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We introduce a time-dependent Eulerian–Lagrangian length-scale and an inverse locality hypothesis
which explain scalings of second order one-particle Lagrangian structure functions observed in
kinematic simulations~KS! of homogeneous isotropic turbulence. Our KS results are consistent with
the physical picture that particle trajectories are more/less autocorrelated if they are smoother/
rougher as a result of encountering less/more straining stagnation points, thus leading to enhanced/
reduced turbulent diffusion. ©2004 American Institute of Physics.@DOI: 10.1063/1.1630325#

Turbulent diffusion is a phenomenon of central impor-
tance in oceanic, atmospheric, engineering, and astrophysical
flows. It is known, since the seminal work of Taylor,1 that the
turbulent diffusivity ~of contaminants, pollutants, or other
substances advected by the turbulent flow! is proportional to
the time-integral of the Lagrangian velocity autocorrelation
function RL(t) of the turbulence. The Lagrangian study of
fluid element trajectories is therefore central to understand-
ing and calculating turbulent diffusion.

A consequence of Taylor’s~1921!1 theory is that the tur-
bulent diffusivity is larger/smaller depending on whether La-
grangian velocities are correlated over longer/shorter times
along trajectories. Such long/short correlation times reflect
large/small Lagrangian velocity variations, and Lagrangian
velocity variations over a time intervalt are characterized by
the second order Lagrangian structure function which is pro-
portional to 12RL(t). In statistically stationary and isotro-
pic turbulence it is sufficient to consider only one component
of the Lagrangian velocity, sayv(t); its second order struc-
ture function is^dv2(t)&[^@v(t)2v(t1t)#2& correspond-
ing to the Lagrangian velocity power spectrumEL(v) in the
frequency ~v! domain. As noted by Inoue2 ~see also
Tennekes and Lumley!,3 Kolmogorov similarity arguments
imply that, in the inertial range of times and frequencies,
^dv2(t)&;et andEL(v);ev22 wheree is the kinetic en-
ergy dissipation rate per unit mass. Support for these scalings
has recently been obtained in highly turbulent oceanic envi-
ronments by Lienet al.,4 in the laboratory by Mordant
et al.,5 and in direct numerical simulations~DNS! by Yeung.6

However, Kolmogorov similarity arguments provide very
little understanding of the underlying processes responsible
for these scaling laws. What properties of the spatiotemporal
flow structure of the turbulence determine that^dv2(t)& is
proportional tot, and what do these properties imply for
turbulent diffusion?

In this Brief Communication we address this question by

use of kinematic simulation~KS, see Nicolleau and
Vassilicos,7 Davila and Vassilicos,8 and references therein!.
KS is a Lagrangian model of turbulent diffusion based on
kinematically simulated turbulent velocity fields which are
incompressible and consistent with up to second order Eule-
rian statistics of the turbulence such as energy spectraE(k)
in the wave-number~k! domain. There is no assumption of
Markovianity or d correlation in time made at any level.
Instead, a parameterl controls the degree of unsteadiness of
the turbulence. It might be worth mentioning that, when the
energy spectrum input has the Kolmogorovk25/3 form, KS is
in good agreement with laboratory experiments for one-
particle statistics,9 two-particle statistics,7 three-particle
statistics,10 and concentration variances11 ~particle is used
here to mean fluid element!. KS is also in good agreement
with DNS for two-particle statistics when the KS energy
spectrum has the same overall shape as that of the DNS.12 In
this Brief Communication, we modify the spatiotemporal
flow structure of the KS turbulence by changing the input
energy spectrumE(k) and the input unsteadiness parameter
l and study hoŵ dv2(t)& changes as a result.

In our KS we use three-dimensional turbulent-like veloc-
ity fields of the form

u5 (
n51

Nk

An∧ k̂n cos~kn•x1vnt !1Bn∧ k̂n sin~kn•x1vnt !,

~1!

whereNk ~typically of order 100! is the number of modes,k̂n

is a random unit vector (kn5knk̂n), and the directions and
orientations ofAn and Bn are chosen randomly under the
constraint that they be normal tok̂n and uncorrelated with
the directions and orientations of all other wave modes. Note
that the velocity field~1! is incompressible by construction,
and also statistically stationary, homogeneous, and isotropic
as shown by Funget al.13 and Fung and Vassilicos.14 The
amplitudesAn and Bn of the vectorsAn and Bn are deter-
mined byAn

25Bn
252/3E(kn)Dkn whereE(k) is the energy

spectrum prescribed to be of the form
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E~k!5
3v82~p21!

