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Two-particle dispersion in turbulentlike flows
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Kinematic simulations are non-Markovian Lagrangian models of dispersion that incorporate turbulentlike
flow structure. We investigate the conditions for two-particle dispersion to be local in a turbulentlike flow, and
the dependence of the Richardson constantGD on the topology of individual realizations of the flow.
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I. INTRODUCTION

Lagrangian calculations of average concentrations req
knowledge of one-particle statistics. However, if Lagrang
calculations of concentration fluctuations and concentra
covariances are to account for turbulent mixing associa
with relative dispersion, then such calculations must inc
porate some features and properties of two-particle statis
@1#. The calculation of concentration covariances is imp
tant in the prediction of reaction rates in chemical react
and in the atmosphere because chemical reaction rates
pend on concentration covariances and not on average
centrations. The calculation of concentration fluctuations
also important for air-quality control, combustion, and p
lutant dispersal in geophysical flows.

Perhaps the most important statistic of two-particle d
persion~certainly the most frequently studied! is the mean
square distance between two fluid elements~also referred to
as particles in this paper!, D2(t), which is of course a func-
tion of time t. In certain circumstances, such as downstre
of a linear concentration gradient@1#, D2(t) is the only two-
particle statistic needed to calculate concentration fluc
tions. In general,D2(t) is one of the fundamental quantitie
of interest in the theory of turbulent dispersion. In a series
papers starting in 1926, Richardson@2# studied the turbulen
diffusivity (d/dt)D2(t) as a function of the distanceD be-
tween two particles advected by atmospheric turbulence.
chardson’s empirical finding, (d/dt)D2;(D2)2/3, implies
D2;t3 ~neglecting the initial distanceD0 between pairs of
particles under the assumption thatD0

2!D2 at a timet that is
sufficiently large!. Obukhov @3# and Batchelor@4# derived
Richardson’s dispersion law theoretically by applying Ko
mogorov’s similarity arguments toD2(t) and obtained
D2(t);et3 in an intermediate inertial range of timest ~e is
the average rate of dissipation per unit mass of fluid!. When
the timet is much larger than correlation integral time scal
D2(t);t because the two particles move apart independe
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@4,5#. When the timet is so small that the particles have on
moved in approximate straight lines@4,5#, D2(t)'D0

2

1(eD0)2/3t2.
One way to formulate the Obukhov-Batchelor similari

theory of relative dispersion is in terms of the ‘‘locality a
sumption,’’ and this assumption is of central concern in t
paper. The locality assumption states that, in the iner
range, the dominant contribution to the turbulent diffusiv
(d/dt)D2(t) at time t comes from ‘‘eddies’’ of size
(D2)1/2(t). Hence, (d/dt)D2(t) is a function ofD2 and e
only, and by dimensional arguments, (d/dt)D2(t)
;e1/3(D2)2/3. Provided D0 is below the inertial range o
length scales, an integration over time yields

D2~ t !'GDet3, ~1!

whereGD is a universal dimensionless constant@6#.
The value ofGD is important for quantitative studies o

turbulent dispersion and turbulent concentration fluctuatio
The only experimental measurement ofGD known to the
present authors is that of Tatarski@6#. Unfortunately, Tatar-
ski’s measurements and estimations are fraught with un
tainties and there is no point in referring to the actual va
that he assigned toGD . Nevertheless we can perhaps sa
with some level of confidence, that according to Tatarsk
measurements,GD is a number betweenO(1022) and
O(1021) ~see the discussion in Funget al. @7#!.

To this day, with the one exception of kinematic simul
tions, no turbulence theory or model gives such a small va
of GD . Two-point closures such as LHDIA@8,9# and
EDQNM @10# give values between 2.42 and 3.5. Early s
chastic models@11,12# lead toGD5O(10) and more recen
stochastic models for two-particle dispersion@13,14# give
GD5O(1). However, kinematic simulations of turbulentlik
velocity fields yield GD betweenO(1021) and O(1022)
~Funget al. @7# Sabelfeld@15#, Elliott and Majda@16#!. Ki-
nematic simulations differ from Lagrangian stochastic mo
els in the qualitative nature of the velocity fields that th
generate. Lagrangian stochastic models generate veloc
that look like Brownian random walks~with or without drift!
in velocity phase space, whereas kinematic simulations g
erate smoother velocity fields in every realization of the t
bulentlike flow. Indeed, kinematic simulations are no
Markovian Lagrangian models of dispersion that incorpor

