∣
{∑

n

H(kln − 1)
∑
m

(αnmβnm)eiφnm(k)

}

×
{∑

p

H(klp − 1)
∑
q

(αpqβpq)e
iφpq(k)

}∗ ∣∣∣∣∣. (2.7)

There are three random elements in this expression, namely the positions, xnm, of the
crests (and hence the phases φnm), the slope discontinuities at the Λ-crests, αnm, and
the overall slopes of the waves, βnm. And so to form Ψ1(k) requires averaging over
these random processes, which are assumed to be independent and uncorrelated.

Experimental data (Shen et al. 1994) show no coherence in the positions of the
Λ-crests. Hence assume the xnm are uncorrelated and uniformly distributed, so that
the φnm are uniformly distributed between 0 and 2π, which implies that

|eiφnme−iφpq | = δnpδmq. (2.8)
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As argued in §1.1, the geometry of breaking waves is on average self similar, hence
αnm and βnm average to well-defined values that are independent of ln, namely αΛ and
βΛ which are defined by

α2
Λβ

2
Λ = α2

nmβ
2
nm. (2.9)

With these averages performed and using (2.2), the wavenumber spectrum becomes

Ψ1(k) =
(αΛβΛ)2

Lxk4

∑
n

∑
m

H(kln − 1) =
(αΛβΛ)2

k4

∑
n

MnH(kln − 1), (2.10)

where Mn is the expected number of Λ-crests of size ln per unit length of wave record
(i.e. the total number in the record is LxMn). For given wavenumber k, contributions
to the spectrum arise only from Λ-crests that can be resolved by the wavenumber
of size k, i.e. Λ-crests with kln > 1. This behaviour arises mathematically through
the Heaviside step functions in (2.10) and means that the sum over n has a finite
number of terms, P (k), defined by lP (k) > k−1 > lP (k)+1. Denote the total number of
Λ-crests resolved at wavenumber k, i.e. the total number with scales greater that k−1,
by M>

1 (k), so that

M>
1 (k) =

P (k)∑
n

Mn. (2.11)

The wavenumber spectrum is then

Ψ1(k) = (αΛβΛ)2 1

k4
M>

1 (k). (2.12)

Hence, if M>
1 (k) is independent of k then the distribution of sharp-crested one-

dimensional waves has a wavenumber spectrum that varies as k−4. The coefficient
multiplying this power law depends on the number of resolved breaking waves per
unit length, M>

1 (k), and the average wave shape, through αΛ, the jump in slope at
the crest, and βΛ, the overall slope of the breaking waves. But M>

1 (k) may vary with
k and possibly change the behaviour of the spectrum. This possibility is explored in
the next section.

2.3. Spectrum of a discrete distribution of self-similar Λ-crests

The next step is to examine how the spectrum varies with k when the surface has
a scale-invariant distribution of Λ-crests. As shown in §1.2, when the surface waves
are scale invariant the expected number of Λ-crests of scale ln per unit length has a
power-law dependence on ln, namely

Mn = M0

(
l0/ln

)D1
, (2.13)

where M0 is the number of Λ-crests of outer scale l0. The exponent D1 parameterizes
the distribution of one-dimensional Λ-crests with their lengthscale ln.

The variation in Mn given by (2.13) implies that the wavenumber spectrum (2.10)
becomes

Ψ1(k) =
(αΛβΛ)2

k4

∑
n

M0

(
l0

ln

)D1

H(kln − 1). (2.14)

As in §2.2, the Heaviside functions in (2.14) mean that the sum is finite with P (k)
terms. The key new feature of (2.14) is that as k increases so does P (k), which can
lead to the wavenumber spectrum varying as a power law different from k−4.
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This feature is illustrated in figure 2. Each of the four curves shown on figure 2(a)
corresponds to the spectrum (multiplied by k4) given by a single term in the sum over
n in (2.14) when D1 = 1, and when αΛ = βΛ = 1. Hence the first curve corresponds to
n = 0 and results from 4 Λ-crests of scale 1, the second results from 32 Λ-crests of
scale 1

8
(n = 3), the third results from 256 Λ-crests of scale 1

64
(n = 6) and the fourth

results from 2048 Λ-crests of scale 1
512

(n = 9). Hence for this illustration we have

chosen ln/l0 = 1/2n and M0 = 4 so that Mn = 2n+2. The total wavenumber spectrum
for D1 = 1, which is also shown as a straight line on the figure, is the sum of each of
these curves (plus intermediate terms in the sum that for clarity have been omitted
from the figure). On the logarithmic axes, each curve is small for kln <∼ 1, but rapidly
increases to a constant value when kln >∼ 1, i.e. when the Λ-crests are resolved. The
constant value attained when kln � 1 scales with the number of Λ-crests and so
increases as ln decreases. Hence, if the total spectrum is Ψ1(k), then k4Ψ1(k) ∼ k when
D1 = 1 because more Λ-crests are resolved at small scales.

Figure 2(b) shows similar curves when D1 = −1, and when αΛ = βΛ = 1: the first
curve correponds to n = 3 and results from 256 Λ-crests of scale 1

8
, the second results

from 32 Λ-crests of scale 1
64

(n = 6), the third results from 4 Λ-crests of scale 1
512

(n = 9). Hence for this illustration we have chosen ln/l0 = 1/2n and M0 = 2048 so
that Mn = 211−n. The contributions to the spectrum decrease with n, so that the total
spectrum obtained by summing these (and other) terms is dominated by the first,
and largest, term. This largest term varies like the spectrum of a single Λ-crest and
hence k4Ψ (k) is constant at high wavenumbers and scales on the number of largest
Λ-crests.

These effects are demonstrated analytically in the next section when a collection of
Λ-crests with a continuous range of sizes is considered.

