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Velocity spectra of superfluid turbulence
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Abstract. – We study numerically statistics of superfluid turbulence. We generate a quantized
superfluid vortex tangle driven by a realistic model of normal-fluid turbulence whose energy
spectrum obeys Kolmogorov’s classical k−5/3 law, where k is the wave number. We find that the
resulting superfluid velocity spectrum has approximately a k−1-dependence for wave numbers
of the order of 1/δ and larger, where δ is the average intervortex spacing. This result is similar
to what happens in a pure superflow. We also find that the spectrum of the total velocity field
follows the classical k−5/3 law, even at temperatures low enough that the normal-fluid mass is
only 5% of the total helium mass. We discuss our assumptions and results in view of recent
experiments.

In the two-fluid model of superfluidity the motion of the fluid is described by two su-
perimposed velocity fields, the normal-fluid velocity Vn and the superfluid velocity Vs. The
superfluid component flows with zero viscosity while the normal fluid component moves with
a small but non-zero viscosity. This description of superfluidity as two interpenetrating com-
ponents was originally put forward to explain some apparently paradoxical experiments in
which helium II flows at fairly low velocity, but it has also described well the high-velocity
counter-flow turbulence that occurs when the mean superfluid and normal-fluid velocities are
in opposite directions [1]. Theoretical and experimental research on helium-II hydrodynamics
is now turning to applying the two-fluid model to the co-flow turbulence of helium II, where
the mean velocity of the two components is in the same direction, or is zero. In current
experiments turbulence in helium II is produced using standard techniques of classical fluid
dynamics, such as towing a grid [2, 3], rotating propellers [4] or moving a sphere [5].

In isolation, the normal-fluid component would have the Navier-Stokes turbulence expected
of a fluid with non-zero viscosity. And, again in isolation, the superfluid component would
have the turbulence behaviour of the inviscid Euler equation, with the extra constraint that
the vorticity in the flow must be confined to vortex filaments with quantized circulation. But,
except at absolute zero temperature, the two components are not isolated from one another,
and the flow behaviours of both fluids, including turbulence, may be strongly affected by the
coupling between the two fluid components [6]. In the interpretation of results of experiments
in helium-II turbulence two assumptions are often made. The first assumption is that the
turbulence in the normal fluid is still Navier-Stokes turbulence (at least approximately) despite
the addition of the mutual friction force. The second assumption is that this normal-fluid
c© EDP Sciences
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turbulence drives the superfluid also into a classical turbulence behaviour. Vinen [7] suggested
that the superfluid and normal-fluid velocity fields may lock together and become identical
at length scales much larger than the average separation δ between the quantized vortices. If
that happens, Vs and Vn will have the same spectrum at wave numbers k � 1/δ.

The aim of this letter is to start an investigation of the spectrum of the superfluid compo-
nent when the flow is driven by a normal-fluid velocity field with Kolmogorov’s classical 5/3
power law kinetic-energy spectrum.

Our numerical calculation is based on the approach of Schwarz [8] in which a quantized
vortex filament is represented as a space curve s = s(ξ, t), where ξ is arclength and t is time,
which moves with velocity ds/dt given by

ds

dt
= Vs + αs′ × (Vn − Vs) + α′s′ × (

s′ × (Vn − Vs)
)
, (1)

where s′ = ds/dξ, α and α′ are known mutual friction coefficient, Vs is the self-induced
velocity at the point s given by the Biot-Savart integral

Vs =
Γ
4π

∫
(r − s) × dr

|r − s|3 , (2)

