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A Lagrangian model for turbulent dispersion with turbulent-like
flow structure: Comparison with direct numerical simulation
for two-particle statistics
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A wide range of relative two-particle dispersion statistics from the Lagrangian Kinematic
Simulation~KS! model, which contains turbulent-like flow structures, compares well with Yeung’s
@Phys. Fluids6, 3416 ~1994!# DNS results. In particular, the Lagrangian flatness factorm4(t)
compares excellently~better than Heppe’s@J. Fluid Mech.357, 167 ~1998!# nonlinear stochastic
model!. For higher Reynolds numbers the results from KS show thatm4(t) is significantly greater
than 3 over a wide range of times within the inertial range of time scales. ©1999 American
Institute of Physics.@S1070-6631~99!02706-3#
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I. INTRODUCTION

We compare the results of a Kinematic Simulation~KS!
with Yeung’s1 Direct Numerical Simulation~DNS! results
on two-particle dispersion. KS is aLagrangian model of
turbulent dispersion that incorporates turbulent-like flo
structure~see Funget al.,2 Fung and Vassilicos,3 and refer-
ences therein!. The basic assumption of KS is that it shou
be sufficient, for the calculation of Lagrangian~not Eulerian!
statistics, to have a qualitatively~but not necessarily quanti
tatively! realistic representation of the geometrical charac
of turbulent trajectories that are generated by the flow str
tures of the turbulence. The flow structures in KS are
quantitatively precise, but they are turbulent-like in the se
that they are the type of eddying, straining, and stream
structures similar to those expected and observed in turbu
flows; see Chonget al.,4 for example. The KS structures ar
not quantitatively precise, in the sense that they do not h
exactly the same shape as the equivalent structures in the
turbulence.

Yeung’s1 results on two-particle relative dispersion ha
been obtained from a DNS of a statistically stationary a
isotropic turbulence with Rel'91. These results includ
relative displacements, correlation coefficients, skewness
efficients, and flatness factors. Of particular interest is
result on the time dependence of the flatness fa
m4(t,l 0)5^w1

4(t)&/^w1
2(t)&2, wherew1 is one arbitrary com-

ponent of the relative velocityw(t)5u(1)(t)2u(2)(t) be-
tween two fluid elements~particles! marked~1! and~2! with
respective Lagrangian velocitiesu(1)(t) andu(2)(t), l 0 is the
initial separation of the two particles, and the brackets^¯&
denote an average over an ensemble of fluid element p
The one stochastic model of two-particle dispersion to d
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that has been adjusted to incorporate finite Reynolds num
effects~Heppe5! gives, for Rel'91, a time dependence ofm4

that is qualitatively similar to Yeung’s,1 but that differs
quantitatively by nearly one order of magnitude. KS is,
construction, a finite Reynolds number model, and we rep
here that KS can reproduce the results of Yeung’s1 DNS
within good quantitative agreement, including the result
m4(t).

In Sec. II we describe KS and briefly contrast it to st
chastic models of turbulent dispersion. In Sec. III we pres
the results obtained with KS and we compare them to
DNS results obtained by Yeung1 for Rel'91. In Sec. IV we
use KS to calculatem4(t) for several higher Reynolds num
bers. This leads us to a short discussion of Lagrangian In
mittency, and we conclude in Sec. V.

II. KINEMATIC SIMULATIONS

KS is a Lagrangian model of turbulent dispersion, whe
individual fluid element trajectoriesx(t) are calculated by
integrating

d

dt
x~ t !5u~ t !5uE@x~ t !,t#, ~1!

in individual realizations of an Eulerian turbulent-like velo
ity field uE(x,t), which is three dimensional for the purpos
of this paper, and is generated as follows:

uE~x,t !5 (
n51

Nk

@An3k̂n cos~kn–x1vnt !

