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Kolmogorov's contributions to the physical and 
geometrical understanding of small-scale turbulence 

and recent developments 

BY J. C. R. HUNT AND J. C. VASSILICOS 

Department of Applied Mathematics and Theoretical Physics, University of 
'Cambridge, Silver Street, Cambridge CB3 9EW, U.K. 

This paper reviews how Kolmogorov postulated for the first time the existence of a 
steady statistical state for small-scale turbulence, and its defining parameters of 
dissipation rate and kinematic viscosity. Thence he made quantitative predictions of 
the statistics by extending previous methods of dimensional scaling to multiscale 
random processes. We present theoretical arguments and experimental evidence to 
indicate when the small-scale motions might tend to a universal form (paradoxically 
not necessarily in uniform flows when the large scales are gaussian and isotropic), and 
discuss the implications for the kinematics and dynamics of the fact that there must 
be singularities in the velocity field associated with the - inertial range spectrum. 
These may be particular forms of eddy or 'eigenstructure' such as spiral vortices, 
which may not be unique to turbulent flows. Also, they tend to lead to the notable 
spiral contours of scalars in turbulence, whose self-similar structure enables the 'box- 
counting' technique to be used to measure the 'capacity' DK of the contours 
themselves or of their intersections with lines, DK. Although the capacity, a term 
invented by Kolmogorov (and studied thoroughly by Kolmogorov & Tikhomirov), is 
like the exponent 2p of a spectrum in being a measure of the distribution of length 
scales (D' being related to 2p in the limit of very high Reynolds numbers), the 

capacity is also different in that experimentally it can be evaluated at local regions 
within a flow and at lower values of the Reynolds number. Thus Kolmogorov & 
Tikhomirov provide the basis for a more widely applicable measure of the self-similar 
structure of turbulence. Finally, we also review how Kolmogorov's concept of the 
universal spatial structure of the small scales, together with appropriate additional 

physical hypotheses, enables other aspects of turbulence to be understood at these 
scales; in particular the general forms of the temporal statistics such as the high- 
frequency (inertial range) spectra in eulerian and lagrangian frames of reference, and 
the perturbations to the small scales caused by non-isotropic, non-gaussian and 
inhomogeneous large-scale motions. 

1. Kolmogorov's papers: review and comments 

(a) Introduction 

In this review we join with the other contributors to this special publication in 

celebrating some of Kolmogorov's great contributions to fluid mechanics and 
mathematics, and showing in some small way how his genius has inspired further 
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researches along the many lines he pioneered. (For a full account of his life and 
research see Kendall (1990).) We concentrate here on Kolmogorov's contributions to 
the study of the statistical structure of the small scales of turbulence, and his 
mathematical studies of random processes that have provided new methods for 
analysing these motions. Although Kolmogorov's analyses were framed in the 
language of mathematical analysis, especially probability theory and set theory, and 
not in physical or geometrical terms, subsequent mathematical studies have shown 
how Kolmogorov's results lead to general hypotheses about the dynamical and 
geometrical structure of turbulence, which can now be tested against the details of 
actual flow fields and trajectories using recent experiments and computer simulations 
of turbulence. 

(b) Turbulence (K41a) 
The great new approach of Kolmogorov (1941a, b; hereinafter referred to as 

K41 a, b) was to show how to combine some of the methods and ideas of statistical 
physics (though Kolmogorov used the term probability theory) with those of 
dimensional analysis and scaling, and to apply them to fluid mechanics, in particular 
the study of turbulence. From the earliest studies of turbulence the analogy had been 
drawn between turbulent eddy motion and the motion of gas molecules, and it was 
hoped that the kinetic theory of gases might provide a useful model for turbulent 
motions (see, for example, Prandtl 1925). Kolmogorov in fact relied on these 
concepts for modelling the Reynolds shear stresses produced by the larger energy 
containing eddies in turbulent shear flows (Kolmogorov 1942), in a generalization of 
the earlier ideas of Prandtl (1925) (see Spalding 1991). 

But in K41 a he introduced the more general idea from statistical physics of a state 
of statistical equilibrium. Further he made the hypothesis that the structure of the 
small-scale motions (defined by the velocity difference 6u(l) over a distance 1, see 
figure 1) are uncorrelated with the large-scale motions U of the flow and therefore 
their statistics (e.g. <(u(l)2>) must be universal, provided these motions are defined 
in terms of relative velocities (such as 6u(l)). The large-scale motions and the overall 
dynamics of the flow determine the magnitude of the motions in any given flow. 

The first reviews of Kolmogorov's work in the English language scientific 
literature by Batchelor (1947, 1953, pp. 6, 7) pointed out the importance of 
Kolmogorov's results and the novelty of the approach in his analysis, for example in 
the differences between Kolmogorov's hypothesis of local isotropy and G. I. Taylor's 
hypothesis of the isotropy of the total velocity field; in fact his 1947 paper was 
translated into Russian and used as the best introduction to K41 in Moscow and 
elsewhere! Reading the extended footnote in K41 describing the author's conception 
of the interactions between different scales of eddy motion, one is struck, as was 
Batchelor in 1947, by the similarity with Richardson's (1922) poetic image of this 
process. No reference was given to Richardson in K41a, although surprisingly 
Kolmogorov referred to Prandtl's momentum transfer model to explain the 
'cascade'. However, in the first paragraph of his later paper, Kolmogorov (1962, 
referred to hereinafter as K62) generously made up for this omission. This point is 
also emphasized by Monin & Yaglom (1971) in the introduction to their 
comprehensive book on turbulence. 

Batchelor (1953, pp. 6, 7) indicated that there had been some previous theoretical 
work which might have suggested the assumption of statistical equilibrium for the 
small scales of turbulence, because 'there is a tendency for dynamical systems with 
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Figure 1. Small-scale turbulence; generation by different large-scale motions and examples of 
spectra. (a) Schematic diagrams of turbulent flows: (pg) passive grid, (i) turbulence transported by 
u1 and decays; (ag) active grid, (i) turbulent transport by interaction between eddies; (sf) shear 
flows (after Rogers & Moin 1987), (i) streak of high speed (6ul/Ox2 large), (ii) streamwise of 'roller 
eddy' (in moving frame), (iii) vortex line bent into wiggly horseshoe. (b) One-dimensional spectra 
for laboratory experiments. (i), (ii), (iii) Moderate Re ( 102) flows as depicted in (a), (iv) high Re 
form of any of these flows. 

a large number of degrees of freedom (and not independent), to approach a statistical 
state which is independent (partially, if not wholly) of the initial conditions' and 
even, perhaps, 'independent of the precise form of the governing equations'. 
Although there is no reference to this concept in K41 a, it was certainly being widely 
considered by researchers into turbulence in the 1930s, such as Burgers (1940), 
Tollmien (1933) and others referenced by Dryden (1943). 

To apply dimensional or scaling analysis to the small-scale relative motions, it was 
necessary to introduce a physical quantity representative of the dynamics in this 
relative frame; it was the brilliant idea of Kolmogorov to define this as e, the average 
rate of transfer of energy between large and small scales of motion (where viscous 
stresses are negligible), but which was also equal to the rate of energy dissipation by 
viscous stresses for the smallest scales of motion. Clearly the kinematic viscosity v 
had to be the other dimensional quantity introduced to define these scales ((v3/e)i). 

The main quantitative results of the theory were that, for scales large enough that 
the viscous stresses are negligible compared with inertial stresses, i.e. 16u(l) l/v l> 1, 
the mean square velocity difference over a length I (or structure function) is given by 

<6u(1)2> , 61. (1.1) 

For smaller scales where these stresses are of the same order, the functional form of 
the velocity difference can be stated as 

<u(l)2> = F(l/(v/e)). (1.2) 
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From the analysis of Karman & Howarth (1938) these results could be expressed in 
tensor form and in such a way that the statistics of these small-scale motions are 
invariant under rotations and reflections of the coordinates. 

All previous applications of scaling arguments had been applied to solve flow 

problems where there were only one or two length and velocity scales involved, such 
as boundary layer flows. Kolmogorov showed how it was possible to apply these 

concepts to the multiscale phenomena of turbulence. (Further examples of this 

approach are given in ?3.) 
Until that time the only practical and well understood techniques that scientists 

and engineers had available to analyse such phenomena consisted of Fourier methods 
(as used by Rayleigh (1877) who, like others, used the theorem of Parseval (1806) 
(but gave no reference) and the recently developed theory of spectra and correlations 

(Wiener 1933; Khintchine 1933). Taylor (1938) had been the first to apply these 
methods to turbulence. 