2.4. Spectrum of a continuous distribution of self-similar Λ-crests

In the analysis so far we have considered a set of Λ-crests of discrete scales, ln.
Waves on the ocean have a continuous range of scales, and so do the breaking waves.
Hence the expression for the one-dimensional wavenumber spectrum (2.10) is now
generalized to a continuous distribution of Λ-crests. In this case Mn, the number of
Λ-crests of scale ln, is replaced by a number density, namely

dM1 = M1(l1)dl1, (2.15)

which represents the expected number of Λ-crests with scales in the range l1 to l1 +dl1
per unit length along the slice through the wave field. As discussed in §1.2, for a
scale-invariant sea surface the variation of the number density with scale can only be
as a power law as in the discrete case. For convenience later the power law is written

M1(l1)dl1 =
M0

l0

(
l0

l1

)D1+1

dl1, (2.16)

which holds in the scale-invariant range, where l1 6 l0. The number of Λ-crests
resolved at wavenumber k, denoted by M>

1 (k), is given by

M>
1 (k) =

∫ l0

k−1

M1(l1)dl1 =


(
M0/D1

) {
(kl0)

D1 − 1
}
, D1 6= 0

M0 ln(kl0), D1 = 0,
(2.17)

so that M0 has a meaning analogous to that in the discrete case (2.13), i.e. the number
of Λ-crests with scales larger than l0.
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Figure 2. Contributions to the spectrum: (a) D = 1, (b) D = −1.
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The discrete sum over Mn in the expression for the spectrum (2.10) becomes
an integral when there is a continuous distribution of Λ-crests, so that the one-
dimensional wavenumber spectrum becomes

Ψ1(k) =
(αΛβΛ)2

k4

∫ l0

0

M1(l1)H(kl1 − 1)dl1 =
(αΛβΛ)2

k4
M>

1 (k), (2.18)

because the Heaviside step function means that the lower limit of integration is
l1 = k−1, i.e. only resolved Λ-crests with l1 > k−1 are included. Equation (2.17) can be
used in this expression to compute the one-dimensional spectrum, which becomes

Ψ1(k) =


(αΛβΛ)2

D1

M0

k4

{
(kl0)

D1 − 1
}
, D1 6= 0

(αΛβΛ)2

D1

M0

k4
ln(kl0), D1 = 0.

(2.19)

There are three cases: D1 > 0, D1 < 0, and D1 = 0. They can be understood by
examining the ratio of the number of Λ-crests with sizes between l1 and l1 + dl1 to
the number with sizes between sl1 and s(l1 + dl1), namely

M1(l1)dl1
M1(sl1)d(sl1)

= sD1 , (2.20)

which, when s > 1, measures the ratio of the number of small crests to the number
of large crests.

First, suppose that D1 > 0, so that (2.20) is greater than 1 and there are more small
Λ-crests than large. Equation (2.19) is then dominated by the first term in the curly
bracket and

Ψ1(k) ∼
(αΛβΛ)2

D1

M0

1

k4
(kl0)

D1 when kl0 � 1, (2.21)

which decays as k−4+D1 (cf. figure 2a). The exponent is changed from −4 because,
as the wavenumber increases, smaller Λ-crests are resolved, and, because the number
of small Λ-crests is greater than the number of large Λ-crests, there is more energy
associated with the small scales and the spectrum decays more slowly than k−4.

Secondly, suppose that D1 < 0, then (2.20) is less than 1 and so there are fewer
small crests than large. The second term in the bracket of (2.19) is then largest,
because (kl0)

D1 → 0 when kl0 � 1. Hence

Ψ1(k) ∼
(αΛβΛ)2

|D1|
M0

1

k4
when kl0 � 1, (2.22)

which decays as k−4 (cf. figure 2b). In this case, although there are small-scale
Λ-crests, they are fewer in number than the large Λ-crests, and so the small-scale
Λ-crests contribute negligible energy to the spectrum and the spectrum shows the
signature of only the large Λ-crests. So in this case, the high-wavenumber part of the
spectrum contains information about only the largest breaking waves.

The third case of D1 = 0 is the limiting case in the kinematics when (2.20) equals
1 and the number of Λ-crests is independent of scale and so there are just enough
small-scale Λ-crests to contribute to the spectrum. Hence the spectrum decays as
k−4 ln(k/k0), which is just a little slower than k−4.
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Figure 3. Representation of the two-dimensional sea surface as a collection of breaking-wave
fronts with discontinuous slopes at their crests. (a) A single breaking-wave front; (b) a collection of
breaking-wave fronts.

2.5. Spectrum of two-dimensional breaking waves

Thus far we have considered only a one-dimensional cut through the sea surface and
so we now consider the full two-dimensional sea surface. Take the x-axis (θ = 0)
along the wind direction. Then in two dimensions the breaking waves are modelled
as breaking-wave fronts that consist of straight-line segments of sharp-crested waves,
with cross-sections like the one-dimensional Λ-crests and with smooth modulation,
Υ , along the length of the crest, i.e. Λ(x, y) = Λ(x⊥)Υ (x‖), where x⊥ and x‖ are
the distances perpendicular and parallel to the breaking front (see figure 3). The
lengthscale along a breaking front is fΛ, so that Υ (x‖) ∼ 1 when x‖ <∼ fΛ and
Υ (x‖) → 0 when x‖ � fΛ. For definiteness and mathematical convenience, we take
Υ (x‖) = exp(−x2

‖/f
2
Λ); the form of the results remains the same for other choices.

The sea-surface elevation, ζ(x, y) is modelled as a collection of these two-dimensional
Λ-crests, located randomly, and propagating at angle ϕ to the x-axis with probability
distribution Θ(ϕ) (see figure 3b).

The two-dimensional wavenumber spectrum, Ψ (k) of such waves is related to the
two-dimensional Fourier transform of the surface elevation, ζ̃(k), by

Ψ (k) =
(2π)4

LxLy
|ζ̃(k)|2, (2.23)

where the overbar denotes averaging over realizations and averaging over x between
0 and Lx and y between 0 and Ly .

