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The space and scale dependencies of the 
self-similar structure of turbulence 

BY N. K.-R. KEVLAHAN AND J. C. VASSILICOS 

Department of Applied Mathematics and Theoretical Physics, University of 
Cambridge, Silver Street, Cambridge CB3 9EW, U.K. 

Two new techniques for analysing the space and scale dependencies of the self- 
similar structure of turbulence are introduced. Both methods are based on the 
wavelet transform, but use different wavelets. 

First, the concept of a 'turbulence eddy' is defined in terms of the Mexican 
hat wavelet transform of the velocity signal in such a way that the 'eddy' has 
a size and a location in space. A new scaling exponent, the eddy capacity DE 
(0 s DE < 1), is defined in terms of the zero crossings of this wavelet transform. 
DE is a measure of the space-fillingness of eddies and of their scaling in real space 
whereas the Hausdorff dimension DH and the Kolmogorov capacity DK are scaling 
exponents that are sensitive to the scaling and space-fillingness in wavenumber 
space. DE differs from both DK and DH in that it is particularly sensitive to 
phase correlations. For any random phase signal, DE = 1, whereas DH and DK 
depend on the energy spectrum. For well defined spiral signals, and for signals 
with a fractal intermittency in space, DE = DK. 

Secondly, we propose a practical test for discriminating between H-fractals and 
K-fractals (i.e. between a dense and a sparse distribution of singularities). This 
method is based on successive averages of wavelet transforms, and the Morlet 
wavelet is used. The technique is shown to be robust with respect to large amounts 
of phase noise. 

Both methods are applied to a one-dimensional (1D) turbulence velocity signal 
of very high Reynolds number Rex = 2720. It is found that DE = 1 for the inertial 
scales larger than the Taylor microscale A, thus indicating some degree of phase 
scrambling of the ID turbulence velocity signal at the larger inertial scales. There 
is some indication of a spiral-type structure in this signal at scales below A. 

Finally, we measure the spatial fluctuation of wavelet energy, comparing an 
experimental turbulence signal with random phase and spiral-like signals. The 
magnitude of spatial fluctuations is set by the scrambled phase part of the turbu- 
lence, but the increase of energy fluctuation at small scales may be due to locally 
self-similar small-scale structures. 

1. Introduction 

Recent direct numerical simulations (DNS) suggest that turbulence consists of 
small scale coherent flow structures evolving in and interacting with the sur- 
rounding larger scale and approximately gaussian 'sea' (Jimenez et al. 1993 and 
references therein). The gradual departure from gaussianity at the finer scales of 
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turbulent motion has also been detected in high Reynolds number experiments, 
both recently (Gagne et al. 1988) and more than 40 years ago (Batchelor 1953). 

Although DNS data do not always reproduce unequivocally Kolmogorov's cele- 
brated -5 law because of current limitations in resolution and Reynolds number, 
experimental data do exhibit a well defined self-similar inertial range when the 
Reynolds number is very large (Gagne et al. 1988). The exponent 2p that charac- 
terizes the scaling of the energy spectrum E(k) k-2p is close to 5, and is defined 
over a wide range of length scales. In the experiments of Gagne et al. (1988), the 
self-similar inertial scales range from order of tens of metres to centimetres. The 
degree of non-gaussianity of 'eddies' (here referring only to wavenumbers) varies 
over this range of scales, yet the scaling of the energy spectrum remains the same. 
Kolmogorov's -5 law extends from relatively large inertial scales where the tur- 
bulence appears to have the form of a large scale gaussian background to smaller 
scales where the turbulence is structured and takes the form of vortex tubes (see, 
for example, Jimenez et al. 1993). 

Hunt & Vassilicos (1991) have shown that there must be singularities in the 
turbulence field associated with a non-integer power p of the energy spectrum's 
scaling. These singularities can be of a power law type such as the l/r depen- 
dence of the velocity around a two-dimensional (2D) point vortex (where r is 
the distance to the centre of the vortex in the 2D plane), a spiral type local 
accumulation of length scales (e.g. spiral vortex sheets), or a fractal type global 
accumulation of length scales (e.g. fractional brownian motions). 

Turbulence has some similarities with fractional brownian motions at the large 
scale end of the inertial range, but in the small scale part of the inertial range 
the vorticity is concentrated into tubes. The internal structure of these tubes is 
still unknown; they could be the result of incidental superpositions of high strain 
with high vorticity, or of some kind of shear instability that transforms strain 
generated vortex sheets into spiral vortex tubes. In either case, these tubes will 
contribute to the scaling of the energy spectrum, but only at the smaller inertial 
length scales. Vassilicos & Hunt (1991) and Hunt & Vassilicos (1991) make the 
point that the self-similarity of the energy spectrum may reflect either of two 
types of self-similar structure in the topology of the velocity or vorticity fields: a 
locally self-similar structure and a globally self-similar structure. Examples of the 
first type of self-similarity include fields such as the spiral of a rolled-up vortex 
sheet which are self-similar only about a finite number of isolated points, while 
fields which are globally self-similar (e.g. fractional brownian motion) are self- 
similar about every point. A non-integer Kolmogorov capacity DK (also referred 
to as 'fractal' or box dimension)t characterizes both these self-similar structure 
types, but DK alone cannot discriminate between local and global self-similarity. 