1Bn3k̂n sin~kn–x1vnt !#, ~2!

whereNk is the number of modes in the simulation,k̂n is a
random unit vector (kn5knk̂n), and the directions and ori
entations ofAn andBn are chosen randomly under the co
straint that they be normal tok̂n . This random choice of
directions for thenth wave mode is independent of the ra
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FIG. 1. The different KS energy spec
tra used in the simulations. Details o
each case 1–4 is described in the fir
paragraph of Sec. III.
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the velocity field~2! is incompressible by construction. Th
positive amplitudesAn andBn of the vectorsAn andBn are
determined by

3
2An

25 3
2Bn

25E~kn!Dkn , ~3!

whereE(k) is an arbitrarily prescribed Eulerian energy spe
trum, and Dkn5(kn112kn21)/2 for 2<n<Nk21, Dk1

5(k22k1)/2, and DkNk
5(kNk

2kNk21
)/2. Within a simu-

lated inertial subrange, we choose (kh)5/3E(k)(en5)21/4

5aK , whereaK is a dimensionless constant ande is a quan-
tity that has the dimensions of a rate of energy dissipa
~although in KS there is no actual dynamical transfer of
ergy between modes! and is given formally by
2n*0

`k2E(k)dk. We can also obtain (u8)2/vh
2

52*0
`E(k)dk, wherevh5(eh)1/3. From the energy spec

trum in Fig. 1 of Yeung,1 we haveaK52. As in Yeung,1 all
quantities are scaled on the Kolmogorov microscales
length and time,h and th5e21/3h2/3, unless otherwise
stated. Note that Yeung definesh from hkh51.5, and we do
the same; see Fig. 1. More details are contained in Tabl

The frequenciesvn in ~2! determine the unsteadines
associated with wave moden. In this particular version of

TABLE I. Input KS parameter values for case 4 of Fig. 1.

Case kI /kL k0h NkL kLh NkI kIh NkH khh

4 5 1.7231022 50 6.031022 50 0.3 5 1.5
4 100 8.5731024 50 3.031023 150 0.3 5 1.5
4 400 2.1431024 50 7.531024 250 0.3 5 1.5
Downloaded 16 Oct 2009 to 155.198.157.156. Redistribution subject to AI
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KS, we choose the unsteadiness frequencyvn to be propor-
tional to the eddy-turnover time of the wave moden, i.e.,

vn5lAkn
3E~kn!, ~4!

wherel is a dimensionless constant that may be expecte
be of order 1.~If l@1 then the velocity field is essentiall
flapping so fast at all scales that fluid elements do not h
the time to experience the effects of eddying, streaming,
straining flow structures, and ifl!1 then the velocity field
is essentially frozen at all scales, which is unlike turbulenc!

The inputs of KS are therefore the Eulerian energy sp
trum E(k), the unsteadiness parameterl, and, strictly speak-
ing, also the number of modesNk and the distribution of
wave numberskn . For example, in this work we use geo
metric distributions, i.e.,kn5k1an21, wherea is a dimen-
sionless number determined bykNk

5k1aNk21, because ex-
treme wave numbersk1 and kNk

are given with the energy
spectrumE(k). However, there is no absolute freedom
chose these input parameters as we wish:l cannot be larger
thanO(1), andchanges in the distribution and numberNk of
modes should not significantly affect the Lagrangian outp
of the model.

Previous works~Funget al.,2 Fung and Vassilicos,3 and
references therein! have shown that turbulent-like velocit
fields of the type simulated here are statistically stationary
time, and also isotropic. These works have also shown
instantaneous streamlines defined by the KS velocity fi
~2! have well-defined eddying, straining, and streaming fl
structures and suggested that the mere existence of t
flow structures has important quantitative implications
P license or copyright; see http://pof.aip.org/pof/copyright.jsp
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Lagrangian two-particle statistics. At any rate, the mec
nisms by which particles separate under the action of a
chastic Lagrangian relative velocity process or under the
tion of a Eulerian velocity field with well-defined small-sca
turbulent-like flow structures, as in KS, are very differe
We briefly describe stochastic models of turbulent dispers
before spelling out this difference.