For an understanding of recent developments in the dynamics of small-scale 
motions one should qualify one important aspect of K41. Kolmogorov stated - for 
no obvious reason - that the small-scale velocity fields 6u(l) were effectively 
constant on these local timescales (e.g. the time defined by the local velocity 
gradient l/16u(l)l). His model did not essentially make use of this assumption, but 
following Batchelor (1947, p. 535) it is now recognized (and established by various 
models, theories, simulations and experiments) that 1/16u(l)l is the characteristic 
timescale for the eddy motions of length scale I to change with time (see ?3b). 

Obukhov (1941) had similar ideas to those in K41 a, though he used power spectra, 
e.g. E(k) for wave number k, to describe the statistical structure of the small-scale 
motions in statistical equilibrium. The description of turbulence in terms of spectra 
brings the statistical approach closer to many dynamical models which represent 
turbulence as a set of interacting modes. Then the given number of modes that are 
simulated or specified in a representation indicates the range of scales in a spectrum. 
There is no equivalent direct interpretation between the correlation function and the 
simulation or calculation of the flow field. In the inertial range of length scales (where 
(1.1) is valid), either using the Wiener-Khintchine relation between correlations and 
spectra, or using dimensional arguments, it follows that 

E(k) oc ek- . (1.3) 

Obukhov (1949) later extended the concepts to the statistical distribution of 
temperature or other scalars, discussed in this issue by Gibson (1991) and Sreenivasan 
(1991) (see figure 2a, b). 

(c) Turbulence (K41 b, K62) 
In the second paper Kolmogorov wrote (four months after the first) on the small- 

scale structure of the turbulence in 1941 (K41 b), he examined the consequences of 
applying the statistical hypotheses of his earlier paper to the Navier-Stokes 
equations governing fluid motion. As Karman & Howarth (1938) had already shown, 
for homogeneous and isotropic turbulence exact general relations could be derived 
from these equations between the second-order correlations Brr = <(6u(1))2> and the 
third-order correlations Brrr8(6u(l))3> of the relative velocity of two neighbouring 
fluid particles along the line joining them. In particular, it follows that 

Brrr =- l+6vdBrr/dl. (1.4) 
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Figure 2. High Reynolds number turbulence in the atmospheric boundary layer to show which 
ranges of scales and for which statistics the universal structure is and is not observed. (a) Ea3 
(aelk13), El3 (caeidu/dz) k-): second-order spectra showing that E33 follows the isotropic form 
while the shear stress co-spectrum is non-zero, but depends on the isotropic spectrum. (Kaimal 
et al. 1973). Arrow indicates increasing shear and stable buoyancy forces. (b) E33, El,: second-order 
spectra of the normal components showing how the shear reduces this ratio from its isotropic form 
for kI < k* (Kaimal et al. 1973). (US) corresponds to unstable buoyancy faces and very weak shear 
z/LMO < -2.0, where LMo is the Monin-Obukhov length, (N) to no buoyancy forces and moderate 
shear, (S) to stable buoyancy forces and strong shear z/LMo > 0.5. (c) E33 3(K1), co-spectra of u] and 
u3 in a convective boundary layer. Note how the inertial range contributes to u3 in this case (Hunt 
et al. 1988). (i) 100-300 m, (ii) 22 m, 50 m; (iii) E33 3ekl2. (d) Baaa(r) = <(u1(x)-u1(x + r))3>(r1); 
third-order structure function in a near neutral boundary layer (where the large scales are 
approximately gaussian). Note comparison with the prediction of K41b (= -4er) which has no 
arbitrary constant. Note the normalization on the velocity and length scales of the Kolmogorov 
microscale (Van Atta & Chen 1970). 

Since for values of I > (v3/e)4 that lie in the inertial range, the second, viscous term, 
is negligible, (1.4) shows that 

Brrr(l) = -5e1. (1.4a) 

Note that there is no arbitrary constant in this expression; it only depends on the 

hypotheses of the statistical isotropy and homogeneity of the small scales, and the 
forms of the continuity equation and momentum equations for inviscid flow. (The 
fundamental importance of this result was emphasized even in the brief chapter on 
turbulence by Landau & Lifschitz (1960, ?33). It is surprising that this result was not 
discussed in the first post-Kolmogorov book on turbulence by Batchelor (1953), 
although it was described in his 1947 paper. He informs us that this was because 
between 1947 and 1953 the results of experimental studies indicated that high 
Reynolds number for turbulence was unlikely to be measurable. He now admits he 
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was too pessimistic.) An alternative expression for (1.4) involves the co-spectrum of 
6U2 and 6u, namely 

E2, c ek-2 (1.4b) 

Kolmogorov pointed out the important statistical consequence of this dynamical 
result, which was that the small scales of turbulence are non-gaussian so that the 
skewness S of the velocity difference (S= (6u(l)3>/(6u(1)2)>) is a constant, 
independent of 1, for I lying in the inertial range. 

At first sight, an experimental measurement of Brrr or EU2, to test (1.4) would 
appear to be a more fundamental and searching test of the hypothesis than verifying 
the forms for the second-moment correlations and spectra (1. ) and (1.3). But it turns 
out to be a restrictive test, and cannot be used to indicate whether or not the second 
moments satisfy the predictions of K41. The reasons are that the experiments are 
difficult, because reliable measurements of third moments require more extensive 
data (which means over longer periods when in the environment conditions may 
change), and because, as explained in ?3c, third-order moments can be more strongly 
influenced than second-order moments by the structure of the large-scale motions. 
However, measurements in the atmosphere by Van Atta & Chen (1970) and 
Anselmet et al. (1984) are certainly consistent with the predictions of (1.4a), 
including the value of the coefficient 4 (see also ?2b) (see figure 2c, d). 

Between 1941 and 1961, when Kolmogorov again published a paper on the small- 
scale structure (published in 1962, but presented in Marseille in 1961), there had been 
several experimental studies and theoretical models suggesting that the significant 
small-scale motions contributing most to the dissipation of energy must be 
intermittently distributed through the flow. Although intermittency had already 
been suggested by Taylor in 1938, in his paper K41 a Kolmogorov assumed that the 
rate of dissipation e was constant wherever there was significant small-scale motion. 
So in the light of the later studies, Kolmogorov proposed a modification to the theory 
of K41 a that allowed for the fluctuations in e. Equations (1.1) and (1.3) respectively 
were replaced by 

(6u(l)2)> -6 e+ll+, E(k) oc ek-- , (1.5) 

where Iu is a universal constant relating to the postulated log-normal distribution of 
the energy dissipation. Also, the property of the constancy of skewness in the inertial 
range derived in K41 b was replaced by S(l) _ 

1-3/12. 
This theory is reviewed in this volume by Gibson (1991), Van Atta (1991) and 

further developments are discussed by Frisch (1991). However, for the majority of 
phenomena connected with small-scale turbulent motions these corrections can be 
neglected in the statistical description of the turbulence (when there is no local 
sampling of special 'events', such as spots of high strain rate or dissipation), and the 
average value of e can be used satisfactorily in formulae such as (1.1) to (1.4), as we 
show in ??2 and 3. 

On the other hand the insight from this theory (and its subsequent modifications 
by others) has stimulated many different kinds of measurement where samples are 
taken of special 'events'. Although in K61 the statistical analysis to include these 
'events' was framed in terms of two point correlations, in many recent studies of 
these events (Sreenivasan 1991; Mandelbrot 1991; Frisch 1991) other analyses are 
used, drawn in part from the contribution to 'fractal' analysis by Kolmogorov's 
papers (Kolmogorov 1958; Kolmogorov & Tikhomirov 1959, hereafter referred to as 
K58 and KT59 respectively). 
Proc. R. Soc. Lond. A (1991) 
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It is worth emphasizing that Kolmogorov appealed to a schematic concept of 
eddies in formulating his model, and did not consider afterwards whether his 
theoretical predictions could be used to make a more definite model of the spatial 
distribution and internal structure of turbulent eddies. Some progress in this 
direction is discussed in ?2. 

(d) Stochastic processes (K58, KT59) 
Turbulence is not the only field where random intermittent signals occur. In fact, 

they are of great interest in many dynamical systems and in communication systems 
(following the pioneering developments of Shannon & Weaver (1963)). It was these 
fields that stimulated Kolmogorov to develop in 1959, in collaboration with 
Tikhomirov (KT59), the theory and, of great practical importance, the methods for 
analysing and characterizing complex multiscale functions that are also highly 
intermittent. These might be random functions of one variable, such as signals in a 
communications circuit, or convoluted contour surfaces occurring in local regions of 
a turbulent flow field. 

