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This study has conducted parallel simulations of interacting inertial particles in statisti-
cally-steady isotropic turbulence using a newly-developed efficient parallel simulation
code. Flow is computed with a fourth-order finite-difference method and particles are
tracked with the Lagrangian method. A binary-based superposition method has been
developed and implemented in the code in order to investigate the hydrodynamic interac-
tion among many particles. The code adopts an MPI library for a distributed-memory par-
allelization and is designed to minimize the MPI communication, which leads to a high
parallel performance. The code has been run to obtain collision statistics of a monodisperse
system with St = 0.4 particles, where St is the Stokes number representing the particle
relaxation time relative to the Kolmogorov time. The attained Taylor-microscale based
Reynolds number Rk ranges from 54.9 to 527. The largest simulation computed the flow
on 20003 grids and 10003 (one billion) particles. Numerical results have shown that the col-
lision kernel increases for Rk<100 then decreases as Rk increases. This Reynolds dependency
is attributed to that of the radial distribution function at contact, which measures the con-
tribution of particle clustering to the collision kernel. The results have also shown that the
hydrodynamic interaction for St = 0.4 particles decreases both the radial relative velocity
and radial distribution function at contact, leading the collision efficiency less than unity.
The collision efficiency increases from 0.65 to 0.75 as Rk increases for Rk<200 and then
saturates.

� 2013 Elsevier Inc. All rights reserved.
1. Introduction

Several mechanisms have been proposed in the literature to explain what causes the fast size-broadening of cloud drop-
lets, which could result in quick rain initiation at the early stage of cloud development. Examples are enhanced collision rate
of cloud droplets by turbulence [11,14], turbulence entrainment [6,17], giant cloud condensate nuclei [46,37] and turbulent
dispersions of cloud droplets [34]. The most intensely discussed is the first mechanism; enhanced collision rate by turbu-
lence. This has initiated extensive research on particle collisions in turbulence ([36,43,33,25,9, and references therein]).

There are several collision models that predict collision rates of particles in turbulence. Saffman and Turner [32] analyt-
ically derived a collision model for particles with zero or very small St (=sp=sg, where sp is the particle relaxation time and sg

the Kolmogorov time), while Abrahamson [1] derived a model for particles with large St. There is yet no widely accepted
model for finite inertial particles, although water droplets in cumulus clouds have finite inertia; cloud droplets have
zawa-ku,
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St ¼ Oð10�2�0Þ and rain drops St ¼ Oð100�2Þ. One difficulty arises from the preferential motion of inertial particles. Inertial
particles preferentially cluster in regions of low vorticity and high strain if St � 1 [20], and cluster in a way to mimic the
clustering of zero-acceleration points by the sweep-stick mechanism if 1 K St K sp=T , where T is the integral time scale of
the turbulence [7]. This matters because clustering increases the mean collision rate [36]. The clustering effect prevents
the construction of a fully-analytical model for finite-inertial particles, and requires several empirical parameters in collision
models [49,43,48,22,12]. Those parameters are usually determined by direct numerical simulation (DNS) data. Data from
laboratory experiments [33,19] would of course help, but available data are very much limited.

One serious problem is that no collision data is available for high Reynolds number flows. The Taylor-microscale based
Reynolds number Rk (¼ u0lk=m, where u0 is the rms of velocity fluctuations, lk the Taylor microscale and m the kinematic vis-
cosity) for collision statistics attained by DNS has been at most Rk � 100. This value is much smaller than those in cloud tur-
bulence, in which Rk ranges from 103 (shallow cumulus clouds) to 105 (deep cumulus clouds). Nevertheless, there are several
studies where collision models were used in cloud simulations to investigate the impact of enhanced collisions of cloud
droplets [24,45,40,26]. They simply extrapolated their collision models to high Rk, without justification. A simple solution
is to obtain collision statistics for high Rk flows for justifying models, which requires high-performance computing.

Code parallelization is indispensable for high-performance computing. The parallelization is classified into two types. One
is the shared-memory parallelization (openMP and auto parallelization libraries are commonly used), and the other the dis-
tributed-memory parallelization (message-passing interface, MPI, is commonly used). In the shared-memory parallelization,
all processors operate independently but share the same memory resources, i.e., global memory. The global memory concept
provides a user-friendly programming perspective to memory. However, shared-memory computers cannot scale very well.
Most of them have only ten or fewer processors. In contrast, memory is scalable with number of processors in the distrib-
uted-memory parallelization, which therefore is preferable in massively-parallel simulations. Processors have their own lo-
cal memory and there is no concept of global memory space across all processors. When a processor needs access to data in
another processor, data must be communicated through network connecting inter-processor memory, which has much nar-
rower band than that between processor and local memory. Therefore the key to success of massively-parallel simulations
with distributed-memory parallelization is in reducing the amount of data communications.

There have been numerous DNS codes for colliding particles in turbulence [43,29,13,5,39,44,25]. One may notice that
most of them adopt pseudo-spectral models (PSMs). Unfortunately, few of the PSM codes for particle collisions are designed
for the distributed-memory parallel simulations (the only one exception to the authors’ knowledge is the very recent work
by Rosa et al. [31]), and therefore the attained Rk has been limited. Furthermore, a parallel PSM code faces major difficulties
in massively parallel computing: PSM requires all-to-all data communication for the Fourier transformation. This prevents
the PSM from maintaining good parallel efficiency for massively-parallel simulations. Another difficulty is imposed when
coupling the PSM with particle calculations. The flow is computed in wavespace in PSM, but Lagrangian particles are in phys-
ical space. Code developers therefore need to consider domain decompositions in both wavespace and physical space. These
two difficulties could be major reasons why there are few distributed-memory codes for colliding particles employing PSM.

Recently, Onishi et al. [23] developed a finite-difference model (FDM) with an efficient large-scale forcing scheme named
reduced-communication forcing (RCF) for statistically-stationary isotropic turbulence. The FDM employs the three-dimen-
sional domain decomposition leading to high parallel efficiency. They also confirmed good reliability of their FDM, which
employs a conservative fourth-order finite difference scheme [21]. FDM requires less communications than PSM, and it is,
therefore, suitable for massively-parallel computing. Coupling the particle calculation with the FDM can be an alternative
to the coupling with the PSM for simulations of inertial particles in high Reynolds number flows.

One important physical process, which has often been neglected due to its high computational cost, is hydrodynamic
interactions between particles. These interactions cause particles tend to avoid collisions, thus often leading to a collision
efficiency Ec < 1. There are several studies which observed that turbulence increases the collision efficiency ([27,39]). How-
ever, these studies did not provide data for high Reynolds flows, leaving the Reynolds number dependency of collision effi-
ciency unclear.

Recently, Ayala et al. [3] (hereafter referred to as AGW07) proposed a numerical scheme to consider the hydrodynamic
interaction among colliding particles in three-dimensional turbulence. Their scheme is based on the superposition method
[28] and adopts the Gauss–Seidel method to iteratively solve a large linear system. It is reportedly feasible to perform a
three-dimensional simulation using the scheme, which still requires a huge computational cost for calculating the hydrody-
namic interaction. It is preferable to employ a computationally lighter scheme for larger-size computations.

This study aims to develop an MPI parallel code for interacting particles in homogeneous isotropic turbulence (PIPIT, Par-
allel code for Interacting Particles in homogeneous Isotropic Turbulence) based on FDM coupled with Lagrangian particle
calculations, and run the code to obtain data for high-Reynolds flows. The data obtained is used to investigate the Reynolds
number dependencies of collision statistics of inertial particles. An efficient scheme, named binary-based superposition
method (BiSM), for the hydrodynamic interaction calculation is also proposed and implemented in PIPIT. BiSM is based
on the superposition method but is more accurate than the original superposition method [28] and is more computationally
efficient than the scheme by Ayala et al. [3]. The cell-index method [2] is adopted in PIPIT for efficient detection of neigh-
boring pairs.

