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A wide range of relative two-particle dispersion statistics from the Lagrangian Kinematic
Simulation(KS) model, which contains turbulent-like flow structures, compares well with Yeung's
[Phys. Fluids6, 3416 (1994 ] DNS results. In particular, the Lagrangian flatness fagtg¢t)
compares excellentlybetter than Heppe’'sl. Fluid Mech.357, 167 (1998 ] nonlinear stochastic
mode). For higher Reynolds numbers the results from KS show hét) is significantly greater
than 3 over a wide range of times within the inertial range of time scales1989 American
Institute of Physics.S1070-663(99)02706-3

I. INTRODUCTION that has been adjusted to incorporate finite Reynolds number
effects(Heppé) gives, for Rg~91, a time dependence gf,

We compare the results of a Kinematic Simulati&i)  that is qualitatively similar to Yeung’,but that differs
with Yeung's' Direct Numerical SimulationDNS) results  quantitatively by nearly one order of magnitude. KS is, by
on two-particle dispersion. KS is hagrangian model of  construction, a finite Reynolds number model, and we report
turbulent dispersion that incorporates turbulent-like flowhere that KS can reproduce the results of Yeuh@®dS
structure(see Funget al,? Fung and Vassilicodand refer-  within good quantitative agreement, including the result on
ences therein The basic assumption of KS is that it should w,(t).
be sufficient, for the calculation of Lagrangiémot Eulerian In Sec. Il we describe KS and briefly contrast it to sto-
statistics, to have a qualitative({put not necessarily quanti- chastic models of turbulent dispersion. In Sec. 11l we present
tatively) realistic representation of the geometrical charactethe results obtained with KS and we compare them to the
of turbulent trajectories that are generated by the flow strucDNS results obtained by Yeuhgor Re,~91. In Sec. IV we
tures of the turbulence. The flow structures in KS are nouse KS to calculatg.,(t) for several higher Reynolds num-
quantitatively precise, but they are turbulent-like in the sens®ers. This leads us to a short discussion of Lagrangian Inter-
that they are the type of eddying, straining, and streamingnittency, and we conclude in Sec. V.
structures similar to thfse expected and observed in turbulent
flows; see Chongzt al, . for .example. The KS structures are Il KINEMATIC SIMULATIONS
not quantitatively precise, in the sense that they do not have
exactly the same shape as the equivalent structures in the real KS is a Lagrangian model of turbulent dispersion, where
turbulence. individual fluid element trajectories(t) are calculated by

Yeung's results on two-particle relative dispersion haveintegrating
been obtained from a DNS of a statistically stationary and
isotropic turbulence with Re=91. These results include —x(t)=u(t)=ug x(t),t], (1)
relative displacements, correlation coefficients, skewness co- t
efficients, and flatness factors. Of particular interest is then individual realizations of an Eulerian turbulent-like veloc-
result on the time dependence of the flatness factory field ug(x,t), which is three dimensional for the purposes
wa(t,lo)=(wi(t))/(wi(t))?, wherew, is one arbitrary com- of this paper, and is generated as follows:
ponent of the relative velocityv(t)=u®)(t)—u®(t) be- N
tween two fluid elementgarticles marked(1) and(2) with _ C
respective Lagrangian velocitie$!)(t) andu®(t), |, is the Ue(x,t) = ngl [AnKn COSKn- X+ @l)
initial separation of the two particles, and the brackets .
denote an average over an ensemble of fluid element pairs. +Bp XKy sin(ky- X+ wpt)], 2

The one stochastic model of two-particle dispersion to dat%vhereNk is the number of modes in the simulatid}), is a

random unit vector K,=k.k,), and the directions and ori-
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PElectronic mail: J.C.Vassilicos@damtp.cam.ac.uk directions for thenth wave mode is independent of the ran-
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FIG. 1. The different KS energy spec-

tra used in the simulations. Details of

each case 1-4 is described in the first
paragraph of Sec. lIl.
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dom choice of directions for all other wave modes. Note thaKS, we choose the unsteadiness frequesagyto be propor-
the velocity field(2) is incompressible by construction. The tional to the eddy-turnover time of the wave madld.e.,
positive amplitude#\,, andB,, of the vectorsA,, andB,, are

determined by w,=NMVKrE(K,), (4)

