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Fractal dimensions and spectra of interfaces with 
application to turbulence 

BY J. C. VASSILICOS AND J. C. R. HUNT 

Department of Applied Mathematics and Theoretical Physics, University of 
Cambridge, Silver Street, Cambridge CB3 9EW, U.K. 

This paper is concerned with the analysis of any convoluted surface in two or three 
dimensions which has a self-similar structure, and which may simply be defined as 
a mathematical surface or as an interface where there is a sharp change in the value 
of a scalar field F(x) (say from 0 to 1). The different methods of analysis that are 
related to each other here are based on spectra of the scalar which have the form 

r(k) oc k-P, (1) 

the Kolmogorov capacity DK of the interface or DK of the intersections of the 
interface with a plane or a line (both being defined by algorithms for counting the 
minimum number of boxes of sizes e either covering the surface or its intersection), 
and the Hausdorff dimensions DH, D' (which are defined differently). 

It is demonstrated that interfaces with a localized self-similar structure around 
accumulation points, such as spirals, may have non-integer capacities DK and DK 
even though their Hausdorff dimension is integer and equal to the topological 
dimension of the surface. It is explained how the same surface can have different 
values of DK and D' over different asymptotic ranges of C. There are other (fractal) 
surfaces where both DH and DK are non-integer which are convoluted on a wide range 
of scales with the same form of self-similarity everywhere on the surface. Distinctions 
are drawn between these two kinds of interface which have local and global self- 
similarity respectively. 

If the intersections of the interface with any line form a set of points that is 

statistically homogeneous and independent of the location and orientation of the line 
and also that is self-similar over a sufficiently wide range of spacing that a capacity 
DK can be defined, it is shown that the scalar F has a power spectrum of the form of 
(1) and that the exponent p is related to DK by 

p+DK = 2. (2) 

This quite general result for interfaces is verified analytically and computationally 
for spirals. In experiments with scalar interfaces in different turbulent flows at 

high Reynolds and Prandtl number, K. R. Sreenivasan, R. Ramshankar and 
C. Meneveau's measurements showed that DK = 0.33 for values of e within the 
inertial range and DK = 0 for smaller values (in the microscale range). The values of 
p derived from (2) are consistent with the theory of G. K. Batchelor and many 
measurements of scalar spectra. 

For fractal interfaces with global self-similarity, the values of DH of an interface 
and D' of the intersections of the interface with a line, have been shown previously 
Proc. R. Soc. Lond. A (1991) 435, 505-534 

Printed in Great Britain 505 



J. C. Vassilicos and J. C. R. Hunt 

to be related simply to each other by the topological dimension E of the interface so 
that DH = D' + E. No such theorem exists in general for the Kolmogorov capacities 
DK and DK. But it is shown analytically and computationally that for the case of 
spirals, over a certain range of resolutions e, 

DK =DK+E. (3) 

This corresponds in practice to the measurable range of typical experimental spirals 
with fewer than about five turns. Over a range of smaller length scales e, where a 
larger number of turns is resolved and which is experimentally difficult to measure, 
(3) is not correct. The result (3) has been previously suggested based on experimental 
results. 

Finally we demonstrate that interfaces for which there is a well-defined value of 
capacity (which is indeed the case for spirals of three turns) are only found to have 
self-similar spectra if there is a much wider range of length scales (e.g. more than 50 
turns of the spiral) than is needed for the capacity DK to be measurable. As well as 
demonstrating this computationally, this is proved mathematically for interfaces 
having a particular class of accumulation points whose intersections with straight 
lines form a self-similar sequence of points x. cc n- ; the power spectrum of F only 
tends to the self-similar form (1) if (cmin/emax)l-DK < 1, whereas the capacity measure 
simply requires that Cmin/Cmax < 1. So when D' > 0, the criteria for the spectra 
requires a wider range of scales in the convolutions of the interface. 

This is consistent with the finding that reliable measurements of DK can be 
computed from measurements of interfaces in laboratory experiments, but in the 
same experiments computations of spectra are often not of the form (1). Therefore, 
despite this apparent discrepancy with the general result (2) (which implies a value 
of p given a value of DK), the above theoretical argument supports the deduction 
from such experiments that if a non-integer value of DK is measured, the interface 
does indeed have a self-similar structure; but it is not self-similar over a wide enough 
range of length scales to satisfy (2). 

Consequently, for turbulent flows, stating that the capacity should have its 
asymptotic value rather than (as is usual) the spectrum should be equal to its 
asymptotic form (e.g. in (1) p = 3) may be the correct necessary condition for 
deciding whether, in a given flow, the interfaces have the characteristic structure 
found at very high Reynolds number. 

Many of the results here may be of value in other scientific fields, where convoluted 
interfaces are also studied. 

1. Introduction 

In many different kinds of flows, there are thin regions with large gradients of fluid 
properties across them, so that finite changes in these properties are found across 
these regions. A few examples of such properties are concentration, temperature, 
density and vorticity. These regions can usually be defined mathematically as 
surfaces of small but finite thickness that either move with the fluid, or that move 
relative to the flow as well as with the fluid (e.g. flamelets). Provided the region is thin 
enough compared with the smallest length scale of the flow, these surfaces can be 
analysed using the mathematical notion of an infinitesimally thin interface. Such 
situations occur in the mixing of chemically reactive substances before these 
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substances have had time to react, and in premixed combustion where flame fronts 
in the flamelet regime appear as sharp interfaces between the burned and the 
unburned fuel. 

For an understanding of the properties of interfaces and their movement in fluid 
flows it is necessary to know about the geometrical structure of their deformations 
and foldings. Of particular interest are questions relating to the growth of the area 
of the interface, its space-fillingness, its stretching and its curvature. Once these 
properties are known, by further analysis which is specific to each particular kind of 
interface, it is possible to understand and model many of the processes occurring 
within interfaces of small but finite thickness. Where there are changes in velocity 
across the interface, these internal processes in part determine the movement of the 
interface, so the two calculations are dependent on each other and cannot be 
performed sequentially. 

In many fluid flow problems the geometry of the interface is self-similar on 
different length scales, so that scaling arguments can be used as usual to indicate how 
experiments can be scaled up, but also to explore the space-fillingness of the interface 
and its invariant properties. Many of the new results and explanations presented here 
could be applied to many other fields in science concerned with random interfaces. 

A surface can fill the space in various ways; either by accumulating around a 
particular point or line, as spiral shapes do, or for example, by being folded up. 
Actually, space-fillingness is generally understood as a property that 'fractal' 
surfaces have, which suggests that we should investigate how irregular the interface 
is, and how the above two ways of filling the space may or may not occur over a large 
range of scales. The problem has even deeper mathematical aspects than that, as we 
are really confronted with the question of how to define and give a measure for those 
processes, and then how to interpret that measure. 

The usual methods of analysing a passive random scalar F by means of its 
spectrum and autocorrelation function does not appear to discriminate between 
different patterns or the flow fields that form them, and if they do, it is not clear how 
to interpret spectra in terms of the above processes. An important feature of random 
fields that occur in turbulent flows at high Reynolds number is their intermittency, 
i.e. they have very high gradients in thin regions that are well spaced out (see, for 
example, Frisch & Orszag 1990). Fourier methods give little information about this 
property of the random fields; so other methods have to be considered. 

In this paper we concentrate on scalars F that are discontinuous through the 
interface. Batchelor (1952) has shown that there is an exponential increase of the 
area of isoscalar surfaces, and therefore of their increased foldings and local 
contortions. This property is also the cause of a cascade of increasingly small-scaled 
irregularities of the scalar field F, which in the case where F is constant on both sides 
of the interface and discontinuous through it, are irregularities or wrinkles of that 
interface. In practice the scales become so small that they are cut-off by physical 
mechanisms such as molecular diffusion, chemical reaction or flame propagation. 

It is generally assumed that the self-similar cascade of eddies induces a cascade of 
deformations on the interface that is also self-similar (see, for example, Sreenivasan 
& Meneveau 1986). In fact, because small-scale turbulence is intermittent and has a 

power law spectrum that is non-integer, it is often assumed that turbulent interfaces 
become fractal, and that there are simple relations between the fractal properties of 
the turbulence and the surface. 

Recent research indicates that by using the technique of fractals, certain 
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properties relating to the self-similarity and the space fillingness of interfaces can be 
studied in more detail than by the traditional method of spectra and autocorrelations. 
The main aim of this paper is to review the literature and then develop a new analysis 
that connects between fractal methods and spectra. In some cases this will help 
define more precisely the use of fractals. 

2. A selective review of the literature 

In random fluid motion, smooth spectra E(k) that have a 'power-law' variation 
with wavenumbers (i.e. E(k) w k-n) occur in a variety of cases. The most famous is 
the -3 Kolmogorov law for the inertial range of the velocity spectrum in fully 
developed turbulence (Batchelor 1953). Other such spectra are the k-2 spectrum of 
the solutions of Burger's equation (Saffman 1968), the spectrum of two-dimensional 
turbulence (Kraichnan & Montgomery 1980), the small-scale spectrum of a 
temperature field passively advected by turbulence (Batchelor 1959; Batchelor et al. 
1959), and the spectra of surface waves (Phillips 1985) and other interfaces such as 
occur in combustion. 

