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A new Eulerian—Lagrangian length-scale in turbulent flows
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We introduce a time-dependent Eulerian—Lagrangian length-scale and an inverse locality hypothesis
which explain scalings of second order one-particle Lagrangian structure functions observed in
kinematic simulationgKS) of homogeneous isotropic turbulence. Our KS results are consistent with
the physical picture that particle trajectories are more/less autocorrelated if they are smoother/
rougher as a result of encountering less/more straining stagnation points, thus leading to enhanced/
reduced turbulent diffusion. @004 American Institute of Physic§DOI: 10.1063/1.1630325

Turbulent diffusion is a phenomenon of central impor-use of kinematic simulation(KS, see Nicolleau and
tance in oceanic, atmospheric, engineering, and astrophysic‘dassilicosf Davila and Vassilico§,and references thergin
flows. It is known, since the seminal work of Tayfathat the  KS is a Lagrangian model of turbulent diffusion based on
turbulent diffusivity (of contaminants, pollutants, or other kinematically simulated turbulent velocity fields which are
substances advected by the turbulent jlasyproportional to  incompressible and consistent with up to second order Eule-
the time-integral of the Lagrangian velocity autocorrelationrian statistics of the turbulence such as energy spédtka
function R (7) of the turbulence. The Lagrangian study of in the wave-numbe(k) domain. There is no assumption of
fluid element trajectories is therefore central to understandMarkovianity or & correlation in time made at any level.
ing and calculating turbulent diffusion. Instead, a parametarcontrols the degree of unsteadiness of

A consequence of Taylor&921)?! theory is that the tur-  the turbulence. It might be worth mentioning that, when the
bulent diffusivity is larger/smaller depending on whether La-energy spectrum input has the Kolmogokov’® form, KS is
grangian velocities are correlated over longer/shorter time#) good agreement with laboratory experiments for one-
along trajectories. Such long/short correlation times reflecparticle statistics, two-particle statistic$, three-particle
large/small Lagrangian velocity variations, and Lagrangiarstatistics;’ and concentration variances(particle is used
velocity variations over a time intervalare characterized by here to mean fluid elementkS is also in good agreement
the second order Lagrangian structure function which is prowith DNS for two-particle statistics when the KS energy
portional to 1- R (7). In statistically stationary and isotro- SPectrum has the same overall shape as that of the BMS.
pic turbulence it is sufficient to consider only one componenthis Brief Communication, we modify the spatiotemporal
of the Lagrangian velocity, say(t); its second order struc- flow structure of the KS turbulence by changing the input
ture function is{v?(7))={([v(t)—v(t+7)]?) correspond- €nergy spectruni(k) and the input unsteadiness parameter
ing to the Lagrangian velocity power spectrp(e) in the A and study how(6u?(7)) changes as a result.
frequency (w) domain. As noted by Inode (see also In our KS we use three-dimensional turbulent-like veloc-
Tennekes and Lumley Kolmogorov similarity arguments ity fields of the form
imply that, in the inertial range of times and frequencies,

(8v?(7))~er andE, (w)~ ew ™ ? wheree is the kinetic en- Ni . o
ergy dissipation rate per unit mass. Support for these scalings= nzl Anlk, cogkp- X+ wnt) + Bk, sin(kp - X+ opt),
has recently been obtained in highly turbulent oceanic envi- (1)

ronments by Lienetal,* in the laboratory by Mordant
et al.® and in direct numerical simulatiol®NS) by Yeung® _ _ .
However, Kolmogorov similarity arguments provide very WhereN (typically of order 100is the number of modes,,
little understanding of the underlying processes responsibli @ random unit vectork,=knk,), and the directions and
for these scaling laws. What properties of the spatiotempora@rientations ofA, and B, are chosen randomly under the
flow structure of the turbulence determine thav?(7)) is  constraint that they be normal g, and uncorrelated with
proportional tor, and what do these properties imply for the directions and orientations of all other wave modes. Note
turbulent diffusion? that the velocity field1) is incompressible by construction,

In this Brief Communication we address this question byand also statistically stationary, homogeneous, and isotropic

as shown by Fungt al® and Fung and Vassilicd4.The

dpresent address: M.C.N.D., Department of Physics, University ofampIItUdesAn and B, of the vectorsA, andB, are deter-

. 2_ 2_ .
Manchester, Oxford Road, Manchester M13 9PL, United Kingdom; elec-Mined by A;= Bn__ 2/3E(kn) Ak, whereE(k) is the energy
tronic mail: amir@reynolds.ph.man.ac.uk spectrum prescribed to be of the form
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FIG. 1. The time evolution of the velocity incremefiv?(7)) in a log-log FIG. 2. Plot of the change in the power law of the Lagrangian velocity
plot. increment[(Sv(7)%)~ 7% as a function ofp] in KS for different\’s. The
exponenta and its error bars are calculated from a least-squares fit over the
range of scales whergsv (7)2)~ 7* is observed. This power law is harder
5 to detect accurately for values pfcloser to 1 because a larger proportion of
3v'9(p—1) “p the energy is then distributed to higher wave numbers and bpéndt,,
E(k)= 2(L/2’7T)p71 k 2 increase indefinitely ap—1 thus requiring an ever larger ratld » and
therefore value off, . The fact that more energy is distributed at the higher
in the range #Z/L=k,;<ks=<ky =2m/7 assumed largé.e., wave numbers whep decreases means that trajectories are more irregular,
k