The sea-surface elevation, ζ(x, y), is written as a sum of Λ-crests, and calculation
of the spectrum begins with calculating its Fourier transform, ζ(k). The Fourier
transform of a single two-dimensional Λ-crest is

Λ̃(k) = Λ̃(k⊥)Υ̃ (k‖), (2.24)

where k⊥ = k cos(θ−ϕ) and k‖ = k sin(θ−ϕ) are the components of the wavenumber,
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k, perpendicular and parallel to the breaking front. Λ̃ is the same as in (2.5) and for
the Gaussian smoothing Υ̃ = (1/2π1/2)fΛ exp(− 1

4
f2
Λk‖

2).

The calculation then proceeds following the same methodology as developed in §2
for the one-dimensional case. The square of the sum of the Fourier transforms of all
the Λ-crests is formed and averaged over the positions of the centres of the Λ-crests;
this procedure yields

1

LxLy
|ζ̃(k)|2 =

∫ l0

0

a2
Λ |Λ̃(k⊥)|2 |Υ (k‖)|2 M(lΛ) dlΛ, (2.25)

where aΛ is the amplitude of the Λ-crest and M(lΛ)dlΛ is the number of breaking-wave
fronts with sizes in the range lΛ to lΛ + dlΛ per unit area (in the one-dimensional case
it was the number per unit length that was relevent).

The final step is to take averages over the directions of propagation of the breaking-
wave front, ϕ. This part of the calculation becomes more transparent if we note that

|Υ (k‖)|2 =
1

4π
f2
Λ exp(− 1

2
f2
Λk‖

2) ∼ 1

2(2π)1/2
δ(k‖)fΛ for fΛk‖ � 1. (2.26)

Here δ(k‖) is the Dirac delta function, which ensures that for long breaking-wave
fronts (large fΛ) k‖ must be zero so that the wavenumber vector is perpendicular to
the breaking-wave front.

Hence we now average over the directions of propagation, ϕ, which have probability
density function Θ(ϕ). Then the two-dimensional wavenumber spectrum is given by

Ψ (k) = (2π)4

∫ π

−π

{∫ l0

0

a2
Λ |Λ̃(k⊥)|2 1

2(2π)1/2
δ(k‖)fΛM(lΛ) dlΛ

}
Θ(ϕ)dϕ

= (2π)4

∫ l0

0

a2
Λ |Λ̃(k)|2 1

2(2π)1/2
fΛM(lΛ)

1

k
dlΛ. (2.27)

On integration over the propagation angles, the delta function, δ(k‖), picks out the
wavenumber vectors with k‖ = 0 and leads to a multiplicative factor of 1/k, which
is important because it changes the power-law variation of Ψ (k) with k. Different
choices for the smoothing, Υ , give the same variation with k and θ, but change the
numerical coefficient in (2.27).

The final form of the wavenumber spectrum can be computed using the form of
Λ̃(k) given in (2.5), which shows that

Ψ (k) = 1
2
(2π)3/2α2

Λβ
2
ΛΘ(θ)

1

k5

∫ l0

0

F(lΛ)H(klΛ − 1) dlΛ, (2.28)

where by definition F(lΛ)dlΛ = fΛM(lΛ)dlΛ is the total length of all breaking-wave
fronts with scales between lΛ and lΛ+dlΛ per unit area of sea surface. This total length
can vary with lΛ and hence plays the role that M1(l1) plays in the one-dimensional
calculation.

The arguments of §1.2 are again invoked to show that F(lΛ) varies with lΛ as a
power law, namely

F(lΛ)dlΛ =
F0

l0

(
l0

lΛ

)D+1

dlΛ. (2.29)
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The two-dimensional wavenumber spectrum is then

Ψ (k) =


1
2
(2π)3/2(αΛβΛ)2 1

D

F0

k5
Θ(θ)

{
(kl0)

D − 1
}
, D 6= 0

1
2
(2π)3/2(αΛβΛ)2F0

k5
Θ(θ) ln(kl0), D = 0.

(2.30)

The two-dimensional wavenumber spectrum of a distribution of breaking-wave fronts
with discontinuous slopes aligned in random directions therefore decays as k−5. This
is faster than the spectrum of the one-dimensional elevation which decays as k−4.
The faster decay in the two-dimensional spectrum is because the two-dimensional
surface is made up of line singularities of characteristic length fΛ. When viewed on
lengthscales greater than fΛ the surface is then fully two-dimensional, because the
Λ-crests vary both across and along the crest. But when the surface is viewed on
lengthscales smaller than fΛ the waves are predominantly one-dimensional because
the Λ-crests vary only across the crests. This one-dimensional character at high
wavenumbers means that there is less energy at high wavenumbers and therefore the
spectrum decays faster.

2.6. Relationship between Ψ1(k) and Ψ (k)

It is interesting to relate the spectra obtained in one- and two-dimensional cases. To
do this requires relating the number density (per unit area) of the two-dimensional
Λ-crests, M(l)dl, to the number density (per unit length) along a straight-line cut
through the sea surface, M1(l1)dl1. For simplicity, we begin with the spectrum of
surface displacement along the x-axis.

A Λ-crest of scale lΛ moving at angle ϕ to the x-axis has a cross-sectional scale
along the x-axis of l1 = lΛ cosϕ, hence

M(lΛ)dlΛ = M

(
l1

cosϕ

)
dl1

cosϕ
. (2.31)

When the Λ-crests are uniformly distributed in the sampling area LxLy , only a fraction
fΛ cosϕ/Ly cut the x-axis. Hence M1dl1, the average number of Λ-crests with scales
in the range l1 to l1 + dl1 that are detected per unit length along the x-axis, is given
by

M1(l1)dl1 =

∫ π

−π

{
M

(
l1

cosϕ

)
fΛ cosϕ

dl1
cosϕ

}
Θ(ϕ) dϕ. (2.32)

Recall that by definition F(lΛ) = fΛM(lΛ), which is written as a power of lΛ in (2.29),
so that

M1(l1)dl1 =
F0

l0

(
l0

l1

)D+1{∫ π

−π
(cosϕ)D+1Θ(ϕ) dϕ

}
dl1. (2.33)

Comparison of this expression with the definition (2.16) shows that

D1 = D, (2.34)

and

M0 = F0

∫ π

−π
(cosϕ)D+1Θ(ϕ) dϕ. (2.35)

Hence, with these results, given the value of D, Ψ1(k) can be calculated using (2.19).
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When the line through the sea surface is at angle θ0 to the x-axis, the only difference
is that the probability density function shifts around and becomes Θ(ϕ− θ0), so that

M0 = F0

∫ π

−π
(cosϕ)D+1Θ(ϕ− θ0) dϕ. (2.36)

Hence the one-dimensional spectrum has the same power-law variation with k for all
angles, but the coefficient multiplying this power law varies with the angle.