Either type of self-similarity may be present in the turbulence, at different 
scales and at different locations. The gradual departure from gaussianity over in- 
creasingly small scales of motion suggests a self-similar structure of the turbulence 
that is global at the larger inertial scales but may be local at the smaller inertial 
scales if, for example, the vortex tubes prove to have a complex internal structure 
that is locally self-similar (e.g. a spiral vortex). It has been proved mathematically 

t DK and DH are, respectively, the Kolmogorov capacity and Hausdorff dimension of the set of points 
on the 1D cross-section through a graph, line or surface of capacity DK and Hausdorff dimension DH. 
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Figure 1. (a) sin(27r/x) spiral. (b) Scrambled phase version of (a). 

that fractional brownian motions, or gaussian velocity fields, are characterized by 
non-integer Kolmogorov capacities DK and non-integer Hausdorff dimensions DH 
(see references in Mandelbrot (1982)). It is also mathematically well established 
that certain spirals have non-integer Kolmogorov capacities DK, although their 
Hausdorff dimension is trivial (Mendes-France 1991). 

Vassilicos & Hunt (1991) distinguish between local and global self-similarity 
as follows: if DH is an integer and DH < DK then the self-similarity is local and 
the object is called K-fractal; if DH is non-integer the self-similarity is global 
and the object is called H-fractal. Unfortunately Hausdorff dimensions cannot be 
measured in practise (DH can only be estimated by measuring DK if the signal is 
truly H-fractal). It is therefore important to discover practical criteria that can 
be used to discriminate between local and global self-similarity. 

In ? 3 we propose such a criterion based on successive averages of the wavelet 
transform of a signal. It turns out that averaging is not always equivalent to 
phase scrambling (physical location information is not always lost after averag- 
ing). The nature of the phase correlations is intimately related to the global or 
local nature of the self-similar multiple scale structure of a signal (as pointed out 
by Hunt et al. 1993). Scrambling the phases of a signal's Fourier transform and 
then transforming back to physical space will convert a locally self-similar signal 
into a globally self-similar one with the same energy spectrum (see figure 1). 

The difference between local and global self-similarity is essentially a differ- 
ence between sparse and dense sets of singularities, and surprisingly, the wavelet 
transform can exploit this number theoretical difference in practical ways. The 
behaviour of successive averages of the wavelet transform of a self-similar signal 
can be used to determine whether the set of singularities in the signal are sparse 
or dense, and therefore whether the various scales have a fractal or a 'spiral' struc- 
ture. In ? 3 this test is applied to the very high Reynolds number experimental 

Proc. R. Soc. Lond. A (1994) 

1.1_ .- 



N. K.-R. Kevlahan and J. C. Vassilicos 

turbulence data of Gagne et al. (1988). This is done in the hope of determining 
the nature of the self-similarity at the small inertial scales of turbulence where 
the dynamics are dominated by the vortex tubes. 

In ? 2 the larger inertial scales of turbulence are investigated using a novel 
method based on the wavelet transform. This method re-defines the now well- 
established, but imprecise, statistical concept of an 'eddy'. Statistical eddies in 
turbulence are defined classically in terms of Fourier transforms and do not have 
a location in physical space (Batchelor 1953). We use the zero-crossings of the 
Mexican Hat wavelet transform to define eddies having spatial location and in- 
troduce a new 'eddy capacity' (or dimension) DE. The space fillingness of the 
experimental turbulence data is characterized by measuring DE. This new defini- 
tion of an 'eddy' allows us to reinterpret and characterize the classical Richardson 
cascade on the basis of modern concepts such as DE and the wavelet transformed 
turbulence. In particular, a direct definition of the space-fillingness, or intermit- 
tency, of the eddies in the Richardson cascade is now possible. This space-scale 
characterization of turbulence was not feasible using the traditional interpreta- 
tion of an eddy in terms of sine waves. Our concept of space-fillingness is new and 
distinct from previous concepts of space-fillingness that are based on either the 
Kolmogorov capacity or the Hausdorff dimension. Unlike DK and DH, the eddy 
capacity DE reaches its maximal value, indicating complete space-fillingness, only 
when the Fourier phases are uncorrelated, regardless of the power spectrum's scal- 
ing. 

It should be noted here that the concept of an 'eddy' is used in a statistical 
sense in our study of the larger inertial scales, but in a deterministic sense (in 
terms of the actual position of vortex tubes) in our study of the smaller inertial 
scales of the turbulence. The definition of an 'eddy' of a given scale depends on 
how far from gaussian the turbulence is at that scale. 

In ? 4 the spatial fluctuation of wavelet energy is measured as a function of scale 
for experimental turbulence data and compared to sample spiral-like and random 
phase self-similar signals with the same energy spectrum (E(k) oc k-5/3). The aim 
is to understand which aspects of energy fluctuations can be accounted for by the 
scrambled phase part of the inertial range turbulence, and which aspects require 
the presence of local small-scale coherent structures. 

2. Is the Richardson cascade space-filling? 

Richardson (1922) imagined turbulence as a hierarchy of eddies from large 
to small with the smaller eddies 'feeding' on the larger ones until the energy 
eventually passes into heat through viscosity at the smallest scales of motion. 
This metaphor has been found to give a good picture of energy dynamics in 
the inertial range of turbulence, but the precise nature of the 'eddies' remains 
unclear. Are these eddies 'space filling' in some sense (e.g. twice as many eddies 
of scale a as eddies of scale 2a)? Are they physically separate structures? What is 
their distribution in space? To address these questions we need a new definition 
of a statistical 'eddy' that involves both scale and location. Fourier methods 
concentrate on the periodicities in the signal and do not provide a practical way 
to locate these periodicities in real space. The wavelet transform, however, is a new 
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Figure 2. (a) Straightened zero crossings of the Mexican hat wavelet transform of a 1200 
point long segment of the longitudinal component of an experimental turbulent velocity sig- 
nal. (b) Original signal. 

mathematical tool which enables the simultaneous study of both the periodicities 
in the signal and the physical location of these periodicities along the signal. 