In the following section, we describe numerical procedures for collision detection (subSection 2.1) and hydrodynamic
interaction (subSection 2.2). The main frame of PIPIT is then introduced in Section 3, where the algorithm for efficient
parallel simulations is described. Numerical results and discussion are mostly presented in Section 4, which consists of
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the following subsections. At first, the performance and an optimal setting of PIPIT are discussed in subSections 4.1 and 4.2.
Collision statistics for different Reynolds number flows is then presented in subSection 4.3. This study is concluded in
Section 5.

2. Particle interactions

2.1. Geometric collisions

2.1.1. Collision detection
There are several ways in dealing with collision events. One of the colliding pair of droplets may be removed immediately

after collision (Scheme 1), or droplets may be allowed to overlap (ghost-particle condition) (Scheme 2). Scheme 1 is more real-
istic because the collision-coalesced droplet will form a particle of larger size and will disappear from the original size group.
Scheme 2 is suitable for discussing the so-called spherical form (refer to Eq. (3)), where the effect of clustering is clear. In
order to involve a discussion on the clustering effect this study employs Scheme 2.

A collision is judged from the trajectories of a pair of droplets assuming linear particle movement for a time interval Dt.
The linear particle movement leads to linear change of SðtÞ for Dt, where SðtÞ is the separation distance between a pair of
particles selected for collision detection. There are then two situations when a collision must be counted: (i) If
Sðtn�1Þ > R, where R (¼ 2r in a monodisperse system) is the collision radius, and SðtnÞ 6 R, a collision must occur. (ii) If
Sðtn�1Þ > R and SðtnÞ > R, a collision could occur if SðtÞ 6 R for tn�1 < t < tn.

After the background airflow has reached a statistically stationary state, monodispersed water droplets are introduced
into the flow. After a period exceeding three times the eddy-turnover time T0 ¼ L0=U0, collision detection is then started.
Each run with collision detection lasted for a time T0 and statistical uncertainties were calculated from three or more runs.
The particle volume fraction was so dilute -typically order 10�6��5, except for a massive-number-of-particle case in Sec-
tion 4.1, that only binary collisions were considered.

The collision rate between monodispersed particles per unit volume and time, Nc , is given by
Table 1
Cases B
distanc

Case

BI

TRI
Nc ¼
1
2

Kcn2
p ; ð1Þ
where Kc is the collision kernel and np (=Np=Vd, where Np is the total number of particles and Vd the volume of the compu-
tational domain) the droplet number concentration. The collision rate at nth timestep Nn

c is calculated from the number of
collision pairs Nn

col:pair detected in the domain for a time interval Dt as Nn
c ¼ Nn

col:pair=ðVdDtÞ. Thus, the collision kernel at the nth
time step, Kn

c , is obtained as
Kn
c ¼ 2

Nn
col:pair

n2
pVdDt

: ð2Þ
The mean collision kernel, Kch i, was calculated by time averaging the collision kernels at each time step.
Wang et al. [42] formulated the collision kernel based on the spherical formulation as
Kcðr1; r2Þh i ¼ 2pR2 wrðx ¼ RÞj jh igðx ¼ RÞ; ð3Þ
where � � �h i denotes the ensemble average, R ¼ r1 þ r2 the collision radius, wrðx ¼ RÞj jh i (simply wrj jh i hereafter) the radial
relative velocity at contact, and gðx ¼ RÞ (simply gðRÞ hereafter) the radial distribution function, RDF, at contact. The term
gðRÞ represents the clustering effect, which is equal to unity when particles are uniformly distributed.

2.1.2. Code validation for collision statistics
Intense validation tests of the code for collision statistics have been conducted. Firstly conducted is a comparison with the

theoretical collision kernel derived by Saffman and Turner [32] for collisions among droplets with no inertia, that is, droplets
that follow the flow perfectly and act as fluid tracers. The model of Saffman and Turner [32] gives Kcðr1; r2Þ=kR3 ¼1.294,
where k (=

ffiffiffiffiffiffiffiffi
�=m

p
, where � is the energy dissipation rate) is the local shear rate. The calculated mean collision kernel for

zero-inertia particles with r1 ¼ r2 ¼ 30 lm for a low Reynolds number flow (refer to case N64 in Table 2 in Section 4)
I and TRI correspond to Figs. 1(a) and (b), respectively. Lpqð¼ dpq=R, where R ¼ 2r is the collision radius) in second column denotes the normalized
e between particles p and q in Fig. 1. Errors and number of floating point operations (FPO) shows relative values based on the results from ItrSM.

ðL12; L13; L23Þ Method u½1�
�� ��=V1 Estimated relative error Computed relative error No. of FPO

ð2;�;�Þ ItrSM 0.270 – –[reference] 1.00[reference]
OrgSM 0.369 0.333(Eq. (18)) 0.368 0.09
BiSM 0.270 0 0 0.28

ð2;30;30:5Þ ItrSM 0.261 – – 1.00
OrgSM 0.345 0.335(Eq. (25)) 0.352 0.09
BiSM 0.262 0.022(Eq. (24)) 0.019 0.28



Table 2
Case configurations and typical turbulent statistics. Re ¼ U0L0=m, u0 the rms of flow velocity fluctuation, kmaxð¼ N=2Þ the maximum wavenumber, lg the
Kolmogorov scale, k the local shear rate and Rk the Taylor-microscale based Reynolds number. The standard deviation for the analysis period is shown by
�value. The number of droplets were set to Np ¼ N=2ð Þ3 and the Stokes number was set to 0.4 for all the cases.

N3 L0[�10�2 m] Re u0 kmaxlg Rk Np St

N64 643 0.500 66.7 1.02 1.76 54.9�0:6 323 0.4

N128 1283 1.00 143 1.02 2.00 81.3�0:8 643 0.4

N256 2563 2.00 360 0.98 2.06 126�1:8 1283 0.4

N512 5123 4.00 908 1.01 2.03 207�2:0 2563 0.4

N1000 10003 7.81 2220 1.02 2.00 323�1:7 5003 0.4

N2000 20003 15.6 5590 1.00 2.00 527�5:4 10003 0.4
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was Kch i=kR3 ¼1.277, which gives an error of 1.3%. This result compares well with the 1% numerical uncertainty obtained by
Wang et al. [41].

The radial relative velocity at contact wrj jh i, and the RDF at contact gðRÞ are calculated based on the algorithm by Wang
et al. [43]. The collision kernel directly obtained from Eq. (2) and the calculated collision kernel from the spherical formu-
lation, i.e., Eq. (3), are compared. For the low Reynolds flow, where Rk=54.9, the error for St = 0.4 was 2.7%, which is compa-
rable to 1.5% for St=0.4 reported in [43] for Rk ¼ 45. Interestingly the error becomes smaller as Reynolds number increases. In
the highest Reynolds number flow field (refer to case N2000 in Table 2 in Section 4), where Rk=527, the error was as small as
0.55%. The reason why the error becomes smaller as Reynolds number increases is not clear yet. Relation (3) is based on the
assumption that wrj jh i and gðRÞ are uncorrelated, something which may not be fully valid when Rk is small and the flow effec-
tively consists of single-sized eddies. [43] investigated, in their low Reynolds DNS, the origin of the error and found a slightly
larger inward particle-flux than outward one at contact distant although the two fluxes should match in statistically steady
state. This mismatch may become smaller in higher Reynolds number flows.

Turbulent collision kernels for different St particles at Rk=54.9 were obtained and compared with the data for Rk ¼ 54:3 in
[25], where a pseudo-spectral method was employed for flow. The comparison has confirmed good agreements in both mean
values and standard deviations (not shown).

2.2. Hydrodynamic interaction (HI)

2.2.1. Physical description
While moving in a flow medium, a particle induces a flow disturbance in its neighborhood. The disturbance may inter-

vene between particles for the so-called hydrodynamic interaction (HI). The particle Reynolds number based on the gravi-
tational settling velocity for cloud droplets in the atmosphere is of the order of 0.01–1.0. It is a good start to assume the
disturbance flow to be a Stokes flow. The disturbance flow at x due to a droplet located at y can be written as
uSt x; r;UrelðyÞð Þ ¼ ð4Þ

� 3
4

r
dþ 3

4
r
d

� �3
h i

ðUrelðyÞ � dÞ d
d2 � 3

4
r
dþ 1

4
r
d

� �3
h i

UrelðyÞ for d > r;

0 for d 6 r;

(
ð5Þ
where r is the particle radius, d ¼ dj j ¼ x� yj jð Þ the distance from the particle center, and UrelðyÞ ¼ UðyÞ � VðyÞ, where UðyÞ is
the air flow velocity and VðyÞ the particle velocity at the same point y.