Moffatt (1984) showed how a power shaped spectrum of a velocity field could be 
related to the structure or the topology of that velocity field. He pointed out that if 
the velocity field has spiral singularities or regions where sharp fluctuations or 
discontinuities accumulate, then the exponent of the power-shaped energy spectrum 
can be a non-integer and is a function of the particular nature of that 'accumulation' 
pattern. This result was obtained from a simple study of the Fourier series of a square 
wave (see figure 1 b), i.e. a function that can only take one of two values, 0 or 1, over 
the whole space. The sharp discontinuities from 1 to 0 or from 0 to I of such profiles 
could represent the sharp jumps in any field (such as the velocity or the vorticity 
field). Moffatt's result is a general result of Fourier analysis and is valid for any 
square shaped signal, e.g. temperature, magnetic field, pollutant concentration, etc. 
But it only demonstrates the existence of a relation between the exponent of the 
spectrum of a square shaped signal and a particular accumulation pattern of that 
signal. The general features are not given, and a suitable measure of the accumulation 
properties of the signal is not given either. 

Rather than starting from spectra, an alternative approach to the analysis of 
random functions and random interfaces is to study their self-similarity on different 
length scales; or their 'fractal' property. As well as popularizing fractals (Mandelbrot 
1982), Mandelbrot focused attention to the fact that these geometrical curiosities 
having fractional Hausdorff dimensions and invented by pure mathematicians in the 
beginning of our century (Hausdorff 1919) can actually be found in nature under 
various forms and in great profusion. Examples are coastlines, landscapes, trees, 
clouds, percolation clusters, galaxies, viscous fingers, interfaces or flamelets in 
turbulent flows, etc. More abstract mathematical objects having fractal properties 
would be brownian motions and chaotic attractors. In a series of papers in the mid 
and late 1970s he suggested how these ideas might be applied to the analysis of 
turbulent flows; in particular he attempted a study of the fractal geometry of 
isoscalar surfaces in turbulent velocity fields (Mandelbrot 1975) and a study of 
intermittency (Mandelbrot 1974). 

The first experimental measure of a fractal dimension in the context of turbulence 
was done by Lovejoy (1982). He measured the fractal dimension D of the projection 
on a photographic plate of the outline of clouds and obtained 2.35. Surprisingly the 
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I I ~ Ii I I X - I I I Ix 

(b) 
I I I0 

I I iH 

Figure 1. (a) Graph of a continuous non-differentiable random function G(x) for which Orey's 
formula (3.39) applies (when G(x) follows gaussian statistics at each point x, in which case the graph 
is H-fractal). This is the particular case d = I; there is only one variable x. (b) If one takes a cut 
y = a through the previous graph one obtains a square-wave F1(x). This is also a figure of the on-off 
function F(x) defined by taking a cut through an interface. 

particular non-integer number caused much interest because it was thought that 2.35 
might be a fundamental constant of turbulence! (In fact the motions near the edges 
of clouds are often not characteristic of fully developed turbulence, so it would not 
be expected that D is a general constant.) This point was perhaps not known to 
Hentschel & Procaccia who attempted to deduce D from the theory of turbulent 
diffusion (Hentschel & Procaccia 1984). Unfortunately their work is full of arbitrary 
premises, one of which appears to be wrong, from the study we describe in this paper. 
They nevertheless obtained the observed number 2.33. Kingdon (1987) repeated 
these calculations by changing two of Hentschel & Procaccia's premises and came to 
the same result. 

Lovejoy's work also triggered a further series of experimental measurements of the 
fractal dimension of various interfaces in turbulent flows, the most well known and 
complete being those of Sreenivasan and his collaborators (see, for example, 
Sreenivasan & Meneveau 1986; Sreenivasan et al. 1989; Prasad & Sreenivasan 1989). 
The 'magic' number 2.35 seemed to appear over and over again for different kinds 
of interfaces embedded in turbulent flows (turbulent jets and wakes, iso-velocity or 
iso-concentration surfaces, mixing layers, turbulent/non-turbulent interfaces, etc.) 
an exception being the fractal dimension of turbulent flames (Gouldin 1987; Peters 
1988; Chate 1987; Franke & Peters 1985; Mantzaras et al. 1989) which is often 
smaller than 2.35. 

It is interesting that the fractal dimension was either measured or 'deduced' (from 
the theory of turbulent diffusion) but never explained. As we shall see in the next 
section, often the dimension that is measured is not the same as the dimension that 
is thought to be measured. In fact the meaning of D remains largely unclear; 
especially its connection to the properties of self-similarity and scale-invariance. It 
so happens that the box counting algorithm (Mandelbrot 1982) provides a measure 
of what is called a Kolmogorov capacity introduced by Kolmogorov (1958), and 
subsequently shown to be equivalent to other dimensions, for example, to the 
Bouligand dimension (see Dupain et al. 1983). (It is also often referred to in the 
literature as box-dimension, similarity dimension, Kolmogorov entropy, or e- 

entropy. All these denominations refer to the same concept and to equivalent 
definitions. In calling it a Kolmogorov capacity we follow Farmer et al. (1983) and 
Ruelle (1989). It should not be mistaken for Frostman's capacity (see Falconer 
1985).) The Kolmogorov capacity is a number that can be fractional for signals that 
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have accumulation points without being fractal (i.e. their Hausdorff dimension is 

equal to their topological dimension). There are examples of spirals that have a 
Hausdorff dimension of 1 and a Kolmogorov capacity strictly larger than 1. 

That Kolmogorov capacity is a convenient measure or identifier of the 
accumulation patterns discussed by Moffatt (1984). The main aim of this paper will 
be to take Moffatt's observation described earlier one step further and find the exact 
relation between the spectrum of a signal that looks like in figure lb, and the 
character of its accumulation as measured by the Kolmogorov capacity. 

(a) Hausdorff dimensions and Kolmogorov capacities 
It is important to include here a review of how 'fractal' dimensions are defined and 

measured. A common definition of the 'fractal' dimension of a given geometrical 
object (e.g. a set of points, a line or a surface) is the following: suppose the object is 
embedded in a euclidean space of euclidean dimension d (a circle is embedded in a 

plane of d = 2 and a sphere in a space of d = 3). Choose a length scale e and cover that 

object with boxes of size e and 'volume' ed. N(e) is the minimum number of such 
boxes required to cover the object completely. If 

N(e) _ e-DK (2.1) 

for e -> 0, then the object is often said to be fractal if DK is a fraction, and DK is called 
its fractal dimension. As we shall see these can be misleading statements if by 
'fractal' is meant an object with a fractional Hausdorff dimension. The procedure 
just described is the box counting algorithm (see figure 2). 

As for real or numerical experiments the limit e - 0 becomes impractical and even 

illusory (in the real world nothing is 'fractal' down to vanishing length scales), one 
looks for a range of length scales e between some emax and emin where a relation of the 

type of (2.1) is valid (see figure 3). 
The dimension DK as defined by (2.1) is really called a capacity and was first 

defined by Kolmogorov in 1958. It is in general not equal to the Hausdorff dimension 

DH which is defined as follows: consider a covering of the geometrical object in 

question with d-dimensional boxes of variable sizes e. Define the quantity HD(e) by 

HD(e) = inf ef, (2.2) 

where the infimum extends to all possible countable coverings subject to the 
constraint ei < e. What Hausdorff proved (Hausdorff 1919; see also Falconer 1985) 
is that as e->0, HD(e) tends to either 0 or oo according to whether D is larger or 
smaller than a critical value DH. That critical value is the Hausdorff dimension and 
Hausdorff showed that it can be a non-integer number. 

It is easily shown that DK > DH (see, for example, Ruelle 1989). A fractal as 
defined by Mandelbrot is a geometrical object whose Hausdorff dimension is strictly 
larger than its topological dimension. We will call such an object an H-fractal. An 

object whose capacity is strictly larger than its topological dimension but its 
Hausdorff dimension is not, will be called a K-fractal. In fact we define K-fractals 
such that a broader class of objects may be included in the definition. It is shown in 
the Appendix that spirals of the kind r(O) = CO-' (r, 0 are polar coordinates on the 

plane, C and a are constants) with an infinite number of turns and cc > 1, have a 

capacity DK = 1 but the set of point intersections of the spiral with a straight line 

crossing through the centre of the spiral has a non-integer capacity D' = 1 /(1 + c). 
(See also last paragraph of ?2c.) Hence, we define a K-fractal to be a non H-fractal 
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Figure 2. Covering of a line with boxes of size e. That is the first stage 
of the box counting algorithm. 