Stochastic models of turbulent dispersion are Lagrang
models where particle positions in the case of one-part
models, and two-particle relative velocities in the case
two-particle models, are solutions of Langevin equations
thereby depend on Wiener processes~see Heppe,5 Pedrizzetti
and Novikov,6 Borgas and Sawford,7 and references therein!.
Such Lagrangian positions and relative velocities vary w
time in a way similar to a Brownian motion with drift, an
are therefore very different in character from the Lagrang
positions and velocities generated by the KS velocity fi
~2!. Even though statistics are obtained by averaging o
many particle trajectories in many realizations of the turb
lence, the qualitative difference in the nature of the Lagra
ian velocity processes and consequently in the nature of
ticle trajectories, can have a significant quantitative imp
on some of these statistics~see Funget al.,2 Malik,8 and
Fung and Vassilicos3!. This is quite dramatically demon
strated in this paper, where we show that KS can reprod
Yeung’s1 DNS flatness factorm4(t) results within a factor of
about 1.5, whereas Heppe’s2 two-particle stochastic model o
dispersion gets it to within a factor of about 8. As discuss
by Fung et al.2 and Fung and Vassilicos,3 in KS, particle
pairs move alongside each other for quite some time u
they encounter a straining region and suddenly separate
perimental measurements of one- and two-particle pair
jectories in turbulent flows has been obtained recently
Virant and Dracos9 using the three-dimensional~3-D! Par-
ticle Tracking Velocimetry technique developed at the ET
Zürich, ~Maaset al.10 and Malik et al.11!. Most relevant to
the present work is their Fig. 8~d!, which shows the trajec
tories of a pair of particles initially close together: they r
main close together for some time before bursting away fr
each other in a similar manner to that just described. T
separation of particle pairs in stochastic models does
happen in bursts, but more uniformly in time because of
Wiener processes’ Markovian property.

Another important difference between KS and stocha
models of turbulent dispersion is that the Lagrangian integ
time scaleTL is an input for stochastic models, but it is a
output in KS. Furthermore, KS is a Lagrangian model
turbulent dispersion that can be used unaltered both for o
particle and two-particle dispersion, whereas stochastic m
els of one-particle and two-particle dispersion need to
constructed separately.

III. RESULTS AND COMPARISON WITH DNS

Yeung’s DNS is for statistically stationary turbulenc
and the energy spectrum remains, therefore, constant in t
This energy spectrum—Fig. 1 in Yeung1—is approximately
equal to 2(en5)1/4(kh)25/3 in the range 0.06<kh<0.3,
whereh is the Kolmogorov length scale,e the energy dissi-
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pation rate per unit mass, andn the kinematic viscosity. But
there is also some energy in the low (kh,0.06) and in the
high (kh.0.3) wave number ranges of the spectrum. Hen
we have experimented with four different spectral inputs
KS. Common to all these inputs is thatE(k)
52(en5)1/4(kh)25/3 in the range 0.06<kh<0.3 with a
number of modesNkI550 ~where the subscriptI stands for
Inertial!. In case 1,E(k)50 for all other wave numbers; in
case 2,E(k)50 for kh.0.3 but is nonzero and equal t
Yeung’s low-wave number spectrum forkh,0.06 with a
number of modesNkL550 ~where the subscriptL stands for
low-wave number!; in case 3,E(k)50 for kh,0.06 but is
nonzero and equal to Yeung’s high-wave number spect
for kh.0.3 with a number of modesNkH55 ~where the
subscriptH stands for high-wave number!; and in case 4,
E(k) is equal to Yeung’s energy spectrum over the en
wave number range, withNkL550 modes, wherekh
,0.06, NkI550 modes, where 0.06<kh<0.3 andNkH55
modes, wherekh.0.3. These energy spectra are summ
rized in Fig. 1, and Table I gives additional details of the K
input parameters. In terms of wave modes, the three dist
spectral ranges are the following:~1! the low-wave number
rangek0<k<kL ~kL /k053.5, kLh50.06!; ~2! the inertial
range kL<k<kI ~kI /kL55, kIh50.3!; ~3! the high-wave
number rangekI<k<kh ~kh /kI55, khh51.5!. The number
of modes in the input cases 1 to 4 varies betweenNkI550
~case 1! andNkL1NkI1NkH5105~case 4!. Compared to the
number of excited wave number modes in Yeung’s DN
which is 1283'23106, this is a staggering reduction by
factor of four orders of magnitude, particularly because
results reported here show good agreement in the Lagran
statistics between KS and DNS.

We have verified that there is no significant variability
most of our results when the unsteadiness parameterl is
progressively changed from 0 to 1, and the specific res
presented in this paper are those that have been obtaine
l50.4. For many of the statistics presented below, eve
steadyKS model ~i.e., l50! compares favorably with Ye-
ung’s DNS @see Malik,8,12 who first observed that the two
particle dispersion̂uD lu2& ~defined in the next paragraph! is
insensitive to the unsteadiness in the range 0<l<1 in 3-D
KS#.