Since the Stokes disturbance flows above are governed by a linear equation, they can be superimposed to satisfy the same
Stokes equation locally. The superposition method ([28]) stands on this basis. However, Wang et al. [38] pointed out that the
original superposition method (OrgSM, hereafter) does not satisfy the no-slip boundary conditions for multiple particles in
the system. Ayala et al. [3] (AGW07) then developed an iterative superposition method (ItrSM, hereafter). ItrSM is more reli-
able but computationally expensive due to its iteration procedure. For example, it was reported that about 95% of the com-
putational time was consumed for the ItrSM in a simulation for a system of 200,000 monodisperse particles in a turbulent
flow on a 643 grid.

2.2.2. Binary-based superposition method (BiSM)
This study proposes an intermediate method between OrgSM and ItrSM in terms of both computational cost and reliabil-

ity. The present method is named the binary-based superposition method (BiSM). Firstly we briefly revisit OrgSM and ItrSM,
then introduce BiSM.

The disturbance flow field at point x in a system containing Np particles is written as
uðxÞ ¼
XNp

k¼1

u½k�St xð Þ; ð6Þ
where
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u½k�St ðxÞ 	 uSt x; r½k�;U½k�rel

� �
; ð7Þ
where superscript k indicates the disturbance due to kth particle. In OrgSM, the particle velocity relative to the air flow is
calculated simply as U½n�rel ¼ Ubgðy½n�Þ � Vðy½n�Þ 	 U
ðy½n�Þ

� �
, where Ubg is the background air flow. In ItrSM, it is instead as

U½n�rel ¼ U
ðy½n�Þ þ uðy½n�Þ yielding
u½n� ¼
XNp

uSt y½n�; r½k�;U
ðy½k�Þ þ uðy½k�Þ
� �

¼
XNp

k–n

uðnÞ½k�St ; for n ¼ 1;2; � � � ;Np; ð8Þ
where we use an abbreviation as
uSt y½n�; r½k�;U
ðy½k�Þ þ uðy½k�Þ
� �

	 uðnÞSt U
ðy½k�Þ þ uðy½k�Þ
� �

	 uðnÞ½k�st : ð9Þ
The linearity brings, e.g., uðnÞSt U
ðy½k�Þ þ uðy½k�Þ
� �

¼ uðnÞSt U
ðy½k�Þ
� �

þ uðnÞSt uðy½k�Þ
� �

. Eq. (8) is a linear system of dimension 3Np (un-
known variables). It is not feasible to directly solve, i.e., to calculate the inverse matrix of, this system for large Np. [3]
adopted the Gauss–Seidel method and iteratively solved the system.

In a binary particle case, i.e., in case the system contains only two particles, the disturbance flows are written as
u½1� ¼ uð1ÞSt U
½2� þ u½2�
� �

; ð10Þ

u½2� ¼ uð2ÞSt U
½1� þ u½1�
� �

; ð11Þ
which form a set of linear system with six unknown variables. Substitution of Eq. (10) into Eq. (11) yields three equations for
the three components of u½2�, which can be mathematically solved with ease. The solutions u½1�1$2 and u½2�1$2 satisfy
u½1�1$2 ¼ uð1ÞSt U
½2�
� �

þ uð1ÞSt u½2�1$2

� �
;

u½2�1$2 ¼ uð2ÞSt U
½1�
� �

þ uð2ÞSt u½1�1$2

� �
:

8><
>: ð12Þ
BiSM is based on this solution, assuming that interactions via three or more particles are negligible. Eventually, the solu-
tion from BiSM for multiple particles is given by
u½n� ¼
XNp

k–n

u½k�n$k: ð13Þ
One well-known problem of the superposition method is that it does not account for the lubrication effect, which be-
comes significant for small separation as d12=ðr1 þ r2Þ < 1:1, where d12 is the separation between particles 1 and 2. Very re-
cently, [30] proposed a parameterization based on [16], who derived exact solutions of forces acting on a pair of droplets. The
parameterization is for binary systems, and, therefore, it can be adopted in BiSM. If we adopt this parameterization instead of
Eq. (12), it may lead to an improvement on BiSM in accuracy. This will be a next step of this study.

2.2.3. Error analysis
Two same-sized particles
Let us think of the binary-particle system shown in Fig. 1(a). The analytical solution of disturbance flow on particle-1 is
Fig. 1. (a) binary-particle system and (b) triplet-particle system.
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u½1� ¼ uð1ÞSt U
½2�
� �

þ uð1ÞSt u½2�1$2

� �
; ð14Þ
where uð1ÞSt U
½2�
� �

is indicated by the arrow ½2! 1� and uð1ÞSt u½2�1$2

� �
by ½1! 2! 1� in Fig. 1(a). The solution is directly obtained

by BiSM and iteratively obtained by ItrSM. Indeed, there is no inherent difference between BiSM and ItrSM in case of binary-
particle system: The difference is only in the procedure to obtain the solution, a direct procedure in BiSM but an iterative one
in ItrSM. Therefore there is no error in BiSM compared to ItrSM, i.e., ErrðBiSMÞ ¼ 0.

There is, however, a significant difference between OrgSM and the other two. The solution from OrgSM is
u½1�ðOrgSMÞ ¼ uð1ÞSt U
½2�
� �

ð15Þ
meaning the arrow ½1! 2! 1� is ignored. Comparison with Eq. (14) shows that the error level of OrgSM on u½1� is
ErrðOrgSMÞðu½1�Þ ¼
uð1ÞSt u½2�1$2

� ���� ���
uð1ÞSt U
½2�

� �
þ uð1ÞSt u½2�1$2

� ���� ��� : ð16Þ
Roughly speaking, Eq. (4) leads to
uStðr;vÞj j � Aðv=LÞ; ð17Þ
where v ¼ vj j; L12 ¼ d12=R and A a positive coefficient with order of 1, i.e., Oð1Þ. Considering u½2�1$2 � Að U
½2�
��� ���=L12Þ, Eq. (16)

becomes
ErrðOrgSMÞðu½1�Þ ¼
A Að U
½2�

��� ���=L12Þ=L12

� �
Að U
½2�
��� ���=L12Þ þ A Að U
½2�

��� ���=L12Þ=L12

� � ’ 1=ð1þ L12Þ: ð18Þ
This indicates that the error of OrgSM is negligible only for large separation, i.e., L12 � 1.
Three same-sized particles
An example of a system containing three particles is shown in Fig. 1(b). Eq. (8) for this system becomes
u½1� ¼
X3

k–1

uð1Þ½k�St ¼ uð1ÞSt ðU

½3� þ u½3�Þ þ uð1ÞSt ðU


½2� þ u½2�Þ ¼ uð1ÞSt ðU

½3�Þ þ uð1ÞSt

X3

k–2

uð2Þ½k�St

 !
þ uð1ÞSt ðU


½2�Þ þ uð1ÞSt

X3

k–3

uð3Þ½k�St

 !