The mathematical problem was to characterize these signals more efficiently and 
more revealingly, than the previously available correlation and spectra methods, 
especially if they were self-similar in some way, e.g. in some local region 6u(l) oc I, 
or in a statistical sense <(u(1)2> oc 1n, over some interval of 1, such as the inertial sub- 
range of turbulent flows. (Paradoxically, for these and other similar irregular signals 
it is instructive to assume that the signal has the same irregular and non- 
differentiable form down to infinitesimal scales, and then analyse this non-smooth 
function by new techniques. This is similar to representing localized but smooth 
functions as singularities to simplify the analysis.) 

For these kind of signals K58 introduced the measure of 'capacity' DK (because of 
its relevance to the capacity of electronic circuits), which is related to the minimum 
number of elements N(3) of size 8 that is required to 'cover' the signal. It is found 
that N(8) 8-DK as -> 0, and DK increases as the irregularities of the signal become 
increasingly space filling over a large range of length scales. The irregularities of a 
more restricted class of signals had earlier been given a quite different mathematical 
definition by Hausdorff (1918) who introduced the concept that a 'dimension' could 
have a fractional value DH. Mandelbrot (1982) has termed these signals 'fractal'. 
K58 and KT59, which do not refer to Hausdorff's work, apply to the wide class of 
self-similar functions that are not everywhere differentiable and have a fine structure 
with detail on all scales, including those Mandelbrot (1982) termed 'fractals'. In the 

appendix of his book, Mandelbrot (1982) stated that the 'box-counting' technique 
discussed in K58 and KT59 and the measure of DK was essentially equivalent to the 

concept of dimension introduced earlier by Bouligand (1929). 
But it is certain that the paper KT59 not only put this method of analysis on a firm 

mathematical foundation, but following its discussion by Mandelbrot (1982), it 
stimulated a new approach to the measurement of intermittent and multiscale 
phenomena in turbulence and many other fields. These studies (see, for example, 
Sreenivasan & Menevau 1986) have not only shown many phenomena (e.g. rates of 

dissipation, contours of concentration) that are self-similar on different scales within 
a particular flow as quantified by DK or distributions of DK, but have also shown that 
the self-similarity of structure occurs in different kinds of turbulent flows (e.g. jets, 
wakes, clouds, etc.). These results are clearly consistent with Kolmogorov's 
hypothesis of a universal small-scale statistical equilibrium; but if the measurements 
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do not also exhibit the universal forms of the two point correlations or spectra 
(1.1)-(1.4), is there a contradiction or perhaps is the satisfying of these particular 
two-point statistical forms simply a more stringent condition for the existence of 
certain universal features of small-scale motion ? (A point further discussed in ?2e.) 

2. Observing and interpreting the results and assumptions of 
Kolmogorov's theory 

(a) Formulating questions 
The central fluid mechanical question raised by Kolmogorov's papers is: what are 

the implications for the kinematics and dynamics of turbulent motion of (a) the 
assumption that the small-scale motions have a universal structure, independent of 
the large-scale motions, (b) the statistical results given by (1.1)-(1.5)? 

This general question may be best answered by considering a number of subsidiary 
problems. 

1. What kinds of velocity fields are consistent with the assumptions (a) and the 
results (b) of Kolmogorov's models (K41a, b, K62). For example, what are the 
characteristics and the defining parameters of the turbulent flow fields, and the range 
of length scales that are necessary for these statistical conditions to be satisfied, 
whether defined by spectra, correlations or by the existence of fractal dimensions of 
certain quantities ? 

2. Assuming the velocity field satisfies certain constraints, which might simply be 
that the velocity is finite and satisfies continuity, or might be the more demanding 
constraint that it satisfy the Navier-Stokes equations, what kinematic or topological 
features can be expected in the velocity distribution in any one realization, such as 
the accumulation of high derivatives in local regions of the flow (which can be 
examined in other ways, for example using KT59) ? The answer to this question helps 
define the appropriate flow conditions considered in the previous question. 

3. Do other non-turbulent flows also have the same forms of spectra and other 
statistics predicted for small-scale turbulence (which would require them to have 
quite a complex structure with a distribution of scales wide enough to have a (-5) 

spectrum) ? 
4. If the spectrum or other statistical measures predicted by K41 a, b occur in 

other flows, does it mean that small-scale turbulence contains particular flow 
patterns or structures that are not unique to turbulence ? Or, in other words, is some 
of the structure of the flow field not necessarily dependent on the assumption (a) of 
the universality of the small-scale structure of the turbulence (Frisch 1991) ? 

5. The previous question can be taken even further to ask whether it is possible 
for such a turbulent flow to consist of an ensemble of elements with no internal 
structure (i.e. represented by a small range of length scales, such as a spherical 
vortex, as suggested by Synge & Lin (1943)) ? Or, as our question 3 implies, do the 
governing equations inevitably lead to a turbulent flow consisting of an ensemble of 
'eigenstructures', e.g. spiral vortices or vortex sheets (which may not necessarily be 
independent of each other, and in each of which the local statistical structure of the 
velocity field is similar to the statistical structure of the whole field) ? Calculations of 
flame in model 'eddies' reviewed by Bray & Cant (1991) demonstrates the practical 
importance of the answers to this question. 

We cannot answer all these questions yet. In the following sections we review some 
recent and current attempts to do so. 
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(b) Measurements and computations of small-scale turbulence 

(i) Criteria 

The essential criteria for the existence of a state of statistical equilibrium of the 
small scales of motion are that: (i) there is a very large number of modes that are 
at least partly independent of each other; (ii) the ratio r, of the largest scale LO to the 
smallest Kolmogorov length scale IK = (v3/e)4 is very large, i.e. 

rl = LO/1K > ; (2.1 a) 

(iii) so that the dissipation be confined to the smallest scales, the ratio rs of the 
spectrum of the strain rate (k2E(k)) at the smallest scales to the strain rate spectrum 
at the large scales must be much larger than 1, i.e. 

r, (Ve)-3/(U2/Lo) > 1. (2.1b) 

Since e is determined by the large scales of motion its order of magnitude is U3/Lo. 
Therefore in terms of the Reynolds number of the turbulence, Re = ULo/v, the 
second criterion (2.1 a) is satisfied if 

ReI>1, (2.2a) 

whereas the third criterion requires that 

Re4 > 1. (2.2b) 

(ii) Low to moderate Reynolds numbers 

For a minimum separation of the rates of dissipation between small and large 
scales the ratio rs should be about 10, which implies (from 2.2) that Re w 104 and 

Lo/lK 103. 
In most laboratory experiments Re w 200, although in some shear flows the 

velocity is great enough that Re ? 104 (Anselmet et al. 1984). In recent grid 
turbulence experiments conducted in large wind tunnels the value of Re has reached 
103 (Gagne 1991). 

The present upper limit of the value of Re using direct numerical simulation is 
about 200 (She et al. 1991). In some of the experiments where Re < 200 there is a 
range of wave numbers k typically varying over a factor of 10 (a 'decade' in the 
jargon) over which the spectrum E(k) has the same form as predicted by K41 for the 
inertial range. But in these flows the strain spectra do not generally satisfy the 
criterion (2.1 b). 

Whether or not in a particular turbulent flow a significant 'inertial range' is found, 
has been shown (largely empirically) to depend on the 'non-ideal' nature of the flow, 
especially at these relatively low values of Re. Using local statistical properties of the 
turbulence, normalized with respect to the velocity and length scales of the 
turbulence u0,LO, the flows can be characterized quantitatively in terms of 'non- 
ideal' factors N, namely the spatial gradients of the kinetic energy of the turbulence, 

NG(U) = IVuI/( uo/L); (2.3a) 

or of the integral scale NG(L) = IVLoI; (2.3b) 

or the anisotropy of the large scales (Lumley 1978), 

NA I= 11 -= bijbji where bi = 1-u- U/i uku ; (2.4) 
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or by random body forces per unit mass, f, defined by their variance 

Nf =f /(nu/Ln), (2.5) 

and by their spectrum 
NE(f) = Ef(k)/c3E2(lk); (2.6) 

or by the magnitude of the straining by the mean flow 

N = IVUI/(u0/LO), (2.7) 

and its form as defined by IIu = (aUJ/axj) (aUj/dx)/(uo/Lo), which is equal to the 

proportion of irrotational to rotational straining. Note that in a pure shear flow 