We define a turbulence eddy, in terms of Vermeer & Alkemade's (1993) method 
of multiscale segmentation of well logs. These authors use the zero-crossings of 
a specific wavelet transform to detect edges or drops in a signal. The wavelet 
transform u(xo, a) of a one-dimensional turbulence velocity signal u(x) is, by 
definition, 

i(xo, a) = a-1/2 u(x)* ( x) d (2.1) 

where a is the length scale, x0 is the location and the function b(x) is the 'mother' 
wavelet (see Farge et al. 1993). Following Vermeer & Alkemade (1993), we choose 
a Mexican hat wavelet, that is <(x) = d2/dx2 exp(- x2). Provided that u(x) is 
twice differentiable, this wavelet transform maps the second derivative of u(x) at 
asymptotically small scales a. Zeros of u(xo, a) tend towards zeros of d2/dx2u(xo) 
as a - 0. 

In figure 2a we plot the 'straightened zero-crossings' of the Mexican hat wavelet 
transform of a high Reynolds number experimental turbulence velocity signal 
u(x), and in figure 2b we plot u(x). The zero-crossings of the wavelet transform are 
long curves in the (xo, a) plane that point towards a location on the x0 axis. The 
'straightened zero crossing' lines are found by determining the maximum length 
scale and position (amax, ox) at which a zero crossing appears and connecting this 
point to the x-axis by a straight line. Visibly, the longer curves point towards an 
x0 where there is a sudden deep drop in u(x) and the shorter curves point towards 
smaller drops in u(x). All curves point towards a zero-crossing of d2/dx2u(xo), 
and therefore towards points of inflection and drops in u(x). A measure of the 
importance of these drops is amax, the maximum value of the length scale a 
reached by the wavelet zero-crossing curve. The length of a wavelet zero-crossing 
curve (amax) results from both the size of the drop in velocity and the length scale 
over which this drop is important. Two deep drops that are very close together 
generate wavelet zero-crossing curves that are also close together. 
Proc. R. Soc. Lond. A (1994) 
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(scales 0.0001-0.01). (d) t 1, s = 2, DE = 0.530 (scales 0.0001-0.01). 

Given a length scale a, one can construct (Vermeer & Alkemade 1993) a 
'blocked' or 'filtered' velocity signal Va(x) by replacing the original turbulent 
velocity u(x) with the constant average value of u(x) between every consecutive 
pair of zero-crossing curves of amax > a. Figure 3 shows three such wavelet-filtered 
velocity signals Va(x) for three different values of a. This construction, or def- 
inition, of a turbulence eddy positions the eddies along the original turbulence 
signal. It is only because we define turbulent eddies in terms of wavelet and not 
Fourier transforms that this positioning is possible. 

We would like to think of Va(x) as only made of eddies of scale a or larger, 
but some of the fluctuations in figure 3 occur over length scales smaller than a. If 
these zero-crossing curves are closer than a distance a from each other only one 
of the two is kept and a filtered velocity field Ua(x) is constructed in the same 
way as we construct Va(x), but fast fluctuations over scales smaller than a are 
neglected, so that Ua(x) can be thought of as only made of eddies of scale a or 
larger. 
Proc. R. Soc. Lond. A (1994) 
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The self-similar structure of turbulence 

A measure of the extent to which the spatial distribution of the turbulent eddies 
of a certain scale a is space-filling, and how this distribution scales with a can 
be defined in terms of the wavelet zero-crossings. We define NE(e): the number 
of segments of size e that are needed to cover the points x0 where wavelet zero- 
crossing curves of amax 3 e converge as a -- 0. A scaling exponent DE is defined 
if NE(e) has a power law dependence on e, in which caset 

NE(e) -DE- . (2.2) 

From our definition of eddies of size larger than a, the number of eddies of size 
larger than e is proportional to NE(e). This is why we call DE the eddy capacity 
of the turbulence: DE is a measure of how the number of eddies varies with their 
length-scale. An immediate property of DE is that 0 < DE < 1. DE < 1 follows 
from NE(e) < L/e (where L is the total length of the u(x) record) and DE is 
non-negative because NE(e) cannot increase with e. By definition, if DE = 1 the 
eddies are space-filling. 

A numerical calculation of DE for signals with a random Fourier phase, but a 
power law energy spectrum shows that DE = 1 irrespective of the power spec- 
trum's scaling E(k) k-2p (see figure 4). 

The situation is, however, very different for a locally self-similar signal. A nu- 
merical calculation shows that the locally accumulating signal 

u(x) = x' sinx-t, (2.3) 

where t > 0, has an eddy capacity equal to the Kolmogorov capacity: DE = DK 
for any value of s (where DK is the Kolmogorov capacity of the zero-crossings of 
u(x) itself) (see figure 5). In the case of (2.3), D = t/(t + 1) (Hunt et al. 1993). 
Idealized functions such as (2.3) are of interest in turbulence and fluid mechanics 
because they model the velocity, vorticity and scalar fields around a spiral vortex 
sheet. 