3pA2_3p2

2An=2Bn=E(kn)Aky, 3 where\ is a dimensionless constant that may be expected to
whereE(K) is an arbitrarily prescribed Eulerian energy spec-be of order 1.(If A>1 then the velocity field is essentially
trum, and Ak,=(kn,+1—kn-1)/2 for 2<n=N,—1, Ak, flapping so fast at all scales that fluid elements do not have
=(k,—k4)/2, and Aka:(ka— kNH)/Z. Within a simu- the time to experience the effects of eddying, streaming, and
lated inertial subrange, we choos&)>3E(Kk)(er®) 14 straining flow structures, and ¥<1 then the velocity field
= ay , Whereay is a dimensionless constant aai a quan- is essentially frozen at all scales, which is unlike turbulence.
tity that has the dimensions of a rate of energy dissipation ~ The inputs of KS are therefore the Eulerian energy spec-
(although in KS there is no actual dynamical transfer of enffumE(k), the unsteadiness parameteand, strictly speak-
ergy between modgs and is given formally by ing, also the number of moddd, and the distribution of
2v[5k?E(K)dk. We can also obtain L(’)Z/v% wave nu_mb_ersk_n. Fo_r example, in this Work_ we use geo-
=2[7E(k)dk, wherev = (en)3. From the energy spec- Metric distributions, i.e.k,=k;a"" !, wherea is a dimen-
trum in Fig. 1 of Yeung? we haveay=2. As in Yeungt all  Sionless number determined Iy, =k;a"1, because ex-
quantities are scaled on the Kolmogorov microscales ofreme wave numberk; andky, are given with the energy
length and time,» and 7,=€ 35?3, unless otherwise spectrumE(k). However, there is no absolute freedom to
stated. Note that Yeung defingdrom »k,=1.5, and we do  chose these input parameters as we wishannot be larger
the same; see Fig. 1. More details are contained in Table IthanO(1), andchanges in the distribution and numiéy of

The frequenciesn, in (2) determine the unsteadiness modes should not significantly affect the Lagrangian outputs
associated with wave mode In this particular version of of the model.

Previous workgFunget al.? Fung and Vassilico$and
references therejinhave shown that turbulent-like velocity
fields of the type simulated here are statistically stationary in
Case k /k, Ko7 Ny k.7 N k7 Ng k,n  time, and also isotropic. These works have also shown that

- - instantaneous streamlines defined by the KS velocity field
4 5 1.72x10 50 6.0<10 50 03 5 : . - X
4 100 85X104 50 30¢<10° 150 03 5 15 (2) have well-defined eddying, straining, and streaming flow
4 400 21410°% 50 75<10% 250 03 5 1.5 Structures and suggested that the mere existence of these
flow structures has important quantitative implications on