IU = 0. 
For example, in approximately isotropic turbulence, whether produced in wind 

tunnel flows past grids or numerically, all these 'non-ideal' factors are small. For 
moderate Re < 100 it is found that there is a narrow range of eddy scales and that 
the spectra decay rapidly with k (for example, Champagne et al. (1970) and Rogallo 
(1981) found that E(k) oc exp [-(kLo))], where 1 < n < 2). At higher values of Re, as 
mentioned above, a small 'inertial' range has been observed in more recent 

laboratory experiments and numerical simulations (She et al. 1991). 
But other kinds of approximately isotropic turbulence produced in the laboratory 

have a significantly different spectrum, as is the case of turbulence below an 

oscillating grid in a tank of static fluid. There is no mean motion, but the turbulence 
is significantly inhomogeneous so that NG w 1. Unlike the more homogeneous wind 
tunnel or numerical turbulence, in this case there is a significant 'inertial' range over 
a 'decade' at a value of Re w 100 (Hannoun et al. 1988). A possible explanation is 
that since turbulence is advected from the grid by the mutual 'Biot-Savart' 
induction between eddies, this also leads to significant nonlinear interactions 
between them and therefore to a broader range of scales than occurs in the decay of 
turbulence behind a grid. Also, an effect of the gradient of the turbulence energy is 
to cause a skewed probability distribution with intermittent high-velocity eddies 

moving away from the grid and producing high-energy small-scale motions. 
Turbulence in the presence of a mean shear velocity (e.g. Ui (i = 1,2, 3)) is another 

kind of 'non-ideal' flow, where Ns 1. At moderate values of Re in laboratory and 
numerical experiments, measurements show that the spectrum decays more slowly 
with k ('algebraically', as opposed to exponentially), typically as 

E(k) oc u Lo(k/Lo)-, (2.8) 

where I < n < 3 (Champagne et al. 1970; Rogallo 1981; Ho & Huerre 1984). This 
great change in the form of the spectrum at a same value of Re is mainly caused by 
the linear distortion of the eddies by the mean flow providing high shear regions at 
the edges of the elongated 'streaks' or contour lines of locally high or low velocity 
parallel to the mean flow (Hunt & Carruthers 1990). 

These two 'non-ideal' examples have shown how large-scale motions can force the 
spectra to have a form with a significant distribution of energy over a wide range of 
length scales. Therefore the large scales can stimulate nonlinear interactions, and 
thence the generation of a wide range of length scales, even at moderate values of Re. 
Thus, particular kinds of 'non-ideal' large-scale motion, can paradoxically stimulate 
the formation by the small scales of a state of local statistical equilibrium! 

By contrast the length scales of turbulence in atmospheric and oceanic flows are 
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so large that the values of Re are high enough to satisfy all the criteria for the 
existence of the small-scale statistical equilibrium, as defined by (2.1) and (2.2) (e.g. 
for the atmospheric boundary layer, Lo0 10-100 m, u0 w 0.1-1 m s-1, v w 10-5, so 
that Re w 105-107, while in the upper ocean where Lo0 1 m, u0 w 0.1 m s- , v ~ 10-6, 
so that Re w 105). For the large scales the 'non-ideal' factors are usually of order 
unity. So the question is whether the statistics of the small scale motions become 
universal and independent of the large scales in any particular flow. 

In all (sufficiently detailed) measurements of velocity spectra an 'inertial range' 2 5 has been found where E(k)= CKe3k-3 over a number of 'decades' that appears to 
increase as the magnitudes of the non-ideal factors decrease, for example reaching as 
much as about five decades in aircraft measurements of tropospheric turbulence, and 
as Gibson (1991) reports eight decades for galactic turbulence! The values of e have 
been measured from the strain rates of the smallest scales e = v(aui/lxj)2, often by 
using different instruments for these scales, and thence the coefficient C. could be 
evaluated. It is remarkable that this coefficient ('Kolmogorov's constant') has been 
found to be approximately the same (ca. 1.5), whether the turbulence is driven by 
mean shear (NS 1), or by buoyancy forces (NG w 1,Nf 1) (Kaimal et al. 1973, 
1982). 

Measurements of the different spectra E1(kC), E22(k), E33(k), for the different 
velocity components in the three directions in the atmospheric boundary layer have 
confirmed in many different conditions the K41 a hypothesis of isotropy of the small- 
scale motions in the inertial range (see, for example, Kaimal et al. 1973; Monin & 
Yaglom 1975). Usually this is tested by comparing the ratios of the spectra 
E22(k1)/Ell(kl) and E33(k1)/Ell(kl) for wave numbers in the direction of the mean flow 
(subscript 1) with the theoretical value for isotropy of 4. In these experiments it is 
found that this ratio differs from the isotropic ratio for about the same wave numbers 
that E(k) departs from the inertial range form (1.3) (figure 2). (In many of the 

laboratory turbulence experiments, although the spectra may have an 'inertial 
subrange', the small-scale turbulence is not necessarily found to be isotropic.) 

When these spectra are inspected very closely, it is found that there is a small 
systematic discrepancy between the measurements and the form of (1.3) predicted in 
K41 a. As explained in this volume by Gibson (1991) and Frisch (1991) the data agree 
more closely with the spectra predicted by Kolmogorov's 1961 modification to the 
1941 theory which allowed for the variability of the rate of dissipation e. 

Although in these very high Re turbulent flows, where the large scales are 'non- 
ideal', the second-order spectra and correlations are consistent with the hypotheses 
of K41 a of small-scale isotropic statistical equilibrium, the higher order statistics 
may not be so consistent. Some reasons and data are given in ?3 (see also Frisch 
1991; Sreenivasan 1991). 

So far we have discussed measurements of spectra, although the original results of 
K41 a were expressed in terms of correlations. As explained in ? 1 b, a given value of 
Re essentially determines the range of independent modes in the turbulence and, if 
Re is high enough, the ratio LO/1K of the highest to the lowest wave numbers in the 
inertial range. Thence by calculating the correlation or structure function <(u(l)2> 
from the Fourier transform, it can be shown that the asymptotic result (1.1) for the 
inertial range is only a good approximation if (LO/IK)3 > 1. In other words, the 
structure form of K41a is only likely to be found experimentally at even higher 
values of Re than the spectral form, as shown by Anselmet et al. (1984) and Fung 
et al. (1991). But this also raises the question of whether there is another statistical 
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Figure 3. Different kinds of signals whose singularities or accumulations lead to 'power-law' 
spectra of the form E(K1) c K12P as K1 -> CO. (a) Distinct discontinuities: (i) p = 1, [u(x)] = 0(1); (ii) 
p = 2, [u'(x)] = 0(1). (b) Oscillatory accumulation u(x) = x4cos (1/x); (Ixl < 3); p = 7 (indicative of 
the velocity of a particle in a vortical flow, where x is the time). (c) Singularities and accumulations: 
(i) f(x) = fo- ZMH(x x-m); xm oc m-". (Note the growth off(x) towards the point x = 0.) (ii) f(x)= 
ZM(- l)mH(x-xm). (This is analogous to a section of a scalar field.) 

measure less demanding than the spectrum which indicates the existence of some 
universal features of small-scale turbulence ? 

In this section we have examined only the statistics of the velocity field. Many of 
the same remarks can be applied to the scalar fields. But the reviews by Gibson 
(1991) and Sreenivasan (1991) in this volume show that there are experimental 
situations, even at very high Re where, although the velocity spectra follow an 
inertial form with the constant equal to the general value, the scalar spectra do not 
follow a general form. Their examples are drawn from laboratory and oceanic 
experiments, whereas atmospheric boundary layer experiments seem to show a more 
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Figure 4. Representations of eddy structure of turbulence and variations with Reynolds number. 
(a) Moderate (ca. 102) Reynolds number. (b) Higher (ca. 103) Reynolds number: (i) Eddies as sine 
waves, pulses of sine waves, or simple structures (e.g. vortices, straining flows, vortex rings, which 
are smaller but remain similar as Re increases); (ii) Eddies as complex 'eigen structures' which 
become more complex (i.e. greater range of scales) as Re increases. A, complex internal structure; 
B, sheets of high vorticity entering vortex; C, scalar contours forming spiral shapes (e.g. visualized 
by light sheet). (c) Simulation of three-dimensional flow fields consisting of random uncorrelated 
Fourier modes, with different spectra: (i) E(K) OC K-3; (ii) E(K) oc exp (- KL), showing how there are 
different regions where there is intense vorticity (marked with heavy lines) and where there is 
strong straining. Note how these are smaller and more intermittently distributed for the first case 
(in a real flow the effect is more marked). 

uniform behaviour for the temperature and water vapour spectra, even when the 

large scales are quite different and the buoyancy forces have different effects (Monin 
& Yaglom 1975). 