We now describe these results. The separation ve
between fluid elements~1! and ~2! at respective locations
x(1)(t) and x(2)(t) at time t is l(t)5x(1)(t)2x(2)(t), @ l 0

5u l(0)u#, and the relative displacement isD l(t)5 l(t)
2 l(0). In Fig. 2, we compare Yeung’s DNS and the K
~case 4, Fig. 1! results for^uD lu2&1/2/h againstt/th for the
same six initial separations,l 0 /h5 1

4,1,4,16,32,64, whereth

is the Kolmogorov time scale, and the brackets^¯& denote
an average over many fluid element pairs in many differ
realizations of the KS Eulerian velocity fielduE(x,t). In all
of our comparisons with Yeung’s Lagrangian statistics,
compute the same number of particle pair trajectori
18 432, to make our ensemble effectively identical to Y
ung’s. However, whereas Yeung computes the entire
semble of particle pair trajectories drawn from asingle real-
ization of a DNS flow field, we computeone set of particle
pair trajectoriesper KS flow field realization, so that our
P license or copyright; see http://pof.aip.org/pof/copyright.jsp



a
i

um
e
fo
is

n
w

nt

re
lts
x
t

r

c

e
e

c

n
of

est

s,

g’
s f

is-

ve-

d by
-

1575Phys. Fluids, Vol. 11, No. 6, June 1999 N. A. Malik and J. C. Vassilicos
statistics are drawn from as many flow field realizations
particle pairs. The agreement with Yeung’s DNS results
good; this agreement is only marginally worse whenl50,
but it is significantly worse for the small values oft/th if the
high-wave number viscous range ofE(k) is not taken into
account~as for cases 1 and 2!. We also find that the inclusion
or exclusion of the low-wave number end of the spectr
~the difference between cases 3 and 4! makes no appreciabl
difference to the KS results of Fig. 2, except obviously
long times, t/TL@1, when the separation of particles
larger than the integral length scaleL and the inclusion or
exclusion of energy in the largest scales will affect the lo
time regime that asymptotes to the Taylor diffusion la
;(2u82TL)t.

Yeung also defines the displacementy(t)5x(t)2x(0)
for a particle and calculates the correlation coefficie
r(yi

(1) ,yi
(2)) and r(ui

(1) ,ui
(2)) as functions of timet/TL . In

Fig. 3 we plot the results forr(yi
(1) ,yi

(2)) and r(ui
(1) ,ui

(2))
versus time from KS. The comparison with Yeung’s cor
sponding Fig. 3 is good. Keeping to Yeung’s order of resu
in Fig. 4 we plotr(ui

(1) ,ui
(2)) versus time for the same si

initial separations as above. The comparison between
DNS and the KS results is good, again, and better fol
50.4 than forl50. An increased value ofl implies an
increased decorrelation, and therefore the KS correlation
efficientsr(yi

(1) ,yi
(2)) andr(ui

(1) ,ui
(2)) are smaller for larger

values ofl. The statistics of Figs. 3 and 4 are the only on
among those calculated by Yeung that are significantly s
sitive to the unsteadiness parameterl. r(ui

(1) ,ui
(2)) are, how-

ever, not sensitive to the differences between energy spe

FIG. 2. Growth of the rms relative separation,^D l i D l i&
1/2/h, versus the

diffusion time t/th . h andth are the Kolmogorov length and time scale

respectively. Each line represents a different initial separation,l 0 /h5
1
4, 1,

4, 16, 32, and 64 for lines A–F, respectively. The solid lines are Yeun
~Ref. 1! DNS results and the dashed lines are the present KS result
energy spectrum 4 in Fig. 1. Lines of slope equal to

1
2 and 1 are shown for

comparison. The KS input energy spectrum is case 4 of Fig. 1 withNkI

550 modes in the inertial part of the spectrum.
Downloaded 16 Oct 2009 to 155.198.157.156. Redistribution subject to AI
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inputs 1–4~Fig. 1!, except for the largest initial separatio
l 0 /h564; which is so large that it is already of the order
an integral length scaleL. r(yi

(1) ,yi
(2)) in Fig. 3 decorrelates

a little faster in case 1 because of the exclusion of the larg
scales.

s
or

FIG. 3. Evolution of the correlation coefficients between particle pair d
placements,r(yi

(1) ,yi
(2)) ~solid line!, and velocity componentsr(ui

(1) ,ui
(2))

~dashed line!, againstt/TL for case A,l 05
1
4, from KS.TL is the Lagrangian

time scale. The KS input energy spectrum is case 4 of Fig. 1.