¼ uð1ÞSt ðU

½3�Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}

½3!1�

þ uð1ÞSt ðU

½2�Þ|fflfflfflfflfflffl{zfflfflfflfflfflffl}

½2!1�

þ uð1ÞSt uð2ÞSt ðU

½1� þ u½1�Þ

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

½1!2!1�

þ uð1ÞSt uð3ÞSt ðU

½1� þ u½1�Þ

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

½1!3!1�

þ uð1ÞSt uð2ÞSt ðU

½3� þ u½3�Þ

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

½3!2!1�

þ uð1ÞSt uð3ÞSt ðU

½2� þ u½2�Þ

� �
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

½2!3!1�

; ð19Þ
where square brackets under the terms in the RHS correspond to the arrows in Fig. 1(b). BiSM ignores interactions via three
or more particles, that is, the arrows ½2! 3! 1� and ½3! 2! 1� in Fig. 1(b), leading to
u½1�ðBiSMÞ ¼ uð1ÞSt ðU

½3�Þ þ uð1ÞSt ðU


½2�Þ þ uð1ÞSt uð2ÞSt ðU

½1� þ u½1�Þ

� �
þ uð1ÞSt uð3ÞSt ðU


½1� þ u½1�Þ
� �

ð20Þ

¼ u½1�1$2 þ u½1�1$3: ð21Þ
OrgSM solves
u½1�ðOrgSMÞ ¼ uð1ÞSt ðU

½2�Þ þ uð1ÞSt ðU


½3�Þ: ð22Þ
Comparison between Eqs. (19) and (20) reveals the error of BiSM for a monodisperse system (r1 ¼ r2 ¼ r3 and therefore
U
½1�
��� ��� � U
½2�

��� ��� � U
½3�
��� ���) as
ErrðBiSMÞðu½1�Þ ¼ uð1ÞSt uð2ÞSt ðU

½3� þ u½3�Þ

� �
þ uð1ÞSt uð3ÞSt ðU


½2� þ u½2�Þ
� ���� ���� uð1ÞSt U
½3�

� �
þ uð1ÞSt ðU


½2�Þ þ uð1ÞSt uð2ÞSt ðU

½1� þ u½1�Þ

� ����
þ uð1ÞSt uð3ÞSt ðU


½1� þ u½1�Þ
� �

þ uð1ÞSt uð2ÞSt ðU

½3� þ u½3�Þ

� �
þ uð1ÞSt uð3ÞSt ðU


½2� þ u½2�Þ
� ���� ð23Þ

� 1=ðL12L23Þ þ 1=ðL13L23Þ
1=L12 þ 1=L13 þ 1=L2

12 þ 1=L2
13 þ 1=ðL12L23Þ þ 1=ðL13L23Þ

; ð24Þ
where u½k� � U
½k� and A2 � A � 1 are assumed. Similarly, the error of OrgSM is estimated as
ErrðOrgSMÞðu½1�Þ � 1=L2
12 þ 1=L2

13 þ 1=ðL12L23Þ þ 1=ðL13L23Þ
1=L12 þ 1=L13 þ 1=L2

12 þ 1=L2
13 þ 1=ðL12L23Þ þ 1=ðL13L23Þ

: ð25Þ
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2.2.4. Validation of BiSM
We have calculated the disturbance flow due to same-sized particles in a binary system and triplet system. (Table 1)

shows results on the disturbance flow at the position of 1-particle. Assuming the results from ItrSM to be true, errors of
OrgSM and ItrSM can be estimated from the equations in the previous section. For ItrSM, a convergence criteria must be im-
posed. In this study we follow [3] and set:
Fig. 2.
directio
uðkÞ
lþ1

i � uðkÞ
l

i

��� ���
ucharact

6 10�5; ð26Þ
where ucharact is a characteristic velocity and uðkÞ
l

i is the i-component of the disturbance flow velocity at the location of the kth
droplet at lth iteration. ucharact was set to the gravitational settling velocity for a monodisperse system, while to the differ-
ential settling velocity for a bidisperse system.

In the binary case (case-BI), the separation between two particles was set to twice the diameter. BiSM should be, and is
indeed, identical to ItrSM in that the two methods adopt different solver but solve the same linear system. OrgSM has 36.8%
error in u½1�

�� ��=V1, which is comparable with the estimate from Eq. (18).
In the triplet case (case-TRI), two of the three particles are closely located and their separation is again twice the diameter.

The other particle is separated from the two particles by approximately 30 times the diameter, which is comparable with a
mean separation of droplets with 30 lm in radius in atmospheric clouds.

Fig. 2 shows the normalized disturbance flow field, uj j=V1, in case-TRI calculated from (a) ItrSM, (b) OrgSM and (c) BiSM.
General shapes of the three results are similar. Closer look, however, reveals that the result from OrgSM is different from the
other two. For example, the contour area for uj j=V1 ¼ 0:05 in (b) is smaller than those in (a) and (c). BiSM has only 2% error
in u½1�
�� ��=V1, while OrgSM more than 30%. This large error in OrgSM is inevitable even in case-TRI in that it originates from a

binary system as in case-BI. ItrSM conducted 12 iterations to obtain the converged solutions in both cases, requiring about
four times larger number of floating-point operations (FPO), which is a measure of computational cost, than BiSM. If particles
are located closer, the number of required iterations becomes larger. In a many particle system, where some of the particles
are in contact with each other, ItrSM requires much larger iterations than the present cases. Then the cost difference between
ItrSM and BiSM becomes larger.

The parameter used to measure the HI effect on particle collision is the collision efficiency Ec. For the case of two isolated
particles settling in a stagnant flow, Ec is defined as
Ec ¼
y2

c

R2 ; ð27Þ
where yc is the far-field, off-center horizontal separation of the approaching trajectory of a smaller particle relative to a larger
particle. In most of the cases, the HI tends to make yc smaller than Rð¼ r1 þ r2Þ, resulting in Ec < 1. In numerical simulations,
the trajectories of two particles falling under gravity in a stagnant flow are numerically integrated to obtain Ec from Eq. (27).
It should be noted that this definition of Ec is not applicable to the collision efficiency among same-sized droplets, for which
an approaching axis cannot be defined since their settling velocities are identical.

In a general approach, a large number of particles are simultaneously considered with many-body interactions, and Ec is
then the ratio of number of collisions with the HI to the number of collisions when the HI is ignored, interpreted as
Ec ¼
Kch i½HI�

Kch i½NoHI� ; ð28Þ
where [HI] indicates that the HI is considered and [NoHI] not. This formulation is used in subsection (4.3), in which collision
efficiency among same-sized droplets in different Reynolds number flows is discussed.

Fig. 3 shows the collision efficiency Ec , obtained based on Eq. (27), between r1 and r2 particles in a stagnant flow. The solid
line is from AGW07, which adopts ItrSM. For comparison purpose, the physical constants were set to be consistent with
those used in AGW07 for this figure. The results from OrgSM tend to produce larger values than AGW07 and BiSM. The error
Disturbance flow normalized by the particle settling velocity in case-TRI obtained from (a) ItrSM, (b) OrgSM and (c) BiSM. Arrow shows the flow
n, and color of the arrow and contour and the magnitude of the disturbance flow.



Fig. 3. Collision efficiency between r1 and r2ð< r1Þ particles in stagnant flow. The larger particle is a water droplet of r1=25 l m. The solid line is from Fig. 9
in[3].
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is attributed to the > 30% errors shown in Table 1. The consistency among AGW07 and BiSM confirms the reliability of BiSM
for collision efficiency calculations in a stagnant flow.

In order to confirm the reliability of BiSM in turbulent flows, this study has conducted two comparisons: (i) comparison
between BiSM and ItrSM for the exact same turbulent flow, (ii) comparison with ItrSM in [39].

(i) A collision efficiency for monodispersed particles with St = 0.4 for Rk=54.9 was obtained based on Eq. (28). The system
had a particle volume fraction of /v ¼ 9:1� 10�6, which is comparable to the typical value of 10�5 in atmospheric
clouds. The mean collision efficiency Ech i from ItrSM was 0.652, while that from BiSM was 0.650. This confirms that
BiSM is as reliable as ItrSM under a typical dilute condition for clouds. With regards to the computational cost, ItrSM
required 28 times larger CPU time for the HI calculation than BiSM in this colliding-particle system, while it required
only about 4 times larger CPU time in the above cases BI and TRI, where particles are not colliding. The large difference
is due to the difference in the number of iterations. In the colliding-particle system the average number of iterations
was 40, while it was 12 in the non-colliding systems. When a pair of droplets is colliding, i.e., the separation is very
small, a large number of iterations are required by ItrSM. A major problem is that a large number of iterations are
required even when there is only one pair of colliding droplets out of many pairs in a many-particle system. BiSM,
which does not require iterations, is obviously free from this problem.