AKi 

I 

I I 

min max loge 

Figure 3. Log-log plot of the minimum number of boxes N(e) needed to cover the curve in figure 
2 against the size e of those boxes. In practice, a power law is only observed in a restricted range 
of length scales between emin and max. 

geometrical object such that there exists a line crossing through it for which the set 
of point intersections of the object with that line has a Kolmogorov capacity DK 

strictly positive. 
It may be that if an object is already known to be H-fractal then DK = DH. But 

there is no rigorous and general proof of this. (Falconer (1988) and Bedford & 
Urbanski (1989) for example, give conditions relating to self-affinity under which 

they can prove it.) Otherwise, apart from Mandelbrot's statement (Mandlebrot 
1982), there is some numerical evidence that the capacity and the Hausdorff 
dimension of chaotic attractors are equal (Farmer et al. 1983). If an object is not yet 
known to be H-fractal, then (2.1) is by no means a test that can tell us if it is! (Most 
experimentalists are agnostic about this. Essentially they are concerned with K- 
fractal processes (see Sreenivasan & Meneveau 1986; Prasad & Sreenivasan 1989; 
Redondo & Linden 1988; Franke & Peters 1985) and that is not a complete 
enumeration.) It would be necessary to measure the Hausdorff dimension of that 

object (or signal) and test whether it is larger than its topological dimension. 
The Hausdorff dimension is a direct measure of the 'raggedness' or lack of 

smoothness of, say, a surface embedded in a three-dimensional euclidean space. If the 
surface is 'smooth ', in the sense that one can define a tangent plane on nearly every 
point of that surface ('on nearly every point' means 'except on a subset of points of 
zero area'), then its Hausdorff dimension is equal to its topological dimension, i.e. 
DH = 2. If not, then DH > 2. When DH = 3, the surface is said to be space-filling 
because it is so irregular that it fills a three-dimensional region of the three- 
dimensional euclidean space. DH cannot be larger than d (in the case of a surface 
d = 3) (see, for example, Ruelle 1989). 
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The capacity is not a direct measure of the raggedness of a geometrical object. A 
spiral defined by r(q) = Cq-" for example, has a Hausdorff dimension equal to its 
topological dimension (DH = 1), but the capacity may be greater than the topological 
dimension (see the Appendix; DK increases as a decreases). DK is clearly a measure 
of how quickly the spiral converges onto its centre. If that convergence is slow, a is 
small and DK is close to 2. If that convergence is fast, a is large and DK is close to 
1 (see figure 7). 

Note that as a -> 0 and DK -* 2, the spiral becomes more and more 'space-filling' in 
a sense that is not at all the same as when we say that an H-fractal line of topological 
dimension I and Hausdorff dimension 2 is space-filling. Nevertheless DK = 2 still 
corresponds to some kind of space-fillingness which, to our knowledge, has not 

previously been differentiated from the different kind of space-filling property of an 
H-fractal line for which DH = 2. At the end of this section we note that for K-fractals 
DK < d, which is similar to DH < d for H-fractals. One could formally define K- 
fractal space-fillingness as being the situation where DK = d, as one can indeed define 
H-fractal space-fillingness to be equivalent to DH = d. We will now try to give an 
intuitive understanding of that difference. 

The capacity seems to be a good measure of the convergence pattern near an 
accumulation point or any number of separated accumulation points. In the case of 
a spiral the accumulation point is obviously its centre, and there is a one to one 
correspondence between a and DK. That accumulation point is the only ingredient 
needed for a capacity to be larger than 1. 

One accumulation point (or even a finite number of them) is not enough for the 
Hausdorff dimension to grow larger than the topological dimension. If one looks at 
an example of an H-fractal set, the triadic Cantor set (see figure 4), one realizes that 
it has an infinite number of accumulation points in a finite region of the straight line. 
There are, as it were, accumulations of accumulation points in the neighbourhood of 
any point of the Cantor set. That is an extremely singular behaviour, which may 
contain all the information needed to determine the Hausdorff dimension. That 
accumulation pattern will also be characterized by a value of the capacity strictly 
larger than the topological dimension of the set, which for the Cantor set is 0 (and 
it may well be that in such a case the capacity is able to grasp all the fractal aspect 
of the set and be equal to DH, as is indeed assumed without discussion by various 
authors (see, for example, Mandelbrot 1982; Voss 1988)). 

The space-filling property of a K-fractal line means that as DK -> 2 the line would 
tend to fill the space locally, i.e. near an accumulation point or a number of separated 
accumulation points. On the other hand the space-filling property of an H-fractal 
line implies that as DH - 2 the line become space-filling over a finite continuous 
region of space. We should also stress the fact that for the Hausdorff dimension to 
jump above the topological dimension an accumulation of accumulation points is 
needed, whereas one or a finite number of accumulation points is enough for the 
capacity to do so. The reason why one finds accumulations of accumulation points 
in the neighbourhood of every point of an H-fractal, is that it is self-similar 
everywhere. A K-fractal is self-similar only locally. (Note, as we shall see later, that 
both kinds of self-similarity produce a power law spectrum: hence, there will be a 
need in future research for wavelet transforms (see, for example, Grossman & Morlet 
1984) to focus on regions where a process is locally self-similar.) 

Another way of noting the difference between an H-fractal and a K-fractal for an 
interface, is that an H-fractal can only be produced by displacements defined by a 
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IIIIII II I II I IIIII II IIIIII I~ 
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Figure 4. The construction of the triadic Cantor set. The initiator is the unit interval [0, 1]. The 
generator removes the open middle third. The figure shows the construction of the five first 
generations. DH = 0.6309. 

large number NH of parameters (or Fourier components) where NH > 1, whereas a K- 
fractal can be produced by displacements defined by one single number (e.g. the a 
parameter we defined for spirals). (In fluid mechanics a line placed across a vortex 
becomes K-fractal; but an H-fractal could only be produced by many eddies at 
different scales. This is why K-fractals are found in low Reynolds number or 
transitional flows (Franke & Peters 1985; North & Santavicca 1991). On the other 
hand there is no conclusive evidence yet that the 'fractals' observed at high 
Reynolds number flows are in fact H-fractals.) 

(b) The volume of H-fractals 
If an object is H-fractal (so its Hausdorff dimension DH is strictly larger than its 

topological dimension E = d-1), and if one chooses all ei in (2.2) to be equal to e 

(assuming that for H-fractal objects this does not affect the value of HD(e) for small 
enough e, but it can be easily seen to do for K-fractals like a spiral), then one gets 

HE(e) = infE eE = N(e) E e-Di, (2.3) 
i 

assuming that for H-fractals Dn = DK and DH = DK, and using the relation DH = 
DI +E (see Falconer 1985). 

HE(c) is the 'E-volume' of the E-dimensional H-fractal object measured with 
resolution e (ifE = 1, the object is a H-fractal line, and Hi(e) is its length). We know 
that it should diverge to infinity as e- 0 because E < DH. Equation (2.3) gives the 
rate of this divergence, and is the original definition of a H-fractal (Mandelbrot 1967). 

It is crucial, for an experimental test of H-fractal properties based on (2.3), to 
measure HE(e) according to (2.2) and not by setting all ei = e, in which case the test 
would become simply equivalent to the box counting technique. This point appears 
to have been neglected in some experimental studies of fractals in turbulence 
(see, for example, Mantzaras et al. 1989; North & Santavicca 1991), and makes an 

experimental identification of H-fractals based on (2.3) particularly difficult. 
Note that (2.3) is not generally valid for K-fractals; for instance, the spirals 

studied in the Appendix are of finite length when a > 1 (see (A 20b)) but D - = 
1/(1 +c ) ? 0. For H-fractals HE(e) always tends to infinity when e-+0! 

(A rigorous proof of D. = DK if the object is H-fractal, would run along the same 
lines leading to (2.3), but for a general D instead of E, in order to obtain HD(e) 
cD-DK and conclude that DK = Dn because the threshold value of D for which the 
limit of HD(e) as e-> 0 jumps from 0 to oo, has to be DH. The delicate point will be 
to show that by setting all ei = e, one does not upset the value of HD(e) too much for 
small enough e. If one neglects that last point one can still say that HD(e) < const. 
eD-DK, and deduce rigorously the inequality DH < DK.) 
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(c) A new interpretation of the capacity DK of a set of points on a straight line 

One can give an alternative definition of the capacity DK of a set of points on a 
straight line, that will prove particularly useful in the next section. Define n(l) to be 
the probability density for a compact segment of length I to contain no point of the 
set. If that whole set is contained in a compact segment of length no smaller than L, 
then, because N(e) is the minimum number of segments of size e covering the set of 
points, one can write the following: 

c+ o 
N(e) e +L n(l) dl L. (2.4) 

Differentiating with respect to e and using (2.1) in the form N(e) e-DK, one then 
comes to the conclusion that, as e -0, 

n(e) e-D. (2.5) 

The above two relations can be used to show that the capacity DK of a set of 
points has to be smaller than 1 (which also proves that D' < 1 because D' < D'). 
That is easily done by setting e = 0 in (2.4) and noting, using (2.5), that the integral 
f0 n(l) dl cannot be finite unless D' < 1. 

That result can be generalized to H-fractals of topological dimension E. It is indeed 
known (see Falconer 1985) that the Hausdorff dimension DH of the set of point 
intersections on a one-dimensional cut through an H-fractal set of Hausdorff 
dimension DH and topological dimension E is nearly always D' = D -E. It then 
follows that 

DH<E+ =d. (2.6) 

K-fractals have a similar property, DK < E+ = d, which is evident because it is 
impossible to cover an object in a d-dimensional euclidean space with more than a 
minimum number N(e) - e-d of boxes of volume ed. But no similar theorem is known 
about one-dimensional cuts through K-fractals. In general, the capacity DK of the set 
of point intersections on a cut through a K-fractal set of topological dimension E and 
capacity DK is not equal to DK-E (see the Appendix, and the example of cuts 
through K-fractal spirals). 

3. The small scale spectrum of K-fractal and H-fractal interfaces 

(a) New result for the spectrum F(k) in terms of DK and DH 

One of the main applications of fractals has been the analysis of interfaces between 
fluid with different properties, e.g. vorticity, concentration, temperature, reactants, 
or occurrence of a series of chemical reactions (as in combustion, in which case the 
interface is a flame, one side of which is burnt and the other unburnt). These can be 
defined without loss of generality by the boundary between regions where a scalar 
F(x) is equal to 0 and regions where F(x)= 1. That scalar can only be 0 or 1 
everywhere in a d-dimensional space. 

The question we will examine in this section is how the capacity DK or the 
Hausdorff dimension DH of that interface relates to the spectrum F(k) of the scalar 
function F. 