FIG. 4. Evolution of the correlation coefficients between particle pair

locities,r(ui
(1) ,ui

(2)) againstt/TL , for initial separationsl 0 /h5
1
4, 1, 4, 16,

32, and 64 for lines A–F. Solid lines are Yeung’s~Ref. 1! DNS results, and
the dashed lines are the KS results. Each set of results are normalize
their respective Lagrangian length scales,TL . The KS input energy spec
trum is case 4 of Fig. 1.
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Yeung’s Fig. 5 is effectively a replot of his Fig. 4
Again, the KS predictions forl50.4 are in good agreemen
with Yeung’s Fig. 5, but we do not present them here
economy of space. Also, for economy of space we do
present the KS equivalents of Yeung’s Figs. 6 and 7, wh
demonstrate that for times significantly longer that the in
gral time scaleTL , the PDF ofl i is Gaussian and that ofu lu2

is chi square. As expected, these conclusions hold in KS
they do in DNS, and, in fact, as they would do in any rand
process with a finite value ofTL .

Yeung’s Figs. 8 and, especially 9, deserve more att
tion. Yeung plots the skewness coefficients and flatness
tors of the separation distancel (t)5u l(t)u as functions of
t/TL in his Figs. 8~a! and 8~b!, and the flatness factor
m4(t,l 0) of one component of the relative velocityw(t)
5u(1)(t)2u(2)(t) as a function oft/th in his Fig. 9. The
results of KS calculations of skewness coefficients and fl
ness factors ofl for different initial separation distancesl 0

~see Figs. 5 and 6! do not depend significantly on the un
steadiness parameterl ~in the range 0,l,1!, but they are
quite sensitive to the low-wave number end of the input
ergy spectrum. Figures 5 and 6 have been obtained for
ergy spectrum case 4~Fig. 1! and compare well with Ye-
ung’s equivalent Figs. 8~a! and 8~b!. While similar results
from KS are obtained for case 2, the exclusion of the lo
wave number part of the spectrum in cases 1 and 3 lead

FIG. 5. Evolution of the skewness coefficient (m3) of the separation dis-
tancel againstt/TL for the same initial separations as in Fig. 4 for lines A–
@cf. Yeung’s~Ref. 1!. Fig. 8~a!#. The KS input energy spectrum is case 4
Fig. 1.

FIG. 6. Evolution of the flatness factor (m4) of the separation distancel
againstt/TL for the same initial separations as in Fig. 4 for lines A–F@cf.
Yeung’s~Ref. 1!. Fig. 8~b!#. The KS input energy spectrum is case 4 of F
1.
Downloaded 16 Oct 2009 to 155.198.157.156. Redistribution subject to AI
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overestimated values of the skewness coefficients and
ness factors ofl, even at the larger values oft/TL shown in
these figures.

Yeung’s results for the flatness factor of the relative v
locity m4(t,l 0), his Fig. 9, is important not only because th
quantity defines a concept of Lagrangian intermittency~see
Sec. IV! but also because KS is able to match the DN
results remarkably well, whereas Heppe’s2 stochastic model
of two-particle dispersion is some way off. The DNS and K
results form4(t) are plotted in Fig. 7 for the same initia
separationsl 0 /h as before; the peak values of the respect
plots differ by no more than a factor of 1.3 for the best ca
(A: l 0 /h5 1

4) and 1.8 for the worst case (B:l 0 /h51). More-
over, the peaks in the KS plots occur at about the same ti
as in the DNS results; see Table II. Heppe’s5 stochastic
model of two-particle dispersion does not reproduce th
DNS results to the same degree of accuracy, even with
most favorably adjusted input parameters, but leads to p
values inm4(t,l 0), which underestimate the DNS peak va
ues by factors ranging between 5 and 8. The KS results
m4(t) are only marginally better forl50.4 thanl50, and
they do not depend on the very high- and very low-wa

FIG. 7. Evolution of the flatness factorm4 of the relative velocity~compo-

nent! w1 vs t/th , for initial separationsl 0 /h5
1
4, 1, 4, 16, 32, and 64 for

lines A–F. The solid lines are Yeung’s~Ref. 1! DNS results and the dashe
lines are the KS results. The Gaussian value is 3.th is the Kolmogorov time
scale. The KS input energy spectrum is case 4 of Fig. 1.

