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Quantum Signature of Superfluid Turbulence

D. Kivotides,1 J. C. Vassilicos,2 C. F. Barenghi,1 M. A. I. Khan,3 and D. C. Samuels1

1Mathematics Department, University of Newcastle, Newcastle NE1 7RU, United Kingdom
2Department of Aeronautics, Imperial College of Science, Technology and Medicine,

South Kensington, London SW7 2BY, United Kingdom
3DAMTP, University of Cambridge, Silver Street, Cambridge CB3 9EW, United Kingdom

(Received 18 July 2001; published 10 December 2001)

Using a numerical simulation backed up by physical arguments, we predict that the pressure spectrum
of superfluid turbulence has a k22 dependence on the wave number k, which represents a macroscopic
quantum signature not to be found in the classical Kolmogorov theory of turbulence.
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Experiments performed in the last few years showed that
some turbulent flows of the superfluid phase of 4He (he-
lium II) are similar to analogous turbulent flows in a clas-
sical fluid. Typically helium II was made turbulent using
a towed grid [1] or a rotating propeller [2], or pushing it
at high velocity along pipes and channels [3] or around
spheres [4]. The apparent classical results (in terms of
energy spectrum, decay rates, pressure drops, drag crisis,
etc.) are surprising because helium II is a quantum fluid.
According to Landau’s two-fluid theory, it consists of two
copenetrating fluid components, the normal fluid and the
superfluid, whose relative proportion depends on the abso-
lute temperature T . The normal fluid, which is viscous, can
form eddies of any size and strength. On the contrary, rota-
tion in the superfluid component is constrained by quantum
mechanics, and is possible only in the form of quantized
vortex filaments. All superfluid vortex filaments have the
same quantized circulation �G � 9.97 3 1024 cm2�sec�
and the same microscopic core radius a � 1028 cm. Since
the superfluid’s viscosity is zero, the issue raised by the
experiments is what causes the observed classical behav-
ior, which remarkably extends to temperatures so low
�T � 1.4 K� that the normal fluid fraction is only a few
percent. The problem has stimulated theoretical investiga-
tions of the coupling between superfluid vortices and nor-
mal fluid [5,6], as well as studies of vortex tangles [7] and
dissipation in the limit of absolute zero [8], including the
effects of Kelvin waves and reconnections [9].

This Letter attempts to clarify the limits of validity of
the similarities between helium II turbulence and clas-
sical turbulence by drawing attention to the spectrum of
the pressure field p. Stimulated by the helium turbulence
experiments and by the recent work on pressure spectra in
classical turbulence [10–12], we show that the spectrum
of p in turbulent helium II must be very different from
the classical Kolmogorov spectrum of a classical turbulent
flow. Using results of numerical simulations confirmed by
theoretical arguments we show that the pressure spectrum
Ep�k�, defined such that
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where r is helium II’s density, scales like Ep�p� � k22,
where k � jkj is the magnitude of the three-dimensional
wave number k and V is volume. This result is in con-
trast with what happens in the classical theory of Kol-
mogorov turbulence. Following the classical argument of
Kolmogorov, assuming that in the inertial range Ep�k� de-
pends only on the wave number k and the energy dissi-
pation rate e � d�y2�2��dt where y is the velocity, it is
found by dimensional argument that Ep�k� � e4�3k27�3,
a scaling [13] which corresponds to the celebrated k25�3

power law of the energy spectrum. The experimentalists
should not have difficulty in distinguishing the two power
laws: k22 in turbulent helium II and k27�3 � k22.33 in
classical turbulence (e.g., helium I), hence in identifying
the quantum signature of helium II turbulence.

Our numerical simulations are based on the approach of
Schwarz [14]. We represent a quantized vortex filament
as a space curve s � s�j, t� where j is arclength and t is
time, which moves with velocity vL � ds�dt given by

vL � vs 1 as0 3 �vn 2 vs� 1 a0s0 3 �s0 3 �vn 2 vs�� ,

(2)

where s0 � ds�dj, a and a0 are mutual friction coeffi-
cients [15], vn is the prescribed normal fluid velocity, and
vs is the self-induced velocity at the point s given by

vs �
G

4p

Z �r 2 s� 3 dr
jr 2 sj3

. (3)

The calculation is performed in a periodic box of vol-
ume V � d3 � �0.1�3 cm3. The numerical technique is
standard [14] and the details of our algorithm, including
how to perform vortex reconnections, have been published
elsewhere [9]. The time step is chosen so that we can re-
solve Kelvin waves corresponding to the minimum spatial
scale, d � d�128 � 0.78 3 1023 cm.