The following analysis starts from two basic assumptions. The first one is that the 
interface is K-fractal. It does not need to be H-fractal; but the analysis is still valid 
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Figurea) The interface between the shaded and non-shaded regions is connected. 

Figure 5. 
(a) The interface between the shaded and non-shaded regions is 

dconnected. (b) The interface between the shaded and non-shaded regions is disconnected. 

in case it is, provided one trusts the conjecture that for H-fractals DK = DH. 
Furthermore, our analysis will be valid for both connected and disconnected 
interfaces (see figure 5). 

The second assumption is that F is statistically homogeneous and isotropic over 
the scales of interest. That is indeed the case if we assume the turbulence advecting 
F to be statistically homogeneous and isotropic and the initial profile of F to be also 
chosen from an homogeneous and isotropic distribution of initial realizations, or to 
be distributed over space in an isotopic and homogeneous way. We will deal with 
small-scale averages over space, or over various realizations of the interface that 
have different orientations and lie in different regions of space (or both). The 
statistical homogeneity and isotropy of F means that all these realizations have the 
same weight. 

The spectrum r(k) of F is defined in a series of steps: one first defines the 
autocorrelation function c(r) of F by 

c(r) = F(x) F(x + r), (3.1) 

which is actually a function of the modulus r = Irl only, as F is statistically 
homogeneous and isotropic. The overbar in (3.1) denotes an average over a large 
number of realizations, or an average over space x (or both). 

The Fourier transform of c(r), or spectrum function, is 

S(k) = (2Z)d c(r) eik . (3.2) 

From the inverse transform: 

c(O) = S(k)dk. (3.3) 

Since c(r) = c(r), it follows from (3.2) that S(k) is only a function of k = Ikl, so one can 
rewrite (3.3) in the following way: 

c(O) = 2 kd-lS(k) dk, (3.4) 

where f2d is the d-dimensional solid angle integrated over all directions. It is usual in 
turbulence to define a power spectrum F(k) such that 

c(O) = (k) dk. (3.5) 

Therefore, from (3.4) 
r(k) = Q2 k-lS(k). (3.6) 
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The main result of this section will be the following: provided the interface is K- 
fractal and c(r) = c(r), then the autocorrelation function of F behaves like a power 
law over short distances, 

c(r)-c(0) - r as r-0, (3.7) 
where It=l-D' (3.7a) 
and DK is the capacity of the set of point intersections on an arbitrary line cutting 
through the K-fractal interface that separates regions with different values of F. 

The cut can indeed be arbitrary without affecting the value of DK because of the 
homogeneity and the isotropy of the statistics of F. Also because of this isotropy, one 
can write 

c(r) = F(x)F(x +re) (3.8) 
for any arbitrary vector e, which means that because of the assumption of 
homogeneity, one can compute c(r) by only considering the statistics ofF on pairs of 
points on an arbitrary line. 

We use the definition (2.5) of DK; we assume that the form of the interface is such 
that for y < I < L some DK can be defined on a line. In other words the local 
accumulation regions extend from some I = 7 to some I = L. (y is a function of both 
the smallest length scale within which sharp gradients of F can be found, and the 
smallest distance from the convergence point to the line on which DK is defined. In 
the Appendix we show that the set of point intersections of a spiral with a line that 
does not cross the centre of the spiral has the same DK as when the line does cross 
the centre, but within a slightly smaller range.) The exact decaying behaviour of n(l) 
for I > L is unimportant because we are interested in results valid for asymptotically 
small lengths, and n(l), by definition (see ?2c), has to be vanishingly small for large 
1. So, for I > L we set n(l) = 0. Normalizing f` y{(1) dl to 1 (letting 7 -> 0 has no effect 
on the present analysis and results), leads to: 

n(l) = ((1 -D )/L) (1/L)-DK {(L-1), (3.9) 
where 0 is the Heaviside function. 

The fact that F(x) is a step function taking either the value 0 or 1 means that c(r) 
is the probability that both F(x) and F(x+r) are equal to 1. Set H(r) to be the 
probability that F(x) is equal to F(x +r). Then 

c(r) = H(r) c(0), (3.10) 
where c(0) is F2(x), and is also the probability for F(x) to be equal to 1. 

F(x) = F(x + r) can occur in a variety of ways which we can describe graphically in 
figure 6. 

Figure 6a is the case for which there is no point element of the interface between 
x and x + r. In figure 6b there are only two points between x and x + r that belong to 
the interface, and in figure 6c there are four. 

An infinite enumeration of all possible ways in which F(x) can be equal to F(x + r) 
could be constructed. The probabilities attached to each of these possibilities sum up 
to give an infinite series equal to H(r). 

The probability of a graph like figure 6a can be easily calculated if one knows n(l). 
That probability is 

n(l) dl = (L - r) [1- (r/L)-DK]. (3.11) 
r 

Unfortunately, the exact probabilities to be assigned to all the remaining graphs 
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- i (a) (b)n nc) 
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Figure 6. 

cannot be determined from n(l) alone. However, as we will now show, the leading 
contribution to 17(r) in terms of powers of (r/L) must come from figure 6a, b. 
Intuitively this makes sense, because the autocorrelation function is an indication of 
the 'persistence' of the signal F over a certain range of r. 

Examine the case of figure 6b: the probability of finding two and only two points 
of the interface at a distance 11 < r apart is equal to the probability of finding three 
convex segments of lengths l1 < r, 12, 13 directly bordering each other for any 12, 1 such 
that 11 +12 + 13 > r, and with no points of the interface in them except at their two 
adjoining points. That probability is in turn smaller or equal to the probability of 
finding three such segments that are not necessarily adjacent, and which can be 
computed in terms of n(l) in the following way: 

n(1) dl 
12+13 n(2) n(13) d12 dl3. (3.12) 

~o Jr~-ll ~<12+la 

Carrying out the integration in (3.12) for the case r < L, leads to: 

(r/L) K- F) (r/L)3-DK, (3.13) 
F(4 - 3Die) 

where F is Euler's 'gamma' function. The probability of figure 6b being less or equal 
to (3.13), one concludes therefore that the contribution of that graph to the value of 
H(r) is at most of the order of (r/L)-D 

Similarly the contribution of a graph like figure 6c will be found to be smaller or 
equal to 

0o o Jo J14+5 <r-l1-l2-l3 

r3(2-Dj) (r/L)- a3D'_ 
F(2- 

-Dk) (3.14) F^^ ^K)^/i)3-3^K (rl 
- 
3K (3.14) 

r(4 -3DJK) F(6-5DK) 

The next graph after figure 6c, which we have not drawn and which involves seven 
integrations will not contribute more than 

s( -D) (r/L)5-5D F(2--D ) (r/L)7 -DK (3.15) 
r(6- 5D /') F(8- 7Dj) 

((3.14) and (3.15) are only valid for r < L). 
Notice that if one adds up (3.11), (3.13), (3.14), (3.15) and all the remaining upper 

bounds of higher contributions to H(r), one gets 

17(r) 1 (3.16) 
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as expected. 
It is now clear that the largest contribution to H(r) comes from figure 6a, b, and 

is of order (r/L)l-DK. In fact, for r < L, 

H(r) 1I-A(r/L)-DK (3.17) 

and A < 1. 
Likewise, for r < L, cLikewis, fr r 

(r) c(O) [1-A(r/L)-DK] (3.18) 

(note that this method does not allow us to determine the value of A, except that it 
is smaller than 1). 

Taking the Fourier transform (3.2) of (3.18) with a suitable change of variables 
(r' = kr) and using (3.6), we obtain the basic result of this section: 

F(k) k-2+DK (3.19a) 
It is valid for large enough wavenumbers (i.e. k > 2rn/L) under the assumption that 
F is statistically homogeneous and isotropic, and that the surface of discontinuity of 
F is either K-fractal or H-fractal. Indeed, if it is H-fractal, then the previous analysis 
can be identically reproduced with D' = DH, which is the Hausdorff dimension of the 
set of point intersections of the interface with an arbitrary cut. In this case one can 
also rewrite (3.19a) in terms of the Hausdorff dimension DH of the entire interface 
(DH > E) because DH = D' + E for nearly all cuts through the interface (see Falconer 
1985): T(k) k-E+DH. (3.19b) 

When the interface is K-fractal, (3.19 a) cannot in general be trivially reformulated 
in terms of the Kolmogorov capacity DK of the entire interface (DK > E). In fact, in 
general, DK # DK +E. But as we show in the Appendix, for K-fractal spirals DK = 
D' +E in a limited range of resolutions e where no more than approximately five to 
six turns of the spiral can be resolved. At much finer resolutions the calculated (or 
computed) value of DK is not equal to D' +E. If we assume an homogeneous and 
isotropic distribution of spirals of not more than a few (ca. 5) turns on the interface 
(the statistics ofF are assumed to be homogeneous and isotropic), then computations 
and analysis indicate that there is a range of resolutions e where DK = DK + E. In that 
case, it follows that (k) k-2-E+DK (3.19c) 

The distribution of spirals may be such that there exists a cascade of smaller spirals 
upon larger spirals; that cascade may be H-fractal, in which case (3.19c) is the same 
as (3.19 b), because then DH = DK. The distribution of spirals need not be of this type 
though; it can simply be an homogeneous and isotropic distribution of well separated 
spirals of variable sizes (do not confound the size of the spiral and its number of 
turns), and therefore be K-fractal, in which case (3.19c) applies but not (3.19b) 
because DH = E. 