3. Dynamical determination of D
As explained in §1.2 the sea surface is scale invariant if both the geometry of

individual waves is scale invariant and if the dynamical processes that determine the
distribution of these breaking waves is scale invariant. When the dynamical processes
are scale invariant, the total length of breaking-wave fronts with scales in the range
lΛ to lΛ + dlΛ varies as a power law (2.29). The exponent D cannot be determined
by kinematical ideas; dynamical arguments need to be invoked. We now follow
an approach suggested by Phillips (1985) and develop a scaling for the dynamical
balance in the equilibrium range. This dynamical balance enables D to be fixed.

3.1. Rate of spectral action dissipation

Evolution of the wavenumber spectrum can be conveniently phrased in terms of the
spectral wave-action density, N(k), which is conserved in wave–current interactions
(e.g. Phillips 1977, p. 179). Equilibrium in the high-wavenumber part of the spectrum
means that DN(k)/Dt, the rate of change of the spectral density of wave action at
wavenumber k, is much smaller than the sources and sinks of wave action at that
wavenumber. Hence the sources and sinks balance, and can be written

Sw(k)− ∇k · T (k)− εN(k) = 0, (3.1)

where Sw(k) is the wind input of wave action, T (k) is the flux of wave action through
wavenumber k by wave–wave interactions, and εN(k) is the rate of dissipation of
wave action.

This tripartite balance can be used to estimate εN(k) when the dynamical balance in
the equilibrium range is scale invariant. The reasoning for M(lΛ) being proportional
to a power of lΛ given in §1.2 can be applied to each term in (3.1), which shows that
these terms are proportional to (kl0)

p for some p. But the three terms in (3.1) then
balance over a range of k only if each has the same exponent p, which means that
the three terms are proportional to one another.

The rate of spectral action dissipation can now be estimated by balancing with the
nonlinear flux divergence, so that

εN(k) = γ∇k · T (k), (3.2)

where γ is the coefficent of proportionality, which is independent of k, but may depend
on other parameters such as U0/cp.

The next step is to estimate the magnitude of the nonlinear flux divergence. For
gravity waves of low slope, ak � 1, nonlinear interactions are very weak and energy
exchange occurs between four waves; the three-wave interaction is prohibited for
gravity waves that follow the linear dispersion relation (see e.g. Phillips 1977, p. 82).
Hence the rate of growth of the amplitude of the Fourier component of wavenumber
k is proportional to the product of the amplitudes of the other three waves. Now
Ψ (k) is proportional to the square of the wave amplitude, and the rate of change
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of Ψ (k) by very weak nonlinear interactions is proportional to the product of the
spectral-energy density of the three other interacting components. In the equilibrium
range there is no wavenumber scale other than k, and very weak nonlinear wave–wave
interactions are predominantly local in wavenumber space (see Phillips 1985). Hence
the rate of change of action density at wavenumber k due to wave–wave interactions
scales on Ψ 3(k) (see Kitaigorodskii 1983).

According to our model, the equilibrium range is dominated by sharp-crested
breaking waves, each of which is composed of many Fourier components all instan-
taneously travelling at the same phase speed. Hence these waves are intrinsically
nonlinear and the classical theory of wave–wave interaction is not adequate. But
we expect interactions between Λ-crests to remain weak because the overall slope of
breaking waves is smaller than 1 (typically 1

3
according to Bonmarin 1989); stronger

nonlinear interactions might occur within a single Λ-crest, but they are associated
with actual overturning of a breaking wave. Hence, the weakly nonlinear framework
remains appropriate and we suppose here that nonlinear interaction between Λ-crests
involves q + 1 Fourier modes, for some q > 1. Most of the energy associated with
a Λ-crest of scale l is contained in the Fourier mode with wavenumber l−1 that
determines the propagation speed of the Λ-crest. Hence we might expect the classical
four-wave interaction to be dominant so that q is close to 3, the value for very
weak interactions. It is then consistent to suppose that, like the classical four-wave
interaction, the interactions between Λ-crests remain local in wavenumber space.
The magnitude of the nonlinear flux divergence can then be estimated using similar
reasoning as used above, so that

∇k · T (k) ∝ Ψq(k). (3.3)

If these nonlinear interactions are, at leading order, unaffected by the wind then, in
addition to Ψ (k), they can depend only on k and g. Hence, on dimensional grounds,
the nonlinear-flux divergence can be estimated to be

∇k · T (k) ∼ gk−4{k4Ψ (k)}q = gk−4Bq(k), (3.4)

where, following Phillips (1985), the saturation spectrum is defined by B(k) = k4Ψ (k).
When q = 3 this estimate agrees with the scaling given by Kitaigorodskii (1983) based
on his estimate of the ‘collision integral’ for a very weakly interacting random set of
gravity waves of low slope.

This estimate of the nonlinear-flux divergence, together with (3.2), suggests that the
spectral action dissipation rate scales as

εN(k) = γgk−4Bq(k). (3.5)

This method of estimating the rate of dissipation of wave action avoids using a phase
speed or frequency of the Fourier modes that comprise the Λ-crests. This is important
because the action density at wavenumber k has contributions from Λ-crests of many
different scales, as does the wavenumber spectrum, and so it is not clear how such
quantities can be even defined; they are certainly not given by the relations for freely
moving linear waves.