In the current experiments helium II is made turbulent
by standard classical techniques (imposed pressure gra-
dients, grids, propellers, etc.), so it is natural to assume
that the normal fluid vn consists of a uniform mean flow
and superimposed turbulent fluctuations, vn � Un 1 un.
Following Vassilicos and co-workers [16], we choose the
© 2001 The American Physical Society 275302-1
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fluctuations un so that they have a Kolmogorov energy
spectrum En�k� � k25�3, which is defined such thatZ kmax

0
En�k� dk �
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ZZZ 1
2
jv2

n j dV , (4)

where kmax � 1��2h� where h represents the Kolmogorov
length. Specifically we have

un �
m�MX
m�1

�Am 3 k̂m cos�km ? x 1 vmt�

1 Bm 3 k̂m sin�km ? x 1 vmt�� , (5)

where M � 64 is the number of modes, k̂m is a random
unit vector �km � kmk̂m�, and the directions and orien-
tations of Am and Bm are chosen randomly under the
assumption (with no loss of generality) that they are nor-
mal to k̂m, the random choice of directions for the mth
wave mode being independent of the choices of the other
wave modes. Note that the velocity field un is incom-
pressible by construction. The amplitudes Am and Bm

of the vectors Am and Bm are determined by the Kol-
mogorov energy spectrum En�k� � k25�3 via the rela-
tions �3�2�A2

m � �3�2�B2
m � En�km�Dkm where Dkm �

�km11 2 km21��2. Finally, the unsteadiness frequencies
vm are determined by the eddy turnover time of wave
mode m, that is, vm �

p
k3

mEn�km�.
The results presented here correspond to the following

choice of parameters: T � 1.3 K, Un � 2.36 cm�sec,
and un,rms � 11.927 cm�sec. The Kolmogorov length
h � 0.78 3 1023 cm is consistent with the minimum
scale d used; h is estimated from h�� � R23�4

where � � d�2 is the integral scale, R � un,rms��nn,
nn � m�rn � 2.34 3 1023 cm2�sec is the kinematic
viscosity of the normal fluid, rn is the normal fluid den-
sity, and m is the viscosity of helium II. The calculation
starts with some initial superfluid vortex rings [14] (the
result is independent of the arbitrary initial configura-
tion), which immediately interact with each other and
with the normal fluid, soon forming a tangle of vortex
lines. We stop the calculation at time t � 0.093 sec
when the tangle is so intense that the vortex line density
is L0 � L�V � 14 180 cm22 where L is the total
vortex length; this value is large enough to be typical of
experiments [17].

We now calculate the pressure spectrum Ep�k�.
Figure 1 shows that the pressure spectrum is visi-
bly different from the Kolmogorov k27�3 pressure
spectrum over a range of wave numbers smaller than
1�h. It exhibits a k22 shape even though the energy
of the normal fluid follows the Kolmogorov k25�3

spectrum over the same range of wave numbers. In fact,
as shown by Kivotides et al. [18], even the energy of the
total fluid follows the Kolmogorov k25�3 spectrum over
this wave number range. The pressure spectrum of the
superfluid turbulence stands out because of its nonclassical
behavior over inertial range wave numbers.
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FIG. 1. Compensated pressure spectrum Ep �k� (in units of
cm5�sec4) as a function of wave number k (in units of cm21).
Ep �k� is multiplied times k2 to make the scaling Ep�k� � k22

apparent. The solid line with crosses shows the result of our cal-
culation for a vortex tangle of density L0 � 14 180 cm22. The
solid line without crosses shows the classical Kolmogorov pres-
sure scaling k27�3. The difference between the quantum (k22)
and classical (k27�3) dependence is clearly noticeable.

It is interesting to notice that we find that the scaling
Ep � k22 is valid in the region 1��2h� $ k $ 1��0 �
119 cm21 where �0 � L

21�2
0 � 8.4 3 1023 cm is the av-

erage spacing between the vortex lines. A similar k22

dependence of the spectrum is found in runs with smaller
values of un,rms.