TABLE I. Input KS parameter values for case 4 of Fig. 1.
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Lagrangian two-particle statistics. At any rate, the mechapation rate per unit mass, amndhe kinematic viscosity. But
nisms by which particles separate under the action of a stahere is also some energy in the low7{<0.06) and in the
chastic Lagrangian relative velocity process or under the adiigh (k%>0.3) wave number ranges of the spectrum. Hence,
tion of a Eulerian velocity field with well-defined small-scale we have experimented with four different spectral inputs for
turbulent-like flow structures, as in KS, are very different. KS. Common to all these inputs is thaE(k)
We briefly describe stochastic models of turbulent dispersior=2 (e2°)Y4(kz) ~%° in the range 0.08k#=<0.3 with a
before spelling out this difference. number of modedN,,=50 (where the subscrigt stands for
Stochastic models of turbulent dispersion are Lagrangiaimertial). In case 1E(k)=0 for all other wave numbers; in
models where particle positions in the case of one-particlgase 2,E(k)=0 for k%»>0.3 but is nonzero and equal to
models, and two-particle relative velocities in the case ofyeung’s low-wave number spectrum férp<0.06 with a
two-particle models, are solutions of Langevin equations angiumber of mode#\,, =50 (where the subscrigdt stands for
thereby depend on Wiener procesés=e Heppé Pedrizzetti  low-wave numbey; in case 3E(k)=0 for k%p<0.06 but is
and Novikov® Borgas and Sawforfiand references theréin  nonzero and equal to Yeung'’s high-wave number spectrum
Such Lagrangian positions and relative velocities vary withfor k5>0.3 with a number of modebl,,=5 (where the
time in a way similar to a Brownian motion with drift, and subscriptH stands for high-wave numberand in case 4,
are therefore very different in character from the Lagrangiarg(k) is equal to Yeung’s energy spectrum over the entire
positions and velocities generated by the KS velocity fieldvave number range, withiN,, =50 modes, whereky
(2). Even though statistics are obtained by averaging ove&0.06, N,,=50 modes, where 0.86k7»<0.3 andN,4=5
many particle trajectories in many realizations of the turbu-modes, wherek»>0.3. These energy spectra are summa-
lence, the qualitative difference in the nature of the Lagrangrized in Fig. 1, and Table | gives additional details of the KS
ian velocity processes and consequently in the nature of pafput parameters. In terms of wave modes, the three distinct
ticle trajectories, can have a significant quantitative impactpectral ranges are the followingt) the low-wave number
on some of these statistigsee Funget al,” Malik,? and  rangek,<k=k, (k_/ko,=3.5, k. =0.06:; (2) the inertial
Fung and Vassilicd$. This is quite dramatically demon- range k, <k=<k, (k,/k_ =5, k;7=0.3; (3) the high-wave
strated in this paper, where we show that KS can reproducgumber rangds, <k= k, (k,/k=5,k,7=1.5. The number
Yeung's DNS flatness factop4(t) results within a factor of  of modes in the input cases 1 to 4 varies betwbigp=50
about 1.5, whereas Heppétsvo-particle stochastic model of (case 1 andN,, + N+ Ny = 105(case 4. Compared to the
dispersion gets it to within a factor of about 8. As discussechumber of excited wave number modes in Yeung’'s DNS,
by Fungetal? and Fung and Vassilicdsin KS, particle  which is 128~2x 10f, this is a staggering reduction by a
pairs move alongside each other for quite some time untifactor of four orders of magnitude, particularly because the
they encounter a straining region and suddenly separate. Exesults reported here show good agreement in the Lagrangian
perimental measurements of one- and two-particle pair trastatistics between KS and DNS.
jectories in turbulent flows has been obtained recently by  We have verified that there is no significant variability in
Virant and Draco$ using the three-dimensioné8-D) Par-  most of our results when the unsteadiness parametisr
ticle Tracking Velocimetry technique developed at the ETHprogressively changed from 0 to 1, and the specific results
Zirich, (Maaset al’® and Malik et al™). Most relevant to  presented in this paper are those that have been obtained for
the present work is their Fig.(8), which shows the trajec- \=0.4. For many of the statistics presented below, even a
tories of a pair of particles initially close together: they re-steadyKS model(i.e., \=0) compares favorably with Ye-
main close together for some time before bursting away fronung’'s DNS[see Malik®? who first observed that the two-
each other in a similar manner to that just described. Thearticle dispersiod|Al|?) (defined in the next paragrapls
separation of particle pairs in stochastic models does ndhsensitive to the unsteadiness in the rangeN8<1 in 3-D
happen in bursts, but more uniformly in time because of thexs].
Wiener processes’ Markovian property. We now describe these results. The separation vector
Another important difference between KS and stochastiketween fluid element§l) and (2) at respective locations
models of turbulent dispersion is that the Lagrangian integrak(®(t) and x@(t) at time t is I(t)=x®(t)—xA(t), [l
time scaleT is an input for stochastic models, but it is an =|I(0)|], and the relative displacement i&l(t)=I(t)
output in KS. Furthermore, KS is a Lagrangian model of—1(0). In Fig. 2, we compare Yeung's DNS and the KS
turbulent dispersion that can be used unaltered both for ongease 4, Fig. Lresults for(|Al|?)*% 7 againstt/r, for the
particle and two-particle dispersion, whereas stochastic modsame six initial separations,/ 7= %,1,4,16,32,64, where,,
els of one-particle and two-particle dispersion need to bés the Kolmogorov time scale, and the brackéts) denote
constructed separately. an average over many fluid element pairs in many different
realizations of the KS Eulerian velocity fielg:(x,t). In all
of our comparisons with Yeung's Lagrangian statistics, we
compute the same number of particle pair trajectories,
Yeung’'s DNS is for statistically stationary turbulence, 18 432, to make our ensemble effectively identical to Ye-
and the energy spectrum remains, therefore, constant in timeng’s. However, whereas Yeung computes the entire en-
This energy spectrum—Fig. 1 in Yeuhgis approximately —semble of particle pair trajectories drawn fronsiagle real-
equal to 2€r%)Y4kz) % in the range 0.08k#n=<0.3, ization of a DNS flow fieldwe computeone set of particle
where 7 is the Kolmogorov length scale,the energy dissi- pair trajectoriesper KS flow field realizationso that our