(ii) Wang et al. [39] measured collision efficiencies using the iterative approach. For example, collision efficiencies were
measured for an isotropic turbulent flow with Rk ¼ 43 and � ¼ 400 cm2/s3 with bidisperse particles. The collision effi-
ciency of r1 � r1 collisions for r1 ¼ 20 lm and r2=r1=0.9, where the volume fraction /v ¼ 9:97� 10�6, was (Ec
(ItrSM)=)0.812 � 0.082. We have conducted a comparison by assuming that the r2=r1 ¼ 0:9 case is virtually a mono-
disperse case. Computational settings were adjusted to obtain a similar condition with [39]. An isotropic turbulent
flow with Rk ¼ 55 and � ¼ 400 cm2/s3 was obtained using a 643 numerical grid. The number of monodisperse droplets
with r1 ¼ 20 lm was set to 98,304, which lead to a volume fraction of /v ¼ 1:03� 10�5(�9:97� 10�6 in [39]). The col-
lision efficiencies obtained from BiSM an OrgSM were (Ec (BiSM)=)0.857 � 0.064 and (Ec (OrgSM)=)1.08 � 0.08,
respectively, where �value shows the standard deviation obtained from 6 runs, with each run for 30T0. This long
run duration of 30T0 was needed to obtain reliable data with a small statistical error from such a system with small
number of particles. Ec (BiSM) agrees with Ec (ItrSM) within the statistical error, while Ec (OrgSM) does not. This fur-
ther confirms the reliability of BiSM for a turbulent flow.

These two comparisons have confirmed the reliability of BiSM and its advantage in computational cost for turbulent flow
cases under dilute conditions as seen in atmospheric clouds.
3. Parallel code for interacting particles in homogeneous isotropic turbulence (PIPIT)

3.1. Flow phase

3.1.1. Governing equations and numerical methods
We solve the three-dimensional continuity and Navier–Stokes equations for incompressible flows;
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r � U ¼ 0; ð29Þ

@U
@t
þ ðU � rÞU ¼ �rP þ 1

Re
r2Uþ Fðx; tÞ: ð30Þ
Here, Re is the Reynolds number defined as Re ¼ U0L0=m, where U0 is a representative velocity, L0 a representative length,
and m the kinematic viscosity. We consider the case of zero mean flow, and can therefore consider the velocities in the above
equations as velocity fluctuations. The last term in the RHS represents the external forcing for achieving a statistically steady
state. This study employs the reduced-communication forcing (RCF) ([23]), which is suitable for massively-parallel finite-dif-
ference model (FDM), to maintain the energy of motion with kj j < 2:5, where k is a wavevector.

In our FDM, spatial derivatives are calculated using fourth-order central differences. We employed the conservative
scheme of [21] for the advection term, and the second-order Runge–Kutta scheme for time integration. To solve the veloc-
ity–pressure coupling we used the HSMAC scheme ([15]), iterating until the RMS of the velocity divergence became smaller
than d=D, where D is the grid spacing and d was chosen to be 10�3. The governing equations were discretized on a cubic do-
main of length 2pL0, and periodic boundary conditions applied in all three directions. The flow cube was discretized uni-
formly into N3 gridpoints, resulting in D ¼ 2pL0=N.

3.2. Particle phase

3.2.1. Governing equations and numerical methods
Water droplets are considered as Stokes particles with inertia, governed by the equation
dV
dt
¼ � 1

sp
V � Uðx; tÞ þ uðx; tÞð Þð Þ þ g;
where V is the particle velocity, U the air velocity at a droplet position, u the disturbance flow velocity due to surrounding
droplets, g ¼ ð�g;0;0Þ the gravitational acceleration and sp the particle relaxation time defined as sp ¼ ð2=9Þðqp=qf Þðr2=mÞ,
where r is the particle radius and qp=qf the ratio of the density of the particle material to that of the fluid. qp=qf was set to
103 for a comparison with AGW07 in subSection 2.2, otherwise to 8.43�102 at 1 atm and 298 K. The gravity was considered
in subSection 2.2, where influence of hydrodynamic interaction on gravitational collision is discussed, but not in Section 4.
The neglect of gravity is justified for collisions of monodispersed small water droplets without hydrodynamic interactions
([25]). Although it has not been justified for hydrodynamically-interacting particles, this study uses it for simplicity. The
Stokes number, St ¼ sp=sg, where sg is the Kolmogorov time, was set to 0.4. The gravitational acceleration g was set to
9.8 m s�2 for the with-gravity case. The second-order Runge–Kutta method was used for time integration. The flow velocity
at a droplet position was linearly interpolated from the adjacent grid values. The adoption of the simple linear interpolation
has been justified by the comparison with the cubic Hermitian, cubic Lagrangian and fifth order Lagrangian interpolations
from ([35]). The PIPIT itself can consider the nonlinear drag if needed. This study, however, employed the linear drag model
since the droplet considered was at most 29.6 lm in radius, whose particle Reynolds number Rep (=2rV1=m, where V1ð¼ gspÞ
is the particle settling velocity) is smaller than unity. Turbulence modulation by droplets was assumed negligible because of
the high droplet dilution.

3.2.2. Cell-index method
As in Fig. 4, the domain is divided into M3

cell equal cells and a list of particles in each cell is created ([2]). A particle in
ðl;m;nÞ-cell has a chance to collide with the particles inside the neighboring 27 cells, i.e., ð½l; l� 1�; ½m;m� 1�; ½n;n� 1�Þ-cells.
When sequentially checking the neighboring pairs, the number of cells to be checked for the particles in ðl;m;nÞ-cell is re-
duced to 14 to avoid duplicated checks. The average number of particles in each cell is Np;cell

	 

¼ Np=M3

cell, where Np is the
total number of particles. For a particle in a cell, the number of collision pairs with particles inside the same cell is
ð Np;cell

	 

� 1Þ=2, and the number of collision pairs with particles in the surrounding 13 cells is 13 Np;cell

	 

. The total number

of possible combinations to be checked is M3
cell � Np;cell

	 

� ðð Np;cell

	 

� 1Þ=2þ 13 Np;cell

	 

Þ ¼ Npð27 Np;cell

	 

� 1Þ=2. If Np;cell

	 

is

kept constant by increasing M3
cell proportional to Np, the number of combinations stays of order OðNpÞ, which is significantly

smaller than searching through all possible combinations of particles, which is NpðNp � 1Þ=2 � OðN2
pÞ. This means that the

appropriate setting for the cell-index method can, ideally, suppress the increase of cost for particle interactions and make
it proportional to OðNpÞ rather than OðN2

pÞ. In reality, however, the overhead for the cell-index method leads the cost being
proportional to OðNr

p Þ, where 1 < r < 2. This is further discussed later in subSection 4.2.
Decrease of Np;cell

	 

¼ Np=M3

cell ¼ NpðDcell=2pÞ3
� �

reduces the number of possible combinations to be checked as obvious
from the previous paragraph. There are, however, certain restrictions on the setting for Np;cell

	 

: (i) Smaller Np;cell

	 

leads

to larger overhead, and the overhead becomes not negligible for Np;cell

	 

6 1 as will be discussed in subSection 4.1. (ii) Smal-

ler Np;cell

	 

, i.e., larger Mcell, requires larger computational memory. Particularly, it becomes a significant problem when Mcell is

larger than N. (iii) Dcell should be chosen so that it is greater than the distance that a particle can travel within a time interval
in order to ensure that all possible collisions are taken into account. (iv) For hydrodynamic interactions, Dcell should be larger
than the influential length scale of the interaction, which is several tens of times larger than the particle radius (refer to Fig. 2
in AGW07).



Fig. 4. Illustrative sketch of the cell-index method. Computational domain is divided into fractions of subdomains.
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3.3. Distributed-memory parallelization for three-dimensional domain decomposition

3.3.1. Outlook of data communication procedure
The cubic domain of length 2pL0 is three-dimensionally decomposed as in Fig. 5, which shows the case for Mx �My �Mz-

process parallelization. Each process is assigned an MPI (message-passing interface) domain with nx � ny � nz flow-grids,
where nx ¼ N=Mx, ny ¼ N=My and nz ¼ N=Mz. Note that Mcell for the cell-index method is necessarily greater than or equal
to max (Mx; My; Mz) for straightforward coding, eventually each MPI process should handle multiple cells.