TABLE II. A comparison of DNS@Yeung~Ref. 1!# and KS~case 4! results,
Rel591.

l 0 /h

DNS KS

m4
peak TL /th tpeak/th TL /tpeak m4

peak TL /th tpeak/th TL /tpeak

0.25 80 8.7 8 1.1 60 8 8 1
1 28 8.7 4.5 1.9 16 8 6 1.3
4 8.8 8.7 4 2.2 5.8 8 4 2
P license or copyright; see http://pof.aip.org/pof/copyright.jsp
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number ends of the energy spectrum~the results are simila
for all cases 1–4! for large Reynolds number, as we show
Sec. IV.

This dramatic quantitative difference between the fl
ness factor predictions of stochastic models and KS may
reflection of the qualitative difference between the two u
derlaying mechanisms for two-particle dispersion in the
spective models. In two-particle stochastic models, Lagra
ian relative velocities are solutions of Langevin-ty
equations and depend on Wiener processes, which m
that particle pairs separate gradually by a constantly ope
ing decorrelation mechanism. However, in KS particle pa
do not separate gradually but in bursts, when they m
straining regions ~Malik,12 Fung et al.,2 Fung and
Vassilicos3!, and spend most of the time before such rare a
violent events traveling close together. Hence, the abso
value of the relative velocityw(t)5u(1)(t)2u(2)(t) may be
expected to be more often either close to 0 or very large
KS than in stochastic models, thus leading to significan
higher values ofm4(t,l 0) in KS than in Heppe’s5 stochastic
model. Indeed, the KS prediction form4(t) is in good agree-
ment with Yeung’s DNS, whereas Heppe’s5 stochastic mode
prediction for m4(t) significantly underestimates the pea
values.

Two sets of results of Yeung’s DNS remain that me
attention in this paper. Yeung defines the angleu between
the separation vectorl(t) and the relative velocity vecto
w(t) and computes the probabilityP(0,u,p/2) of acute
alignment betweenl(t) andw(t) ~which is equivalent to the
probability that the two particles are moving apart! as a func-
tion of time t/TL . We plot P(0,u,p/2) againstt/TL in
Fig. 8. The KS prediction forP(0,u,p/2) does not differ
significantly withl or with the energy input; the agreeme

FIG. 8. Evolution of the probability of acute alignment between the se
ration and relative velocity vectors,P@0,u,90°#, againstt/TL for initial

separationsl 0 /h5
1
4 ~A! and 64~F!. Solid lines are Yeung’s~Ref. 1! DNS

results and dashed lines are the KS results. The KS input energy spectr
case 4 of Fig. 1.
Downloaded 16 Oct 2009 to 155.198.157.156. Redistribution subject to AI
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Finally, we plot in Figs. 9 and 10 correlation coefficien

r( l ,wl) between the separation distancel and wl5(d/dt) l
5uwucosu, as well as ‘‘modified correlation coefficients’
r* 5^ lwl&/^ l &^wl&21, both as functions oft/TL . Again, the
agreement with Yeung’s equivalent Fig. 14 is satisfacto
and is similar forl50 and for all energy spectrum case
1–4.

-

is

FIG. 9. Evolution of the correlation coefficientr( l ,w) ~solid line! between
l and wl , and the modified correlation functionr* ( l ,wt) ~dashed line!,

againstt/TL for initial separationl 0 /h5
1
4 @cf. Yeung’s~Ref. 1! Fig. 14~a!#.

The KS input energy spectrum is case 4 of Fig. 1.

FIG. 10. Evolution of the correlation coefficientr( l ,w) ~solid line! between
l and wl , and the modified correlation functionr* ( l ,wl) ~dashed line!,
against t/TL for initial separationl 0 /h564 @cf. Yeung’s ~Ref. 1! Fig.
14~b!#. The KS input energy spectrum is case 4 of Fig. 1.
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IV. THE FLATNESS FACTOR AS A FUNCTION OF
REYNOLDS NUMBER

Let us now concentrate attention on the flatnessm4(t)
because of its relation to intermittency. In the Euleri
frame, a quantitative definition of intermittency is usua
given in terms of the flatnessF(r )5^@uE(x1r )
2uE(x)#4&/^@uE(x1r )2uE(x)#2&2, whereuE(x) is an Eule-
rian velocity component. If a field is Gaussian, and theref
not intermittent,F(r )53 for all r. The Eulerian velocity
field is said to be intermittent whenF(r ) increases with de-
creasingr ~see Frisch13!. Similarly, we may refer to Lagrang
ian intermittency whenm4(t) increases with decreasingt.