The phase spectrum of (2.3) is fsb(k) - kDK, and the energy spectrum is 
E(k) . k-2p where p = 1 + s- (s + j)DK provided that -1 < 2s < t (Hunt et 
al. 1993). To investigate the effect of varying the amount of phase scrambling we 
can replace qs(k) by 0(k) (1 - f)Os(k)+ f R(k) (2.4) 

in the Fourier transform of u(x); RR(k) is a random function of wavenumber k 
and the fraction f is a number between 0 and 1. When f is small, u(x) keeps 
the accumulating oscillations of (2.3) with superimposed noise only at the larger 
scales of the 'spiral'. The noise affects the large scales most severely because 
q)(k) r (1 - f)>s(k) for large k, and thus the random part of the phase spectrum 
affects only the smaller wavenumbers (see figure 6). Nevertheless, the random 
part of the spectrum does affect the zero crossings of the wavelet transform at 
the small scales. As a result, when f > 0 there are two ranges of length scales 
e, (i) the smaller values of e where DE = 1, and (ii) the larger values of e where 
DE = t/(t + 1) < 1 (see figure 7). The noise adds enough zero-crossings to the 
smaller scales of the wavelet transform to fill the eddy capacity curve out to a 

t In a personal communication to the authors, J. G. Jones points out that DE is equivalent to D2 in 
Jones et al. 1991 since D2 is found by scaling numbers of peaks in the output of a wavelet transform with 

d/dx exp(- x2) wavelet, whereas DE is obtained by scaling numbers of zero-crossings in the output of 

the Mexican hat wavelet transform. 
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capacity curve for the signal in (a). The lower curve is elg2/ log3NE(e) and shows that, at the 
larger scales c, DE is equal to DK of the Cantor set filter. Here DK = log 2/ log 3. 

the small scales. As a result, when f > 0 there are two ranges of length scales 
e, (i) the smaller values of e where DE - 1, and (ii) the larger values of e where 
DE = t/(t + 1) < 1 (see figure ??). The noise adds enough zero-crossings to the 
smaller scales of the wavelet transform to fill the eddy capacity curve out to a 
slope of-1 at small e. The range where DE = 1 grows rapidly with f, so that 
even for small values of f, the scaling appears to be DE = 1 over the entire range; 
in effect range (ii) becomes vanishingly small and DE is hard to distinguish from 
1 even when f = 0.01, i.e. 1% phase noise. Thus, a small amount of phase noise 
can cause a locally accumulating structure to appear space-filling (as defined by 
DE) at the smaller scales. 

If a random phase signal is multiplied by an on-off function that is equal to 
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Figure 10. Eddy capacity curve for the longitudinal velocity component of experimental tur- 
bulence. The horizontal lower curve is ENE(e), and shows that the turbulence has an eddy 
capacity, DE = 1. 

dimension of the Cantor set (for a Cantor set Dh = DK (Falconer 1990)) in the 
range of larger length scales that is dominated by the Cantor space structure. 

The space-fillingness of eddies defined by DE = 1 is directly sensitive to the 
phase correlations in u(x). It is the use of the wavelet transform in the definition 
of DE that provides the way to link space-fillingness to phase correlations. The 
Hausdorff dimension DH of the zero-crossings of a random phase signal with 
Fourier energy spectrum E(k) k-2p is DH = (3 - 2p)/2 (Orey 1970). The 
Hausdorff concept of space-fillingness is therefore directly linked to the scaling of 
the energy spectrum E(k); DH = 1 when 2p = 1 and DH = 0 when 2p - 3. 

In a Fourier decomposition of a signal one specifies the proportion of the total 
energy that is carried by sine waves of a given wavenumber, i.e. the energy spec- 
trum E(k), and the position of sine waves of different wavenumbers with respect 
to each other, i.e. the phase spectrum ?(k). These two distinct specifications relate 
to two different concepts of space-fillingness and self-similarity based on, respec- 
tively, DH and DE. DH measures the relative proportion of energy in different 
wavenumbers: the greater the proportion of energy in the higher wavenumbers, 
the more irregular the signal. Hence, DH is a measure of a space-fillingness that 
is equivalent to irregularity. However, a signal that is not very irregular can have 
DE = 1 provided the phases are decorrelated. When the phases are correlated 
enough for u(x) to have an identifiable space structure, DE < 1, indicating that 
turbulent eddies are not uniformly distributed in space relative to each other. 
DE is a scaling exponent that is sensitive to the scaling and space-fillingness in 
real space, whereas DH is a scaling exponent that is sensitive to the scaling and 
space-fillingness in wavenumber space. 
Proc. R. Soc. Lond. A (1994) 



N. K.-R. Kevlahan and J. C. Vassilicos 

The eddy capacity was calculated for the experimental longitudinal turbulence 
data from the Modane wind tunnel provided by Gagne (1987). The data has the 
following characteristics: a Taylor microscale based Reynolds number of 2720, the 
mean speed is 20.8 m s-1, and sampling frequency is 5000 Hz (giving a Taylor 
hypothesis spatial resolution of 0.00416 m). The Taylor microscale, A, is 0.036 m; 
the Kolmogorov scale, 7K, is 0.00035 m and the integral scale is approximately 
2500x the Kolmogorov scale. The turbulence energy spectrum exhibits a well 
defined scaling law that is close to the Kolmogorov -- law (see figure 9). The 

E(k) - k-5/3 inertial range extends over nearly three decades, from the integral 
length scale to somewhere between A and the Kolmogorov scale rJK. Even though 
the turbulence data we use has a very high Reynolds number (one of the highest 
to date achieved in the laboratory), rlK is not adequately resolved. The eddy 
capacity of this experimental turbulence data (e.g. figure 2b) is DE 1 over a 
range of length scales between the integral length scale of the turbulence and 
slightly above the Taylor microscale A (see figure 10). 