g
,
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1678 57J. C. H. FUNG AND J. C. VASSILICOS
turbulentlike flow structure. It may also be instructive
compare particle trajectories generated by a kinematic si
lation ~Fig. 1! with the photographs of particle trajectories
turbulent flows reproduced in van Dopet al. @17#. Funget al.
@7# attempt to explain their low value ofGD in terms of the
eddying, streaming, and straining regions@see Fig. 10~a!#
that appear in individual realizations of their turbulentli
flows. Particle pairs should move together in eddying a
streaming regions and only separate abruptly~Fig. 1! when
they meet a straining region@see Fig. 10~a!#. Hence, in con-
trast to Lagrangian stochastic models, the particles are m
of the time moving together, which may explain why kin
matic simulations generate smaller values ofGD than La-
grangian stochastic models. Elliott and Majda@16# are
mostly concerned with the prowess of their numerical co
and make no attempt to explain their low value ofGD . How-
ever, they do emphasize that their velocity field is fractal a
that, following the suggestion in Sabelfeld@15#, the time
dependence of their turbulentlike velocity field is introduc
by a constant-velocity sweeping of an otherwise frozen
locity field.

In this paper an attempt is made to address the follow
two questions:

~i! What parameters of the velocity field influence t
inertial range power-law behavior of the turbulent relati
separation of particles, i.e.,D2(t);t3?

~ii ! How doesGD depend on the parameters and the
pology of individual flow realizations?

In the next section we describe the turbulentlike veloc
field that we generate to study two-particle dispersion and
discuss the consequences that the locality assumption ha

FIG. 1. Kinematic simulation of the flight of two particles~a
thick line and a thin line with symbols! in a turbulentlike velocity
field with a k25/3 energy spectrum generated as explained in S
II A. The particles are initially at pointsA andB and move closely
together until they suddenly separate at two well-identifiable
stances, presumably because of hitting a straining region. The
jectories of both particles are also visibly much smoother th
Brownian paths and not dissimilar to the turbulent trajectories p
tographed in Dopet al. @17#.
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this velocity field’s relative dispersion properties. The resu
of our simulations are presented in Sec. III and we conclu
in Sec. IV.

II. THE TURBULENTLIKE VELOCITY FIELD AND THE
LOCALITY ASSUMPTION

A. The velocity field

We follow the approach of Turfus and Hunt@18#, Sa-
belfeld @15#, and Funget al. @7# and generate on the com
puter an incompressible two-dimensional~2D! turbulentlike
velocity fieldu(x,t) that is identical to that of Vassilicos an
Fung @19#, i.e.,

FIG. 2. ~a! Plot of ui
2(x0 ,t)/ui

2(x0 ,t50) againstt/Th ~solid line
for i 51 and dashed line fori 52! demonstrating that the flow field
is stationary in time. In this particular plotp55/3, 2p/L51.1,
2p/h51860, D05h/2, and vn5lkn

(32p)/2 with l50.5, and the
wave numberskn are geometrically distributed withNk579. Simi-
lar stationary behaviour is observed for an algebraic distribution
wave numbers and for different values of the above parameters.
ensemble average is calculated over 2000 realizations.~b! Log-log
plot of the structure functionD11(r )5@u1(x1r ,y,t)2u1(x,y,t)#2

againstr for p55/3. The dashed line has a 2/3 slope for compa
son, indicating thatD11(r ) has a 2/3 slope over about two decade
The ensemble average is over 2000 realizations. The plot has
obtained for the same parameter values as~a! ~similar behavior is
observed for an algebraic distribution of wave numbers!.
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57 1679TWO-PARTICLE DISPERSION IN TURBULENTLIKE FLOWS
u~x,t !5 (
n51

Nk

@An cos~kn•x1vnt !1Bn sin~kn•x1vnt !#,

~2!

whereNk is the number of modes in the simulations and
Cartesian coordinates ofAn , Bn , and kn are given byAn
5An(cosfn ,2sinfn), Bn5Bn(2cosfn ,sinfn), and kn
5kn(sinfn ,cosfn). The anglesfn are random and uncorre
lated with each other and the velocity field~2! is incompress-
ible becauseAn•kn5Bn•kn50 for all n. The positive am-
plitudesAn andBn are chosen according to

An
25Bn

25E~kn!Dkn , ~3!