2~L/2p!p21 k2p ~2!

in the range 2p/L5k1<k<kNk
52p/h assumed large~i.e.,

L/h@1), andE(k)50 otherwise;v8 is the rms of one ve-
locity component of the KS turbulent-like flow;Dkn

5(kn112kn21)/2 for 2<n<Nk21, Dk15(k22k1)/2, and
DkNk

5(kNk
2kNk21

)/2. The distribution of wave numbers is
geometric~see Ref. 11!, specificallykn5k1an21 with a con-
stanta determined byL/h5aNk21. The frequenciesvn in
~1! are proportional to the eddy-turnover frequency of mode
n, and the dimensionless constant of proportionality isl, i.e.,
vn5lAkn

3E(kn). Particle trajectories are numerically inte-
grated in~1! and the velocities of the particles are recorded
along their flight. By averaging over 53103 trajectories in
53103 realizations of the velocity field we obtain̂dv2(t)&
for different values ofp and l ~see Fig. 1 which has been
obtained forL/h51690, but note that we corroborated these
results for much higher values ofL/h too!. We try values of
p larger than 1 to ensure that the total kinetic energy of the
turbulence is finite in the largeL/h limit, and values ofp
smaller than 2 for the power spectrumk2E(k) of the vortic-
ity and strain rate fields to be an increasing function ofk ~see
Ref. 8!.

A first observation is that whenE(k) has the Kolmog-
orov similarity dependence on wave number~i.e., p55/3),
^dv2(t)& exhibits the Kolmogorov similarity scaling
^dv2(t)&;t over an intermediate range of time scales only
for large enough values ofl and not otherwise. This inter-
mediate range of scales turns out to beth!t!TL whereth

52p/vNk
. For values ofl smaller than 1 and close to 0 as

well as equal to 0, we find̂dv2(t)&;t2/3 over the interme-
diate rangeth!t!TL where th[2p/A(2p/h)3E(2p/h)
andTL[*0

`RL(t)dt (th5th /l). Funget al.13 have already
observed this 2/3 scaling in frozen (l50) KS turbulence
and added to~1! a sweeping of the small-scales~1! by larger
scales which restored the Kolmogorov similarity scaling
^dv2(t)&;t. In the absence of sweeping, large values of the
unsteadiness parameterl lead to the scaling that̂dv2(t)&
should have in the presence of sweeping. In the context of
KS, Kolmogorov similarity is only retrieved for large values
of the dimensionless parameterl.

Running simulations for a variety of values ofp between
1 and 2 and a variety of values ofl we find

^dv2~t!&;ta ~3!

in the intermediate ranges mentioned above anda
5a(p,l) ~see Figs. 1 and 2!. For values ofl smaller than 1
including l50,

a5p21. ~4!

This result is consistent witĥdv2(t)&;^du2(r )& where
^du2(r )& is the second order structure function of one com-
ponent of the Eulerian velocity field andr;v8t. It is well
known that^du2(r )&;r p21 for small enough values ofr is
equivalent toE(k);k2p for large enough values ofk. Hence
~3! and ~4! follow from ^du2(r )&;r p21 and ^dv2(t)&
;^du2(r )& for r;v8t. The validity of the latter condition
~including r;v8t) might be due to the fact that the flow is
nearly frozen whenl is small and therefore fluid elements
are advected past frozen small scale eddies. For values ofl
much larger than 1,a is a monotonically increasing nonlin-
ear function ofp, in fact the same function ofp for all large
enoughl, and is such thata.p21 and a51 at p55/3.
What is this function ofp?

To answer this question we proceed by analogy with
Richardson’s locality hypothesis for two-particle diffusion in
statistically homogeneous turbulence. According to this hy-
pothesis, the rate of change of the mean square separation
between two particles, i.e.,d/dt^D2&, is a function only of
^D2& and of the variance of Eulerian velocity variations
across that length-scale~see Ref. 14!. That is

d

dt
^D2&5 f ~^D2&,^du2~A^D2&!&!. ~5!