Eulerian laboratory measurements ofF(r ) show that
F(r ) increases above the Gaussian value of 3 with decr
ing r in the inertial range and reaches a maximum value
small value of r that is related to the dissipation rang
~Tabelinget al.14!. No Lagrangian laboratory measuremen
of m4(t) are currently available, and DNS measurements
m4(t) are limited to relatively small Reynolds numbers.
Rel'91, Yeung’s DNS and the present KS show thatm4

53 for times t larger than approximately eight Lagrangia
integral time scales,TL , and increases quite dramatical
with decreasingt below 8TL if the initial distancel 0 between
the two fluid elements is of orderh ~Fig. 7!. For l 05 1

4h, the
flatnessm4 reaches a peak value of approximately 80~DNS!
and 60~KS! at a timetpeak/th'8 for both the DNS and the
KS. As t/th decreases belowtpeak/th ,m4 decreases for al
these values ofl 0h; the results forl 0 /h5 1

4, 1, and 4 are
summarized in Table II. The Reynolds number in the
simulations is low, and so there is not enough separa
between large and small scales to see whethertpeak is of
orderth or of orderTL .

The behavior ofm4 and the scaling oftpeakwith increas-
ing Reynolds number cannot be tested with DNS at pres
and it remains unknown howm4(t) behaves in the inertia
time range,th!t!TL , at high Reynolds numbers, an
whethertpeak scales with the viscous time scaleth , or with
the Lagrangian time scaleTL or perhaps even some oth
time scale~perhaps the Taylor microscale, which is interm
diate betweenth and TL?!. Heppe’s5 stochastic model of
two-particle dispersion that has been adjusted to incorpo
Reynolds number effects predicts thattpeak5O(th) and m4

53 for t@th for all Reynolds numbers.
In view of the good quantitative agreement in Lagran

ian statistics between DNS and KS for Rel'91, it may be
interesting to use KS to predictm4(t) for large Reynolds
numbers, which can be easily generated in KS models
increasingkh /k0 at a relatively moderate expense. Wh
does the KS model of two-particle dispersion, which inc
porates small-scale turbulent-like flow structures, predict
the behavior ofm4(t) in the inertial time range and for th
scaling oftpeak for large Reynolds numbers?

In Fig. 11 we plot the flatness factorm4(t) for kI /kL

55, 100, and 400 for the case A whenl 0 /h5 1
4. We define a

corresponding Reynolds number Re[(kI /kL)4/358.5, 464,
and 2947 for these simulations. The energy spectrum in th
new simulations is similar to case 4 of Fig. 1, but withNkI

5150 modes forkI /kL5100 andNkI5250 for kI /kL5400
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see Table I. We have kept the same value foraK so that we
are adding small amounts of energy to the flow by sim
extending the inertial range part of spectra to higher-wa
numberskI , which then falls off exponentially fork.kI .
The Lagrangian integral time scaleTL remains the same be
cause this quantity is determined by the large scales. But
Kolmogorov time microscale decreases withkh becausetk

;kh
22/3. The key new feature that emerges is that the L

grangian flatness factor is significantly greater than 3over a
wide range of inertial time scales, th,t,8TL , for these
Reynolds numbers. Note that Re58.5 corresponds to Ye
ung’s Rel591. Making use of the relation Rel}Re1/2, we
find that Rel'670 for Re5464, and Rel'1690 for Re
52947. Furthermore, the peak value in the flatnessm4 in-
creases from 60 to about 100 and 200, respectively, while
nondimensional timetpeak/th at which the peak occurs ap
pears to increase only very slowly; respectively, about 8,
and 13, and these correspond toTL /tpeak'1, 6, and 12, re-
spectively. These results are summarized in Table III. C
tainly, we cannot conclude thattpeakscales with eitherTL or

FIG. 11. Evolution of the flatness factorm4 of the relative velocity~com-
ponent! w1 vs t/th from KS with different inertial ranges,kI /kL55 ~from

Fig. 7!, 100, and 400. The initial separation in each case isl 0 /h5
1
4 ~A!.