(c) Forms of velocity fields consistent with the theory 
It is not always realized by fluid dynamicists that the predictions in K41 a for the 

forms of the spectra and correlation functions in the inertial range of length scales 

necessarily imply that there are mathematical 'singularities' in the velocity field, i.e. 
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points xm where the derivatives of the velocity (on the length scales within the 
inertial range) tend to infinity (i.e. (u(x)- u(x+ h))/h - oo as h/L ->0,h/ll = 0(1)). 
In this section we analyse these regions in order to show which kinds of velocity and 
scalar fields are consistent with Kolmogorov's and Obukhov's theories (which helps 
answer question (2) of ?2a). 

The spectrum E(k) of a random function u(x), defined in the range 0 < x < X, is 
proportional to mean square of the modulus of the complex coefficients, an, of the 
Fourier series of u(x), i.e. 

E(k) = (X/2n) Ian12 where u(x) = an exp (ikc x). (2.9) 
n 

There is a well established, but generally overlooked, property relating the rate of 
convergence of the coefficients to the degree of singularity of the function. If u(x) and 
all its derivatives are piecewise continuous, then 

lanl = (n-P) as nooo, (2.10a) 

and E(k) = O(k-2P) as k/Lo ->oo, (2.10b) 

where p-1 is the lowest order derivative that is discontinuous (Thomson & Tait 
1879, ?77; Courant & Hilbert 1953, p. 74). 

Thus if u(x) is discontinuous, as at a vortex sheet, lanl = O(n-1), and E(k) oc k-2 as 
k - oo. (Perhaps first pointed out in the context of turbulence by Batchelor & 
Townsend (1949)?) A typical function of this kind can be represented as (H is the 
Heaviside function) 

U(x) = mH(x-xm), (2.11) 
m 

which is a schematic representation of turbulent velocity in the lateral direction in 
a class of sheared turbulent flow (Hunt & Carruthers 1990). 

The inverse relation is not so straightforward. For example, if la.l = O(n-P), it does 
not necessarily mean that u(x) has simple discontinuities of the form of (2.11). In fact 
u(x) may have a second kind of singularity that is an 'accumulating oscillation'; for 
example, if 

u(x) = Ix-xmlcos , (2.12a) 

then the Fourier coefficients can be evaluated as n -> oo, either using Hardy's formula 
(see Watson 1958, p. 183), or by the method of stationary phase which leads to 

p = (2 + t + 2)/2(t+ 1) (2.12b) 

for -t < s < 1 and t > 0. In particular, when the exponent of the spectrum is p = I 
it does not necessarily follow that the signal is discontinuous (as in a vortex sheet) 
because (2.12b) shows that there may be accumulating oscillations, for example with 
t = 1 and s = - (see figure 3). Clearly the function in (2.12 a) does not satisfy the usual 
Dirichlet conditions, which as well as requiring piecewise continuity, also require a 
finite number of maxima and minima; but it does have a Fourier series and a 
spectrum! 

There is a third kind of singularity in functions having these kind of spectra which 
vary like k-2p, in which the function and its derivatives are a sequence of 
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discontinuities at xmr which 'accumulate' towards the points xm. For example, if the 
qth derivative undergoes jumps in proportion to r3 at points xmr spaced in a 
geometrical sequence from xm defined by IXmr-xml oc r-, then 

dlHu(x) - xU) H(xmr-xm), where u( oc rm. (2.13) 
r m 

This might be the velocity on intersections between a spiral vortex and a line (see 
figure 4). Deriving the Fourier coefficients for u(x) as n - o, again using the method 
of stationary phase, leads to 

p = (1+ 1)-g/'. (2.14a) 

If the discontinuities have the same sign 

c'=- and g=(l+/i), (2.14b) 

but if they are oscillating in sign (i.e. umr c (_ 1)), 

o' =2(1+c) and g=(1+2/f) (2.14c) 

(see also Moffatt 1984; Gilbert 1988). 
Hence if E(k) cc k-2 it is possible for the function to have an accumulation of 

discontinuities of u(x) that oscillate in sign at points converging harmonically, i.e. 
a = 1 and q = 0. Putting p = into (2.14a) and using (2.14c) shows that f = -. This 
implies that lu(x)l oc lx-Xml2, which is consistent with our calculation for the 
continuous second kind of singularity. But if the discontinuities of u(x) are of the 
same sign with the same spacing (a = 1), there is an even sharper minimum with 
lu(x)I oc Ix-x1m. 

We now consider the more singular spectra, where p < 1, such as predicted by the 
Kolmogorov-Obukhov theory. In this case E(k) oc k-2 where p = -, for k > l/L0, 
where Lo is an integral scale. Because p is not an integer, there can be no function u(x) 
that has this spectrum and has the first (simple) kind of singularity in u(x) or its 
derivatives. Therefore functions with this spectrum generally have the second or 
third kind of singularities and accumulation points, unless they are fractal functions, 
e.g. fractal Weierstrass functions which are also known (see Mandelbrot 1982) to 
have a spectrum of the type E(k) oc k -2 with non-integer p. In that case such fractal 
functions have 'singularities' everywhere, because they are nowhere differentiable 
even though they are continuous. (If one includes statistics in the definition of the 
function u(x), it should be mentioned that random gaussian functions were shown by 
Orey (1970) to have a high wave-number spectrum of that type too; particular 
realizations of such random functions are similar to Weierstrass functions (see 
Mandelbrot 1982).) 

For the second oscillatory kind, the velocity near the singularity (say at x = 0) 
could have the form 

u(x) = IxlS cos (1/IXlt), (2.15) 

where s and t are given by (2.12b). Thus if p = -,2s = ?t- . So the value of s or t 
depends on other information about the singularity, either dynamical or kinematical. 

The third kind of accumulation of discontinuities have the form given by (2.13). 
For the velocity spectra on a line where p = -, it follows that there could be an 
accumulation of discontinuities (or vortex sheets, f = 0), of one sign. Substituting 
into (2.14), with q = 0 and cc' = c, leads to a = 6, which means that the sequence of 
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discontinuities converges rapidly onto the singularity. But the velocity increases 
slowly towards a singular value at the singular point in proportion to x-6 (we expect 
viscous processes to dominate very close to the accumulation point itself). 

Another dynamical possibility is an accumulation of vorticity (i.e. du/dx), which 
increases by the same amount at each discontinuity, so that ft = 0. Then from (2.14b) 
q = 1, and cx = 6. Clearly the latter accumulation is more gradual; from observations 
it should be possible to detect the difference. Note that in this case also the velocity 
increases to a singular maximum in proportion to x-6. 

If the motion is essentially two-dimensional near 'spiral' accumulation points, the 

velocity remains of the same order and has discontinuities that oscillate in sign. 
Then, if 8 = 0, and if p = 6, from (2.14c) it follows that a = 5, which is also a rapidly 
convergent accumulation. 

The singularity of a scalar with concentration C does not lead to a maximum or 
infinite value at x = 0. The distortion of C by the velocity field tends to lead to 
discontinuities of dqC/dxq (of alternating sign). Hence if p = 5, q = 1, and a'= 
2(1 + c), then c = 2. Note that this is a different rate of accumulation to that for the 

velocity! 
This somewhat elaborate analysis has been necessary to emphasize that the one 

kind of velocity distribution that is not mathematically consistent with a spectrum 
which decreases with a power law E(k) o k-2p, is a distribution of isolated 'simple 
eddies' (i.e. no internal singular structure) with length scale 1 having velocities 6u(l) 
oc l(P-). But it would be possible to have a distribution of such 'eddies', for example 
with a simple form such as exp [-(x/l)2], only if the eddies were spaced in a par- 
ticular way, so that the total effect of all the eddies would produce the required 
singularities in the velocity field for consistency with the spectrum. Thus the 
conventional picture of 'smooth eddies' is only correct if it is suitably qualified in this 

way, which may be important for the applications of models based on such pictures. 
An alternative velocity field that is consistent with these forms of spectra consists 

of 'eddies' that are not 'smooth' but have some complex internal structure with a 
local velocity distribution that contains the same order of singularities required by 
the total velocity field, for example velocity discontinuities for the case of p = 1 or 
oscillatory accumulations if p < 1. In this case the velocity may consist of isolated 
'eddies', and there is no restriction on their relative spacing (provided there is not 
an accumulation leading to greater singularities in the velocity field). 