Why the k22 dependence? The k22 pressure spectrum
is a consequence of the locality in physical space of the
vorticity filaments in the superfluid turbulence, as the fol-
lowing argument shows. Consider the equations of motion
of the normal fluid and the superfluid [19]:

rn
≠vn

≠t
1 rn�vn ? =�vn � 2

rn

r
=p 2 rsS=T

1 m=2un 1 Fns , (6)
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≠vs

≠t
1 rs�vs ? =�vs � 2
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r
=p 1 rsS=T 2 Fns ,

(7)

where S is the entropy per unit mass, rs � r 2 rn the
superfluid density, and Fns the mutual friction force. By
taking the divergence of the sum of (6) and (7) and assum-
ing incompressibility (= ? vs � 0 and = ? vn � 0) we ob-
tain the governing Poisson equation for the pressure field
which we have used to calculate Fig. 1
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where the source term on the right hand side is a function
of the vorticities v � = 3 v and the strain rate tensors,
sij � �1�2� �≠yi�≠xj 1 ≠yj�≠yi�, of the normal fluid and
the superfluid velocity fields (indicated by the subscripts n
and s, respectively). Unlike the normal fluid contribution,
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the superfluid part of this source term is extremely well lo-
calized in physical space because the superfluid vorticity is
concentrated in thin vortex filaments. Fourier transforma-
tion of (8) shows that k2p̂�k��r is equal to a function that
is very slowly varying in wave number space for k ø 1�a
plus contributions from the normal fluid which can be ex-
pected to decay with increasing wave number k because
the normal fluid vorticity and strain rate fields are not so
localized in physical space. This property is independent
of the exact nature of the core size. Hence

jp̂�k�j2

r2 � k24 (9)

for k ø 1�a. The pressure spectrum Ep�k� of the pressure
field is defined such that

Z `

0
Ep�k� dk �

ZZZ j p̂�k�j2

r2 d3k , (10)

and therefore Ep�k� � k2j p̂�k�j2. The conclusion is that

Ep�k� � k22 (11)

for k ø 1�a, which is confirmed by the numerical simu-
lation. Note that although we used spherical coordinates
in Fourier space, we did not make any assumption about
symmetry. The result (11) is a consequence of the extreme
localization of superfluid vorticity in physical space, that
is to say of the quantum nature of helium II. The effect is
increasingly sharp when the temperature is made so small
that rs is much larger than rn [see Poisson equation (8)
above]. In the absence of superfluid vorticity the pressure
spectrum is dominated by the normal fluid velocity field
(5) and has a well defined Kolmogorov k27�3 scaling [20].

It must be said, however, that the exact Kolmogorov
scaling for the pressure field has not been verified in recent
experiments [12] and in direct numerical simulations of
classical fluid turbulence either: Gotoh and Fukayama
[10] claimed evidence of a k27�3 range in the spectrum,
but also of a different dependence at higher wave numbers.
More work is clearly required. It is, however, encouraging
to remark that Abry et al. [12] found that the removal
of the signal arising from strong pressure drops (intense
vortices) affects the spectrum at small wave number k, not
at high k. This observation, that it is the pressure spectrum
at the large scale which is mostly affected by localized
vortices, is not inconsistent with our suggestion that there
should be a macroscale effect of superfluid filaments.

Finally, it must be noticed that there is nothing compa-
rable in classical fluid turbulence to the extreme localiza-
tion of superfluid vortex filaments in superfluid turbulence.
There is small-scale organized vorticity in classical fluid
turbulence [21] which does indeed seem to affect the pres-
sure spectrum [10,22] but only at the smallest scales and
without the generation of a clear k22 pressure spectrum.

In conclusion, numerical simulations backed up by
physical arguments predict a k22 pressure spectrum for
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superfluid turbulence which is a macroscale quantum
signature not to be found in the classical theory of fluid
turbulence. Experimental attempts to measure spectra
in turbulent helium II concentrated the attention on the
velocity field [2]. However, accurate pressure gauges for
cryogenics fluid now exist [23], and work is in progress to
build devices suitable for helium turbulence [24]. There
are clearly experimental problems to solve regarding
the sensitivity and the size of the probe, as well as the
frequency response, but they do not seem impossible to
overcome, more so if MEME technology is used. We hope
therefore that our prediction will add to the motivations
behind this development of instrumentation and stimulate
the measurement of pressure spectra in turbulent helium
II. Ideally one should measure turbulent pressure spectra
in the same apparatus at two different temperatures, just
above and below the lambda point, to compare predictions
in the classical (above the lambda point) and superfluid
(below the lambda point) regimes. On the theoretical side,
our results call for the investigation of the fully coupled
motion of turbulent normal fluid and superfluid vortices,
something which, until now, has been attempted only for
very simple vortex configurations [6].
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