Ill. RESULTS AND COMPARISON WITH DNS

Downloaded 16 Oct 2009 to 155.198.157.156. Redistribution subject to AIP license or copyright; see http://pof.aip.org/pof/copyright.jsp



Phys. Fluids, Vol. 11, No. 6, June 1999

N. A. Malik and J. C. Vassilicos 1575
3 1 p
2.5 \
2 0.8 |
1.5
0.6 -
f |
0.5 £
E / g 0.4
D /;
0 / )
c ’ \
0.5 - i
0.2 d
B Vs ! P
1 :
15 A o AL
5 ; ;
-1 -0.5 0 0.5 1 1.5 2 2.5 3 0 5 t0 15 20 25 30 35

40 45 50
FIG. 2. Growth of the rms relative separatioiyl; Al;)*% 7, versus the

FIG. 3. Evolution of the correlation coefficients between particle pair dis-
diffusion timet/,. 7 and r, are the Kolmogorov length and time scales, placementsp(y™,y(®)) (solid line), and velocity componenis(u{® ,u(®)
respectively. Each line represents a different initial separakipy= %, 1, (dashed ling against/T, for case Aly,= %, from KS. T is the Lagrangian
4, 16, 32, and 64 for lines A—F, respectively. The solid lines are Yeung'stime scale. The KS input energy spectrum is case 4 of Fig. 1.

(Ref. 1) DNS results and the dashed lines are the present KS results for
energy spectrum 4 in Fig. 1. Lines of slope equa%tand 1 are shown for

comparison. The KS input energy spectrum is case 4 of Fig. 1 Mjth
=50 modes in the inertial part of the spectrum.

inputs 1-4(Fig. 1), except for the largest initial separation
o/ 7=64; which is so large that it is already of the order of
an integral length scale. p(y(",y(®) in Fig. 3 decorrelates
statistics are drawn from as many flow field realizations as little faster in case 1 because of the exclusion of the largest
particle pairs. The agreement with Yeung’s DNS results isscales.
good; this agreement is only marginally worse when 0,
but it is significantly worse for the small valuestdf-, if the
high-wave number viscous range B{k) is not taken into
accountas for cases 1 and.2Ne also find that the inclusion LN
or exclusion of the low-wave number end of the spectrum
(the difference between cases 3 andnékes no appreciable
difference to the KS results of Fig. 2, except obviously for 8
long times, t/T,>1, when the separation of particles is
larger than the integral length scdleand the inclusion or
exclusion of energy in the largest scales will affect the long os

time regime that asymptotes to the Taylor diffusion law
~(2u'?T)t.

Yeung also defines the displacemstft) = x(t) —x(0) 04

for a particle and calculates the correlation coefficients
p(y®,y®) and p(ul™ ,u®) as functions of time/T, . In
Fig. 3 we plot the results fop(y(",y{?) and p(u®,u?)
versus time from KS. The comparison with Yeung’s corre-
sponding Fig. 3 is good. Keeping to Yeung'’s order of results,
in Fig. 4 we plotp(u{™,uf®) versus time for the same six
initial separations as above. The comparison between the ©
DNS and the KS results is good, again, and betterNor .
=0.4 than forA=0. An increased value ok implies an 0 2 4
increased decorrelation, and therefore the KS correlation co-