whereE(k) is a prescribed Eulerian energy spectrum of
form

E~k!5E0L~kL!2p ~4!

in the range 2p/L5k1<k<kNk
52p/h and such thatE(k)

50 outside this range.Dkn5(kn112kn21)/2 for 2<Nk
<Nk21, Dk15(k22k1)/2 andDkNk

5(kNk
2kNk21

)/2. The

distribution of wave numberskn is either algebraic or geo
metric, i.e.,

kn5 H k1na

k1an21
~algebraic!
~geometric!,

wherea anda are dimensionless numbers that are functio
of L/h and Nk because kNk

52p/h. @Hence a

5 ln(L/h)/ln Nk anda5(L/h)1/(Nk21), respectively.#
The frequenciesvn in Eq. ~2! determine the unsteadines

associated with wave moden. We experiment with two dif-
ferent models of unsteadiness:~i! a model@7,19# where the

FIG. 3. Log-log plot of the mean square displacement of fl
elements from a fixed point in an isotropic stationary and homo
neous turbulentlike flow~2!. The solid dots are the computation
result and the dashed lines represent different slopes, i.e.,x1

2}t2

when t!TL andx1
2}t when t@TL . The ensemble average is ov

2000 realizations. The plot has been obtained for the same pa
eter values as Fig. 2~a! ~similar behavior is observed for an alge
braic distribution of wave numbers and different values ofl!.
e

e

s

unsteadiness frequencyvn is proportional to the eddy turn
over time of wave moden, i.e.,

vn5lAkn
3E~kn!, ~5!

wherel is a dimensionless constant, and~ii ! a model@16,18#
where all the wave modes are advected with a constant
locity U, i.e.,

-

m-

FIG. 4. The Lagrangian autocorrelation functionR11
L (t) against

t5t/Th . From this graph,TL is obtained to beTL'143Th in good
agreement with Fig. 3. This plot has been obtained for the sa
parameter values as Fig. 3.

FIG. 5. PDF of the separation vector componentD1 /s at dif-
ferent times,t5858Th ~dot-dashed line!, t51716Th ~dotted line!,
andt54290Th ~solid line!. At the largest timet54290Th , the data
agree very closely with the Gaussian distribution of the same s
dard deviation~circles! but cannot be fitted by a Gaussian at t
earlier times of this plot. This plot has been obtained forNk

5100,p55/3 and a geometric distribution of wave numbers~simi-
lar results are obtained with an algebraic distribution!. The un-
steadiness parameterl50.5 and the other parameters of the turb
lentlike flow arep55/3, 2p/L51.1, 2p/h51860, andD05h/2.
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FIG. 6. Log-log plots ofD2/D0
2 againstt/Th , where Th5h/AE0. These plots have been obtained forp55/3, 2p/L51.1. 2p/h

51860. D05h/2, and unsteadiness parametervn5lkn
(32p)/2 with l50.5. The averages were calculated over 2000 particle pairs

TL /Th51693, whereTL5L/AE0. The wave numberskn are distributed either algebraically~AD! or geometrically~GD!. ~a! GD andNk

579, ~b! AD andNk520, ~c! AD andNk540, ~d! AD andNk579, ~e! AD andNk5125 and~f! AD andNk5158. The dashed line is a line
with slope equals to 3.
ta
-

e
no

ad,
c-

er
r

vn5Ukn . ~6!

The turbulentlike velocity fields simulated here are s
tionary in time@see Fig. 2~a!# and their spatial structure func
tion D11(r )5@u1(x1r ,y,t)2u1(x,y,t)#2;r p21 over a sig-
nificant range of length scales~see Fig. 2~b!#.
-

This kinematically simulated velocity field is 2D in th
sense that it has two components. There are of course
dynamics, whether 2D or 3D, in such simulations. Inste
we prescribe the powerp that characterizes the energy spe
trum’s scaling, and in this paper values ofp are chosen be-
tweenp51 andp53. The advantage of studying a 2D rath
than a 3D flow is that flow topology is significantly simple
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FIG. 7. Linear plots of the powerg defined in Eq.~9! againstt/Th , whereTh5h/AE0. These plots have been obtained for the sa
parameter values as Fig. 6 and a geometric distribution of wave numbers withNk579 ~except for~a! and~b! where the highest wave numbe
is 2p/h54000 andNk587!. ~Similar results are obtained with an algebraic distribution of wave numbers.! ~a! p51.2, ~b! p51.4, ~c! p
51.6667, and~d! p51.8, respectively. The dashed line has a value equal to 4/(32p) for comparison. The values ofg oscillate slightly
around 4/(32p) thus confirming the validity of Eq.~10!. The values ofg are calculated by taking the logarithmic derivative ofD2 versus
t.
o
ur
d

s,
.
s
e

ere
in 2D. However, the results obtained in this paper’s study
2D turbulentlike flows should not be extrapolated to 3D t
bulentlike flows without further analysis, which is beyon
this paper’s scope.