The result DE = 1 indicates a certain degree of phase decorrelation in the 
inertial scales of turbulent motion above the Taylor scale A. In a recent study of 
DNS isotropic turbulence, Vassilicos et al. (1993) find well-defined scalings of the 
smooth geometry of streamlines around the vortex tubes that dominate the range 
of scales below A. As pointed out by Lundgren (1993), Moffatt (1993) and Hunt 
& Vassilicos (1991), if these vortex tubes represent singularities, such as rolled up 
vortex sheets, they should contribute to the scaling of E(k) k-5/3 as well. Yet, 
the advection (whether chaotic or not (Ottino 1989; Vassilicos & Fung 1994)) of 
the small-scale vortex tubes by the ambient unsteady velocity field can influence 
the scaling laws of the turbulence (Malik & Vassilicos 1994) and may also be 
partly responsible for the weak phase correlations of the 1D turbulence signal 
u(x) above A. Below A the phase correlations may not be weak if the motion is 
dominated by the structure of vortex tubes. A phase scrambled signal is globally 
self-similar. It is important to unravel the components of the turbulence that carry 
or cause a local or a global self-similarity in various turbulence scalings (Vassilicos 
& Hunt 1991). In the following section we address the question of whether the 
smaller inertial scales of motion are locally or globally self-similar and develop a 
practical test which we apply to the inertial scales of the 1D turbulence signal 
below A. 

3. The self-similarity of the smaller inertial scales 

Do the small scales of turbulence have a local or a global self-similarity? In 
this section we introduce a method of distinguishing between locally and globally 
self-similar signals based on differences in the distribution of singularities in each 
type of signal. 

If a stochastic signal u(x) has globally self-similar scaling, then u(x) carries a 
dense set of singularities and has accumulating length scales everywhere (Vassil- 
icos & Hunt 1991). The wavelet transform of such a signal is shown in figure Ila, 
and is characterized by long slender conical structures that point towards the 
x0 axis in the direction where a -> 0. The wavelet transform of an isolated sin- 
gularity has a single conical structure; the wavelet transform of a signal with a 
dense set of singularities should have a dense number of cones pointing towards 
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the x0 axis (Hunt et al. 1993). The average wavelet transform U(xo, a) of the 
wavelet transforms ur(xo, a) of N different realizations Ur(x) (r = 1, 2, .. ., N) of 
the stochastic signal should have no cones. A superposition of a dense number 
of conical structures of random sign should produce cancellations of the conical 
structures everywhere. 

If on the other hand the stochastic signal u(x) has a locally self-similar scal- 
ing, then u(x) carries a sparse set of isolated singularities. Figure 1lb shows the 
single cone produced by a single locally accumulating function. In this case, an 
averaging of the wavelet transforms ii,(xo, a) of N different realizations ur(x) 
(r = 1, 2,..., N) may not result in a cancellation of the cones. Instead, we expect 
U(xo, a) to be the collection of the cones in all realizations simply because the 
likelihood that two cones from two different realizations coincide is practically 
zero when the set of singularities is sparse. A sparse set of singularities implies a 
collection of cones, whereas a dense set of singularities implies a cancellation of 
cones in the wavelet transform. 

Let us develop this distinction between locally and globally self-similar signals 
by way of examples. 

(i) A single realization ur(x) of a random phase signal can be written 

ur(x) = JI (k)f exp(ir(k)) exp(-ikx) dk, (3.1) 

in terms of the modulust lu(k)l of its Fourier transform u(k) and of a realiza- 
tion of the random phase spectrum 0r(k). Thus each realization has the same 
distribution of energy in wavenumber space, but different phases. The wavelet 
transform ir(xo, a) of ur(x) can also be calculated in Fourier space (Hunt et al. 
1993); 

tr(Xo, a) = a-12 iu(k)l exp(ifr(k)){*(ak) exp(-ikxo) dk, (3.2) 

where X is the Fourier transform of the 'mother' wavelet 4. The average U(xo, a) 
of the wavelet transforms of N realizations is 

1 N 
U(xo, a) = iUr(xo, a), (3.3) 

r=l 

and it follows that 

U(xo, a) = a- dklu(k)l *(ak) exp(-ikxo) exp(iq (k)). (3.4) 

Because the phases qr(k) are random numbers between -Xr and +7r, the sum 
EN=1 exp(iqr(k)) is essentially equivalent to a random walk, and there exists a 
random function q'(k, N) such that 

N 

E exp(ir(k)) d v/Nexp(i B'(k, N)), (3.5) 
r=l 

t To imitate equilibrium turbulence one may choose iu(k)l oc k-5/6. 
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Figure 11. (a) Morlet wavelet transform of a random phase signal with energy spectrum 

E(k) oc k-5/3. (b) Morlet wavelet transform of sin(2rx-1/2) (E(k) c k-/a). 

if N is large enough. Therefore, 

ao-3 / 

U(xo, a) a x / lJ (k)l)*(ak) exp(-ikxo) exp(ib'(k, N)) dk, (3.6) 

which means that U(xo, a) is equal to one particular realization of the wavelet 
transform ir(xo, a) divided by N. 

The cones are the regions in (xo, a) space where most of the 'wavelet energy' 
l((xO, a) 2 concentrates. The cone structure in U(xo, a) is qualitatively the same 
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as in i,(x0, a), but weaker by a factor /N. Random phase signals are globally 
self-similar and their singularities are dense. Indeed an averaging over many re- 
alizations of such signals removes, gradually, the cone structure in the wavelet 
transform. 