The analysis leading to (3.19) can be generalized for the nth derivative of F, if it 
is the nth derivative of F that has the profile of a step function and all lower 
derivatives are continuous. In that case F is a piecewise Ca polynomial of the nth 
order, and its spectrum Fn(k) can be shown to be of the form (3.19) where the power 
(-2+DK) will have to be replaced by (-2-2n+D4), i.e. 

Fn(k) k 2-2n+DK. (3.20) 

The implication of (3.19a) and (3.19b) is that a unique value of D' or of DH can 
be deduced from the power spectrum of the function F, assumed to be discontinuous 
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(b) 

Figure 7. (a) A spiral with the x axis cutting through it. (r, 0) are polar coordinates. Here, DK is 
close to 1 and a is large. (b) A spiral with DK close to 2 and a close to 0. xn is the series of points 
obtained by cutting through the spiral. 

through either a H-fractal interface or a K-fractal interface that is homogeneous and 

isotropic. In particular if F(k) - k- and p < 2, then DK > 0, and accumulation 
points exist, which may or may not be associated with spiral geometry. If the 
interface is made of an homogeneous and isotropic distribution of spirals of not more 
than five turns then a unique value of DK can be deduced from (3.19c). 

Moffatt's specific spiral example (Moffatt 1984) is a special case of (3.19a). His 
method shows that the spectrum of a one-dimensional on-off function obtained by 
taking a cut through the centre of a spiral of type r(b) - 0-a (polar coordinates, see 
the Appendix) is given by 

r(k) k-2+1/(l+a) 

which is consistent with (3.19a) because (see the Appendix) the Kolmogorov 
capacity of the point intersections on that cut is given by DK = 1/(1 + a). 

(b) An accurate measure of self-similarity 
We have shown (3.18) to be valid for r < L. In reality though, the interface is K- 

fractal or H-fractal in a range of scales between some emin and L. One expects, 
therefore, the range of scales in which c(r) has a power law dependence on r to be also 
bounded from below, but it is unclear whether this lower bound is the same as emin 
or if it is smaller or larger. Here we focus on interfaces at an accumulation point 
which have the geometrical form xn ~ n-a (c > 0) (see figure 7), to analyse how these 
two ranges of length scales compare. 

Figure 8a shows the accumulation pattern of the intersections (xn, 0) of a spiral 
with the x axis taken to cut through the centre of that spiral. If the spiral is of the 
kind discussed in the Appendix, then 

x n-, (3.21) 

where a is some positive real number. Spiral singularities are therefore an example 
of the type of singularities we are analysing. 

The on-off function F(x) corresponding to the series xn is defined by: 
+oc 

F(x) = hp(x) (3.22a) 
p=1 

and hp is a product of two Heaviside functions (see figure 8); 

h,(x) = H(x-x2p) H(x2p_l-x). (3.22 b) 
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(a) (b) 

Xn+2 Xn+1 X2p 

Figure 8. (a) The on-off function F(x) corresponding to the series x, drawn in figure 7. 
(b) The function hp(x) defined in (3.22b). 

We take the autocorrelation function c(r) to be 

c(r) oc F(x)F(x+r) dx (3.23) 

in accordance with (3.1), provided we choose to give the meaning of a space average 
to the overbar involved in (3.1). 

From (3.23) and (3.22a) we get: 
+00 +00 C 

c(r) oc E E hp(x)hq(x+ r)dx. (3.24) 
p=l q=l 

The product hp(x)hq(x+ r) vanishes unless the following inequalities hold: 

x2p x x2p_1 and x2q < x+ r X2q_. (3.25) 

For that to be at all possible when xn is a decreasing function of n (which is indeed 
the case here), and if we assume r > 0 (which is not restrictive), we must have 
q < p. If q < p, it is also necessary that 

X2q-X2p-1 < r < X2q_l-x2p (3.26a) 

and if q = p, the necessary condition for inequalities (3.25) to hold is 

X2p-1 
- 

2p r. (3.26b) 

We can now be a little more precise on the range over which the summation in (3.24) 
is effectively carried out without adding vanishing terms; the summation over p can 
be restricted to values higher than q, i.e. 

c(r) oc E E hp(x) hq(x+r) dx. (3.27) 
q=l p,q 

Furthermore, a particular consequence of inequalities (3.26) is that the above 
summation over q need not be carried to infinity. The highest value of q for which 

hp(x) hq(x+r) can be non-zero is given by x2q - r, and is therefore approximately 
equal to lr-1/1. So (3.27) becomes, 

r-l/ +0o 

c(r)c h p(x) hq(+r)dx. (3.28) 
q=l p3q 

In practice the series xn is not infinite. The series has only a number N of elements 
corresponding, for example, to a spiral with only N turns, and xN is the element of 
the series observed to be the closest to 0. When that is the case, the only values of 
r for which c(r) can be calculated with good accuracy are, according to (3.28), 

~r-^1/ < N, (3.29) 
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i.e. r > (2N)-. (3.30) 

In the limit N > 2r-1/, the error 6c(r) on c(r) is then given by 
Go 

6c(r) oc 5 hp(x) dx, (3.31) 
p>N 

where the sum r__1`= hq(x + r) has been omitted because it is equal to 1. N is indeed 
large enough for the function hq(x + r) corresponding to q = lr-1l/ to be equal to 1 for 
those values of x for which one of the functions hp(x) (p > N) does not vanish. 
Equation (3.31) is then reduced to 

+00 X2p-l +?o 1 
6c(r)oc E dx - Ea y (3.32) 

p>N ,X p>N (2P) 

which is of order (2N)-O. Thus we obtain 

6c(r)= 0(1/(2N)a) (3.33) 

and it should be emphasized that the error on the correlation function c(r) will be 
even larger if r is of the order or smaller than (2N)- . 

N also determines the smallest resolution emin down to which the box-counting 
algorithm can be used for this locally self-similar function. That is 

6min XN--1 XN, (3.34) 

which by use of (3.21) for very large values of N (N > 1) becomes 

emin - a/Na+l. (3.35) 

From (3.30) one can conclude that if the series x. - n-a is resolved down to its Nth 
component (with a resolution emin given by (3.35)) so as to make it possible to 
differentiate between xn and xn_1 for all n < N, then c(r) can only be calculated 
'accurately' (with an accuracy of O(e/(+1)) within a range of r that is bounded 
from below by 

(6min )/(a+l) < r. (3.36) 

By using the fact that D' = 1/(1 + a) (Appendix), this result shows that the range 
of r for which the autocorrelation of c(r) has the self-similar power law relation (3.7) 
differs from the range of r over which DK is defined. Also, the error in c(r) associated 
with this finite range of r can be stated in terms of Dj. 

Condition for calculating DK: 

emin/L (XN/Xo)l/(-K) 1 (3.37) 

Condition for c(r) to satisfy (3.7): XN < r < xo0 L, where 

(emin/L)DK XN/XO << 1, (3.38a) 

with error 6c(r) = O((emin/L)-DK). (3.38b) 

Thus as the spiral becomes more tightly wound (i.e. a decreases and DK increases), 
the range of r required for c(r) to have the self-similar form (3.7) becomes much 

greater than the range required for a satisfactory measure of DK. 
The conclusion is that a measure of (local) self-similarity based on spectra/ 

correlation methods is less reliable than one based on the box-counting algorithm 
and the measure of the Kolmogorov capacity. From the above argument, the main 
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Figure 9. Log-log plots of (c(0)-c(r))/rl1- (lower curve) and N(e) eDk (upper curve), where N(e) is 
given by (2.1) and is the number of boxes needed to cover the point intersections of the spiral with 
the x axis. (a) a = 0.5, DK = 0.66. (b) a = 0.66, DK = 0.60. (c) a = 0.75, DK = 0.57. (d) a = 1, D' = 
0.5. (e) c = 1.5, DK = 0.4. The power law (3.18) is clearly observable in a range of length scales 
bounded from above by 0.2 and from below by (approximately): (a) 60%, (b) 80%, (c) 86%, (d) 
95 %, (e) 99 % of the total extent 0.2 to em,, in which we resolved the spirals. As predicted by (3.38), 
that percentage increases as D' decreases. 

reason for this seems to be that the box counting algorithm is sensitive to the 
distance between consecutive elements of the series accumulating on 0 (see (3.34)), 
while the autocorrelation function is primarily sensitive to the distance of each one 
of these elements to 0 (see (3.30)). The capacity appears therefore to be a natural and 
direct measure of the self-similarity of the spacings between folds of an interface, 
whereas c(r) and F(k) are indirect measures. 

Note also that (3.19) enables the form of F(k) to be estimated in the limit where 
it has a power law form, because D' can be measured accurately in a parameter range 
where F(k) does not have an accurate (or a single) power law form. 

A numerical computation of the correlation function c(r) and the Kolmogorov 
capacity DK of the set of point intersections of a spiral with the x axis is a good 
illustration of some of the points in this ?3. We examine five cases of a spiral with 
different convergence patterns; ca = 0.5, 0.66, 0.75, 1.0, 1.5, according to (A 1). We 
find the numerically computed values of D' to be in good agreement with (A 9), in 
an intermediate range of length scales between emin and max. We set emax = 0.2 in all 
five cases (see figure 9). We resolve 99 turns of the spiral for each case, i.e. we keep 
(see (A 2)) rl, r2, ..., rN with N = 100. This means that we resolve each of these spirals 
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Figure 10. (a) A log-log plot of N(e) DK against e, for only two turns of a spiral r()) - 
0-2 for 

which DK - 1.66 in the range resolved (see (A 25)). The distance between turns varies between 
10-1 and roughly 0.510-2. N(e) e-1666 in a range between 10-13 and 10-1'8. (b) A log-log plot of 
(c(0) -c(r))/r0-333 against r for only two turns of the same spiral. 

down to a scale -min that is different for each one of them (see (3.34) and (3.35)); 
emin 0.5 x 10-, 0.3 x 10-, 0.24 x 103, 104, 0.15 x 104 as a = 0.5, 0.66, 0.75, 1.0, 
1.5. 