Data communication among processes should be explicitly coded for the distributed-memory parallelization using the
MPI library. In this study, where particle phase in addition to flow phase and furthermore particle interactions -geometric
collisions and hydrodynamic interactions (HI)- are considered, we have to code the communication for flow motion, particle
motion and particle interactions:
Fig. 5. Three-dimensional domain decomposition for a distributed-memory parallelization.
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(i) Communication for Flow Motion: Communication of flow velocities and pressure in halos of MPI domains for stencils
to be used by finite-difference schemes
(ii) Communication for Particle Motion: Transfer of particles moved out of a MPI domain to neighboring MPI domains
(iii) Communication for Particle Interactions: Communication for shadow particles, beside the boundaries of MPI domains

The shadow particle appearing in communication (iii) is the particle used only for particle interactions and its motion is
not calculated. Each process calculates the motions of assigned particles, referred to as real particles. The solid definition of
the shadow and real particles are described below.

For example, process a; Proca, calculates the motions of particles inside its domain Da. Those particles are expressed as

Pa
i ¼ Pij xðPiÞ

!

 Da

� �
, where x! denotes the position vector in a global domain. When a particle Pa

a is in the vicinity of a do-

main boundary, i.e.,xðPa
aÞ
!

 Daja?b, where Daja?b denotes the fraction of area in Da next to the boundary between Da and Db, it

may be so close to a particle Pb
b of which xðPa

bÞ
!

 Dbja?b that they may collide or hydrodynamically-interact. To check the pos-

sibility of the interactions between Pa
a and Pb

b , Proca needs to know the particles Pb
j ¼ Pjj xðPjÞ

!

 Db

� �
. This requires the com-

munication (iii). Procb sends the copies of Pb
j , which become the shadow particles Pb!a

j for Proca. The halo region noted in
communication (i) contains 4 stencils because PIPIT adopts fourth-order finite-difference schemes for flow calculation. This
means each process has flow information for the halo region for extra. Therefore, the halo region for flow can be considered
as a buffer region for particles. Even though a particle moves out from an MPI region assigned to a process, the particle track-
ing can be continued by the same process until the particle moves out from the halo region. This can relax the frequency of
the communications (ii) and (iii). That is, it is not necessary to perform the two communications every timestep. In PIPIT, the
communications (ii) and (iii) are done every Np;INT timesteps. Finally, the real particles for Proca are defined as the particles

that locate inside Da, i.e., Pij xðPiÞ
!

 Da just before the communication (ii) (Definition of the real particle).

3.3.2. Procedures for parallel computing
PIPIT employs the second-order Runge–Kutta (R–K) method. The subroutine for the HI calculation is called at both first

and second steps of the R-K method, while that for collision detection only after the second step. The procedures for collision
detection are summarized below. The HI calculation additionally requires Procedures (d) and (e) during the (a) R–K steps for
particle motion.

1. make a list of neighboring cells of each cell for the cell-index method,
2. Time integration: istep = istep + 1:

(a) R–K steps for particle motion (each particle R–K step follows each flow R–K step)
(b) if (mod (istep,Np;INT )==0.or. istep==istart) then

i. remove shadow particles
ii. exchange real particles crossing MPI boundaries (Communication (ii))

iii. create a list of particles in each cell
iv. create a list of shadow particles to be send based on the list
(c) endif
(d) copy the listed shadow particles (Communication (iii))
(e) detect collisions using the cell-index method

3. End of time integration

After Procedure (ii), it is ensured that all the real particles are inside each MPI domain, i.e., no real particles are in halo
regions. The neighboring list must be created for the real particles in this state.

In time steps when the if-sentence in Procedure (b) is false, some real particles may move on halo regions. Due to the
fourth-order finite-difference method, each process have flow information in halo regions, whose width is 3.5D (not 4D since
PIPIT adopts a staggered grid system). In order to reduce the overhead for the cell-index method, it is better to have a large
Np;INT . However, there is a restriction that Procedure (ii) should be undertaken before some particles move out from the halo
region. Assuming the large-scale particle motion follows the flow, maximum travel length of particles for Np;INT time steps are
umaxNp;INTDt. This must not exceed the width of the halo region, i.e., Np;INT umaxDt < 3:5D. This yields Np;INT < 3:5=CFLmax, where
CFLmax ¼ D=ðumaxDtÞ is the flow CFL number. This study typically sets CFLmax and Np;INT as 0.3 and 8, respectively.

4. Numerical results and discussion

4.1. Optimal computational conditions for particle interactions

There is a flexibility in setting the total number of particles in the domain Np and the size of cell, Dcell. Larger Np would
be better in terms of smaller number of time steps required for collision statistics in that the number of collisions is
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proportional to N2
p , while the simulation cost is ideally proportional only to Np as far as Np;cell

	 

is kept small. However, finite

computer resource limits the available Np. Moreover, smaller Np;cell

	 

, i.e., smaller Dcell and larger Mcell, requires larger over-

head for the cell-index method and larger computational memory. In short, larger Np and smaller Np;cell

	 

are ideally prefer-

able but there are indeed restrictions for them.
In order to seek a preferable computational setting for simulations of interacting particles, we measured the elapsed time

for the simulations in different settings for particles under a fixed setting for flow. The elapsed time was divided into four tasks;

1. time integration of flow motion (Tflow),
2. time integration of particle motion (Tp:motion),
3. collision detection (Tp:col), and
4. hydrodynamic interaction calculation (Tp:HI).

The time for the overhead for cell-index method and accompanying data communications were equally distributed into
Tp:col and Tp:HI. The times for initialization, file input and output were discarded. Since computational setting for flow was
fixed, Tflow can be considered as constant although it had relative deviations of about 3% due to measuring errors, which
seems inevitable. The domain was discretized onto 2563 grid points and decomposed into 43 MPI domains. The elapsed time
for 100 time steps was measured for different combinations of number of particles Np and Np;cell

	 

.

Fig. 6(a) shows the elapsed time for the time integration of particle motion, Tp:motion, normalized by Tflow, in different Np

and Np;cell
	 


. As anticipated, Tp:motion increases proportional to Np and it is insensitive to Np;cell
	 


. Fig. 6(b) and (c) show the
elapsed times for collision detection and HI calculation, i.e., Tp:col and Tp:HI , respectively. The estimate in subSection 3.2.2
anticipates that smaller Np;cell

	 

leads to smaller Tp:col and Tp:HI. However, Fig. 6(b) and (c) show that the balancing with larger

overhead for smaller Np;cell

	 

results in an optimal Np;cell

	 

between 0.1 and 1.

4.2. Computational performance

Figs. 7(a) and (b) show the actual CPU times for the four tasks for different number of particles on the same number of
flow grids. For the cell-index method, Dcell was fixed to 4D in Fig. 7(a), while Np;cell

	 

was fixed to unity in Fig. 7(b). Compar-

ison between Figs. 7(a) and (b) confirms that the required CPU time for particle motion is independent of the setting for the
cell-index method. In Fig. 7(a) the required CPU times for collision detection and HI increases proportional to N2

p , while those
in (b) to Nr

p , where 1<r<2. This suggests that the fixed Np;cell

	 

is better than fixed Dcell in terms of the required CPU time for

increasing number of particles. Fig. 13 in AGW07 showed the HI calculation required a CPU time proportional to N2
p , implying

that AGW07 might have adopted fixed Dcell.
According to Fig. 12 in AGW07, the HI calculation in an ItrSM simulation for 200,000 particles on 643 flow grids takes 95%

of the total CPU time. A simulation for 2563 particles on 2563 flow grids can be compared with the case in AGW07 since
roughly speaking 200;000=643 � 2563=2563. The HI calculation by BiSM took only 65% of the total CPU time. This indicates
that the HI calculation by ItrSM in AGW07 required about 10 times larger CPU time than that by BiSM as far as the rest of the
calculation was assumed to require the same CPU time. This estimate roughly matches with the observation in subSec-
tion 2.2.4 that ItrSM required 27 times larger CPU time for the HI calculation. Therefore, it can be concluded that BiSM re-
quires Oð10Þ times less calculation than ItrSM.