The final step in estimating εN(k) is to use the saturation spectrum derived from
the two-dimensional wavenumber spectrum of a collection of sharp-crested breaking
waves given in (2.30). When D > 0, which will be confirmed later by this calculation,
(2.30) shows that when kl0 � 1 the saturation spectrum is

B(k) = 1
2
(2π)3/2(αΛβΛ)2 1

D
F0l0 Θ(θ) (kl0)

D−1. (3.6)
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The rate of spectral action dissipation is therefore

εN(k)dk = γ′gk−4
{
F0l0 Θ(θ) (kl0)

(D−1)
}q
k dk dθ, (3.7)

where γ′ = γ{ 1
2
(2π)3/2(αΛβΛ)2 1

D
}q is a constant.

3.2. Rate of mechanical energy dissipation

As explained in §1.1, an estimate of the energy dissipation rate of a continuously
breaking wave front has been developed by Duncan (1981) by using simple mechanical
ideas to relate the energy dissipated to the size, lΛ, of the wave. Melville (1994) has
suggested that the scaling remains valid for unsteady breakers. Hence, if F(lΛ)dlΛ is
the expected length of breaking fronts with scales in the range lΛ to lΛ + dlΛ per unit
area of sea surface, then the rate of energy dissipation per unit area of sea surface is

εE(lΛ, θ)dlΛ = bgcΛl
2
Λ F(lΛ)dlΛ Θ(θ)dθ, (3.8)

where b ≈ 0.044 ± 0.08 is a coefficient determined by Melville’s (1994) analysis of
Duncan’s (1981) data; its value may be up to a factor 10 smaller for unsteady
breakers (Melville 1994). Since Λ-crests move coherently at a speed cΛ(lΛ) they have
a frequency, σΛ(lΛ), defined by σΛ = cΛ/lΛ. Hence the rate of dissipation of action
density due to the breaking of Λ-crests is

εN(lΛ, θ)dlΛ =
1

σΛ
εE(lΛ, θ)dlΛ = bgl3Λ F(lΛ)dlΛ Θ(θ)dθ. (3.9)

This provides a second estimate of the rate of action dissipation, which, on using
(2.29), depends on the exponent D.

3.3. Determination of D

The two estimates of the dissipation rate found above, (3.7) and (3.9), must be
consistent, which is now used to determine the exponent D. Care must be used
however because εN(k)dk is the rate of action dissipation from a small band of
wavenumbers, whereas εN(lΛ)dlΛ is the dissipation rate from breaking waves from a
small band of scales. The two estimates cannot be simply equated because breaking
is associated with particular Λ-crests in physical space and each Λ-crest consists of a
wide range of Fourier components. Hence, at a particular value of k, εN(k)dk contains
contributions from Λ-crests of a range of sizes. This argument means that there is no
one-to-one relationship between lΛ and k or between εN(lΛ)dlΛ and εN(k)dk.

Equivalence between the two estimates of dissipation rate can be enforced on
recognizing that a Λ-crest of scale lΛ has Fourier components only in the range
k > l−1

Λ . Hence the dissipation in wavenumber scales in the range l−1
Λ to infinity is

associated only with Λ-crests with physical scales in the range 0 to lΛ; hence∫ lΛ

0

∫ 2π

0

εN(lΛ)dlΛ =

∫ ∞
l−1
Λ

∫ 2π

0

εN(k)dk. (3.10)

The integrals can easily be performed and the results vary with lΛ. Hence, the resulting
equation has powers of lΛ on each side. The powers, and hence the two estimates of
the dissipation rate, are consistent if and only if

3− D = 2− q(D − 1). (3.11)

Hence, provided q 6= 1 (which is satisfied provided the nonliner interactions are
nonlinear), this equation is satisfied for one and only one value of D, namely

D = 1. (3.12)
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This is a striking result. It is striking because it was by no means obvious that
the kinematics would be consistent with the dynamics. Apparently the kinematic
model is consistent with a dynamical balance in the equilibrium range, but only for
one particular value of D, namely D = 1. And this result holds for any nonlinear
wave–wave interaction with q > 1. A more physical understanding of this result is
sought next.

4. Discussion
So what does a value of D = 1 mean physically? When D = 1, the formula (2.29)

for the length of breaking fronts with scales in the range lΛ to lΛ + dlΛ per unit area
becomes

F(lΛ)dlΛ = (A0/l
2
Λ)dlΛ, (4.1)

where A0 = F0l0. Hence the total length of small breaking waves is greater than the
total length of large breaking waves. Now consider

A(lΛ)dlΛ = F(lΛ)dlΛ × lΛ = (A0/lΛ)dlΛ, (4.2)

the total length of breaking waves with scales in the range lΛ to lΛ + dlΛ per unit area
of sea surface multiplied by the width of such waves, which might be thought of as
the fraction of area covered by breaking waves in a given band of scales. And A0 is
the fraction of sea surface covered by waves with scales greater than l0. Notice that,
although we speak of a ‘fraction’, if the breaking waves overlap then it is possible
that A(lΛ) > 1. Now if ls is the scale of the smallest breaking waves in the equilibrium
range and if A>(ls) is the fraction of sea surface covered by breaking waves with
scales greater than ls, then when D = 1

A>(ls) =

∫ l0

ls

A(lΛ) dlΛ = A0 ln(l0/ls). (4.3)

The value D = 1 is the limiting case for A>: if D > 1 then A> increases as a power
law with l0/ls; if D < 1 then A> asymptotes to a constant value, equal to A0/D, as
l0/ls increases; finally, if D = 1 then A> increases indefinitely with l0/ls, but only
logarithmically.

Furthermore, D = 1 means that the ratio of the fraction of area covered by breaking
waves in the band lΛ and lΛ + dlΛ to the fraction of area covered by waves in the
rescaled band slΛ and s(lΛ + dlΛ) is independent of s, i.e.

