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By applying fractal electromagnetic force fields on a thin layer of brine, we generate steady quasi-two-
dimensional laminar flows with multiscale stagnation point topology. This topology is shown to control
the evolution of pair separation (�) statistics by imposing a turbulentlike locality based on the sizes and
strain rates of hyperbolic stagnation points when the flows are fast enough, in which case �2 � t� is a
good approximation with � close to 3. Spatially multiscale laminar flows with turbulentlike spectral and
stirring properties are a new concept with potential applications in efficient and microfluidic mixing.
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Introduction.—The rate with which pairs of points sepa-
rate in phase or physical space is of central importance to
dynamical systems. In turbulent flows, pairs of fluid ele-
ments (also referred to as particles here) separate algebrai-
cally [1–10]. As originally pointed out in Ref. [1], their
statistics bear the imprint of the entire range of turbulent
eddy scales. A theory has been developed recently which
relates turbulent pair diffusion statistics to the multiscale
streamline topology of the turbulence, specifically to its
multiscale stagnation point structure [4–6,11,12]. This
theory is based on the picture, originally conjectured in
Ref. [2], that in turbulent flows, fluid element pairs travel
together for long times and separate suddenly when they
encounter a straining stagnation point. Recent laboratory
experiments have confirmed that pairs travel together for
long and separate in sudden bursts [3].

This new theory has been formulated for isotropic ho-
mogeneous turbulence and its central tenet is that stagna-
tion points in the frame where the mean flow is zero are
persistent enough on average to dominate the average
separation rate of fluid element pairs. The rationale for
this tenet is that pairs are subjected to a sustained expo-
nential separation rate at persistent straining stagnation
points as can occur nowhere else in the flow. The statistical
persistence of these points has been established by direct
numerical simulations and by theoretical argumentation
[11,12]. The second important tenet of the theory is that
straining stagnation points have a length-scale associated
with them. Hence, the Richardson locality hypothesis that
the pair separation rate is dominated by eddies of length-
scale comparable to the pair’s separation can be rephrased
by replacing ‘‘eddies’’ with ‘‘straining stagnation points’’.
This Richardson-type locality is a very broad concept
because a wide range of power-law energy spectra can
lead to power-law pair separation [4].

Because of the impossibility (at least by current means),
to monitor and measure in the laboratory the multiscale
topology of the turbulence on the fly and its instantaneous
links to pair diffusion (i.e., identify most stagnation points
and follow their paths while measuring their length scales
and following fluid element pairs at the same time), we
propose to test this new theory in bespoke multiscale flows

with electromagnetically imposed turbulentlike multiscale
stagnation point topology following the recent work of
Ref. [13]. An important first case of such bespoke multi-
scale flow design is the case of the steady quasi-two-
dimensional (Q2D) laminar flow. If nontrivial statistics of
pair diffusion exist in such a flow they must necessarily
result from the flow’s multiscale stagnation point topology.
Furthermore, multiscale laminar flows with turbulentlike
properties are a new concept with potential applications in
microfluidic and efficient mixers. Unlike chaotic advection
[14], these flows are spatially multiscale. It is our purpose
here to study pair diffusion statistics in such flows and
investigate the relations of these statistics to the flow’s
multiscale stagnation point topology. It is therefore also
our purpose to measure and characterize this multiscale
stagnation point structure, in part by introducing a measur-
able definition of stagnation point length scale.

Multiscale flow and its stagnation point structure.—
References [4,5] showed that, in 2D turbulent flows with
an energy spectrum E�k� � k�p where p < 3, the multi-
scale streamline topology consists of cat’s eyes within cat’s
eyes [see Fig. 1(b)] which implies a fractal-like distribution
of stagnation points. Reference [6] showed that the number
density ns of stagnation points is a power-law function of
the outer to inner length-scale ratio L=�, ns �
CsL�d�L=��Ds where the fractal dimension Ds is such
that p� 2Ds=d � 3 and d � 2, 3 for 2D, 3D turbulence.
Reference [13] generated a Q2D multiscale laminar flow
with an imposed multiscale spatial distribution of stagna-
tion points and corroborated that such a flow has a power-
law energy spectrum in agreement with p�Ds � 3. The
same rig and family of flows (p � 2:5) are used here.

Experimental set-up and flow.—Figure 1(a) is a sche-
matic of the rig. An horizontal shallow layer of brine
(NaCl, 158 g=l, thickness H � 5 mm) is forced by a frac-
tal distribution of opposite pairs of Lorentz forces as shown
in Fig. 1(c). These electromagnetic (EM) forces are gen-
erated by an electric current through the brine and perma-
nent magnets of various horizontal sizes (10, 40, 160 mm)
placed under the bottom wall which supports the brine.