Fig. 8 shows elapsed time per time step for different number of flow grids with different number of particles. The simu-
lations included both the collision detection and hydrodynamic interaction calculation. An SGI Altix4700 system was used
for two 2563-grid calculations, an SGI ICEX system for a 5123-grid calculation, and the Earth Simulator 2 for a 1,0243-grid
calculation. The peak performances per core of these systems are 6.4 GFLOPS, 20.8 GFLOPS and 102.4GFLOPS, respectively.
In all the cases, the total elapsed-time decreases linearly with increasing number of cores. This confirms good linearities of
PIPIT on multiple supercomputer systems, exhibiting the inherent good parallel performance of PIPIT. It should also be noted
that, as shown in the previous subsection, most of the time was spent for flow calculation in the case for 2563 grids with 643

particles, while mostly for particle interactions in the case for 2563 grids with 2563 particles. The observed good parallel per-
formance in both cases implies good parallel performances of PIPIT in both flow and particle calculations. Note that the so-
called superlinearity is observed at several points, for example, 128!256 cores in the case for 2563 grids with 643 particles
and and 1024!2048 cores in the case for 5123 grids with 5123 particles. The superlinearity is thought to be due to, and
dependent on, cache hierarchies and network performances of the systems (e.g., [18]).

4.3. Reynolds dependencies on collision statistics

4.3.1. Computational setting
Table 2 shows the typical turbulence statistics as well as the configurations for flow calculations. The Taylor-microscale

based Reynolds number, Rk, obtained in this study ranges from 54.9 to 527. This wide range of Rk enables us to discuss the
Reynolds dependency of collision statistics. The standard deviation for the analysis period indicated by �value in the Rk col-
umn represents that the flow statistics deviate by approximately 1% relative to the mean value.

Considering the discussion in subSection 4.1, the number of droplets were set to Np ¼ N=2ð Þ3, and the cell size was set to
twice the grid size for Np;cell

	 

to be unity.



Fig. 6. Relative computational time for 2563 grids domain on 64 processors; Elapsed time for (a) particle motion, (b) collision detection and (c)
hydrodynamic interaction (BiSM) relative to that for flow motion.
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The same time interval dt was used for flow and particle motions. This study determined dt so that the flow CFL number
was kept below 0.3, and dt=sp ranged from 0.0065 (N2000) to 0.063 (N64), which also satisfied the restriction dt 6 0:15sp for
HI calculation ([3]).

4.3.2. Collision kernel and efficiency among same-sized droplets
Fig. 9(a) shows the mean collision kernel normalized by kR3 obtained from the present code, PIPIT, together with some

other DNS data and model predictions in literature. The error bars show�one standard deviation. On the whole the deviation



Fig. 7. Actual CPU times for the different computational tasks for 2563-flow-grid simulations on 64 processors containing different number of particles. For
the cell-index method, Dcell was fixed to 4D in (a), while Np;cell

	 

was fixed to unity in (b). The lines with gradient 1 in (a) and (b) are identical. So are the lines

with gradient 2.
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becomes smaller as Rk increases because larger number of droplets were calculated for larger Rk. The deviation, however,
does not monotonically decrease due to the fact that some deviation in flow statistics is inevitable as shown in the column
of Rk in Table 2. The mean values from PIPIT agree with the other DNS data in the low Rk range. The predictions by models,
except for the model by [32] for St � 1, are comparable to the present result on the whole. These facts provide extra con-
fidence in PIPIT.
Fig. 8. Wall clock time versus number of cores for different number of particles and flow grids on three different supercomputer systems.
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It should be noted that the present result shows that the normalized collision kernel increases for Rk < 100 and then de-
creases as Rk increases for Rk > 100. Many authors ignore the Reynolds dependency and assume a constant collision kernel
irrespective of Rk ([32,10,47]) or assume a convergence ([4]). However, the present result shows a clear Rk dependence. This
may result in a significant difference in atmospheric clouds, where Rk ranges from 103 to 105. We have confirmed that the
collision kernel for St ¼ 0:1 particles converges at around Rk � 80 and then become constant for larger Rk (not shown). That
is, the assumption of constant collision kernel against Rk is valid only for very small St.
Fig. 9. (a) Collision kernel, (b) radial distribution function and (c) radial relative velocity at contact for St = 0.4 plotted against the Taylor-microscale based
Reynolds number Rk . White plots are for the cases without hydrodynamic interaction (HI) and solid plots with HI. Model predictions (lines) ([32,10,47]) and
DNS results (plots) ([8,25,44]) in literature are also drawn for comparison. The error bars show �one standard deviation from more than three runs. The plot
for N1000[HI] does not show a error bar in that only one run was performed for it.



Fig. 10. Ratios of collision kernel, radial distribution function and radial relative velocity at contact, Kc ; gðRÞ and wrj jh i respectively, with hydrodynamic
interactions (HI) to those without HI for St = 0.4. Kch i½HI�= Kch i½NoHI� represents the collision efficiency Ec . Data are calculated from the mean values in Fig. 9.
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Figs. 9(b) and (c) show the radial distribution function and radial relative velocity at contact; gðRÞ and wrj jh i, respectively,
defined in Eq. (3), as function of Rk. For atmospheric relevance, we assume that the Reynolds number is increased by increas-
ing the integral scale so as to keep lg and R as the same values as Rk increases. The radial relative velocity is normalized by the
Kolmogorov velocity vgð¼ ð�mÞ1=4Þ. Reynolds dependency of gðRÞ is very similar to that of the collision kernel. In contrast,

wrj jh i shows little Reynolds dependency. Therefore, the decrease in collision kernel for Rk > 100 is attributable to the de-
crease in gðRÞ. The decrease could be explained by introducing the concept of ‘locality’. The St is normally a globally-averaged
value, i.e., the value averaged over the whole domain and time. The ‘local’ St deviates in space and time and the deviation
becomes larger for larger intermittency. If the ‘local’ gðRÞ is simply proportional to the log of the local St, the global gðRÞ will
stay the same even for larger intermittency. But if not, the global gðRÞ can be different for different intermittency. Of course,
we anticipate that the latter happens in our data. We address the decrease in gðRÞwith increasing Reynolds number in detail
in a future report.

Figs. 9 includes the results from the cases with HI. In those cases, the flow disturbance due to a particle is ignored when
the distance is larger than a truncation radius H, i.e., u½n�St ðxÞ ¼ 0 for x� y½n�

�� ��=r½n� > H, where H was set to 30 according to
AGW07. The cases with HI all show smaller values than those without HI, implying the hydrodynamic interactions prevent
collision events.

Fig. 10 shows the ratios of Kch i, gðRÞ and wrj jh i with HI to those without HI. The ratio of Kch i with HI to that without HI
represents the collision efficiency Ec . The radii of St = 0.4 droplets in this study range from 25 to 30 lm: For example, accord-
ing to Fig. 3 the collision efficiency between r1 ¼ 25 and r2 ¼ 22:5 lm droplets in a stagnant flow is about 0.1. The collision
efficiency in Fig. 10 is, in contrast, over 0.65. This supports the suggestion that the turbulence increases the collision effi-
ciency among same-sized droplets. The collision efficiency increases from 0.65 to 0.75 as Rk increases for Rk < 200 and then
saturates. The saturation is also seen in both the ratios of wrj jh i½HI�= wrj jh i½NoHI� and gðRÞ½HI�=gðRÞ½NoHI�.