. SO a fact reflected in the smaller values @f With our extremely good time
L/%>1), andE(k)=0 otherwise;p’ is the rms of one ve- resolutions and ratio&/#% up to 1d we still cannot accurately measure

locity component of the KS turbulent-like flowAk,  values ofe below about 0.4.
=(Kn4+1—Kn—1)/2 for 2<n<=N,—1, Ak,;=(k,—k;)/2, and
Aky, = (kn, —kn, ,)/2. The distribution of wave numbers is
geometric(see Ref. 1}, specificallyk,=k;a" ! with a con-
stanta determined byL/7»=aN«"1. The frequencieso, in
(1) are proportional to the eddy-turnover frequency of mod
n, and the dimensionless constant of proportionality,ise., (Sv3(7))~1* 3
wnZA\/kgnE(kn). Particle trajectories are numerically inte-

grated in(1) and the velocities of the particles are recordedin the intermediate ranges mentioned above aad
along their flight. By averaging over>510° trajectories in = a(p,\) (see Figs. 1 and)2For values ot smaller than 1
5% 10° realizations of the velocity field we obta{bv?(7))  includingA=0,

for different values ofp and \ (see Fig. 1 which has been

obtained forl./ 7= 1690, but note that we corroborated these ~ ¢~ P~ 1: 4
results for much higher values bf » too). We try values of  This result is consistent Wit Su2(7))~(Su?(r)) where

p larger than 1 to ensure that the total kinetic energy of the sy2(r)) is the second order structure function of one com-
turbulence is finite in the large/7 limit, and values ofp  ponent of the Eulerian velocity field and-v’ 7. It is well
smaller than 2 for the power spectreE(k) of the vortic-  known that(su?(r))~rP~* for small enough values afis

ity and strain rate fields to be an increasing functiok (dee  equivalent toE(k)~k P for large enough values & Hence

Ref. 8. o (3) and (4) follow from (8u?(r))~rP~1 and (Sv?(7))

A first observation is that whek(k) has the Kolmog-  _(52(r)) for r~v’ 7. The validity of the latter condition
orov similarity dependence on wave numigee., p=5/3), (includingr~v'r) might be due to the fact that the flow is
(6v*(7)) exhibits the Kolmogorov similarity scaling nearly frozen when\ is small and therefore fluid elements
(6v?(7))~ 7 over an intermediate range of time scales onlyare advected past frozen small scale eddies. For valugs of
for large enough values of and not otherwise. This inter- mych larger than 1¢ is a monotonically increasing nonlin-
mediate range of scales turns out tothes 7<T, wheret,  ear function ofp, in fact the same function qf for all large
=277/ka. For values ofA smaller than 1 and close to 0 as enough\, and is such that>p—1 ande=1 at p=>5/3.
well as equal to 0, we finddv?(7))~ 72° over the interme-  What is this function ofp?
diate ranger,<7<T_ where 7-,]5277/\/(277/ 7)°E(27/ 7) To answer this question we proceed by analogy with
andT =[gR (7)d7 (t,=7,/\). Funget al'®have already Richardson’s locality hypothesis for two-particle diffusion in
observed this 2/3 scaling in frozem£0) KS turbulence statistically homogeneous turbulence. According to this hy-
and added t@1) a sweeping of the small-scalél by larger  pothesis, the rate of change of the mean square separation
scales which restored the Kolmogorov similarity scalingbetween two particles, i.ed/dt(A?), is a function only of
(8v?(7))~ 7. In the absence of sweeping, large values of thg A?) and of the variance of Eulerian velocity variations
unsteadiness parameterlead to the scaling thatsv?(7)) across that length-scalsee Ref. 14 That is
should have in the presence of sweeping. In the context of g
KS, Kolmogorov similarity is only retrieved for large values o 5 2 >
of the dimensionless parameter (A =F((A%),(8u"(\(A)))). (5

Running simulations for a variety of valuesbetween
e1 and 2 and a variety of values afwe find
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The analogy we are trying here, which we call the inverse 0.12 " " " T AL05 e
locality hypothesis, is to say that the rate of change of 011 L
(Sv?(7)) with respect toris a function only of sv?(7)) and
of the length-scale across which the variance of Eulerian 01y
velocity variations is equal t6sv?(7)). That is o 009}
> .-
d 5 F 008 f
d_<6v (T)>:f(<5v (T)>1|e(7))1 (6) //p<
T 0.07 |
wherel(7) is an Eulerian—Lagrangian length-scale defined 0.06 | d
as follows: , ‘ ‘
0'0511 12 13 14 15 16 17 18
<5u2[|e(7')]>=<5v2(7')>. 7 . . . . ; . . . .
We call I(7) the equivalent length-scale. Dimensional FIG. 3. Plot of Lagrangian correlation tiniE_ as a function ofp for A
analysis applied to6) and the use of(7) and <5u2(r)> =0.5in KS withL/#»=100. Similar results are found for other valueshof
~rP~1 Jeads to(3) with andL/z.
2(p—1) of the equivalent length-scale, which frof7), (8), and
= 3-p - ® (8u%(r))~rP~1 has the power-law time dependenicér)

_ . o ~ 72/37P)~ 735 an increased irregularity of particle trajec-
This dependence af on p fits surprisingly well the results  pries is reflected in a faster growth of the equivalent length-
obtained by KS for large values of (see Fig. 2 These gcglel (1) for ~ bounded from above bl/v’. For p=>5/3,
results reveal, therefore, the existence of an EuIenanTe( 32

)~ 7%
Lagrangian length-scale(7) which controls the second or-
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