B. The locality assumption

The mean square distanceD2(t) between two fluid ele-
ments that are advected by the turbulentlike velocity field~2!
is a function of the following parameters:

D25D2~ t,L,h,D0 ,E0 ;p,Nk ,l! ~7a!

if the unsteadiness is simulated as in Eq.~5! and

D25D2~ t,L,h,D0 ,E0 ,U;p,Nk! ~7b!

if the unsteadiness is simulated as in Eq.~6!. The first set of
parameters in Eq.~7! is a set of dimensional parameter
while the second is a set of dimensionless parameters
either case, dimensional analysis is inconclusive unles
strong additional assumption is introduced. In the pres
f
-

In
a

nt

context the locality assumption states that in the limit wh
the Reynolds number Re;(L/h)4/3 tends to infinity and in an
intermediate range of times, max(h,D0)/AE0!t!L/AE0,
the only dimensional parameters affectingD2 are t and
the energy density at k5A1/D2, i.e., E(A1/D2)
5E0L(L2/D2)2p/2. Hence, in these limits, Eq.~7a! may be
replaced by

D25D2
„t,E~A1/D2!;p,Nk ,Re,l… ~8a!

and Eq.~7b! by

D25D2S t,E~A1/D2!;p,Nk ,Re,
U

AE0
D . ~8b!

At this stage dimensional requirements yield@20#

D25GD~E0L12p!2/~32p!tg, ~9!

where
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FIG. 8. Linear plots of the powerg defined in Eq.~9! againstt/Th , whereTh5h/AE0. These plots have been obtained forNk579,
p55/3 and a geometric distribution of wave numbers~similar results are obtained with an algebraic distribution!. The unsteadiness
parameterl is varied from 0.1 to 3.0 and the other parameters of the turbulentlike flow are the same as in Fig. 6, i.e., 2p/L51.1, 2p/h
51860, andD05h/2.
p-
fo

nc-

s

g5
4

32p
. ~10!

It is only for p,3 that Eqs.~9! and ~10! can be deduced
from Eq. ~8! and more generally from the locality assum
tion. @The locality assumption can also be formulated
(d/dt)D2 but in two different ways: either (d/dt)D2

5 f „D2,E(A1/D2)… or d/dtD25 f „t,E(A1/D2)…, where the
r

dependence on dimensionless parameters is implicit in fu
tion f . Both formulations lead to Eqs.~9! and~10! by dimen-
sional arguments provided thatp,3. However, whenp53
the first formulation leads to ln(D2/D0

2);AE0t/L, while the
second leads to ln(D2/D0

2);(AE0t/L)4/3. The consequence
of the locality assumption whenp.3 are absurd.# Note that
Eqs. ~9! and ~10! are equivalent to Eq.~1! when p55/3
becauseg53 and (E0L12p)2/(32p)5(AE0)3/L, which ispro-



57 1683TWO-PARTICLE DISPERSION IN TURBULENTLIKE FLOWS
FIG. 9. Linear plots of the powerg defined in Eq.~9! againstt/Th , whereTh5h/AE0. These plots have been obtained forNk579,
p55/3 and a geometric distribution of wave numbers~similar results are obtained with an algebraic distribution!. The unsteadiness
parameterU/AE0 is varied from 0.1 to 2.0 and the other parameters of the turbulentlike flow are the same as in Fig. 6, i.e., 2p/L51.1,
2p/h51860, andD05h/2.
-
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portional toe in high Reynolds number equilibrium turbu
lence@21#. In this derivation, the constantGD is a function of
the dimensionless numbersp, Nk and eitherl or U/AE0.