Lastly, we would like to emphasize that the Reynolds dependency for high Rk has been discussed for the first time here
because the data obtained in this study straddle wide range of Rk from 54.9 up to 527.
5. Concluding remarks

This study has developed a parallel code for the simulation of interacting droplets in stationary homogeneous isotropic
turbulence -we name the code PIPIT (Parallel code for Interacting Particle in homogeneous Isotropic Turbulence). Air turbu-
lence is calculated using a fourth-order finite-difference scheme, while droplet motions are tracked by the Lagrangian meth-
od. PIPIT employs the MPI (message-passing interface) library for distributed-memory parallelization and can decompose
the domain in three directions. It is designed to minimize data communications for efficient parallel computing through
adopting (i) the finite-difference model (FDM) for flow, (ii) the reduced-communication forcing (RCF) ([23]) for achieving
statistically-steady flows and (iii) the halo region for FDM as a buffer for particle calculation leading to a dramatic relaxation
of data communication frequency.

The FDM with RCF does not require all-to-all data communication, which is required in spectral models, and, therefore,
can achieve high-parallel efficiencies in flow simulations ([23]). Moreover the halo region required for finite-differenciation
in FDM can be used as the buffer region for particle calculations, i.e., even though a particle moves out from an MPI domain,
the particle can be tracked by the same MPI process as far as it stays within the halo region. This can reduce the data com-
munication frequency for particle calculations. Indeed, the communication was required only once in eight time steps in this
study. Notable schemes in order to cut the computational cost for particle interaction simulations have also been imple-
mented in PIPIT; (a) the cell-index method ([2]) and (b) the binary-based superposition method (BiSM), which has been
developed in this study. The BiSM is based on the concept of the superposition method ([28]), but with more reliability
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comparable to the iterative superposition method (ItrSM) by Ayala et al. [3]. Under a typical dilute condition as in atmo-
spheric clouds, the computational cost of BiSM is smaller by order of 10 than that of ItrSM, whereas an error of BiSM com-
pared to ItrSM is insignificant. Coupling of the cell-index method with BiSM can reduce the computational cost for particle
interactions to OðNr

p Þ, where Np is the total number of particles and 1 < r < 2, from OðN2
pÞ. PIPIT is therefore a promising tool

for investigating particle interactions in high Reynolds number flows.
We have confirmed the anticipated features of PIPIT: It has been confirmed that PIPIT has a good parallel efficiency, i.e.

elapsed time linearly decreases with increasing number of processors. We have found a good performance while keeping the
average number of droplets per cell-box in the order of Oð10�1�0Þ. To obtain collision statistics with less elapsed-time, the
larger total number of particles Np is preferable in that number of collisions increases proportionally to N2

p while computa-
tional cost only proportionally to Nr

p with 1 < r < 2. However, the limited computer memory restricts the available number
of droplets. We found that Np ¼ N=2ð Þ3, where N3 is the number of grid points, is a good compromise for water droplet sim-
ulations in air turbulence. The memory size required for particle calculations was then similar to those for flow calculations.
If we had used larger number of droplets, we would have had to worry not only about triplet collisions but also about the
huge memory demand for particle interaction calculations, which would have largely limited the attainable Reynolds
number.

The largest simulation in this study computed the flow on 20003 grids with 10003 (=one billion) Lagrangian inertial drop-
lets. The attained Taylor-microscale based Reynolds number, Rk, ranges from 54.9 up to 527. This wide range of Rk has en-
abled us to investigate the Reynolds dependency of collision statistics. This study has targeted St = 0.4 particles, which
corresponds to cloud droplets with 25 � 30 lm in radius in atmosphere. The PIPIT results have revealed that the collision
kernel increases for Rk<100 and then starts to decrease for higher Rk as Rk increases. This Reynolds dependency is attributed
to the Reynolds dependency of clustering effect, which shows a similar trend.

In addition, the collision efficiency among same-sized droplets with St = 0.4 has been obtained using the newly developed
binary-based superposition method (BiSM). It has been confirmed that the collision efficiency is increased by turbulence. The
data for this paper’s wide range of Rk has shown that the collision efficiency increases from 0.65 to 0.75 as Rk increases for
Rk<200 and then saturates.

Many authors have assumed a constant collision kernel irrespective of Reynolds number ([32,10,47]) or its convergence
to an asymptotic constant value ([4]). However, the present data reveal a Reynolds number dependence of the radial distri-
bution function at contact.
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Appendix A

List of symbols
d
 Distance from a particle center ð¼ dj jÞ (m)

dij
 Separation between particles i and j (m)

Da
 Computational domain assigned to the MPI process a

Ec
 Collision efficiency

�
 Energy dissipation rate (m2s�3)

g
 Gravitational acceleration (m s�2)

gðRÞ
 Radial distribution function at contact ¼ gðx ¼ RÞð Þ

Kc
 Collision kernel (m3s�1)

lk
 Taylor microscale (m)

L0
 Representative length scale (m)

Lij
 Separation between particles i and j normalized by R
M3
cell
Number of cells in the computational domain
Mx;My;Mz
 Number of processes

np
 Particle number density (m�3)

nx;ny;nz
 Number of flow grids assigned to each MPI process
N3
 Number of grids in the computational domain
Nc
 Collision frequency (m�3s�1)

Np
 Total number of particles

Np;cell
 Average number of particles in each cell

Np;INT
 Interval of main MPI communication
(continued on next page)
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ri
 Particle radius i (m)

R
 Collision radius ð¼ r1 þ r2Þ (m)

Rk
 Taylor-microscale based Reynolds number ð¼ u0lk=m)

S
 Separation distance between a pair of particles selected for collision detection (m)

St
 Stokes number ð¼ sp=sgÞ

t
 Time (s)

T
 Integral time scale of turbulence (s)

T0
 Representative time scale (s)

Tflow
 Elapsed time for the simulation of flow motion (s)

Tp:col
 Elapsed time for collision detection (s)

Tp:HI
 Elapsed time for hydrodynamic interaction calculation (s)

Tp:motion
 Elapsed time for the simulation of particle motion (s)

u0
 Root-mean-square of velocity fluctuations (m s�1)

u
 Disturbance flow field (m s�1)

uSt
 Stokes disturbance flow (m s�1)
u½i�i$j

Analytical disturbance flow at the position of i-particle in a binary system (i and j-particles)
(m s�1)
U0
 Representative velocity scale (m s�1)

U
 Air flow velocity (m s�1) � �

U

 Relative velocity between the background air flow and particle ¼ Ubg � V (m s�1)

Ubg
 Background air flow velocity at a particle center position (m s�1)

Urel
 Relative flow velocity to particle velocity ¼ U� Vð Þ (m s�1)

V
 Particle velocity (m s�1)

Vd
 Volume of the computational domain (m3)

V1
 Particle settling velocity (m s�1)� �

vg
 Kolmogorov velocity ¼ ð�mÞ1=4 (m s�1)
wr
 Radial relative velocity at contact ð¼ wrðx ¼ RÞÞ (m s�1)

yc
 Far-field, off-center horizontal separation of the approaching trajectory of a smaller particle

relative to a larger particle (m)

Greek symbols and special

notations

Dcell
 Size of the cell (m)

Dt
 Time interval (s)

�
 Energy dissipation rate (m2s�3)

k
 Local shear rate ð¼

ffiffiffiffiffiffiffiffi
�=m

p
Þ (s�1)
m
 Kinematic viscosity (m s�2)

qp
 Particle mass density (kg m�3)

qf
 Fluid (air) mass density (kg m�3)

sp
 Particle relaxation time (s)

sg
 Kolmogorov time ð¼

ffiffiffiffiffiffiffiffi
m=�

p
Þ (s)
[HI]
 with hydrodynamic interaction

[NoHI]
 without hydrodynamic interaction

� � �h i
 Mean value
Acronyms

AGW07
 [3]

BiSM
 Binary-based Superposition Method

DNS
 Direct Numerical Simulation

FDM
 Finite-Difference Model

FPO
 Floating-Point Operations

GFLOPS
 Giga FLoating-point Operations Per Second

HI
 Hydrodynamic Interaction

ItrSM
 Iterative Superposition Method (=the improved superposition method in [3])

MPI
 Message-Passing Interface

OrgSM
 Original Superposition Method ([28])

PIPIT
 Parallel code for Interacting Particles in homogeneous Isotropic Turbulence

PSM
 Pseudo-Spectral Model

RCF
 Reduced Communication Forcing ([23])

R–K
 Runge–Kutta
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