These alternative descriptions of the velocity field are sketched in figure 3. 
One way to explore these kinematical alternatives is to compare velocity fields 

constructed in different ways. One method is to superpose a series of random 
uncorrelated gaussian Fourier solenoidal components having the correct spectrum in 
the inertial range, for example 

N 

u(x,t) = anexp(ikn x + nt), (2.16) 
n=l 

where kn a = 0, Ian 2 oc E(k), and (on O e3lc3 (Kraichnan 1966; Fung et al. 1991). A 
convenient form for the series is that an and kc are proportional to n-p and nq 
respectively; that series is a type resembling in form the Weierstrass function 
(Falconer 1990; see also Richardson (1926) who started his paper by asking 'does the 
wind possess a velocity' by referring to these functions), which, depending on the 
phases of an and on the relative amplitudes of an and kn, may or may not be 
differentiable at some or even at all points (in the limit of an infinite inertial range). 
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In general, for a given value of N there are particular points in the field where the 
derivatives are very large and points where there are 'accumulations' of maxima and 
minima. 

However, plotting the velocity field shows how the large-scale eddies determines 
that the overall structure of the flow largely consists of a set of spiral vortices 
separated by stagnation regions with high local irrotational strain rates (figure 4c) 
(Fung et al. 1991). The smaller-scale eddies also produce similar patterns, when the 
local streamlines are plotted in moving frames of reference (cf. Prandtl 1925). Both 
large- and small-scale motions are significant in controlling the relative motions of 
pairs of fluid elements, and thence the movements of interfaces (see ?2e). 

The usual way to explore the velocity structure is to compute solutions of the 
Navier-Stokes equations (Vincent & Meneguzzi 1991; She et al. 1991), which 
certainly show that the largest derivatives are found in isolated eddies with complex 
internal structure; in their case they find elongated regions of intense vorticity 
having longitudinal straining motion, so that the streamlines form spirals. These 
structures apparently change their form quite slowly. 

New experimental methods are also beginning to provide evidence of spiralling 
streamlines and streaklines within eddies (Hunt et al. 1991), and thin layers of high 
vorticity bunched together (Schwarz 1990), both of which phenomena are consistent 
with there being accumulation points in the velocity field. The new technique of 
Wavelet analysis of the fields (see Meyer 1990) may enable the local description of 
these regions to be made precise. 

These are kinematical consequences of the form of the spectra, but the dynamical 
implications are important, as we show in the next sections. 

(d) Dynamical implications of the inertial range spectra 
The theory of K41 a is based on the premise that the parameter e, which defines 

the amplitude of the inertial range eddies has the same order of magnitude at least 
over a region of the flow comparable to Lo the scale of the large eddies. This leads 

directly to E(k) oc k-5. However, we have just seen in ?2c that the consequence of this 
result is that there must be singularities in the derivative of the velocity field 
(on scales much larger than 1K), where the rate of dissipation e is locally very large 
(e being defined as v(aui/x>)2. 

If the type of non-fractal isolated singularity discussed in ?2c exists in the 
solutions of the Navier-Stokes equations, then the new hypothesis of Kolmogorov's 
later paper (K62) that the dissipation rate is an intermittent process would be 

implicit in the result of the K41 paper (see Frisch 1991). Perhaps this explains in part 
why, although considerations of intermittency are not included in K41, the theory 
describes measured statistics very satisfactorily, as shown in ? 2b and by other papers 
in this issue. 

There have been a number of theoretical and computational studies to investigate 
whether certain deterministic flows also have the same spectra, because this might 
explain why some turbulent flows are observed to have certain forms of spectra and 
correlations that are the same as these in the K41 theory, without the conditions of 
the theory being satisfied. 

One method has been to study the key elements of observed turbulent flow fields 
in isolation such as vortices in straining flows. Lundgren (1982) derived solutions to 
the Navier-Stokes equations for a vortex sheet rolling up while being stretched by 
a large-scale straining motion (figure 4). He found the K41 form of the energy 
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spectrum E(k) = Ak-3, but the dimensional constant A is not simply related to the 
average dissipation in the flow. 

This is one possible type of accumulation near a singular point, which in this case 
consists of an accumulation of singularities of the velocity derivative (on a scale 

greater than 1K). As we showed in ?2c other kinds of accumulation are also 
kinematically possible involving discontinuities of higher order, or even none at all, 
though no dynamical solutions for such cases have yet been found. 

Two-dimensional vortices rolling up vortex sheets have been shown by Gilbert 
(1988) to be solutions of the inviscid Euler equations, which have spectra that are 
similar to those of two-dimensional turbulence. 

There are important physical implications of these kind of solutions. 
First, they demonstrate that a distribution of the second, 'complex' kind of eddy 

is dynamically possible, as well as being kinematically consistent with the spectra for 
the whole velocity field. 

Secondly, they indicate that the regions of high rate of dissipation may well be thin 
sheets that are convoluted within 'complex' eddies, rather than very small-scale 
'simple eddies'. In that case, as the Reynolds number increases, the sheets become 
thinner so that there can be more turns or convolutions within the eddy, rather than 
a new generation of smaller eddy being formed (figure 3). This mechanism may be an 
alternative means for e being proportional to u3/Lo when Re > 1. 

Thirdly, there are isolated and steady velocity fields with particular external 
velocity fields; in that sense they are 'eigensolutions' of the equations. The actual 
velocity field may be a collection of these and other possible 'eigensolutions', but it 
remains to be seen how closely these correspond to the velocity in actual 
computations or measurements. It also remains to be understood how these 
nonlinear 'eigen solutions' evolve and interact with each other. 

Fourthly, it is clear that these particular solutions are geometrically similar (e.g. 
as in a spiral vortex) with respect to the centre of the vortical region. Furthermore, 
because these are nonlinear solutions and because steady vortices do not exist on 
rolled up vortex sheets (Moore 1976), other similar 'eddies' could not be superposed 
or coexist with these 'complex' or 'eigen' eddies. Therefore the streamlines of these 
particular types of eddy have continuous curvature and do not have a 'fractal' form 
in Mandelbrot's (1982) sense. 

Flow visualization and computer simulation show that most of the eddies in 
turbulent flows are formed during the interaction between eddies, which are often 
large vortices. Consequently there have been a number of computational studies of 
such interactions, for example when line vortices with finite diameter intertwine 
around each other and then split again into two separate vortices. In this second kind 
of study of the dynamics of flows with spectra similar to that in the inertial range, 
it has been found that after such interactions there are several small regions of 
vorticity, with a wide range of scales, and in some cases the spectrum has been found 
to approximate the inertial range form, though the dimensional coefficient A has no 
physical interpretation in this case (see, for example, Kiya 1991; Kida et al. 1991). 
This is another example to show that the inertial range form may arise from 
particular deterministic flows, that may also be quite frequent in high Reynolds 
number turbulence, but this point is yet to be proved! 

The third kind of dynamical study is to seek for a general theoretical description of 
the kinds of velocity field that could form such steady or slowly changing 'eigen' 
eddies. Moffatt (1987), following earlier work by Arnol'd (1974), has shown that there 
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Figure 5. A scalar interface as a two-dimensional velocity field with spectrum E(k) oc k-2. (a) 
Interface over a large scale, showing how the convolutions are localized. (b) Nature of the interface 
in a vortical or 'eddy' region where Dk > 0.3. (The computations have run for longer times to 
expose the detail (Vassilicos 1989).) 

are permanent solutions of the Euler equations, and has shown that they may be 
derived by considering a novel kind of mathematical limiting process. It appears that 
there is no one type of form that emerges from the limiting process, but a likely 
velocity field would consist of isolated regions where the velocity is approximately 
parallel to the vorticity (not unlike strained vortex tubes), but separated by vortex 
sheets. 

(e) Other measures of local eddy structure 

The statistical structure of the small-scale turbulence is determined by local 
regions where the velocity and scalar quantities have very large derivatives or have 
rapid variations in their magnitude or that of their derivatives. These are regions 
surrounding points that are mathematically singular in the different senses described 
in ?2c. Recent research techniques, including those deriving from Kolmogorov, are 
providing new insights into these singular regions, which as was shown in ? 2d, largely 
determine the small-scale dynamics. 

A revealing computational study of a material interface in a two-dimensional 
solenoidal random field (figure 5) with a spectrum E(k) oc k-2p shows how the 
interface rolls up in the vortical regions (where II = (du/dxj) (duj/dxi) < 0), and is 
stretched out in the straining regions, where IIu > 0 (Vassilicos 1989). Clearly figure 
5 suggests that the value of p is likely to be determined by the accumulation-like 
distribution of the small scale fluctuations in C in the vortical regions. 