Let us define a, the integral over all locations of the modulus of the wavelet 
transform, 

aw(a) = U(xo, a)I dxo. (3.7) 

orw(a) is large if either many or strong (or both many and strong) cones cross 
the coordinate a in the wavelet plane (xo, a) (by 'strong' we mean energetic). 
From (3.6) we see that a~(a) = O(N- ) for random phase signals. This result is 
confirmed numerically at several different scales in figure 12a. 

These properties are not unique to random phase signals, but also appear in 
other globally self-similar signals such as the Weierstrass function (Falconer 1990). 
In figure 12b a,(a) is plotted as a function of the number of realizations, and again 
aW(a) at each scale decreases like O(N- ) with the number of realizations N. 

(ii) Now consider a locally accumulating signal. A single realization of a 'spiral' 
function xS exp(ix-t)H(x) (3.8) 
(where H(x) is the Heaviside function) is 

ur(x) = (x - cr)S exp(i(x - cr)-t)H(x - cr), (3.9) 

where cr is the centre of the spiral (a random number between, say, 0 and 1). The 
'spiral' function is an isolated (and therefore sparse) singularity and is locally 
self-similar since it has a local accumulation of length scales towards the centre, 
cr, of the spiral. The Kolmogorov capacity of the zero-crossings of u,(x) is DK = 
t/(t + 1), but the Hausdorff dimension DH = 0. 

If the Morlet 'mother' wavelet /(x) = exp(-?x2) exp(ix) is used, by a trivial 
change of variables the wavelet transform of (3.9) is 

ui,r(o, a) 

-1/2 
X 

. ('( t X-Xo+C \o + Cr) 
2 

= a 1/2 x exp i xtx - + ) exp (- C ) dx. 
a 2a2 

(3.10) 
This integral can been estimated in the limit a -- 0 by the method of stationary 
phases (Hunt et al. 1993). One finds that 

i(X, a) ap-1/2 exp ( - - (ta)l/(t )) , (xo, a) -a- exp ~- 2a2 

x exp (i [( + t)(ta)-t/(t+l) - X C]) (3.11) 

as a -- 0, where p = (2s + t + 2)/(2(t + 1)). If we define UQ2(xQ, a) to be equal to 

iir(x0, a) when Cr = 0, the average wavelet transform U(xo, a) is 

r=l1 \Q Zai 

(3.12) 
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Figure 12. (a) xT(a) x N0 of a random phase signal as a function of number of realizations 
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at scales a 1.94 x 102, 0.106, 0.575, 3.13 (from bottom). (b) ofw(a) x NI of a Weierstrass 
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Figure 12. (a) co(a) x N? of a random phase signal as a function of number of realizations 

at scales a - 1.94 x 10-2, 0.106, 0.575, 3.13 (from bottom). (b) (o(a) x N? of a Weierstrass 
function (f(x) = (= X(-2)k sin(Xkt), A = 1.5, s - 1.5, the series is truncated after the first 

50 terms) as a function of number of realizations at scales a = 1.14 x 10-3, 6.20x10-3, 0.0337 
(from bottom). 

and a numerical computation of the sum in (3.12) leads to 

N C2 (C r 
C 

r 

Zexp i) exp -2 exp -(- (xo - (ta) i)) NF(x a) (3.13) 

for large enough values of N. It then follows that U(xo, a) is asymptotically 
independent of N as N -- +oo. 

It is clear from figure 13 that the number of wavelet cones in the structure 
of U(xo, a) increases proportionally with N, but it is also clear that the cones 
become shorter as N increases. The width of the cones is larger at larger length 
scales a, and thus the cones superimpose and cancel at these scales. However, at 
the smaller scales the cones do not cancel because the self-similar singularities 
remain isolated and sparse. At these small scales, ra,(a) is independent of N 
(figure 4). The scales where a,(a) is independent of N also become progressively 
smaller as N increases. In the case of the Morlet wavelet transformed spiral, the 
width of the cone l(a) oc a. Indeed, in equation (3.11), Ur(Xo, a) is proportional 
to a gaussian of width a. Thus, the thin ends of the cones will, on average, not 
cancel where a < L/N (where L is the length of the data segment and N is the 
number of realizations). 

The result that u((a) is independent of N follows from equation (3.11) which 
is valid with the restriction that a -- 0. Additionally, from the above argument, 
the scales where this effect is visible decrease with number of realizations N. For 
this method of distinguishing between local and global self-similar structure to 
work in practise we therefore need a turbulence velocity signal with an extremely 
large range of length scales. 

A question may also be asked about the robustness of this method: how sen- 
sitive is it to the amount of noise in the signal? We have already seen that the 
eddy capacity DE is very sensitive to even small amounts of phase noise. Figure 15 
shows that the present method is relatively insensitive to phase noise. Even at 
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Figure 13. Modulus of the Morlet average wavelet transform of (a) 4, (b) 16 and (c) 32 spirals 
showing the cone structure. Note how at the smaller scales the cones accumulate and do not 
cancel. 

40% phase noise aw is still significantly different from the N-2 random phase 
behaviour for N < 10. This is a useful result since most turbulent spirals will 
have some degree of noise (deviation from a perfectly accumulating structure) 
and shows that this method should be useful in practise. 