0.2

efficientsp(yi(l) (2)) andp(ui(l) ,ui(z)) are smaller for larger FIG. 4. Evolution of the correlation coefficients between particle pair ve-

values of\. The statistics of Figs. 3 and 4 are the only onegocities, p(u™ u{?)) againstt/T, , for initial separations, /=7, 1, 4, 16,
among those calculated by Yeung that are significantly serfi

2, and 64 for lines A—F. Solid lines are YeungRef. 1) DNS results, and
. . he
sitive to the unsteadiness parametep(u'® ,u{?) are, how-

dashed lines are the KS results. Each set of results are normalized by
> ; their respective Lagrangian length scal&€s, The KS input energy spec-
ever, not sensitive to the differences between energy specttam is case 4 of Fig. 1.
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FIG. 5. Evolution of the skewness coefficienid) of the separation dis- s BB N NGE
tancel against/T_ for the same initial separations as in Fig. 4 for lines A—F e SN \T \
[cf. Yeung's(Ref. 1). Fig. 8a)]. The KS input energy spectrum is case 4 of Y L : . :

Fig. 1. e e nar SN

Yeung’s Fig. 5 is effectively a replot of his Fig. 4.
Again, the KS predictions fox =0.4 are in good agreement Lo ;
with Yeung's Fig. 5, but we do not present them here for 01 1 10 100 1000
economy of space..AIso, for econon?y O_f space we do nolt:IG. 7. Evolution of the flatness factgr, of the relative velocitycompo-
present the KS equwa_llents C?f Y,e,ung s Figs. 6 and 7, V\{hIC eny wy vst/7,, for initial separations,/n= %, 1, 4, 16, 32, and 64 for
demonstrate that for times significantly longer that the inte{ines A—F. The solid lines are Yeung(Ref. 1) DNS results and the dashed
gral time scal€T, , the PDF ofl; is Gaussian and that ¢if2 lines are the KS results. The Gaussian value is,3s the Kolmogorov time
is chi square. As expected, these conclusions hold in KS aale. The KS input energy spectrum is case 4 of Fig. 1.
they do in DNS, and, in fact, as they would do in any random
process with a finite value of, .

Yeung's Figs. 8 and, especially 9, deserve more attenoverestimated values of the skewness coefficients and flat-
tion. Yeung plots the skewness coefficients and flatness facl€ss factors of, even at the larger values ofT, shown in
tors of the separation distandét) =|I(t)| as functions of these figures.

t/T, in his Figs. 8) and 8b), and the flatness factors Yeung's results for the flatness factor of the relative ve-
wa(t,lo) of one component of the relative velocity(t)  locity .'““(t’l(?)’ his Fig. 9, is important not o'nly bepause this
=uM(t)—u®(t) as a function oft/7, in his Fig. 9. The quantity defines a concept of Lagrangian intermitte(sse
results of KS calculations of skewness coefficients and flatSec. V) but also because KS is able to match the DNS
ness factors of for different initial separation distancdg  results remarkably well, whereas Heppeochastic model
(see Figs. 5 and)édo not depend significantly on the un- Of two-particle dispersion is some way off. The DNS and KS
steadiness parameter(in the range 8\ <1), but they are  'esults foru,(t) are plotted in Fig. 7 for the same initial
quite sensitive to the low-wave number end of the input enSeparations, /7 as before; the peak values of the respective
ergy spectrum. Figures 5 and 6 have been obtained for efots differ by no more than a factor of 1.3 for the best case
ergy spectrum case @ig. 1) and compare well with Ye- (A:lo/7=3) and 1.8 for the worst case (B7#=1). More-
ung’s equivalent Figs. @ and 8b). While similar results ~OVer, the peaks in the KS plots occur at about the same times
from KS are obtained for case 2, the exclusion of the low-as in the DNS results; see Table Il HepPestochastic
wave number part of the spectrum in cases 1 and 3 leads f§0odel of two-particle dispersion does not reproduce these
DNS results to the same degree of accuracy, even with the
most favorably adjusted input parameters, but leads to peak
values inu,(t,ly), which underestimate the DNS peak val-
ues by factors ranging between 5 and 8. The KS results for
m4(t) are only marginally better fox=0.4 thanA =0, and
they do not depend on the very high- and very low-wave