Following Kolmogorov & Tikhomirov (1959) and others, this regions can be 

analysed more easily than by spectra using the 'box-counting' method to calculate 
the capacity DK in such individual accumulation region. (The interface is 'covered' 
with N slices of side 1; as 1 decreases, N increases as -DK, where 1 < DK < 1.) This fact 
implies that the scalar C has a locally self-similar structure (as for a spiral, see Dupain 
et al. 1983). It can be argued that the average value of DK within these vortical 

regions is equal to the average value over the whole flow field. Note that outside these 

regions DK = 1. 
In many other simulations and in many experiments it has also been found that 

DK and D' can be measured with good statistical repeatability, where the spectra 
either could not be measured with the same repeatability or did not have the self- 
similar form of 'power-law' spectra (see Sreenivasan 1991). The different forms of 
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capacity or fractal dimension that have been used, for example by covering a line on 
a plane with square boxes, or a surface in three dimensions with cubes, may 
demonstrate different aspects of the self-similar structure (see Jimenez & Martel 
1991; Sreenivasan & Meneveau 1986). This is consistent with the fact that there is 
no general simple relation between DK and D', as there is for Hausdorff dimensions 
(Di = D' + 1, see Falconer 1985). 

If a random variable has a 'power-law' spectrum with exponent -2p and a well 
defined value of capacity Dk, since both indicate that the variable has a self-similar 
structure, geometrical scaling would suggest a relation between these two measures. 
Such relations have been derived for particular classes of variable (Orey 1970; 
Vassilicos & Hunt 1991); for the case of a general random interface across which C 
changes from 0 to 1, with spectrum exponent 2Pc (i.e. Ec k-2P), a recent 
theoretical analysis, confirmed by numerical simulation, shows that 

2pc = 2-Dk (2.17) 

(Vassilicos & Hunt 1991; see also Kingdon 1987). Note that there is no general 
extension for higher dimensions of capacity (for DK). This result shows how as Pc 
decreases, which (as ?2c showed) leads to a more discontinuous or wiggly distribution, 
D' increases, which implies that a larger number of small boxes are needed to cover 
the convoluted interface. 

In the simulations of Vassilicos (1989), the exponent p describing the spectrum of 
the velocity was varied. It was found that as p decreases, DK increases, which from 
(2.17) implies that Pc also decreases. Since the vortical regions become more singular 
as p increases, our analysis of such regions shows why Pc also increases. 

So if these two measures of a multiscale random variable are equivalent (at least 
in this case), why is it necessary to use any other variable than the spectra or 
correlation function ? The important experimental reason is that DK can be measured 
reliably and even locally, when p or Pc cannot. This can be explained using simple 
geometrical reasoning, by considering a function of the form of (2.13) near an 
accumulation point. The Fourier coefficient a, corresponding to a wave number, say 
kn, is dominated by the integrations over a large number of those oscillations of the 
function which have about the same wavelength as 2n/kn. Consequently the high 
wave-number spectrum of the signal can only reflect the self-similar structure of the 
function near the accumulation point if the number of oscillations of the function is 
much greater than ca. Lo/kc. (Experimentally this implies that the Reynolds number 
must be very large.) By contrast, the capacity is defined simply by the rate at which 
the distance between oscillations of the function or the interface changes. (The 
detailed analysis for a spiral interface is given by Vassilicos & Hunt (1991), but one 
impressive fact is that DK can be defined by a spiral consisting of only 2 turns, 
whereas the spectrum requires more than 50 turns!) 

Thus these studies of interfaces in artificial and real turbulent flows suggest that 
if small-scale turbulence is investigated using measurements of capacity rather than 
spectra or correlations, then the self-similar structure will be detected at much lower 
values of the Reynolds number. Therefore the criteria in ?2b may only be necessary 
for the existence of the inertial range spectra, whereas some significant aspects of the 
universal structure of small-scale turbulence may be apparent at much lower 
Reynolds number using other measures such as capacity. This would seem to explain 
the experimental findings that in many turbulent flows (such as wakes, jets, 
boundary layers and even clouds) approximately the same values of the capacities 
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D( and DK are found, even when the spectra do not have an inertial range form, and 
also when the conditions for such a spectrum are not satisfied (Lovejoy 1982; 
Sreenivasan & Menevau 1986; Sreenivasan 1991). 

3. Extensions and applications of Kolmogorov's hypotheses 

(a) Local statistics or interactions with large scales? 

A central idea of K41 is that the small-scale variations of quantities, such as 
velocity or temperature, in a nonlinear multi-dimensional system are on average 
determined by a dimensional parameter that characterizes the interactions between 
processes on different scales within a limited range. In the case of the velocity 
fluctuations in turbulence over the inertial range of scales, this parameter is e, and 
for temperature it is ec/e}, where e and ec are the rates of dissipation of velocity and 
concentration fluctuations. 

When expressed in these general terms, it is not surprising that this scaling concept 
of K41 can be applied to other systems. A notable example in fluid mechanics is the 
derivation of the frequency spectra E(o) of the height, h, of surface gravity waves; 
when the waves are in a state of statistical equilibrium, the only dimensional 
parameter for the whole wave system over a certain range of scales is gravitational 
acceleration so that E(o) oc g2(0-3 (Phillips 1966). Similar analyses have been applied 
to internal waves in stratified flows. 

As we have seen, when the above idea is combined with the assumption that the 
small scales are isotropic and universal, certain statistics can be derived, such as 
second-order moments, which do describe some aspects of small-scale turbulence 
accurately and universally. In the next section we discuss how these results can be 
extended to include time dependent and lagrangian statistics. 

Other statistics of the small scales may not satisfy local isotropy and universality, 
and are sensitive to external constraints. But their structure may still be largely 
determined by these small-scale dynamical interactions; in some cases, as we show 
in ?3c, the response to external distortions and body forces has a universal form or 
leads to general approximate computational models, even if the resulting statistics 
are not universal! 

Probably the most widespread practical application of K41 has been for calculating 
the effects of turbulence on various processes that may or may not interfere 

significantly with the flow. Kolmogorov (1949) himself contributed a paper on the 

break-up of drops in a turbulent flow, using the results of his own theory. This 

problem has continued to be actively studied, because of its importance in many 
chemical engineering processes as well as for environmental flows (see, for example, 
Batchelor 1979). There is only space here to list a few other applications: sound 

production, transmission of light and other radiation, mixing and reactions between 

species including combustion, fluctuating forces and pressures on surfaces, and many 
more. It would be interesting to see a detailed review of this wide and increasing 
range of application. 

(b) Timescales and lagrangian and eulerian frequency spectra 
In K41 there is an implication that the turbulence changes slowly on the natural 

timescale 6u(l) of the small eddies of length 1. In that case there are two possible 
timescales r(1) for the change of velocity of a fluid element moving with the local flow; 
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either T(l) l/6u(l) as the element moves a distance I 'inside' a simple 'eddy', or 
T(l) l/uo because the particle is advected around the outside of a local eddy of 
length 1, such as a vortex tube (see figure 3), with a velocity characteristic of the larger 
scales which is typically found outside the small eddies. 

If the 'inside' trajectory model is the most significant, it follows that the 
lagrangian spectrum for fluid elements has the form 

EL(o) = CL e-2. (3.1) 

If the 'outside' trajectory is more significant, 

EL(o) oc e3u o . (3.2) 

Comparing these two formulae it is noticeable that the former has a universal form, 
whereas the latter is dependent on the nature of the large-scale motions. 

However, most subsequent models, following Batchelor (1947), postulate that the 
scaling analysis of K41 can be extended to show that the small scale motions are 
unsteady on the same 'inside' timescale T(l) 1/6u(l), which implies that the 
velocities of fluid elements also tend to change mainly on this timescale. 

There is some experimental evidence by Hanna (1980) that in high Reynolds 
atmospheric turbulence the lagrangian spectrum agrees with the universal form of 
(3.1), first suggested by Inoue (1951). The coefficient was found to be CL w 0.6+0.3. 
In a direct numerical simulation (where Re / 100), Yeung & Pope (1989) found 
CL w 0.64. In a recent simulation of turbulence as a set of random Fourier modes 
(see equation (2.16)), it was found by Fung et al. (1991 b) that, if the small scales of 
the velocity field are changing on their local timescale, the lagrangian spectra agree 
with (3.1) (and the coefficient CL = 0.8). But if the small scales are 'frozen' as they 
are advected by the large scales, then the lagrangian spectrum is given by (3.2). 
Therefore, for these and subsequent reasons, it seems that the different length scales 
of turbulence are evolving on different timescales. It appears that despite these 
different timescales certain lagrangian quantities have surprisingly long lifetimes in 
turbulent flows (such as the amplitude of the strain rate on a fluid element (Pope 
1990), or the relative velocity of pairs of fluid elements (Fung et al. 1991 b)). 