To summarize, the method is to wavelet transform successive stretches of at 
least one Taylor microscale in the turbulence signal. Then we collect the wavelet 
transforms of N 'realizations' of small-scale turbulence structure and average 
them together to obtain U(xo, a) and ao(a). (In practise this is equivalent to 
averaging out the 'realizations' first and then wavelet transforming the average 
signal, because averaging and wavelet transforming are both linear operations 
and therefore commute.) If a, (a) decreases like N- over all length scales a then 
the turbulence is H-fractal; if, on the contrary, aw (a) is independent of N at small 
values of a, then the signal is K-fractal and may carry spiral singularities. 

Figure 16a shows the Morlet wavelet transform of the first 512 points of the 
experimental turbulence data described above. The figure shows strong cone-like 
branching at x = 0.40 m and x = 1.60 m which may be the result of locally 
self-similar structures (compare with the actual velocity trace in figure 16b). In 

Proc. R. Soc. Lond. A (1994) 

357 



N. K.-R. Kevlahan and J. C. Vassilicos 

(a) 

^^^^ = 

104 - 

C 03M 
103 - 

X 

102 

0? 101 1 02 00 101 102 
N 

103 10' 
I 

1 l102 i 
I i I I 

1? lol l12 103 
N 

Figure 14. (a) a,o(a) at scales a = 1.94x10-2, 0.106, 0.575, 3.13 for the 'spiral' function sin(x- ). 

(b) Same as (a), but xN ?. Note how a, (a) remains approximately constant at small scales and 
moderate N, and becomes more like a random phase signal (decreasing like N- ) at large scales 
and large N. 
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a single scale for levels of noise 0%, 5%, 10%, 20% and 40% (from 
bottom). (b) Same as (a), but xN2. 

figure 17a aW indicates H-fractal (tr u N-2) behaviour at all scales for large 
17.0 m data segments (4096 points). For smaller 0.133 m segments (about four 
Taylor microscales) figure 17b shows no uow N-2 behaviour for N < 10 and 
some faint evidence of K-fractal behaviour. As mentioned above, evidence of K- 
fractal behaviour is expected to disappear eventually with increasing N because 
of the data's finite resolution. 

Averaging segments much larger than A may reduce existing K-fractal traces 
if the lateral size of the small-scale turbulence vortex tubes, assumed to have 
a spiral internal structure, is O(A). Segments much longer than A would then 
include many spirals, thereby effectively increasing N. Note that the 17.0 m long 
segments are about 486 A long. Unfortunately, the Taylor microscale and below 
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Figure 16. (a) Morlet wavelet transform of first 512 points of experimental turbulence data 
(longitudinal velocity component). (b) Original signal. Note branching and especially strong 
cones at x = 0.40 m and x - 1.60 m. 
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Figure 17. w, (a) x N as a function of number of realizations. (a) 4096pt (17.0 m) long segments 
(scales 1.94x102, 0.106, 0.575, 3.13 m). (b) ,o(a) x N? for 32pt (0.133 m) long segments 
(scales 1.10x10-2, 2.03x10-2, 3.76x10-2, 6.96x10-2). Note the deviation from the H-fractal 
N-2 slope for N < 10. 

are not resolved well enough to provide strong evidence of K-fractal behaviour, 
although some evidence of non H-fractal behaviour does exist for averages of 
less than 10 realizations. Furthermore, the number of spiral events captured in 
the velocity data may be low because the probability of a single point probe 
intersecting a line vortex is small. 

4. Spatial fluctuations of wavelet energy 

Thus far we have introduced two new methods for analysing the self-similar 
structure of turbulence. The first method uses the zero crossings of the wavelet 
transform to define an eddy capacity which is a measure of the space-fillingness of 
the signal in real space and the second method uses differences in the cancellation 
of energy in averaged wavelet transformed signals to distinguish between local and 
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Figure 18. Spatial fluctuation of wavelet energy (average of 50 realizations). (a) sin(t-/2) spiral. 
Lower curve is wavelet energy spectrum, middle curve is plus one standard deviation and upper 
curve is the wavelet spectrum xa-5/3. (b) Random phase signal (E(k) o k-5/3). Lower curve is 
wavelet energy spectrum, upper curve is plus one standard deviation. (c) Experimental turbu- 
lence data. Lower curve is wavelet energy spectrum, upper curve is plus one standard deviation. 
(d) Percent standard deviation of wavelet energy spectrum (I(a)). Top curve is the experimental 
turbulence data, lower curve is the random phase signal, A indicates the Taylor microscale. 

global self-similar structures. In this section we again use the wavelet transform, 
but now the magnitude of the fluctuations of the wavelet energy is measured as 
a function of scale. The standard deviation of the wavelet energy is defined as 

L 2 

I(a) - 
(u2(xo, a) - W(a))2 dxo /W(a), (4.1) 

where W(a) is the wavelet energy averaged over all locations, 

I ) d W(a)- - (2o(xo a)dxo. L o (4.2) 

I(a) is a measure of the deviation of the local wavelet energy from its spatial 
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mean. A large value of I(a) indicates that the energy of the turbulence at scale 
a varies greatly from place to place in the flow (high energy fluctuation), while a 
small value of I(a) indicates the energy is essentially the same at all locations (and 
hence that the Fourier energy spectrum is a good representation of the local en- 
ergy scaling). Note that I(a) is large for highly intermittent turbulence, although 
the converse is not necessarily true. This means that the standard deviation of 
the wavelet energy can be a misleading measure of intermittency. 