TABLE II. A comparison of DNY Yeung(Ref. )] and KS(case 4 results,

Re =91.
DNS KS
238 -

10 15 20 25 .80 35 40 45 50 lo/n #Eea T /7'7; tpeak/Tn T /tpeak #Eeak T /7'7; tpeak/Tn T /tpeak
FIG. 6. Evolution of the flatness factoj) of the separation distande 0.25 80 8.7 8 11 60 8 8 1
againstt/T, for the same initial separations as in Fig. 4 for lines Alek 1 28 8.7 4.5 1.9 16 8 6 1.3
Yeung's(Ref. 1). Fig. 8b)]. The KS input energy spectrum is case 4 of Fig. 4 88 87 4 2.2 5.8 8 4 2
1.
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FIG. 8. Evolution of the probability of acute alignment between the sepa-FIG. 9. Evolution of the correlation coefficiep(l,w) (solid line) between
ration and relative velocity vector®[0< #<90°], againstt/T, for initial | and w;, and the modified correlation functiop* (I,w,) (dashed ling
separations, / n= % (A) and 64(F). Solid lines are Yeung'¢Ref. 1) DNS againstt/T, for initial separation /7= % [cf. Yeung's(Ref. 1) Fig. 14a)].

results and dashed lines are the KS results. The KS input energy spectrumThie KS input energy spectrum is case 4 of Fig. 1.
case 4 of Fig. 1.

number ends of the energy spectr(tine results are similar benNgen KS and DNS n all cases is saUsfa_ctory. -
for all cases 1-for large Reynolds number, as we show in Finally, we plot in Figs. 9 _and 1_0 correlation coefficients
Sec. IV, p(l,w)) between the se“parat_u_)n dlstarica_nd W|=(o!/qlt)l §
This dramatic quantitative difference between the fIat—:*|V_V|Cosa' as well as "modified c_orrelatlon coeff_|C|ents
ness factor predictions of stochastic models and KS may befd _<|W'>/<I><.W'>_ L b(,)th as functlons.dﬂTL. _Agaln, the
reflection of the qualitative difference between the two un_agregame_nt_ with Yeung’s equivalent Fig. 14 is satisfactory
derlaying mechanisms for two-particle dispersion in the re-amj1 is similar forh =0 and for all energy spectrum cases
spective models. In two-particle stochastic models, Lagrang="
ian relative velocities are solutions of Langevin-type
equations and depend on Wiener processes, which means
that particle pairs separate gradually by a constantly operat-
ing decorrelation mechanism. However, in KS particle pairs
do not separate gradually but in bursts, when they meet
straining regions (Malik,'> Fung etal,”? Fung and
Vassilicos), and spend most of the time before such rare and
violent events traveling close together. Hence, the absolute
value of the relative velocity(t) =u®(t) —u®(t) may be
expected to be more often either close to 0 or very large in ¢
KS than in stochastic models, thus leading to significantly
higher values ofu4(t,l,) in KS than in Heppe%stochastic
model. Indeed, the KS prediction far,(t) is in good agree- 0.4 N\
ment with Yeung’s DNS, whereas Heppesgochastic model
prediction for u,(t) significantly underestimates the peak

0.8

values. b \’\M\%Mu ;
Two sets of results of Yeung’s DNS remain that merit 02 R R H.Wr.,,\;‘:l,-"\.,ﬂ,«, ﬁ’“‘ty’” s W
. . . . T e b S W b ‘ (A1
attention in this paper. Yeung defines the anglbetween ! P ki

the separation vectoi(t) and the relative velocity vector

w(t) and computes the probability(0< < m/2) of acute i ; .
alignment betweef(t) andw(t) (which is equivalent to the 0 5 10 15 20 25 30 35 40 45 50
probability that the two particles are moving apas a func- _ _ - .

tion of time t/T,_. We plOt P(0< g< 77/2) againstt/T,_ in FIG. 10. Evolution of the correlation coefficiep{l,w) (solid line) between

I andw,, and th dified lation functiop®* (I, dashed i
Fig. 8. The KS prediction foP(0< #<w/2) does not differ andw), and the modifled conelation functiapy (1.w) (dashed fink