In the following section we investigate the conditions u
der which Eqs.~9! and ~10! are valid, and by induction the
conditions under which the locality of two-particle dispe
sion is valid in a turbulentlike velocity field. These are co
ditions on the topology and temporal structure of individu
realizations of the flow. We also investigate the depende
-

-
l
ce

of GD on dimensionless parameters of the flow by whi
token we attempt to reach some insight into the depende
of GD on the topology and temporal structure of the flow

III. RESULTS

Particle trajectoriesx(t) are obtained by integrating

d

dt
x~ t !5u„x~ t !,t… ~11!
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FIG. 10. Instantaneous streamline pattern of the turbulentlike velocity field~2! with p55/3 as one zooms into smaller scales of t
velocity field. This is achieved by simultaneously increasingNk and focusing into inserted smaller regions of the field.~a! Nk52, where we
also point at eddying, straining, and streaming regions.~b! Magnified picture of the square region marked inside~a! with Nk54. ~c!
Magnified picture of the square region marked inside~b! with Nk58. ~d! Magnified picture of the square region marked inside~c! with
Nk516. ~e! Magnified picture of the square region marked inside~d! with Nk532. ~f! Magnified picture of the square region marked insi
~e! with Nk564. ~g! Magnified picture of the square region marked inside~f! with Nk5128. ~h! Magnified picture of the square regio
marked inside~g! with Nk5256. In all these plots 2p/L52 and the distribution of wave numbers is geometric,kn5(2p/L)2n21. A similar
fractal-eddy structure is also observed for algebraic distributions of wave numbers, but one needs to go up to a much higher n
zoom-in iterations and values ofNk to repeatedly see the eddying region breaking up into two or more smaller and inserted eddying r
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FIG. 10 ~Continued!.
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numerically with an adaptive step-size control scheme
fourth-order Runge-Kutta@22# where the time step is alway
smaller than all the time scales of the velocity field~see Ref.
@19# for details.! When u(x,t) is given by a turbulentlike
velocity field such as Eq.~2! the particle trajectories are gen
erated by a Lagrangian model of turbulent dispersion ca
kinematic simulation~KS!, which incorporates turbulentlike
flow structures, namely, eddying, straining, and stream
regions.

A. One-particle dispersion

We start with a simple demonstration of the dispers
power of the turbulentlike velocity field Eq.~2!. Figure 3 is a
log-log plot of the one-particle mean square displacemen
the first component~same for the second component beca
of isotropy! x1

2 as a function of time. This figure illustrate
the result~which we verified for a large variety of paramete
p, Nk , andl or U! thatx2;t2 for smallt andx2;t for large
t, well in agreement with classical predictions by Tayl
@23#. We also calculate the Lagrangian autocorrelation fu
tion R11

L (t)5u1
L(t)u1

L(t1t)/u82 where u1
L(t)5u1„x(t),t…,

x(t) is given by Eq.~11! and u8 is the root-mean-squar
intensity of one-component turbulence fluctuations. An
ample is given in Fig. 4. FromR11

L (t) we derive TL

5*0
`R11

L (t)dt, and verify thatx2'u82t2 for t!TL and x2

'2u82TLt for t@TL in complete agreement with Taylor’
formulas@23#.

We now turn to the study of two-particle dispersion
turbulentlike velocity fields~2!. The separation vectorD be-
tween two particles has two components,D5(D1 ,D2) and
D25D1

21D2
2. In Fig. 5 we plot an example of the PDF o

D1 /s for various times, wheres2(t) is the variance of the
component separationD1 at timet. This PDF is the same a
that of D2 /s because of isotropy and is markedly no
Gaussian except at very late times when it is very well fit
by a Gaussian distribution of variance 4u82TLt, as indeed
expected becauseD1

2'2x2'4u82TLt at these large times
Note that the plotted PDF is normalized to have unit va
ance, thus better illustrating the non-Gaussian effects at e
times. The remainder of this paper is concerned with tw
r

d

g

e

of
e

-

-

d

-
rly
-

particle dispersion in the range of times where the PDF ofD1
is not Gaussian.

B. Locality scaling

Figure 6 shows examples of log-log plots ofD2 versus
time t where the power law~9! and ~10! is observed to be
well defined over nearly two decades irrespective of
number of modesNk or the distribution of the wave number
kn ~whether algebraic or geometric!. More important for the
existence of a well-defined locality scaling~9! and~10! seem
to be the ratioL/h and the parameter governing the unstea
ness,l or U. Indeed, we find that the scaling~9! and~10! is
not well defined unless the Reynolds number Re5(L/h)4/3 is
large enough and in Fig. 6 Re'20 145. Figure 6~c! shows
that the locality scaling is well defined at such high a Re
nolds number even with as few asNk540 modes. However
it is also found that ifNk is excessively low, that is below 20
at the high Reynolds number of Fig. 6~b!, the locality scaling
~9! and~10! does not hold~note that the slope in Fig. 6~b! is
larger than 3!. These observations are relevant because
important to know that the locality scaling~9! and ~10! can
be observed with as few as 40 modes of randomly cho
directions.