The numerical computation of c(r) based on a resolution N= 100, fits the 

analytical result (3.18) in a range that is, as we expected, progressively smaller for 

increasing DK. The power law (3.18) seems to be numerically measurable in a range 
of length scales bounded from above by 0.2, and bounded from below by 
(approximately) 0.08, 0.04, 0.028, 0.01 and 0.0013 for the respective values of a = 
0.5, 0.66, 0.75, 1.0, 1.5. These values of oc correspond to decreasing Kolmogorov 
capacities DK = 0.66, 0.60, 0.57, 0.5, 0.4. This increase of the range of experimental 
'validity' of (3.18) with decreasing DK is in good quantitative agreement with 

inequality (3.37). This is clear in figure 9, which give us the additional information 
that a calculation of a correlation function with only finite resolution overestimates 
the relative magnitude of c(r) at small scales r (smaller than esD, see (3.37)) in 

comparison with its magnitude at larger scales. 
A more dramatic illustration of (3.37) and of the impossibility of measuring the 

asymptotic form of the spectrum F(k) of a spiral interface that has only a few turns 
is given in figure 10. We measure numerically the capacity DK of an entire spiral of 

only two turns and find the correct value of DK in agreement with (A 25) (figure 10a). 
But a measure of the correlation function c(r) does not reveal the self-similar form of 
c(r) (figure 10b). Clearly, from (3.33), the error on c(r) is 0(1) in this case. But on the 
basis of only two turns of the spiral DK can be measured, and thence using (3.18) (and 
(A 26)), the asymptotic form of c(r) can be derived indirectly for the situation when 
the spiral has a large or infinite number of turns. 

There is of course an additional well-known problem in the calculation of the 

spectrum F(k); that is the Gibbs phenomenon (see Bracewell 1986), which arises from 

'fitting' a discontinuous function- here a square wave (see figures 1b, 7a)- to a 
series of sinus/cosinus functions. That is another source of errors, independent of the 

previous one and specifically due to the discontinuities in F (but not their 

accumulation). The shortening of the range where c(r) has a power law dependence 
on r is the consequence of the self-similar accumulation of these discontinuities. This 

shortening is gradually more pronounced as the folds of the interface (or the 
accumulation of the discontinuities of F) become more space filling (i.e. as DK -- 1 in 

(3.37)). 
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(c) Review of previous results 

A similar result to (3.19b) was derived by Orey (1970). It applies to gaussian 
random functions G(x) that are quite different from the ones considered here. These 
functions are continuous in x and such that the hypersurface y = G(x) defined in the 
(d +)-dimensional (y, xa,x, ..., xa)-space is H-fractal (see figure la). Let A1 be the 
Hausdorff dimension of the hypersurface; Orey's result for the spectrum of such 
functions can then be written as 

r(k) -3-2-+2AH. (3.39) 

It should be stressed that if the hypersurface y = G(x) is not H-fractal then the 
spectrum of G is not given by (3.39), even if it has a Kolmogorov capacity that is 
larger than its topological dimension (which is d). One cannot replace Az in (3.39) by 
a Kolmogorov capacity (unless, of course, that Kolmogorov capacity is equal to AH). 

Hentschel & Procaccia (1984) applied Orey's formula (3.39) to scalar 
on-off functions. They considered the intersection in the (d+ 1)-dimensional 
(y, x1, x2, ..., xd)-space of the hypersurface y = G(x) (assumed to be H-fractal, and G 
assumed to be continuous) with an arbitrary hyperplane y = a. This procedure 
defines the on-off function Fa(x) (see figure 1 b), 

Fa(x) = 0(F(x)-a) (3.40) 

and the previous intersection is the interface separating in d-dimensional x-space, 
regions where Fa = 1 from regions where Fa = 0. Such an intersection is nearly always 
H-fractal with Hausdorff dimension D = A H-1 (see Falconer 1985). Hentschel & 
Procaccia used the substitution A. = DH + 1 in (3.39) so as to obtain 

F(k) k-3-E+2DH, 

which differs from the correct result for the spectrum of Fa given by (3.19b). Their 
error was in the unjustified application to discontinuous functions of the result (3.39), 
which is only valid for continuous functions. 

Kingdon (1987) was the first to propose the result (3.19b). He used an essentially 
scaling argument that depends crucially on interpreting the average involved in the 
definition (3.1) of c(r) as a space average. As we saw, that is in fact not necessary. 
Also, he did not seem to be aware of the difference between DK and DH, and therefore 
thought that (3.19) was valid only for H-fractals. 

Another illustration of the difference between formulas (3.19b) and (3.39) comes 
from a comment on a paper by Mandelbrot (1975), where he discusses the Hausdorff 
dimension of isosurfaces of continuous gaussian random scalar fields in a three- 
dimensional space. He states that if the spectrum of the scalar is k-2 the Hausdorff 
dimension is 2.5 (that was first proved by Taylor in 1954), and if the spectrum is k- 
it is 2.66. Both these results are direct consequences of Orey's formula (3.39), and are 
valid for continuous signals. But such fractional spectra can also be formed by 
discontinuities in the signal. In that case Orey's formula cannot be used. If the signal 
is an on-off function in three-dimensional space (obtained as in (3.40) for example) 
and if its spectrum is k-2 or k-3, then by application of (3.19b) or (3.19c), the 
Hausdorff dimension or the capacity of the surface where the signal is discontinuous 
(assumed to be respectively either H-fractal or K-fractal with an isotropic and 
homogeneous distribution of spirals with a few turns) is 2 for the k-2 spectrum and 
2.33 for the k-3 spectrum. 
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Whether interfaces in turbulent flows with k-3 spectra have a Hausdorff dimension 
2.66 or a capacity 2.33 depends on whether turbulent interfaces can be described as 
isosurfaces of a H-fractal continuous gaussian signal or as H- or K-fractal surfaces 
of discontinuity of an on-off function. As we shall now see, it is the second case that 
seems to agree with experiments. 

4. Applications in turbulence 

Experiments mixing, say, a blob of dye in a turbulent velocity field usually start 
with the clear cut situation in which all the dye is homogeneously spread in a 
particular region of space and totally absent in the rest. As explained in the 
introduction, an on-off function of the kind used to derive (3.19) is the natural choice 
of function to describe this initial situation, and actually remains so for quite some 
time until diffusive effects become important. When that happens the sharp 
discontinuities of the on-off function become smoothed out, and the signal decays, 
so that fluctuations with a characteristic length scale are lost. The signal has 
therefore been transformed to a continuous signal. It looks very smooth (everywhere 
differentiable) when looked at with a resolution smaller than the diffusive length 
scale, but is still very irregular when looked at with higher resolutions (it may then 
appear to be nowhere differentiable). It is not clear though whether it is H-fractal or 
K-fractal (or maybe even neither). Only if the continuous signal is H-fractal and 
gaussian can the formula (3.39) be applied to it. Over small length scales it is not a 
good approximation to assume the scalar has a gaussian distribution, and therefore 
(3.39) cannot be applied. 

Also, there is numerical evidence that accumulation patterns of on-off signals in 
two-dimensional turbulence are K-fractal with spiral structures but not H-fractal 
(Vassilicos 1989; Jimenez & Martel 1991). It is unlikely that an initial on-off signal 
with a K-fractal (and non H-fractal) accumulation pattern can eventually become 
H-fractal through the action of molecular diffusion. 

Furthermore, there is no convincing evidence that interfaces in three-dimensional 
turbulence become H-fractal. As mentioned in the previous section, experimentalists 
have been measuring the Kolmogorov capacity rather than the Hausdorff dimension, 
and have never tested (by blowing up their digitized pictures, for example) whether 
these interfaces are self-similar at local accumulation points only (i.e. K-fractal) or 
everywhere (i.e. H-fractal). 

Power shaped forms of spectra of on-off functions occur in a wide range of 
situations in turbulent flows. Equation (3.19c) can therefore be applied to them, to 
find the value of D of a given interface that is assumed (or experimentally known) 
to be K-fractal with an homogeneous and isotropic distribution of spirals of a few 
turns. (Equivalently, (3.19b) can be used to find the value of DH of an interface that 
is assumed or known to be H-fractal.) 

Burger's one-dimensional x-t equation for a continuous variable (Saffman 1968) 
generates one-dimensional 'shocks' or discontinuities and a k-2 spectrum. Because 
finite discontinuities exist, (3.19a) can be used. Its application yields DK = E = 0 
which implies that the shocks do not accumulate, i.e. they remain separated. (Note 
that a k-2 spectrum does not necessarily imply shocks.) 

In two-dimensional turbulence Kraichnan (1967) and Batchelor (1969) argued 
that on scales where viscosity is negligible the vorticity spectrum is 2(k)- k-1. 
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Theoretical suggestions and computer simulations (Kida 1985; Brachet et al. 1986) 
now show that there are distinct thin regions of high gradients of vorticity. Outside 
these regions, the magnitude of the vorticity does not vary much (viscous stresses are 

negligible). (In inviscid two-dimensional flows the vorticity on fluid elements is 
constant and cannot be amplified anywhere.) 