and Γ = 9.97 × 10−4 cm2/s is the quantum of circulation. We make the standard assump-
tion that the quantized vortex filaments reconnect when they cross one another. The mutual
friction force on the superfluid vortices is proportional to the local difference in the velocity
fields of the two fluid components, Vn − Vs. The mutual friction force exchanges energy be-
tween the two fluids, potentially in either direction, so the normal fluid may act as an energy
source for the superfluid, driving the turbulence, or as an energy sink and thus a form of dis-
sipation [9]. Ideally, one would solve the hydrodynamic equations for both fluid components
simultaneously. But that is computationally very expensive and has been attempted only for
very simple geometries [10]; the reasonable approximation which we follow is to determine the
response of the superfluid to an imposed normal-fluid flow, neglecting the back reaction of the
superfluid vortices on the normal fluid. Despite its limitation, the kinematic approach pre-
sented here represents a significant improvement on previous kinematic calculations in which
the imposed normal fluid was laminar (uniform flow, Poiseuille flow, Gaussian vortex, ABC
flow). Here we adopt a more realistic Lagrangian Kinematic Simulation model of turbulence
(referred to as the KS model [11]). In this model of a turbulent flow the normal-fluid velocity
field is given by Vn = U0

n + v′
n, where U0

n is a uniform flow and v′
n represents a fluctuating

turbulent part given by

v′
n =

M∑
m=1

[Am × k̂m cos(km · x + ωmt) + Bm × k̂m sin(km · x + ωmt)]. (3)

Here M = 64 is the number of modes, k̂m is a random unit vector with km = kmk̂m, and the
vectors Am and Bm are chosen randomly but such that |Am|2 = |Bm|2 = (2/3)En(km)∆km

where the energy spectrum of the normal fluid, En(km), satisfies Kolmogorov’s k−5/3 law

En(km) ∼ ε2/3k−5/3
m (4)

and the energy dissipation rate per unit mass, ε, is a constant which depends on input pa-
rameters. Note that ∇ · v′

n = 0 by construction. The frequency ωm of the m-th mode is
chosen to be equal to the eddy turnover time of that mode, so ωm =

√
k3

mEn(km). Since in
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Fig. 1 – Vortex tangle at t = 0.093 s.

our calculation there is no uniform superflow which is applied, vs consists only of fluctuations
caused by the superfluid vortices and we call v′

s = vs.
The time-dependent velocity field generated by the KS model is a qualitatively realistic

representation of the type of eddying, straining and streaming flows observed in turbulence.
Our aim is to calculate the response of superfluid vortex filaments to the mutual friction force
generated by this turbulent flow.

We perform our numerical calculation in a cubic periodic box of size h = 0.1 cm at
temperature T = 1.3 K. The mean normal flow is V 0

n = 2.36 cm/s and the rms value
Vrms of the turbulent fluctuations v′

n is Vrms = 11.93 cm/s. The Kolmogorov length is η =
�R−3/4 = 0.00078 cm, where � = h/2 is the integral scale, R = Vrms�/νn = 255 is the
Reynolds number, νn = µ/ρn = 2.34 × 10−3 cm2/s is the kinematic viscosity of the normal
fluid, ρn = 0.00652 g/cm3 is the normal-fluid density and µ is the viscosity of helium II (note
that we define the Reynolds number using νn = µ/ρn rather than ν = µ/ρ). The calculation
starts with 20 superfluid vortex rings of random size and orientation (the result is independent
of the initial condition). The initial superfluid filaments interact with each other and with
the normal fluid and soon a tangle of filaments is formed. We stop the calculation at time
t = 0.093 s (see fig. 1) at which point the total length of the tangle of filaments is Λ = 14.18 cm,
hence the vortex line density is L = Λ/h3 = 14180 cm−2 and the average intervortex spacing
is δ ≈ L−1/2 = 0.008 cm. Calculations with larger values of Λ are not practical because the
time required to evaluate the Biot-Savart integral is proportional to the square of the number
of the discretization points.

To analyse the result we define the velocity spectra of the two fluid components:

En(k) = 4πk2|ṽ′
n|2, (5)

Es(k) = 4πk2|ṽ′
s|2, (6)
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Fig. 2 – Velocity spectra plotted vs. wave number log10 k. The units of k are cm−1. Asterisks:
normalized normal-fluid velocity spectrum log10

(
(ρ2

n/ρ2)En(k)
)
; dark triangles: total-velocity spec-

trum log10

(
Et(k)

)
− 0.5; the downward shift of 0.5 units is introduced to distinguish the curve of