Figure 7 testifies to the validity of Eqs.~9! and ~10! for
four different values ofp. In these figures the Reynold
number is as high as in Fig. 6, withkh54000,Nk587 for ~a!
and ~b!, and with kh51860, Nk579 for ~c! and ~d!. The
unsteadiness parameter is carefully chosen to bel50.5 so
that Eqs.~9! and ~10! are valid over a significant range.

The existence and extent of a locality scaling depend c
cially on the parameterl or U governing the unsteadiness o
the flow. In Figs. 8 and 9 the powerg defined in Eq.~9! is
plotted as a function of timet for different values ofl ~Fig.
8! andU ~Fig. 9!; the dotted horizontal line marks the con
stant value ofg according to Eq.~10!. As illustrated by these
figures we find that Eqs.~9! and ~10! are valid whenl is
around 0.25 to 0.5 orU/AE0 near 0.25. For smaller values o
l or U/AE0, the power lawD2;tg seems to hold but the
powerg is not given by Eq.~10!; and for larger values ofl
or U/AE0, the power law~9! and ~10! does not hold over a
significant range of times.
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FIG. 11. Instantaneous streamline pattern of the turbulentlike velocity field~2! with p55/3 as one zooms into smaller scales of t
velocity field. In contrast to Fig. 10, here we plot the fullL by L field atNk5128 and then successively magnify smaller regions of the fi
~a! A full L by L field. ~b! Magnified picture of the square region marked inside~a!. ~c! Magnified picture of the square region marked insi
~b!. ~d! Magnified picture of the square region marked inside~c!. ~e! Magnified picture of the square region marked inside~d!. ~f! Magnified
picture of the square region marked inside~e!. In all these plots 2p/L51 and the distribution of wave numbers is geometric,kn

5(2p/L)1.1n21. A similar fractal-eddy structure is also observed for algebraic distributions of wave numbers, but one needs to go
much higher number of zoom-in iterations and values ofNk to see eddying region breaking up into smaller eddying regions a suffic
number of times.
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The conditionl50.5 for the existence of the localit
scaling ~9! and ~10! means that the turbulentlike velocit
field should be neither frozen@vn!Akn

3E(kn)# nor effec-
tively structureless @vn@Akn

3E(kn)#. The condition U
;AE0 can perhaps be interpreted in similar terms and in f
Elliott and Majda@16# enforce the same condition to obta
the locality scaling~9! and~10! over eight to twelve decades
@We note, however, that Sabelfeld@15# obtains a scaling~9!
and ~10! with U50 in a 3D turbulentlike velocity that is
therefore frozen. 3D velocity fields are topologically diffe
ent from 2D velocity fields and the conditions onl andU for
the scaling~9! and ~10! to be valid can be significantly dif
ferent.#

We noted in the previous section that the locality assum
tion does not imply a power law such as Eq.~9! if p>3.
There is in fact a dramatic difference in the topology of t
flow below and abovep53. Forp,3 turbulentlike velocity
fields such as those considered here have a fractal-e
structure~see Figs. 10 and 11!, which we schematically in-
terpret as consisting of cat’s eyes within cat’s eyes~Fig. 12!.
This fractal-eddy structure is most readily revealed by zoo
ing into eddy regions of the flow, but it can also be seen

FIG. 12. Schematic interpretation of the fractal-eddy struct
revealed in Figs. 10 and 11. The streamline pattern consists o
creasingly small cat’s eyes. More and smaller cat’s eyes are for
in the field ash decreases and Re5(L/h)4/3 increases.