9o > - ! againstt/T, for initial separationly/n=64 [cf. Yeung's (Ref. 1) Fig.
significantly withA or with the energy input; the agreement 14(b)]. The KS input energy spectrum is case 4 of Fig. 1.
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IV. THE FLATNESS FACTOR AS A FUNCTION OF
REYNOLDS NUMBER

i

=

.,
et
=

100
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™

Let us now concentrate attention on the flathnpgét)
because of its relation to intermittency. In the Eulerian J
frame, a quantitative definition of intermittency is usually s \
given in terms of the flatnessF(r)={[ug(x+r) \
—ug(X)1M/{[ug(x+r) —ug(x)12)2, whereug(x) is an Eule- j \\ \
rian velocity component. If a field is Gaussian, and therefore
not intermittent,F(r)=3 for all r. The Eulerian velocity / 1c\0 \
field is said to be intermittent whef(r) increases with de- 10 5\ !
creasing (see Friscl). Similarly, we may refer to Lagrang-
ian intermittency whenu,(t) increases with decreasirg Y W,

Eulerian laboratory measurements B{r) show that , : : N,
F(r) increases above the Gaussian value of 3 with decreas- - ST
ing r in the inertial range and reaches a maximum value at a
small value ofr that is related to the dissipation range
(Tabelinget al!%. No Lagrangian laboratory measurements
of w4(t) are currently available, and DNS measurements of 1
u4(t) are limited to relatively small Reynolds numbers. At
Re ~91, Yeung's DNS and the present KS show that FIG. 11. Evolution of the flatness factar, of the relative velocity(com-
=3 for timest larger than approximately eight Lagrangian ponenj w; vst/7, from KS with different inertial ranges, /kL=51(from
integral time scalesT,, and increases quite dramatically Fig- 7. 100, and 400. The initial separation in each cask )= (A).

. . . L . The time is normalized by the respective Kolmogorov time scale in each
with decreff’lsmg below STL if the m't'.al distance ; between case. The KS input energy spectrum is case 4 of Fig. 1 Wjth=50, N,
the two fluid elements is of ordey (Fig. 7). Forlo=37, the =50, andN,,;=5 modes foik, /k =5, Ny, =50, Ny, =150, andNy=>5 for
flatnessu, reaches a peak value of approximately(BINS)  k 7k =100 andN, =50, Ny, =250, andNy,,=5 modes fork /k =400.
and 60(KS) at a timet peq/ 7,~8 for both the DNS and the See Table .
KS. Ast/7, decreases below.,/7,,u, decreases for all
these values of,7; the results fory/7»=3, 1, and 4 are
summarized in Table Il. The Reynolds number in thesesee Table I. We have kept the same valuedgrso that we
simulations is low, and so there is not enough separatioare adding small amounts of energy to the flow by simply

between large and small scales to see whethgy is of extending the inertial range part of spectra to higher-wave

order 7, or of orderT . numbersk;, which then falls off exponentially fok>k; .

The behavior ofu, and the scaling of,,With increas- ~ The Lagrangian integral time scalg remains the same be-
ing Reynolds number cannot be tested with DNS at presengause this quantity is determined by the large scales. But the
and it remains unknown how,(t) behaves in the inertial Kolmogorov time microscale decreases with becausery
time range, 7,<t<T,, at high Reynolds numbers, and ~k;,?®. The key new feature that emerges is that the La-
whethert ., scales with the viscous time scatg, or with grangian flatness factor is significantly greater thaow8r a
the Lagrangian time scal€,_ or perhaps even some other wide range of inertial time scales, <t<8T_, for these
time scale(perhaps the Taylor microscale, which is interme-Reynolds numbers. Note that R8.5 corresponds to Ye-
diate betweenr, and T_?). Heppe'S stochastic model of ung's Rg=91. Making use of the relation ReRe"% we
two-particle dispersion that has been adjusted to incorporaténd that Rg~670 for Re=464, and Rg~1690 for Re
Reynolds number effects predicts thgt,=O(7,) andu,  =2947. Furthermore, the peak value in the flatnggsin-
=3 for t> 7, for all Reynolds numbers creases from 60 to about 100 and 200, respectively, while the