Therefore, at small scales, the vorticity spectrum 2(k) is approximately identical 
to the spectrum QI(k) of interfaces between regions of finite and low vorticity, i.e. 
2I(k) Q?2(k) k-1. It is appropriate to apply (3.19a), and hence one obtains the 
value of DK = 1, which implies that in two-dimensional turbulence accumulation 
points exist within which the vorticity interface is space-filling. Computer 
simulations certainly show these accumulation regions where the vortex sheets tend 
to be space-filling (Kida 1985; Brachet et al. 1986). 

For decaying two-dimensional turbulence Saffman (1971) argues that the vorticity 
spectrum 2(k) will be of the form k-2. Insofar as one can consider advection of 
vorticity as equivalent to advection of a passive scalar that can only take the values 
0 or 1, then (3.19a) applies and gives D' = 0 for the set of discontinuities between 
high vorticity regions and low vorticity regions. That is indeed the case considered 
by Saffman, for in his argument he assumes those discontinuities never to 
accumulate. 

Gilbert (1988a) has analysed the accumulation of such discontinuities, and has 
shown that a spiral formed by the passive advection of a weak patch by a strong 
vortex has a vorticity spectrum of k-3. That is DK = 0.33. 

Another example of occurrence of power shaped spectra is the three-dimensional 
turbulent convection of a passive scalar. Batchelor (1959) has shown the spectrum of 
such a scalar to be k- in the inertial subrange and k-1 in the convective-inertial 
subrange when the ratio Pr of kinematic viscosity v to diffusivity K is very much 
larger than 1. 

In the absence of molecular diffusion (infinite Prandtl number Pr and vanishing 
Batchelor length scale), and subject to the right initial conditions, such a passive 
scalar can indeed be regarded as a step function F equal to either 0 or 1. That still 
holds as a good approximation if the molecular diffusivity of the scalar is extremely 
small, and if one does not resolve length scales of the order of magnitude of the 
Batchelor length scale. According to (3.19a) the interface (assumed to be K-fractal 
with spiral structures of a few turns) between regions where F = 1 and regions where 
F = 0 has a line capacity DK = 1 in the k-1 case, and DK = 0.33 in the k- case. The 
capacities DK of the intersections of straight lines with interfaces has been measured 
in a number of different turbulent flows (see Sreenivasan & Meneveau 1986; 
Sreenivasan et al. 1989). They found that in all these flows DK = 0.33 for the larger 
length scales and DK = 1.0 for very small length scales. We note that these authors 
did not measure the spectrum of F. In fact for the Reynolds number of their 
experiment the high Reynolds number spectra would not be expected (and neither 
would high Reynolds and Schmidt number similarity principles apply). However, 
we have shown by (3.38) that even when the asymptotic high Reynolds form of the 
spectra is not found, the capacity may still have the asymptotic value. 

Experimental measurements of spectra (see, for example, Gibson 1963) of scalars 
confirmed Batchelor's theoretical model and also photographs of scalars in turbulent 
flow when Pr - 103 (see, for example, Sreenivasan et al. 1989; Dimotakis et al. 1981) 
are consistent with the hypothesis of discontinuous interfaces. Furthermore the 
photographs do not indicate the kind of global self-similarity measured by a 
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Hausdorff dimension; rather they are consistent with a local self-similar spiral 
structure measured by a capacity DK. A model of this process was investigated by 
calculating DK for material lines in a simulated two-dimensional turbulent velocity 
field (Vassilicos 1989). This showed that DK is only non-integer near spiral 
accumulation points, and therefore these points determine the value of DK for a 
general line or surface in a turbulent flow. Consequently it is appropriate to compare 
the calculation of DK from the spectrum using (3.19c) with the measurement of DK 
using the box counting algorithm. 

Sreenivasan & Meneveau (1986) have measured the capacities DK and D' of 
interfaces in turbulent flows and their intersections with straight lines or planes, and 
found D _=D K-E. They interpreted this result by assuming the interfaces to be H- 
fractal, in which case the Hausdorff dimensions DH and D' are expected to be equal 
to the respective Kolmogorov capacities (i.e. DH = DK, D' = Dk), and D' = DH-E 
is indeed valid for nearly all plane or line intersections through a H-fractal (Falconer 
1985). But if interfaces in turbulent flows are K-fractal rather than H-fractal, then 
DK = D -E is not a trivial property and can be explained by assuming the K-fractal 
interfaces to be made of K-fractal spirals of a few turns (less than approximately five 
or six turns, see the Appendix). 

Sreenivasan et al. (1989) explained their measured values of DK by constructing a 
physical model of the diffusive processes over small scales in fully developed 
turbulence, using scaling arguments appropriate for large values of Reynolds and 
Schmidt numbers. 

Finally, there is an example of a power shaped spectrum for which (3.19) does not 
apply. That is the convective subrange spectrum k-3 for a passive scalar in a 
turbulent medium when the Prandtl number is negligible compared with 1 (Batchelor 
et al. 1959). That spectrum is primarily due to molecular diffusion, hence its very 
steep fall-off. Any sharp edges are smeared off and one cannot think any longer in 
terms of step functions. 

5. Conclusions 

We have made a distinction between two types of self-similarity which is pertinent 
for problems of interfaces in fluid flows: a local and a global self-similarity. 

The first is a property of what we call K-fractals, and the second is a property of 
H-fractals. K-fractals have a Kolmogorov capacity D' of the set of point intersections 
on at least one linear cut that is strictly larger than 0 and H-fractals have a 
Hausdorff dimension DH that is strictly larger than E. The capacities DR and D' can 
be easily determined from the box-counting algorithm. Furthermore, DK is a measure 
of self-similarity that can be applied to H-fractals too; it is believed that for H- 
fractals, DH = DK. 

The spectrum of the interface (or more accurately, the spectrum of a scalar 
function that is abruptly discontinuous across the interface) is a more traditional 
measure of self-similarity. We find a one-to-one relation between the capacity DK of 
the set of point intersections on a linear cut through the interface and the small scale 
spectrum of the interface that is assumed to become K-fractal through the action of 
the flow. The flow need not be turbulent for that assumption to hold. K-fractals have 
not only been observed in turbulent flows, but they can also be generated by simple 
one-parameter laminar flows, e.g. a single vortex. The study of K-fractals is therefore 
of much broader relevance than the study of H-fractals. In fact it is not even clear 

yet whether H-fractals exist in turbulent flows. 
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Specifically, we show that under some conditions of statistical homogeneity and 
isotropy, the small-scale spectrum of K-fractal and H-fractal interfaces obeys a 
power law and we give the relation between that power and, respectively, the 

Kolmogorov capacity or the Hausdorff dimension of the interface. It is of particular 
interest that the self-similarity of the interface need not be global for its spectrum to 
be a power law. A single spiral singularity on the interface is enough. 

Conditions for the existence of self-similarity based on spectrum methods are less 
reliable than when based on the Kolmogorov capacity, because the range of length 
scales over which a correlation can be accurately calculated is significantly smaller 
than the range of length scales where the interface is self-similar (and over which the 
capacity is defined and measured). This shows that the value of DK can approach 
closely the asymptotic value for a particular flow structure even when, for the same 
interface, the spectra do not approximate at all closely their asymptotic form. 
Consequently the value of DK may be more sensitive than the traditional power 
spectra in indicating that some aspects of the structure of the turbulence are close to 
their asymptotic form for high Reynolds number. 

We have used our calculation to interpret and relate the spectra and capacity of 
a number of flows where power law spectra are found. The theory is confirmed 
experimentally and also provides a few interpretations of the flow structure in terms 
of space-fillingness and spiral accumulation points. 

We are grateful for very fruitful discussions with A. D. Gilbert, H. K. Moffat, C. Meneveau, 
K. R. Sreenivasan and U. Frisch. With regard to the Appendix, we acknowledge A. A. Kerstein, 
M. Borgas, P. Dimotakis and in particular J. Jim6nez for bringing (A 22) to our attention. J. 
Jimenez also impressed on us that DK = D -E is not generally true. M. Mendes France has been 
very helpful in clarifying these issues. We have also benefited from T. Bedford's comments on ?2. 
This work has been financially supported by an E.C. contract no. ST2J-0029-1-F. 

Appendix. The Kolmogorov capacity of spirals 
The aim of this Appendix is to calculate the Kolmogorov capacity DK of a spiral 

defined by 
r(~) = C?-, (A 1) 

where (r, qp) are polar coordinates in the plane (see figure 7 a) and C is a constant. The 
exponent a is positive, which ensures that the spiral converges onto the origin (which 
we have chosen to be the centre of the spiral). We will also calculate the Kolmogorov 
capacity D' of the set of point intersections on the spiral with a straight line cutting 
through the spiral. 

(a) A cut through the centre of the spiral 
If we choose the line to cut across the centre of the spiral and to be at a given angle 

P with the x axis, then the series of point intersections with the spiral has coordinates 
(rn, 5n) that relate to each other by: 

rn = Cn, (A 2a) 

qn = +2nn. (A 2b) 

For n large enough (n > 0/2n), that series is of the kind 

rn . n- (A 3) 
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Figure 11. Covering of the set of points (xv, 0) with boxes of size e. 
XN-XN+1 is of order e (see (A 5)). 

independently of the orientation of the cut, i.e. for any value of 0P between 0 and 2c. 
The capacity D' of the point intersections must therefore also be independent of the 
orientation of the cut. 