FIG. 13. Linear plot ofGD against the powerp. The parameters
of the turbulentlike flow are the same as in Fig. 7. The value ofGD

at timet is obtained by fitting a straight line to the curves similar
Fig. 6 over a small interval aroundt andGD is given by the inter-
section of this straight line with thex axis. Similar behavior is
observed for an algebraic distribution of wave numbers.
t

-

dy

-
y

zooming into other regions. When zooming into streamin
regions, for example, what appears is either a better resol
streaming region or small eddies that are not resolved wi
out appropriately zooming in. The fact that one can zoo
into particular locations of a streaming region without seein
the fractal-eddy structure of the flow is not uncharacteris
of fractal structures. One of the most commonly cited e

e
n-
ed

FIG. 14. Linear plot of the straining-region densityrsr against
the powerp. The straining-region density is the fraction of the are
whereII .II rms, whereII rms is the root-mean-square value ofII for
the particular value ofp. The straining-region density is obtained
by averagingII over 50 realizations and over a uniform grid of 20
by 200~i.e., 40 000 points! in an area of 5L by 5L. This particular
plot has been obtained for the same parameter values as Fig
Similar behavior is observed for an algebraic distribution of wa
numbers.

FIG. 15. Linear plot ofGD againstt/Th , whereTh5h/AE0.
This plot has been obtained for the same parameter values as Fi
in particular p55/3 andl50.5. The solid line corresponds to a
geometric distribution of wave numbers andNk579. All the other
lines correspond to an algebraic distribution, whichNk540
~dashed!, Nk579 ~dot-dashed!, Nk5125 ~triple-dot–dashed! and
Nk5158 ~dotted!.
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amples of a fractal is the triadic Cantor set and one can
see its fractal structure if one zooms into the wrong em
regions between points of the set, and such empty reg
exist at all scales. Forp>3 ~not shown here for economy o
space! however, such a fractal-eddy structure does not e
and no extra topological feature is uncovered by zoom
into increasingly small scales inside eddies.

C. Richardson’s constantGD

Richardson’s constantGD is well defined when the powe
law ~9! is well defined, and whenp55/3 the power law~9! is
best defined forl around 0.5 in which caseGD turns out to
be O(1022).

In the derivation of the locality scaling~9! and~10! from
the locality assumption~8! the constantGD depends on the
unsteadiness but is also a function of the dimensionless

FIG. 16. Linear plot ofGD against the numberNk of wave
modes. Parameter values are the same as for Fig. 15. Alge
distribution of wave numbers~d!, geometric distribution of wave
numbers~j!.
ot
y
ns

st
g

a-

rametersp and Nk . The dependence ofGD on p and Nk

throws some light onto the dependence ofGD on the topol-
ogy of individual realizations of the flow. In Fig. 13 we plo
the dependence ofGD on p for l50.5 and see thatGD

decreases quite sharply fromp51.2 to p51.8. As p in-
creases the largest eddying regions in individual realizati
of the turbulentlike flow grow in size relative to the fixe
outer length scaleL ~see Vassilicos and Fung@19#!. As dem-
onstrated in Fig. 14, these larger eddying regions seem
occur at the expense of a smaller number of straining reg
per unit area of the flow. In Fig. 14 we plot the strainin
region density against the exponentp and show that this
straining-region density decreases with increasing value
p. Following the arguments of Funget al. @7#, the value of
GD should therefore be smaller because the density of str
ing regions is smaller. Hence, the decreasing value ofGD

with p is consistent with the idea@7# that particle pairs move
together in eddying and streaming regions and separate
lently in straining regions.

At a fixed Reynolds number Re5(L/h)4/3, GD is an in-
creasing function ofNk , which does, however, appear t
asymptote to a constant independent ofNk whenNk is larger
than about 100~see Figs. 15 and 16; forNk5500 and all
other parameters as for these figures, we obtainGD

50.0082 andGD50.015, respectively, for the algebraic an
geometric distributions of wave numbers, thus corroborat
the asymptotic values in Fig. 16.! It may be unexpected to
find that GD can differ by as much as a factor of 2 fo
different distributions of wave numberskn ~Figs. 15 and 16!.
We refer the reader to Sec. II C in Vassilicos and Fung@18#
where it is explained how, for the same energy spectru
subtle differences in wave-number distribution can dram
cally change the topology of a field, and in particular t
spatial distribution of maxima and minima of that field~Vas-
silicos and Fung@18# discuss the examples of Weierstras
Riemann, and other such functions consisting of sums of s
waves!. Such changes in topology may be expected to aff
two-particle dispersion quantities such asGD , but we leave