The time is normalized by the respective Kolmogorov time scale in e
case. The KS input energy spectrum is case 4 of Fig. 1 withNkL550, NkI

550, andNkH55 modes forkI /kL55, NkL550,NkI5150, andNkH55 for
kI /kL5100 andNkL550, NkI5250, andNkH55 modes forkI /kL5400.
See Table I.

TABLE III. DNS @Yeung ~Ref. 1!# and KS ~case 4! results for different
Reynolds numbers (l 0 /h50.25).

Case kI /kL kh /kL Re Rel m4
peak tpeak/th TL /tpeak

DNS 5 25 8.5 91 80 8 1.1
4 5 25 8.5 91 60 8 1
4 100 500 464 670 100 10 6
4 400 2000 2947 1690 200 13 12
P license or copyright; see http://pof.aip.org/pof/copyright.jsp
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th . We can only conclude from these simulations that
values of the flatness factor are significantly larger tha
over a substantial range of times bounded from below byth

and above by 8TL .
Finally, a question of considerable interest is how sen

tive is the behavior of the flatness factorm4(t) to the nature
of the transition between the dissipation subrange and
inertial range, particularly for high Reynolds numbers.
test this in the KS model, we have performed some simu
tions with case 2 of Fig. 1 as the input spectrum. In case
E(k)50 for kI,k<kh , in contrast to Yeung’s spectrum
case 4. We confirm that the results for the behavior ofm4(t)
in the inertial time range obtained from case 2 is similar
those obtained from case 4 in Fig. 11. For example, Fig.
shows the comparison inm4(t) for kI /kL5400 (kh /kL

52000) between cases 2 and 4~all other input parameter
being identical!; there is no significant difference betwee
the two cases in the inertial time range.

V. CONCLUSION

In this paper we have compared the results on tw
particle relative statistics from Yeung’s1 DNS for statistically
isotropic and stationary turbulence with the correspond
results from KS. The comparison between DNS and KS
sults for the same parameter values was good in most o
statistics and satisfactory in a few. This, to our knowledge
the first direct comparison between DNS and KS and,
such, constitutes the first validation test for KS as a seri
Lagrangianmodeling tool for fluid particle dispersion in ho
mogeneous, isotropic turbulence. We believe the results
tained in this paper justify this claim. We emphasize he
again, that thephysical input to the KS model is just the
Eulerian wave number spectrumE(k) and the dimensionles

FIG. 12. A comparison of the evolution of the flatness factorm4 of the
relative velocity~component! w1 vs t/th between cases 2 and 4 of Fig. 1 fo
kI /kL5400. All details are the same as those in Fig. 11, except that for
2 ~dashed line! NkH50. See Table I.
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constantl that is a temporal decorrelation parameter. O
physical groundsl5O(1), and wehave takenl50.4. In
fact, we have shown that most of the statistics are not
nificantly affected even whenl50, so that this paramete
could be effectively removed as an input leaving justE(k)
alone to define the entire structured flow and the indu
dispersion processes that ensues from it. This is a remark
reduction in input complexity. Furthermore, let us note th
whereas DNS takesO(106) degrees of freedom to produc
the Lagrangian statistics, KS takesO(102) to generate quan
titatively similar results.

Of particular interest is the flatness factor of the tw
particle relative velocity components,m4(t,l 0), which is a
measure of Lagrangian intermittency. The KS predicts Y
ung’s DNS result form4(t) remarkably well~Fig. 7!. This
lends support to the idea that two-particle turbulent disp
sion is well modeled as bursts in separation, when part
pairs meet straining flow regions~Malik,12 Funget al.,2 and
Fung and Vassilicos3!. Some experimental evidence suppo
ing this picture is contained in Virant and Dracos,9 where in
Fig. 8~d! a pair of particle trajectories show a process
separation similar to that just described. Such a proces
readily obtained in the KS model, which contains genu
turbulent-like flow structures ~eddying, straining, and
streaming structures!, which yield qualitatively realistic par-
ticle trajectories. Our results indicate that the Lagrangian
tistics of these KS trajectories are quantitatively realistic
well.

The KS model was then used to look at the behavior
the flatness factorm4( l 0 ,t) for large Reynolds numbers R
5(kI /kL)4/35464 and 2947, which correspond to Rel'670
and 1690, respectively. Our results for the flatness fac
m4(t) ~Fig. 11! shows thatm4 is significantly greater than the
Gaussian value of 3 over a substantial part of the iner
time range.
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