In view of the good quantitative agreement in Lagrang-nondimensional time.,/ 7,, at which the peak occurs ap-
ian statistics between DNS and KS for,R®1, it may be pears to increase only very slowly; respectively, about 8, 10,
interesting to use KS to predigi,(t) for large Reynolds and 13, and these correspondTp/tpeae~1, 6, and 12, re-
numbers, which can be easily generated in KS models bgpectively. These results are summarized in Table Ill. Cer-
increasingk,/k, at a relatively moderate expense. Whattainly, we cannot conclude thaic.,scales with eitheil or
does the KS model of two-particle dispersion, which incor-
porates small-scale turbulent-like flow structures, predict for
the behavior ofu,(t) in the inertial time range and for the TABLE IIl. DNS [Yeung (Ref. 1] and KS(case 4 results for different
scaling ofteqcfor large Reynolds numbers? Reynolds numbersi§/=0.25).

e

\\

=
>

<~

1 10 100 1000

In Fig. 11 we plot the flatness factqr,(t) for k, /k_ Case k/k_ k. /k_ Re Re w0 tooul7y T /toem
=5, 100, and 400 for the case A whiyt = 1. We define a ! M e
corresponding Reynolds number Rg /k )*=8.5, 464, DNS 5 25 85 a1 80 8 11
and 2947 for these simulations. The energy spectrum in these4 1050 5%% 46845 69710 16c§)0 180 16
new simulations is similar to case 4 of Flg 1, but VVMIm 4 400 2000 2047 1690 200 13 12

=150 modes fok, /k, =100 andN,,=250 fork, /k, =400
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B constant\ that is a temporal decorrelation parameter. On
1l physical grounds\=0(1), and wehave taken\ =0.4. In
fact, we have shown that most of the statistics are not sig-
: nificantly affected even wheh=0, so that this parameter
o 1y could be effectively removed as an input leaving jH$k)
b, alone to define the entire structured flow and the induced
‘ X dispersion processes that ensues from it. This is a remarkable
reduction in input complexity. Furthermore, let us note that
1 5 whereas DNS take®(10°) degrees of freedom to produce
: P 3 the Lagrangian statistics, KS tak€§10?) to generate quan-
10 Frrefobionind : / ; - titatively similar results.
: I _ W% Of particular interest is the flatness factor of the two-
ST W particle relative velocity componentgy,(t,ly), which is a
: .. measure of Lagrangian intermittency. The KS predicts Ye-
S . T v ung’s DNS result foru,(t) remarkably well(Fig. 7). This
R o L 5 lends support to the idea that two-particle turbulent disper-
sion is well modeled as bursts in separation, when particle
pairs meet straining flow regiori#alik,’? Funget al.? and
Fung and Vassilicd$. Some experimental evidence support-
ing this picture is contained in Virant and Dracoshere in
FIG. 12. A comparison of the evolution of the flatness fagtorof the  Fig. 8(d) a pair of particle trajectories show a process of
relative velocity(com_ponerjtw1 vst/t, betweeq ca_sesZand4of Fig. 1 for separation similar to that just described. Such a process is
;‘ (gg:higol'i rf;',\?kiti"g_ a;:;hfai?;“f as those in Fig. 11, except that for casge, o jfy, obtained in the KS model, which contains genuine
turbulent-like flow structures(eddying, straining, and
streaming structurgswhich yield qualitatively realistic par-

7,. We can only conclude from these simulations that thdicle trajectories. Our results indicate that the Lagrangian sta-

values of the flatness factor are significantly larger than Jistics of these KS trajectories are quantitatively realistic as

over a substantial range of times bounded from belovrpy ~Well _

and above by 8, . The KS model was then used to look at the behavior of
Finally, a question of considerable interest is how sensithe flatnsss factopy(lo.t) for large Reynolds numbers Re

tive is the behavior of the flatness factos(t) to the nature  =(ki/k))"“=464 and 2947, which correspond to,R&70

of the transition between the dissipation subrange and th@nd 1690, respectively. Our results for the flatness factor

inertial range, particularly for high Reynolds numbers. Toxa(t) (Fig. 11 shows thaju, is significantly greater than the

test this in the KS model, we have performed some simulaSaussian value of 3 over a substantial part of the inertial

tions with case 2 of Fig. 1 as the input spectrum. In case 2lme range.

E(k)=0 for k,<ks<k,, in contrast to Yeung's spectrum
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