aic
FIG. 17. Linear plots against the numberNk of wave modes of~a! the skewnessS and~b! the flatnessF of the Lagrangian distributions
of second invariantsII sampled along the particle trajectories. Parameter values are the same as for Figs. 15 and 16, in particularp55/3 and
l50.5. Algebraic distribution of wave numbers~d!, geometric distribution of wave numbers~j!.
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for subsequent study this sensitive dependence ofGD on the
details of the wave-number distribution. However, we
attempt to gain some understanding of the dependence oGD

on Nk .
We sample the values of the second invariantII

5(]ui /]xj )(]uj /]xi) along particle trajectories and calcu
late the skewness@Fig. 17~a!# and the flatness@Fig. 17~b!# of
II from this Lagrangian sample. The average^II & over this
Lagrangian sample iŝII &50, and therefore the skewness
S5^II 3&/^II 2&3/2 and the flatness isF5^II 4&/^II 2&2, where
the angle brackets denote averages over the Lagran
sample of second invariantsII . In Fig. 17 we plotS andF
againstNk and see thatS decreases towards a constant va
around21.1 whereasF increases towards somewhere b
tween 8.5 and 9. A negative value of the skewness ofII that
is smaller than21.0 strongly suggests that during their flig
particles visit eddying regions much more often than ot
regions@24,25#. However, a flatness ofII that is much larger
than 3 ~the flatness of a Gaussian distribution! implies that
extreme values ofII , whether positive or negative, are mo
likely than for a normal~Gaussian! process. Hence, asNk
increases, more eddyingand straining regions are visited b
the particles@24,25#, and even though the behavior of th
skewnessS indicates that particles are more often in eddyi
regions than in straining regions, the increase ofGD with Nk
is consistent with the increase in the frequency of strain
region visits that is reflected in the flatness ofII . The fact
that S decreases rather than increases withNk is consistent
with the low value ofGD , which remainsO(1022) ~when
p55/3! for all values ofNk . A sharp increase ofS with Nk
would have resulted in much higher values ofGD because
straining regions would have then been visited more of
than eddying regions.

IV. SUMMARY OF CONCLUSIONS

The summary of our conclusions is as follows:
~i! The locality scalingD25GD(E0L12p)2/(32p)t4/(32p) is

valid over the largest possible range provided thatp,3 and
that the unsteadiness is neither too strong nor too weak,
cifically l'0.5 orU'0.25AE0.

~ii ! Individual realization of turbulentlike flows are topo
logically different above and belowp53. Whenp,3, 2D
turbulentlike flows have a fractal-eddy structure that cons
of cat’s eyes within cat’s eyes as schematically illustrated
er
e,
ian

e
-

r

g

n

e-

ts
n

Fig. 12. Whenp>3 no fractal-eddy structure exists, an
eddying regions are simple without extra topological featu
appearing by zooming into increasingly small scales ins
them.

~iii ! When p55/3, GD5O(1022) as in Tatarski’s mea-
surements@6#. However,GD can change by a factor of 2
simply by changing the distribution of modes in wav
number space.GD is a decreasing function ofp and an in-
creasing function of the number of modes,Nk . The low
value ofGD and the ways of these dependencies are con
tent with the idea~proposed by Funget al. @7#! that two-
particle dispersion is effectively happening in bursts~see Fig.
1! when particle pairs meet straining regions. This idea
investigated quantitatively by measuring the skewnessS and
the flatnessF of the second invariantII sampled along par-
ticle trajectories. The skewnessS decreases to a consta
value of 21.1 and the flatnessF increases to a constan
value between 8.5 and 9.0 with increasingNk . Particles are
therefore more often in eddying regions than in strain
regions, but also more often in both eddying regions a
straining regions for increasing values ofNk .

This paper is an attempt to articulate together the th
central issues of this paper: the locality assumption,
fractal-eddy structure, and the straining regions’ role in se
rating particle pairs in bursts. For 2D turbulentlike flows, w
propose to sharpen the locality assumption that ‘‘in the in
tial range, the dominant contribution to the turbulent diff
sivity (d/dt)D2(t) comes from ‘‘eddies’’ of size
(D2)1/2(t), ’’ where the word ‘‘eddies’’ has no clear topologi
cal meaning, by replacing it with: ‘‘in the inertial range, th
dominant contribution to the turbulent diffusivit
(d/dt)D2(t) comes from straining regions of size (D2)1/2(t);
these straining regions are embedded in a fractal-eddy s
ture of cat’s eyes within cat’s eyes and therefore strain
regions exist with a variety of length scales over the en
inertial range.’’
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