(ρ2
n/ρ2)En(k) from the curve of Et(k) which would otherwise overlap. Open squares: normalized

superfluid velocity spectrum log10

(
(ρ2

s/ρ2)Es(k)
)
. The line labelled “a” illustrates the slope of Kol-

mogorov’s k−5/3 law; the line labelled “b” illustrates the k−1 slope. The arrow labelled “c” marks
log10(kδ), where kδ = 1/δ = 119 cm−1 corresponds to the intervortex spacing δ.

where ṽ′
n and ṽ′

s are the Fourier transforms of v′
n and v′

s, respectively. Figure 2 shows the
resulting (normalized) normal-fluid and superfluid velocity spectra En(k) and Es(k). The ve-
locity spectrum of the normal fluid, En(k), follows Kolmogorov’s k−5/3 power law, as it should
be by construction. The velocity spectrum of the superfluid, Es(k), is evidently different. We
conclude that, at least in this example, the superfluid vorticity tangle that develops from the
mutual friction force induced by the normal fluid does not share the turbulence statistics of
the driving normal-fluid flow.

We know from our previous calculation [12] at T = 0 that, in the absence of the normal
fluid, the velocity spectrum of superfluid vortices has Es(k) ∼ k−1-dependence which arises
from a Kelvin wave cascade [7, 12, 13], a result which has recently been confirmed by Araki
et al. [14]. The finite-temperature spectrum presented in fig. 2 shows that Es(k) is much
shallower than the driving k−5/3 normal-fluid dependence, the power law of Es(k) being close
to k−1. It is interesting to note that the k−1-dependence of Es(k) actually extends into the
region of wave numbers k < kδ = 119 cm−1, where kδ = 1/δ corresponds to the average
intervortex spacing.

Ideally one would like to explore the spectrum in the region k � 1/δ and test Vinen’s
idea that Vs ≈ Vn at length scales much larger than the vortex separation δ. Unfortunately,
it is difficult to generate a larger separation of scales, because the large L required to reduce
δ makes the evaluation of the necessary Biot-Savart integrals computationally prohibitive.
The resolution of more length scales would also allow direct comparison with the experiments
by Stalp et al. [3] who measured the decay of superfluid vorticity created by a towed grid.
They modelled their results by assuming that the superfluid obeys Kolomogorov’s spectrum,
but there is no conflict between their model (Es(k) ∼ k−5/3) and our result (Es(k) ∼ k−1)
because the two investigations are likely to refer to different parts of the spectrum (k � 1/δ
and k ≥ 1/δ, respectively); this would certainly be the case if the two fluids lock together in
a classical behaviour at large length scales, as suggested by Vinen [7].

Despite this limitation, our result that Es(k) ∼ k−1 at wave numbers of the order of
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magnitude of kδ is significant because a priori we would expect this power law only in the
region k � 1/δ (isolated vortex line). Furthermore, our result generalizes what is known in
the T = 0 case.

We can also define a velocity field vt based on the total mass flux

ρvt = ρsv
′
s + ρnv′

n, (7)

where ρs = 0.1386 g/cm3 is the superfluid density at T = 1.3 K and ρ = ρs+ρn = 0.1451 g/cm3

is the total density of helium II. The corresponding total velocity spectrum is

Et(k) = 4πk2|ṽt|2. (8)

In strong contrast to the non-classical statistics of the superfluid velocity spectrum Es(k),
we find that the spectrum of the total velocity, Et(k), obeys the classical k−5/3-dependence
—see fig. 2. To understand this result we square eq. (9), Fourier-transform it and obtain

Et(k) =
(

ρs

ρ

)2

Es(k) +
(

ρn

ρ

)2

En(k) + 2
(

ρsρn

ρ2

)
Ec(k), (9)

where we have introduced the cross-term spectrum Ec(k) = 4πk2ṽ′
s · ṽ′

n which measures the
alignment of v′

s and v′
n in Fourier space (not in real space). We observe that Ec(k) is two

to three orders of magnitude smaller than En(k) and Es(k), indicating that there is very
little alignment of the normal fluid and superfluid velocities in Fourier space. Note that fig. 2
shows normalized velocity spectra to show directly the relative size of the quantities Et(k),
(ρ2

n/ρ2)En(k) and (ρ2
s/ρ2)Es(k) which appear in eq. (9). Figure 2 clearly shows that in our

calculation the turbulent energy of the superfluid is very small compared with that of the
normal fluid on the length scales concerned.