FIG. 1. The time evolution of the velocity increment^dv2(t)& in a log-log
plot.

FIG. 2. Plot of the change in the power law of the Lagrangian velocity
increment@^dv(t)2&;ta as a function ofp# in KS for different l’s. The
exponenta and its error bars are calculated from a least-squares fit over the
range of scales wherêdv(t)2&;ta is observed. This power law is harder
to detect accurately for values ofp closer to 1 because a larger proportion of
the energy is then distributed to higher wave numbers and bothth and th

increase indefinitely asp→1 thus requiring an ever larger ratioL/h and
therefore value ofTL . The fact that more energy is distributed at the higher
wave numbers whenp decreases means that trajectories are more irregular,
a fact reflected in the smaller values ofa. With our extremely good time
resolutions and ratiosL/h up to 104 we still cannot accurately measure
values ofa below about 0.4.
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The analogy we are trying here, which we call the inverse
locality hypothesis, is to say that the rate of change of
^dv2(t)& with respect tot is a function only of̂ dv2(t)& and
of the length-scale across which the variance of Eulerian
velocity variations is equal tôdv2(t)&. That is

d

dt
^dv2~t!&5 f ~^dv2~t!&,l e~t!!, ~6!

where l e(t) is an Eulerian–Lagrangian length-scale defined
as follows:

^du2@ l e~t!#&5^dv2~t!&. ~7!

We call l e(t) the equivalent length-scale. Dimensional
analysis applied to~6! and the use of~7! and ^du2(r )&
;r p21 leads to~3! with

a5
2~p21!

32p
. ~8!

This dependence ofa on p fits surprisingly well the results
obtained by KS for large values ofl ~see Fig. 2!. These
results reveal, therefore, the existence of an Eulerian–
Lagrangian length-scalel e(t) which controls the second or-
der Lagrangian structure function and Lagrangian frequency
spectrum provided that the sweeping effects are taken into
account by high values ofl. Our results@Figs. 1 and 2 and
Eqs. ~4! and ~8!# also reveal the impact that the two-point
spatial flow structure~as reflected in the scaling of the energy
spectrum! has on one-particle Lagrangian statistics whether
with or without sweeping. In particular, these results suggest
that an Eulerian intermittency correction on the scaling of the
energy spectrum might impose a correction on the scaling of
Lagrangian structure functions even when, as in the second
order case, they are linear in the dissipation rate.

Changes in̂ dv2(t)& imply changes inRL(t) and there-
fore in turbulent diffusion. Taylor’s~1921! formula for the
mean square one-particle displacement^x2(t)& is

d

dt
^x2~ t !&5v82E

0

t

RL~t!dt ~9!

which implies a turbulent diffusivity equal tov82TL . Of
course this relation remains valid in our KS for any value of
p but the Lagrangian correlation time scaleTL is found to be
an increasing function ofp ~see Fig. 3!, thus implying a
turbulent diffusivity that is also an increasing function ofp.
This conclusion can be explained qualitatively by the rela-
tion p12Ds/353 betweenp and the fractal dimensionDs of
the set of straining stagnation points that has recently been
obtained by Davila and Vassilicos8 for KS turbulence. Asp
decreases,Ds increases implying an increase in the number
density of straining stagnation points and thereby an in-
creased probability for particle trajectories to come in the
vicinity of such points and experience sudden changes of
tack. As a consequence, the Lagrangian correlation time
scale is smaller/larger for smaller/larger values ofp. In terms
of Ds , a52@(32Ds)/Ds# when l is large anda52/3(3
2Ds) whenl is small;a is therefore a decreasing function
of Ds thus reflecting the fact that a larger number of changes
of tack produces more irregular particle trajectories. In terms

of the equivalent length-scale, which from~7!, ~8!, and
^du2(r )&;r p21 has the power-law time dependencel e(t)
;t2/(32p);t3/Ds, an increased irregularity of particle trajec-
tories is reflected in a faster growth of the equivalent length-
scalel e(t) for t bounded from above byL/v8. For p55/3,
l e(t);t3/2.
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