In particular, we can choose the cut to be the x axis, in which case 0 = 0 and 
rn = xn; (A 3) becomes valid for all n > 1, and can be written as 

xn = C(27n)-~. (A 4) 

We now estimate the Kolmogorov capacity DK of the set of points (xn, 0), n = 1, 
2, 3,.... Take a small resolution e and compute the smallest integer N for which 

Xn- Xn+1 < e (A 5 a) 

for all n > N. That N is approximately given by: 

lN-j_-(N+ 1)- ICe (A 5b) 

and as e - 0, N becomes so much larger than 1 that we can expand (A 5b) in powers 
of 1/N and obtain at first order: 

N e-/(a+). (A 6) 

In covering the set of points (xn, 0) with boxes of side-length e, we notice (see figure 
1) that one box is needed specifically to cover each point (xn, 0) for 1 < n < N, 

whereas the remaining (xn, 0), n > N, will all be covered by a total of XN/e adjacent 
segments. 

It follows therefore, that the number N(e) of boxes needed to cover the set of point 
intersections (xn, 0) is approximately equal to 

N(e) - N+ xN/e. (A 7) 

By using (A 4) and (A 6) we get, as e> 0, 

N(e) - e-1/a+1 . (A 8) 

Comparing (A 8) with (2.1), and assuming that N(e) is indeed the minimum number 
of boxes needed to cover the set of points (xn, 0) as e - 0 (we did not prove here that 
it is the minimum), we obtain the result 

DK = 1/(O+ 1). (A 9) 

(b) A cut at a distance from the centre 

We chose the cut to be parallel to and at a distance Yc from the x axis. The x 
coordinates 6n of the point intersections of the spiral with that cut are such that 

62 + y2 = r2(2n + 60n), (A 10) 

where 6qn is an angle defined by tan 6Sn = Yc/6n and 0 < 6qn < nc. We assume the 

spiral has only N-M turns; i.e. the x coordinates x, of the point intersections of the 

spiral with the x axis are defined for M < n < N, and so are the coordinates 5n. Xn is 

given by (A 4). 
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We are free to choose the value of M as we please, and so we chose it large enough 
in order to have 6bn <2 2cn for all n, and (use (A 1)) 

2 + 62 x`2 (A ll) 

That implies that for values of n such that xn > Yc, n is well approximated by xn, 
and therefore the capacity D' of the set of point intersections on that cut is also given 
by (A 9). The difference is that the range of length scales or the number of turns over 
which (A 9) is now valid is smaller and decreases as Yc increases. Indeed, (A 11) is 
valid for n > M', where M' = M if Yc < XM, but is otherwise given by XM, - yc. In 
other words, 

W' - max M, (1/2nt) (yc/C)-l"}, (A 12a) 

and (A 9) is valid down to a length scale emin M'-1- M' given by 

emin a/M'?Xal. (A 12b) 

(c) Covering the entire spiral 
We now calculate the Kolmogorov capacity of the entire spiral by considering 

coverings of the arc itself on the plane, with boxes of size e. We distinguish between 
two regions of the spiral; the outer coils where, for any 0 > q00 (00 is the starting angle 
on the spiral), 

r(q)-r(q5+2 2) > e, (A 13a) 

and the inner coils where the angles 0 are so large that (A 13a) does not hold. The 
critical angle ?q demarcating these two regions is of course such that 

r(q)--r( )6, + 2) = e (A 13b) 

and equal to , w (e/2nCC)-l(l+~), (A 14) 

provided 0q is large enough compared with 27n, which only means that the resolution 
e should be small enough. If L((,) is the total length of the outer coils of the spiral, 
i.e. 

L(e) = C x-\/( (l+(a/10) )dq, (A 15) 
0 

and if A(0,) is the area of the core containing all the inner coils of the spiral, i.e. 

A(06) r r2(qo), (A 16) 

then the minimum number of boxes needed to cover the outer coils is of order L(Of)/e 
and the minimum number of boxes needed to cover the inner coils is of order A (0,)/e2. 
In total, the minimum number of boxes needed to cover the entire spiral is given by 

N(e) L(q6)/e+A (6)/e2. (A 17) 

The Kolmogorov capacity is defined for e - 0, but in reality a spiral never has an 
infinite number of turns, which means that strictly speaking the Kolmogorov 
capacity of a real spiral (as is found in nature and in numerical simulations) is equal 
to 1. But for experimental purposes the limit e -0 should be reinterpreted as 
meaning e <E r(0O) or even e < r(0o) - r(0o + 27t) provided that e is kept larger than the 
smallest distance between two successive coils of the empirical spiral. 

We now show that the value of a spiral's DK is different when the spiral has many 
turns and when it has only a few. That is equivalent to saying that there are two 
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ranges of e with two different values of DK: a range of very small e where many turns 
of the spiral are resolved, i.e. ?e~ -0 >> o0; and a range of e where only a few turns 
of the spiral are resolved. 00 can be chosen arbitrarily, so if we chose it to be very 
large then the previous range is given by qe?-o0 <o 0 and (A 15) can be well 
approximated as 

L(() CJ ( do. (A 18) 
0 

Clearly, the box-counting algorithm applied on a spiral with only a few number of 
turns will only detect the higher range of e and measure one value of DK whereas the 
same algorithm applied to the same spiral with a much larger number of turns will 
also detect the lower range of e, where DK takes a different value. 

(i) The case of a large number of resolved turns 

In this case , >> 90, and a straightforward integration of (A 18) gives 

L(j) ) C5-5/(l-a), (A 19a) 

if a < 1, and L(j6) Co-a/(a-1), (A 19b) 

if a > 1. Making use of (A 14), we find that the number of boxes needed to cover the 
outer coils of the spiral scales as 

L(qS)/e 6 -2/(1+C), (A 20a) 

when a < 1, and as L(q)/e e-1, (A 20b) 

when a > 1. The number of boxes needed to cover the inner coils is 

A (0)/e62 _ --2/(1+x) (A 21) 

and from (2.1) and (A 17) it follows that 

DK = max {1,2/(1 + a)}. (A 22) 

Equation (A 22) has already been derived by Dupain et al. (1983), Gilbert (1988b), 
A. A. Kerstein (personal communication), M. Borgas (personal communication), 
J. Jimenez (personal communication) and P. Dimotakis (personal communication). 
It coincides with the asymptotic value of DK for e--0. 

An interesting remark can be drawn from (A 20b) and (A 9); when a > 1, the spiral 
has a finite length even though D' > 0! 

(ii) The case of a small number of resolved turns 

In this case e,- 50 < o0. A direct integration and first order expansion of (A 18) 
gives 

L(0j) w C(Q56-q0) qOx. (A 23) 

By using (A 14) we can deduce the number of boxes needed to cover the outer coils 
of the spiral, i.e. 

L(j )/e ~ 
6-1-1/(1+a) (A 24) 

The number of boxes covering the inner core of the spiral is still given by (A 21) and 
is negligible compared to (A 24). From (2.1) and (A 17) we can therefore deduce that 

DK =1 + 1/(1 + c), (A 25) 
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Figure 12. Three log-log plots illustrating the application of the box counting algorithm to spirals 
with 10 turns. The upper one is of N(e) against e; the middle one is of N(e) CDK against e where DK 
is calculated as in (A 25). The lower one is the same as the middle one but DK is calculated on the 
basis of (A 22). (a) a = 0.4; DK = 1.714 on the first three outer turns of the spiral, and DK = 1.43 
on the inner turns of the spiral. (b) a = 1.0; DK = 1.5 on the first five outer turns of the spiral, and 
DK = 1.0 on the inner turns of the spiral. (c) a = 1.5; DK = 1.4 on the first four outer turns of the 

spiral, and DK = 1.0 on the inner turns of the spiral. 

which is valid when the spiral has only a few turns, or when e is large enough to only 
resolve a few turns. Note, in particular, that in this limited range of e, 

D = D' + 1. (A 26a) 

For an interface of topological dimension E > I rolled up in the form of a spiralling 
cylindrical structure the previous formula can obviously be generalized; 

D = DE +E. (A 26b) 

We find numerically that (A 25) and (A 26) are valid up to approximately five 
turns. (A 22) becomes valid when c is small enough to resolve at least seven turns of 
the spiral. That is indeed the case for oa = 1 (see figure 12b), and as a grows beyond 
1 or tends to 0, (A 25) and (A 26) are found to be valid up to a lesser number of turns 
(two turns for c = 0.2 and two to three turns for a = 3). Figure 12a shows log-log 
plots of N(e) against e for a = 0.4 (where the validity of (A 25) and (A 26) is limited 
to three turns), and figure 12c shows the same plots for a = 1.5 (where the validity 
of (A 25) and (A 26) is limited to four turns). 

It is interesting to note, in conclusion, that the number of boxes of size e needed 
to cover a logarithmic spiral (i.e. a spiral that is defined by r(q) = const. e-0), does not 
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have a power law dependence on e. If one repeats the previous argument for the set 
of point intersections of a spiral with a line cutting through its centre, one will find 
that as e - 0, 

N(e) - In (1/e). (A 27) 

The logarithmic spiral is therefore not a K-fractal. One should not think that all 
accumulation patterns have K-fractal properties. The accumulation has to be slow 
enough (the logarithmic spiral's convergence onto its centre is too fast) for the 
pattern, or in particular the spiral, to be locally self-similar. 
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