Meneveau (1991) found a high deviation (of the same magnitude as the energy 
itself) of wavelet energy in both experimental and DNS turbulence flows. He also 
found that the deviation increases slightly at the smaller lengthscales, indicating 
greater fluctuations at the smaller scales. The particular question we wish to 
address here is: how much and what aspects of these fluctuations are due to small- 
scale local structures in the flow and how much are due to the phase scrambling 
of the turbulence at the larger inertial scales? As in ? 3 the question is about the 
relative roles of the global and local parts of the inertial range of turbulence. 

The signals analysed in this section have the same power law exponent for 
both the Fourier and wavelet energy spectrum. In figure 18a the wavelet energy 
spectrum of a locally self-similar spiral signal sin(x- ) is compared to the same 
wavelet energy spectrum plus one standard deviation. The deviation is very small 
at the largest scales but then increases steadily with 1/a. The random phase signal 
(figure 18b) also shows little fluctuation at the large scales. However, after about 
1/a = 1 the standard deviation remains constant at a magnitude about equal 
to that of the wavelet energy spectrum. Figure 18c shows the wavelet energy 
spectrum alone and plus one standard deviation of the experimental turbulence 
data. The turbulence data shows an increase in fluctuation with 1/a somewhat 
less than that of the single spiral, but significantly more than that of the random 
phase signal. The difference between the random phase and turbulence signal 
is brought out strongly in figure 18d which compares I(a) of the turbulence 
and random phase signals. The fluctuation of the random phase signal remains 
constant at 100% down to the smallest lengthscales, whereas the fluctuation of the 
turbulence signal increases with 1/a. The fluctuation becomes very large around 
the Taylor microscale A. It is interesting to note that the approximate magnitude 
of standard deviation of energy measured by Meneveau (100%) is the same as 
that measured from the random phase k-5/3 signal. This suggests that the overall 
level of energy fluctuation is actually set by the phase-scrambled larger scale part 
of the inertial range turbulence, and is not, therefore, a significant measure of 
intermittency. However, the increase in energy fluctuations at small scales may 
reflect the presence of local coherent structures. 

5. Concluding remarks 

This paper has introduced a new statistical eddy based on the zero crossings 
of the Mexican Hat wavelet transform and an associated dimension, the eddy ca- 

pacity DE. DE is a measure of the scaling and space-fillingness of the distribution 
of turbulent eddies in physical space. For an intermittent H-fractal distribution 
of eddies, DE < 1 over the range of length scales that characterize the intermit- 

tency, and is equal to the Kolmogorov capacity DK of the spatial distribution of 
intermittent activity. If the H-fractal distribution of eddies is not intermittent, 
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DE = 1, thus revealing the space-fillingness of eddies in physical space. However, 
DK and Dr may be both smaller than 1, and their value is a function of the 
energy spectrum. If the energy is maximally distributed over all wavenumbers, 
i.e. E(k) k-' (since the total energy is infinite when E(k) k-2p with 2p < 1), 
then D1 = D - 1, thus reflecting the space-fillingness in wavenumber space. 
Space-fillingness in the physical and wavenumber spaces are not equivalent con- 
cepts, the scaling exponent DE being a measure of the former, while the scaling 
exponents D' and Du are measures of the latter. 

For a K-fractal distribution of eddies, such as may occur in a spiral vortex 
sheet, DE D' and DH 0. Our results have shown that DE determines the 
scaling of the phase spectrum uniquely in this case, but not the energy spectrum. 
DE I when the phases are the same over all wavenumbers or when they are 
random, which is the way the phase spectrum reflects space-fillingness in the 
physical space. DE 1 I at the larger inertial scales of the turbulent longitudinal 
velocity signal, thereby indicating a degree of phase decorrelation at the larger 
inertial scales. 

A practical method of distinguishing between local and global self-similarity 
has been introduced. This technique exploits differences in the way the average 
of the wavelet transforms of many realizations decays with N (the number of 
realizations). It is shown that the average wavelet transform decays like N- 
for random phase signals and Weierstrass functions (globally self-similar), while 
for spiral-like signals (locally self-similar) the average wavelet transform does not 
decay! The turbulence data shows some very faint (at this stage, inconclusive) 
evidence of spiral-type structure. The lack of resolution of our data below the 
Taylor microscale A prevents firm conclusions. 

Following Meneveau (1991) the fluctuation of the energy is measured by cal- 
culating the spatial standard deviation of the wavelet energy as a function of 
scale. The spatial fluctuations of a random phase signal, spiral signal and exper- 
imental turbulence signal (all with E(k) cx k-5/3) are calculated. It is found that 
the fluctuation is very small at the largest scales in all three cases. The random 
phase signal's fluctuation remains independent of scale as scale decreases, while 
the fluctuation of the spiral signal increases steadily with 1/a. The magnitude of 
energy deviation of the turbulence data is about the same as the random phase 
signal, but it increases with 1/a like the spiral signal. The level of energy fluctu- 
ation is set by the phase scrambled part of the inertial range, but the increase of 
fluctuation with wavenumber must be due to some form of phase organisation. 
This phase correlation is linked to intermittency and may be the result of small 
scale coherent flow structures. 

While the energy spectrum of the turbulence appears to scale uniformly like 
k-5/3 over the entire inertial range, our results suggest that the corresponding 
scaling of the turbulent 1D velocity signal in physical space changes qualitatively 
from an H-fractal scaling at the larger inertial scales to a K-fractal scaling at the 
smaller inertial scales. This picture agrees with and adds a scaling aspect to the 
idea that the turbulence is a collection of small-scale coherent locally self-similar 
flow structures in a surrounding larger scale H-fractal sea, where the turbulence 
is phase-scrambled to a degree (e.g. how large is f in (2.4)?) that we are unable 
to determine in the present study. 
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