A(lΛ)dlΛ
A(slΛ)d(slΛ)

= 1, (4.4)

so that D = 1 implies that breaking waves from each band of scales covers that same
fraction, A0, of the sea surface.

Hence the equilibrium described here is one where the breaking waves fill the
same fraction of area independently of their size. This property we call space-filling
saturation. This usage of ‘space filling’ is consistent with the usage in Kolmogorov’s
model of the inertial range of turbulence where the turbulent eddies fill the same
fraction of space independently of their size and are called space filling (see e.g. Frisch
1995). Our usage of ‘saturation’ follows Phillips (1958) as discussed below.

When D = 1 equation (2.30) for the two-dimensional wavenumber spectrum is

Ψ (k) =
{

1
2
(2π)3/2(αΛβΛ)2

}
A0Θ(θ)k−4, (4.5)
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which decays as k−4. The angular variation is determined by the probability density
of the angular distribution of breaking-wave fronts, namely Θ(θ)dθ, the probability
that a breaking-wave front propagates between the angles θ and θ + dθ to the
wind direction. The coefficient multiplying these factors depends on the self-similar
geometry of breaking waves through αΛ, the average change in slope at a breaking
crest, and through βΛ, the average slope of breaking waves. Finally the spectrum
depends on A0, the fraction of sea surface covered by breaking waves of a given band
of scales.

Phillips (1958) developed a model for the equilibrium range based on the idea
that waves break when the acceleration at the crest exceeds some fraction of g. Such
reasoning, augmented by dimensional arguments, leads to Ψ (k) = const×k−4. Phillips
(1958) also suggested that such a spectrum can be associated with discontinuities in
wave slope at the breaking crests. But our detailed calculations show this argument
holds only for one-dimensional data; in two-dimensions, which is relevant to the
ocean, the basic decay is as k−5 for breaking-wave fronts with line segments of
discontinuity in slope. Hence our result that Ψ (k) decays as k−4 is non-trivial and
is based on the finding that breaking waves adjust so that at equilibrium a constant
fraction of area is covered by breaking waves of a given band of scales. We have
termed this space-filling saturation. Phillips (1958) also used the term saturation, but
with a different meaning: he meant that individual waves saturate when they break;
we use the term space-filling saturation to mean a constant fraction of sea surface
covered by breaking waves, so it is the spatial distribution of breaking waves that is
saturated.

Banner (1990) surveyed laboratory and field data and found empirically that, in
the windward direction, θ0, the spectra decayed as

Ψ (k, θ0) = 0.45× 10−4 (U0/cp)
1/2k−4, (4.6)

where U0 is the surface wind speed and cp is the phase speed of waves at the peak
in the spectrum. Hence the theoretical model developed here gives the same k−4

variation as the data.
The data analysed by Banner (1990) also suggest that the coefficient multiplying

the k−4 is wind dependent, varying as (U0/cp)
1/2. How can such a wind dependence

enter the present model (4.5)? Firstly, it is unlikely that the wind strongly affects
the geometry of the breakers in the bulk of the equilibrium range: the wind affects
the water motions primarily through the surface pressure gradient, which scales as
O(ρaU

2
0/lΛ) for breaking waves of scale lΛ, whereas the inertial gradient in the water,

which scales as O(ρw(βΛcΛ)2/lΛ), is much larger than this pressure gradient when
U0/cΛ >∼ 10 (when βΛ ≈ 1

3
). Hence, if U0 = 10 m s−1, breaking waves with scales

greater than about 10 cm are not significantly affected by the air flow. So that we
expect αΛ and βΛ to be independent of wind speed. The angular spreading of the
spectrum with wavenumber may depend on wind speed (e.g. Donelan, Hamilton &
Hui 1986), but the variation of Θ(θ) cannot be great. Hence A0 must account for
most of the variation with U0/cp. It certainly seems reasonable for A0, the fraction of
sea-surface area covered by breaking waves in a band of scales, to increase with wind
speed. And A0 might be expected to decrease with cp: as cp increases so does the
extent of the equilibrium range and hence the range of wavenumbers that dissipate
energy, so the energy dissipated per unit wavenumber decreases, hence the coverage
of breaking waves per unit wavenumber (i.e. A0) should decrease with cp.

Providing a theoretical reasoning for how the spectrum depends on U0/cp is more
difficult. We could argue, following Phillips (1985), that the wind input also scales as
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the nonlinear flux divergence and dissipation due to breaking in (3.1). This is certainly
possible in the present framework: as discussed above in a scale-invariant equilibrium
range all three terms can balance. But to use such reasoning explicitly would require
knowledge of energy input into breaking waves. While some attempts have been made
to model air flow over breaking waves (e.g. Maat & Makin 1992), the results remain
tentative and most models of air flow over waves have been restricted to sinusoidal
waves (for recent developments see e.g. Belcher & Hunt 1993; Mastenbroek et al.
1996), and so it is not known if the wind input to breaking waves is large enough to
be important in the spectral balance. This question is left for future study.

5. Frequency spectrum
The frequency spectrum of the waves, Φ(σ), is determined from the variation of

wave elevation with time and is defined by

Φ(σ) ≡
∫ ∞
−∞
ζ(t)ζ(t+ τ)eiστdτ =

(2π)2

T̄
|ζ̂(σ)|2, (5.1)

where ζ̂(σ) is the Fourier transform of ζ(t) and the overbar denotes averaging over
realizations and over time T̄ , the length of the record. Previous studies (e.g. Ki-
taigorodskii 1983; Phillips 1985) have considered the waves to be freely propagating
Fourier components, with only weak nonlinear interactions, and so they could obtain
Φ(σ) from Ψ (k) by using the linear dispersion relation to convert k into σ. Here we
have highlighted the key role played by sharp-crested breaking waves, whose shapes
have a range of Fourier components that all propagate at the same speed. So here
it is not correct to convert wavenumbers into frequencies using a dispersion relation
because Ψ (k) has contributions from sharp-crested waves of different scales, which
have different phase speeds. Indeed it is not clear that a phase velocity can even be
defined in Fourier space!