Before discussing whether this energy balance is general, we show that the total velocity
can be a useful concept to interpret the experimental technique of Maurer and Tabeling [4].
Maurer and Tabeling produced turbulence using two counter-rotating disks and observed
Kolmogorov’s classical k−5/3 law for local pressure fluctuations obtained on a small head-
tube. After making a number of reasonable assumptions they derived a two-fluid Bernoulli
theorem which relates the instantaneous measured pressure Pmeas(t) to the actual pressure
P (t) and the upstream superfluid and normal-fluid velocities Vs(t) and Vn(t): Pmeas(t) =
P (t)+ 1

2ρsV
2
s (t)+ 1

2ρnV 2
n (t). Then, after decomposing Vs(t), Vn(t), P (t) into time-independent

mean fields U0
s , U0

n , P 0 (which are related to the main axial swirls induced by the disks) and
time-dependent fluctuations v′

s(t), v′
n(t), p′(t), and after noticing that the fluctuations have

zero mean, they concluded that what is measured is the spectrum of the quantity Pmeas(t) =
p′(t) + ρsU

0
s v′

s(t) + ρnU0
nv′

n(t). Maurer and Tabeling noticed that, as in ordinary turbulence,
the right-hand side is dominated by the dynamic term, hence by measuring the pressure
fluctuations at the head of the tube one has direct access to the velocity fluctuations. At
this point, by combining their analysis with Vinen’s idea that the large-scale fields are the
same (U0

n = U0
s = U0), we conclude that what is actually measured is the total velocity,

Pmeas(t) = p′(t) + U0ρv′
t(t), where ρvt(t) = ρnv′

n(t) + ρsv
′
s(t).

To complete the discussion of Maurer and Tabeling’s experiment we notice that their main
result, that the spectrum of Pmeas(t) obeys Kolmogorov’s law independently of temperature,
can be accounted for in two ways. The first explanation is that the normal-fluid term is
always greater than the superfluid term, even at low temperature; if that is the case, although
the magnitude of the spectrum depends on temperature via ρn, the power law remains the
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same, k−5/3. The second explanation is based on Vinen’s idea: if not only the mean flows
(U0

n and U0
s ) but also the fluctuations (v′

n(t) and v′
s(t)) are locked together, then, using the

two-fluid Bernoulli theorem, since ρs + ρn = ρ and Vs(t) = Vn(t) = V (t), we conclude that
Pmeas(t) = P (t)+ρV 2(t) is indeed independent of temperature. In the experimental conditions
of Maurer and Tabeling the second explanation is also possible. Although we do not know
δ (because L was not measured), it is fair to assume that, because of the relatively large
diameter of the head-tube (0.1 cm), the flow region ∆ which was probed must have been
much larger than δ (given the large Reynolds number involved, L � ∆−2 = 100 cm−2).

We discuss now the choice of parameters used in the simulation. We chose the low-
temperature end (T = 1.3 K) of the typical experimental range in order to minimize the
contribution of the normal fluid to the total velocity spectrum. At this temperature, ρn/ρ =
0.045 and ρs/ρ = 0.96, so that the contribution of En(k) to Et(k) is multiplied by a very
small coefficient. Despite this, we find that Et(k) is still dominated by En(k). At higher
temperatures this dominance would only increase, given a superfluid vortex tangle of a similar
line density.