Since the eulerian high-frequency spectrum is determined by the advection of 
small-scale eddies (rather than fluid elements) by large-scale motions, its form is the 
same as that of (3.2) (see Tennekes (1975) and random mode simulations by Fung 
et al. (1991 a)). 

(c) Interactions between small scales and large-scale dynamical effects 
When an external effect (such as a mean shear dU/dz, or a body force f per unit 

mass, or anisotropic and non-gaussian large scale eddies with velocity w0 and length 
L0) is applied to a turbuent flow at high Reynolds number, its influence on the 
velocity scales 6u(l) of length scale 1 depends on whether it leads to inertial or body 
forces that are of order 6u(l)2/l. In most cases the length and timescales of the 
external effect are large compared with those of the smallest eddy scales; 
consequently over sufficiently small scales it may only induce a perturbation to the 
isotropic small-scale turbulence, but at some larger critical length scale (k*/2n)-1 and 
timescale o-1, the external effect becomes dominant. 

We shall mainly consider the case where the turbulence is homogeneous over the 
scales of interest, and then these mechanisms are reasonably well described by a 
number of models of turbulence spectra that account for transfer of energy between 
P, 7? ,Q T-.rl, A 1QQ1 \ 
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different scales (e.g. the EDQNM model reviewed by Lesieur (1987) or the RNG 
model (Frisch & Orszag 1989)). On the other hand it is also possible to explain and 
estimate these effects of external influences on isotropic small-scale turbulence quite 
simply by considering the linear responses acting over periods equal to the relaxation 
times TR(k) for each length scale k-', i.e. 

TR(k) J k2E(k) dk e-lk-3 (3.3) 

in the inertial range. An example of the use of this approach was given by Townsend 
(1976, p. 100), who estimated the rate of transfer of energy from large to small scales. 

When turbulence is generated by a mean shear flow dU/dz, at sufficiently high 
Reynolds number and at small length scales k-l the fluctuating strain rate is of 
order elkc and is much greater than the strain rate for those scales smaller than the 
critical length scale 

(k,/27)-1 - e-(dU/dz)-3. (3.4) 

Nevertheless, even when the motions have length scales smaller than this critical 
size, they are still under the influence of the mean shear flow. The degree to which 
this makes the turbulence slightly anisotropic can be estimated using the linear 
theory for the (rapid) distortion of the isotropic small-scale turbulence by the shear; 
for example the co-spectrum E,3(kl) of the Reynolds shear stress is simply related to 
the spectrum E33(kl) of the vertical turbulence by 

E13(kl) = (2/5) TR(1) (dU/d) E33(k1) (dU/dz)l 6k (3.5) 

for k within the inertial range (Wyngaard & Cote 1972; Bertoglio 1986). Note that 
the same approach shows that the shear produces a small decrease in E33(kl) of order 
(dU/dz)2kl3, and a similar order of increase in E,l. These results, which are consistent 
with the spectra of atmospheric turbulence measured by Kaimal et al. (1973), show 
that the differences between the turbulence in shear flows and the ideal turbulence 
predicted in K41 a vanishes as k,/l -> oe (Derbyshire & Hunt 1991). Note also that 
the form of the difference can be derived as a perturbation from the universal 
structure. 

This concept of a turbulent flow having a relaxation time depending on the wave 
number has been applied to the practical problems of assessing the distances over 
which the different parts of the spectra adjust in turbulent boundary layers which 
flow over changes in surface roughness and elevation (Panofsky et al. 1982). 

Body forces f can also distort the small scale spectra in a way that depends on the 
relation between f and the velocity u. For example in turbulent flows with a large- 
scale rotation 2, because of the Coriolis effect, f oc Qlul (see Ibbetson & Tritton 1975), 
and in turbulent flows of liquids with electrical conductivity Cr in the presence of a 
magnetic flux density B,, f oc oB2lul (at low magnetic Reynolds number). Thus, in 
these two cases, f oc ul/TB, where TB is the timescale of the body force, which is 
independent of the turbulence. However, for turbulence in a stably stratified flow, 
where the buoyancy frequency is N, f oc (t/T ) u dt, where TB = N-. The integral 
implies thatf is somewhat more dependent on the larger scales than in the other two 
types of body force. 

If the Reynolds number is large enough (as defined by 2.2b) that the strain rates 
in the inertial range are much greater than those of the energy containing eddies, we 
can use the scaling analysis to estimate the effects of body forces on the smaller scale 
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motions. Given this condition, then for these and many other types of body force the 
structure of the turbulence is only affected for length and timescales larger than 

(k./2n))-1 -T e- T and w-1 TB (3.6) 

respectively. Good evidence for this argument comes from atmospheric and oceanic 
measurements, reviewed in this issue, where there are significant body forces present 
and yet the small-scale second-order spectra are isotropic and approximately agree 
with the predictions of K41a. We shall see that this does not necessarily imply 
agreement with the predictions for the higher order spectra. (Note also that in lower 

Reynolds number experiments, body forces affect the whole spectrum, because the 
small-scale strain rates are too low (Derbyshire & Hunt 1991; Van Atta 1991).) 

A different kind of 'non-ideal' behaviour on the small scales occurs when there is 
no mean shear, but the random large scale motions, with velocity u are highly non- 

gaussian, for example when they are skewed as in turbulent convection. Applying the 
same linear distortion theory as for the shear flow, but replacing the shear by the 
random large-scale strain Ui/ax1j, enables the 'skewness' co-spectrum E33 3(k1) to be 
expressed in terms of e, k, and a dimensionless parameter A indicating the skewness 
of the large scales, as 

E33 3(k1) = Aec2. (3.7) 

(This mechanism can also be discussed in terms of energy transfer between triads of 
two high and one low wave numbers (see, for example, Brasseur & Corrsin 1987; 
Domarodski & Rogallo 1990).) 

This form of spectra was measured in the convective boundary layer by Hunt 
et al. (1988), at the same time as the usual second moment spectra E33(k1), which had 
the usual isotropic, inertial range form of K41 a. The third moment spectrum (3.3) 
was found to persist in the same inertial range of wave numbers over two 'decades' 
at 22 m and 50 m, and over four 'decades' at 250 m. Over this range of heights, the 
lengthscale of the turbulence, the variances and the anisotropy changed, but the 
skewness S3 of the vertical component remained at about 0.4, and also the value of 
e did not change appreciably. The fact that the coefficient A did not change supports 
the physical analysis leading to (3.7). (Note that provided the large scales gaussian 
even if they are anisotropic, then E33,3 / 0 as in the non-neutral boundary layer 
turbulence measured by Van Atta & Chen (1970).) 

A striking implication of (3.7) is that the small scales in the inertial range 
contribute as much to the third as to the second moments of the turbulence, and that 
the skewness of the small scales are also significant, i.e. 

S(k1) = E33,3/E3 = 0(). (3.8) 

By contrast in isotropic flows Si(k1) = 0 for any value of i = 1, 2, 3, even though some 
third moments may be non-zero, as predicted by K41b and demonstrated 
experimentally by Anselmet et al. (1984). 

Thus even when the second moments are isotropic and their strain rates are large, 
if the large scales are significantly non-gaussian, then by the small scales are also non- 
gaussian; physical reasons and experiments suggest that there may be general 
models or even formulae which describe the non-gaussian higher moments of the 
smaller scales (as in (3.8)). In such situations the specific predictions of K41 b are not 
valid (Van Atta 1991). 

The scaling analysis for small-scale turbulence that has been developed in many 
different ways since K41a can also be applied to inhomogeneous turbulence, for 
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example in regions near rigid or flexible surfaces moving with the mean flow. These 
'shear free turbulent boundary layers' occur at free surfaces of liquid flows, or at the 

ground and upper inversion layers in thermal convection. In all these flows the rate 
of dissipation e does not vary significantly with distance from the surface. Here the 
only scale is the distance z to the surface, and the critical wave number k* = 1/z. 
Therefore the spectrum for scales smaller than z are not significantly affected, but for 
those of the order or larger than z the vertical velocity is 'blocked' by the surface. 
Detailed analysis (Hunt & Graham 1978; Hunt 1984), using the spectrum of K41 a 
for the turbulence far from the surface, showed that the variance of the normal (or 
vertical) velocity varies in proportion to e3Z3. This result has shown how quite 
different inhomogeneous layers all have much the same structure. This analysis has 
been extended to the flow near density interfaces where the turbulence is 

inhomogeneous and generates internal wave motions (Carruthers & Hunt 1986). 
These examples have shown how increasingly complex turbulent flows can be treated 
as perturbations to the general structure proposed by Kolmogorov in 1941. 

We are grateful for many conversations and instructions from G. K. Batchelor, H. K. Moffatt and 
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