Instead we calculate the frequency spectrum in the equilibrium range by using
kinematic arguments for one-dimensional signals developed in §2.2. Then F(l)dl, the
length of breaking waves of scales in the range l to l + dl per unit area, is related to
M(τΛ)dτΛ, the expected number of breaking waves passing the measuring point per
unit time. Finally the result of the previous section that D = 1 is used to determine
the form of Φ(σ) in the equilibrium range.

5.1. Kinematics

As before the wave surface, ζ(t), is written as a sum of smooth waves together with
sharp-crested waves

ζ(t) = ζs(t) +
∑
mn

anmΛnm((t− t0mn)/τn), (5.2)

where anm is the amplitude of the nmth wave, τn is a timescale of the wave and t0nm
is the time at which the peak in the mnth wave passes the measuring point. The
analysis of §2.1 then shows that the Fourier transform of the surface is dominated by
the singularities at the crests, so that

ζ̂(σ) =
1

2πσ2

∑
mn

αmnβmncne
iφmnH(στn − 1) + o(σ−2). (5.3)

Notice that for temporal data, although the αΛ is the same as in (2.6), the factor
of ln becomes τn. But then τ−1

n = cnl
−1
n , where cn is the phase speed, so that
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amn/τn = cnamn/ln = βmncn. This new factor of cn arises from a Doppler shift of
the wave, which changes the apparent jump in slope at the wave crest: faster waves
appear to have a greater jump in slope as they pass the measuring point more quickly.
This Doppler shift proves to be important in determining the frequency spectrum.

Going immediately to a collection of Λ-crests with a continuous distribution of
timescales, so that M(τΛ)dτΛ is the expected number of Λ-crests with timescales in
the range τΛ to τΛ + dτΛ passing the measuring point per unit time, the frequency
spectrum becomes

Φ(σ) =
αΛ

2βΛ
2

σ4

∫ τ0

0

M(τΛ)c2
Λ(τΛ)H(στΛ − 1)dτΛ. (5.4)

Here τ0 is the outer timescale. Recall that for the one-dimensional spectra the basic
decay is like σ−4. Any modification to this law can be found once M(τΛ)dτΛ is
computed.

5.2. Calculation of M(τΛ)dτΛ

The next step is to relate the expected length of breaking waves of a given band
of lengthscales per unit area to the expected number of waves of a given band
of timescales passing the measurement point per unit time, i.e. relating F(lΛ)dlΛ to
M(τΛ)dτΛ.

Breaking waves on the ocean are transient features and so to relate F(lΛ) to M(τΛ)
requires information on temporal properties of the breakers. First, field experiments
by Ding & Farmer (1994) and laboratory experiments cited in Melville (1994) suggest
that the lifetime of a breaker, TΛ, scales on the period of the wave (i.e. the time
it takes the breaker to travel its lengthscale l), i.e. TΛ ∼ τΛ. Secondly, Duncan’s
(1981) experiments show that the phase speed of the breaking waves is given by
cΛ = (glΛ)1/2. Both of these findings are consistent with individual breaking waves
being self-similar.

Now consider a snapshot of the wave field at some instant of time. Focus on the
breaking waves in this snapshot that have lengthscales in the range lΛ to lΛ + dlΛ.
Consider a strip of sea surface centred on the observation point, X, and at angle ϕ
to the wind, and of width fΛ and length d, the distance travelled by a Λ-crest in its
lifetime. Then any Λ-crest travelling at angle ϕ to the wind and whose centre is within
the strip and will be detected at X. Now, the expected number of Λ-crests with scales
between lΛ and lΛ + dlΛ in this strip is M(lΛ)dlΛ × fΛ d. Then in a time T = d/cΛ
these Λ-crests traverse the strip, and hence all Λ-crests within the strip are detected
at X. Strips are then averaged over angle ϕ weighted by Θ(ϕ) which integrates to 1.
The expected number of Λ-crests with sizes from lΛ to lΛ + dlΛ detected at X per unit
time is then

MT (lΛ)dlΛ ∼M(lΛ)dlΛ × fΛd× 1/T ∼ cΛ(lΛ)F(lΛ)dlΛ. (5.5)

The final step is to use the definition MT (lΛ)dlΛ = M(τΛ)dτΛ. Hence M(τΛ)dτΛ can be
calculated in terms of τΛ using the dispersion relation τ−1

Λ = cΛl
−1
Λ = (g/lΛ)1/2, which

shows that

M(τΛ)dτΛ = ν
2A0

τ2
0

(
τ0

τΛ

)2D

dτΛ, (5.6)

where ν is a coefficient that accumulates from the scalings given above.
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5.3. Frequency spectrum

The frequency spectrum of the waves can now be calculated. The integrand in (5.4)
becomes

c2
ΛM(τΛ)dτΛ = 2g2A0ν

(
τ0/τΛ

)2(D−1)
dτΛ, (5.7)

since cΛ = gτΛ. Integration of (5.4) shows that, when D 6= 3
2
,

Φ(σ) =
αΛ

2βΛ
2

σ4
2gc0A0ν

1

3− 2D

{
1−

(
1

τ0σ

)3−2D
}
. (5.8)

Hence when D < 3
2
, and in particular when D = 1, the first term dominates over the

second when στ0 � 1, because 1/(στ0)
3−2D → 0, and the frequency spectrum becomes

Φ(σ) = 2αΛ
2βΛ

2νA0c0gσ
−4. (5.9)

The frequency spectrum is dominated by the Λ-crests with the large timescales, greater
than τ0, which also have the largest lengthscales, greater than l0, because the energy
in the smaller Λ-crests is too small to make a contribution to the frequency spectrum
(cf. the discussion of figure 2b). This dominance of the frequency spectrum by the
largest Λ-crests occurs through a combination of two effects. First, the number of
Λ-crests in a given band of timescales passing the measuring point per unit time
increases as the timescale decreases when D = 1. But, secondly, the square of the
speed of the waves multiplies this factor. This second factor arises because the slope
of the waves observed in a time series is Doppler shifted, so that faster waves appear
to have steeper slopes, and in particular have a greater jump in slope at their crest.
This Doppler effect means that c2

ΛM(τΛ) is independent of timescale, τΛ, and hence the
integrated effect is that the small scales do not contribute to the frequency spectrum.
This leads to the suprising conclusion that, in the equilibrium range, the frequency
spectrum contains information about only a small fraction of the total wave field,
namely the largest breaking waves.