The natural question to ask is whether this situation (that the normal fluid dominates
the total energy spectrum) is a special case resulting from our choice of input parameters
(very large normal-fluid turbulent velocity and relatively weak vortex line density), or is this
situation common? Although the spectra of fig. 2 do not correspond to a statistical steady
state, it is likely that the situation described in our numerical calculation is typical of recent
experiments in helium-II turbulence. First let us consider the normal fluid’s Reynolds number
(remember that we define R using the normal-fluid’s density ρn, not the total density ρ). Our
values of mean flow and turbulent rms velocity are much smaller than some of the normal-fluid
velocities that are quoted in the experiments. For example our Reynolds number (R = 255) is
significantly smaller than values reported by Stalp et al. [3] in their table 1 (from R = 103 up
to R = 20 × 104 using grid velocities vg from 5 up to 100 cm/s at T = 1.5 K). Our Reynolds
number is also smaller than what is quoted by Maurer and Tabeling [4] (R = 1.4 × 105).
Secondly, let us consider the superfluid’s vortex line density. As said before, there are practical
computational constraints which prevent us from reaching the high values of L which we would
like; our value L = 14180 cm−2 is smaller than than the initial value L ≈ 2× 105 cm−2 shown
by Stalp et al. in their fig. 2 for vg = 5 cm/s. Nevertheless, our L is of the same order of
magnitude of their value of L at saturation when the observed classical decay begins (e.g.,
L ≈ 18000 cm−2 for vg = 5 cm/s). Moreover, this classical decay is observed down to vortex
lines densities as low as L ≈ 103 cm−2, so our L is clearly in the range of the phenomena of
interest. Notice that to boost the Es(k) term in eq. (9) would require a much larger initial
vortex line density for the same normal-fluid energy; since we expect that in a random vortex
tangle the superfluid velocity scales like Γ/δ ≈ ΓL1/2, we have Es(k) ∼ L. Therefore, to
make Es(k) as big as En(k) in our fig. 2, we would need to increase L by more than two
orders of magnitude; this would make L one order of magnitude bigger than the initial value
L = 2×105 cm/s reported by Stalp et al. for the lowest grid velocity. The situation described
in our calculation is therefore not atypical and En(k) is likely to be the major contribution to
the total energy spectrum Et(k).

If the superfluid vortex tangle were not random, but were instead polarized with large
amounts of superfluid vortex lines locally aligned, then the scale of the superfluid velocity
would be larger than that of a random tangle. But there is no evidence from either experi-
ments or numerical simulations for the formation of strong local organization in the superfluid
vorticity in turbulent helium-II flow. Whether such polarization can take place at large length
scale is an important issue which our simulation cannot address because we do not have res-
olution over a wide range of scales.
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In conclusion, we calculated the superfluid velocity spectrum resulting from an imposed
KS model of turbulence, possibly the most realistic description available of the turbulent
normal fluid of current experiments. Our choice of parameters (Reynolds number and vortex
line density) should be typical of experimental situations. We found that, while the driving
normal-fluid velocity field has Kolmogorov’s k−5/3 energy spectrum, the superfluid velocity
field that develops from the mutual friction forcing does not have a k−5/3 energy spectrum,
but instead obeys a shallower power law similar to the k−1 power law calculated at T = 0
when the normal fluid is absent. We also found that, even at T = 1.3 K, where the influence
of the normal fluid would presumably be smallest due to the very low normal-fluid density
(representing less than 5% of the total mass), the velocity spectrum of the total mass flow is
still dominated by the contribution from the normal fluid and obeys the classical k−5/3 law.

The scaling laws which we found apply to a limited region of the spectrum at wave numbers
k of the order of kδ ≈ 1/δ and k > kδ. It is hoped that further work will generate more
intense vortex tangles in order to determine whether the scaling Es(k) ∼ k−1 extends into
the large-scale flow region k � kδ, or whether in that region the superfluid velocity field is so
strongly coupled to the normal-fluid velocity field that En(k) ∼ Es(k). This is certainly the
most important issue in the current study of helium-II turbulence. In the meantime we have
explored some consequences of the assumption that the two fluids are similar at large scales
in the interpretation of recent experiments. On the experimental side, it is apparent that
progress would arise if one carried out simultaneous measurement of two quantities which
involve Vs and Vn; for example, the set-up of Maurer and Tabeling [4] should include the
measurement of superfluid vortex line density, and the set-up of Stalp et al. [3] should include
the measurement of pressure spectra.
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