According to the present model the frequency spectrum varies in the equilibrium
range as σ−4. Data presented in Phillips (1985) show convincingly that measured
spectra vary in the equilibrium range as

Φ(σ) = constant× u∗gσ−4. (5.10)

Hence a second objective of this paper has been achieved and the present model gives
a frequency spectrum that varies correctly with σ.

6. Conclusions
We have developed a theory for the equilibrium range of wind waves by arguing

that wave breaking is the controlling process in the equilibrium range and that
breaking waves have a near discontinuity in slope at their sharp crests. At high
wavenumbers the wavenumber spectrum of the waves, Ψ (k) is then dominated by
this singularity at the breaking crests. Hence our conception of the wave field is
that, at low wavenumbers, wave breaking is rare, but becomes more common as
the wavenumber increases. Hence the lower wavenumber limit of the equilibrium
range is the wavenumber where the energy in breaking waves equals the energy in
the non-breaking waves. At higher wavenumbers still, in the equilibrium range, the
energy, and hence also the spectrum, is dominated by the breaking waves.

The theory is based on the assumption that the equilibrium range is scale invariant,
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in the sense defined in §1.2. This assumption implies that individual breaking waves
have self-similar shapes and also determines that the distribution of breaking waves,
parameterized by the total length of breaking-wave fronts in a given band of scales
per unit area of sea surface, F(lΛ)dlΛ, varies with lΛ as a power law, characterized
here with exponent D.

A kinematic calculation of such a scale-invariant distribution of self-similar two-
dimensional sharp-crested breaking waves shows that the two-dimensional wavenum-
ber spectrum is

Ψ (k) = 1
2
(2π)3/2(αΛβΛ)2 1

D
Θ(θ)A0l

D−1
0

1

k5−D , (6.1)

which varies as k−5+D .
The exponent D is determined by invoking an equilibrium balance in the dynamical

processes that control the waves. This dynamical balance is also assumed to be scale
invariant. Physically, the balance implies that the amplitudes of non-breaking waves
in the equilibrium range are increased by nonlinear wave–wave interactions and
possibly also by wind input of energy. This leads to local excesses of wave energy,
and thence to sharp-crested breaking waves that dissipate wave energy. Hence for an
equilibrium balance the dissipation rate is proportional to the flux divergence due to
wave–wave interactions. This balance, together with an estimate of energy dissipation
based on experiments by Duncan (1981), determines that

D = 1. (6.2)

The result D = 1 means that the fraction of sea surface covered with waves of a
band of scales near lΛ, defined here as the total length of breaking wave fronts in the
band multiplied by the cross-sectional scale lΛ, is a coefficient, A0, that is independent
of lΛ. Hence the equilibrium is a space-filling saturation in the following sense. Waves
of a given scale grow with fetch or duration. Subsequently they begin to break,
and the number of breaking waves increases with the fetch or duration until enough
waves of that scale are breaking to balance the flux from wave–wave interactions,
and possibly further wind input. Then saturated equilibrium is attained. The value
of A0 may depend on wind speed, but further work on air flow over breaking waves
is needed to clarify how. The value of D = 1 determines that Ψ (k) varies as k−4, in
agreement with data presented by Banner (1990).

The frequency spectrum, Φ(σ), is obtained by calculating the average number of
breaking waves passing a measuring point per unit time. The breaking waves are
affected by a Doppler shift so that larger breakers, which travel at larger phase
speeds, appear to have a change in slope at their crests that is larger than the small
breakers. The result is that Φ(σ) is controlled by only the largest breaking waves, the
smaller breaking waves being too infrequent and carrying too little energy to register
in the spectrum. Clearly the frequency spectrum contains little or no information
about the small-scale wave field. Our calculations show that

Φ(σ) = 2αΛ
2βΛ

2νA0c0gσ
−4, (6.3)

which has the same σ−4 variation as the data presented in Phillips (1985).
Hence the present model explains why Ψ (k) ∼ k−4 and Φ(σ) ∼ σ−4, which previous

models found difficult to explain because they were based on sinusoidal waves that
satisfied the linear dispersion relationship.

The suprising finding that only large breaking waves contribute to Φ(σ) suggests
a possible way of distinguishing the present theory from previous work of Phillips
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(1985), which assumed that waves in the equilibrium range are free sinusoidal modes.
Time series of the water-surface elevation could be analysed, for example using
wavelet tranforms, to identify the sharp-crested breaking waves. If the small-scale
waves were removed from the sequence, then the present theory shows that the
frequency spectrum would be unchanged. In contrast the previous theories would
suggest that the high-frequency part of the spectrum would be reduced to zero.

The present theory also suggests that it might be more difficult to observe in data
the k−4 variation in Ψ (k) than the σ−4 variation in Φ(σ). To observe a k−4 variation
requires that the spatial pattern of the wave surface has been sampled sufficiently
well that the statistical properties of the breaking waves are well resolved through
the whole range of scales of the equilibrium range because the k−4 variation is
dependent on contributions to the spectrum from breaking waves over a wide range
of scales. Indeed under-sampling or poor resolution of the small scales might make
the spectrum vary more like k−5, or some power between 4 and 5. In contrast the σ−4

variation is produced as soon as the large scale breaking waves are detected. This
may explain why the data presented in Phillips (1985) for the frequency spectrum
certainly show a convincing σ−4 variation, whereas the data in Banner (1990) shows
a k−4 variation over only a short range of wavenumbers.
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