The two-component velocity field u�x; t� at the free
surface of the brine layer generated by these fractal EM
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forces has been measured by particle image velocimetry
(PIV), using a 15 Hz, 12 bit, 2048� 2048 pixel2 camera.
The flow is measured in a large square frame (which cover
all magnets) of size LPIV � 813:4 mm which is small
compared to the size of the tank (1700� 1700 mm2).
The physical length of one pixel is about 0.3972 mm.
The correlation windows have 16� 16 pixels (search win-
dow 42� 42 pixels), and the overlap in each direction is of
9 pixels. This leads to a measurement grid containing
287� 287 velocity vectors. For full details on the rig and
experiments, see Rossi et al. [13] who also show that the
flow at the free surface of the brine is Q2D.

With steady EM forces the flows are stationary after an
initial transient following the sudden switch-on of the
forces. A Reynolds number Re2D � urmsLPIV=� is defined
based on LPIV, the root mean square of the PIV velocity
field, urms, (which is controlled by varying the intensity of
the electric current), and the kinematic viscosity of the
brine, �. In this Letter we present results obtained for 11
different values of Re2D from 600 to 9900. Even though
the values of Re2D are large, all these flows are Q2D as
shown in Ref. [13] and laminar as they present no insta-

bilities and the fluid velocity values are never larger than a
few cm=s.

The velocity fields are very similar over the entire range
of Reynolds numbers. Indeed, the spatial correlation be-
tween two velocity fields u1 and u2 obtained at two differ-
ent Reynolds numbers is always larger than 0.84 with an
average of 0.947 and a standard deviation of 4.5%. Integral
length scales, LE, are obtained from the spatial autocorre-
lation of the velocity fields and their values slowly increase
from about 16 cm to about 20 cm as Re2D increases from
600 to 9900. This increase of LE reflects the slight increase
of the largest eddy size.

Multiscale stagnation point structure.—The stagnation
point positions, xs, are obtained with a Newton-Raphson
algorithm applied to the PIV velocity field, see Fig. 2(a).
The flow being incompressible, stagnation points are char-
acterized by a single positive strain or rotation rate, � (in
1=s), which is an eigenvalue of Jij � @ui=@xj at the stag-
nation point: the eigenvalues and eigenvectors X are given
by JX � 	�X for hyperbolic stagnation points or JX �
	i�X for elliptic ones.

Hyperbolic stagnation points also have an associated
length scale Ls which, in 2D incompressible flow, scales
with the size of the streamlines emanating from or passing
very close to them. To define and calculate Ls we integrate
the velocity u (obtained from our PIV and Lagrange inter-
polation within the PIV grid) along a streamline starting
from a point xs � �e� very close to a hyperbolic stagnation
point xs (� is very small, within the size of the PIV grid)
and e� is a unit vector of angle �. We track the value of
u 
 e� while integrating along the streamline and record the
point xl��� where this quantity changes sign. We then
define Ls � hjxl��� � xsji�, where the averaging operation
h. . .i� is over �. Ls is a measure of the characteristic
distance from xs where streamlines passing very close to
xs take a turn.

We calculated Ls for all the hyperbolic stagnation points
at various values of Re2D. Figure 2(b) is a scatter plot of the
strain rates � and the stagnation point sizes Ls for all
hyperbolic points and five different values of Re2D. The
hyperbolic stagnation points directly imposed by the EM
forcing between the magnets [which correspond with stag-
nation points of the forcing; see Figs. 1(b) and 2(a)] are

FIG. 2 (color online). (a) PIV velocity
field (u=urms, 1=64 arrows), Re2D �
600, squares refer to hyperbolic stagna-
tion points, disks to elliptic stagnation
points; (b) scatter plot of hyperbolic
stagnation point strain rates, �LE=urms,
and sizes, LS=LE.

FIG. 1 (color online). (a) Schematic of rig; (b) Schematic of
multiscale flow based on an 8 in 8 topology, (c) Electromagnetic
forcing distribution computed for our spatial distribution of
multisized magnets (I � 1 A, B � 1 T; fy in N=m3; x and y
in mm).
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circled and marked with the corresponding scale of forc-
ing: M10, M40, M160. It is found that the length scales Ls
cluster around three values Ls3, Ls2, and Ls1 separated by
an approximate factor 4 from each other. This factor cor-
responds to the ratio 4 between the different magnet sizes.

In Fig. 3 we plot the three mean values of � averaged
over the hyperbolic points directly imposed by the EM
forcing. These mean values are, respectively, denoted �3 �
�M10, �2 � �M40, and �1 � �M160, and correspond to
length-scales M10, M40, and M160 which themselves cor-
respond to the characteristic stagnation point scales Ls
denoted Ls3

, Ls2
, Ls1

, respectively. In Fig. 3, �3, �2, and
�1 are normalized by urms=LE and are plotted against Re2D.
We observe that a clear multiscale structure appears for
Re2D � 5900 when these stagnation point average strain
rates clearly separate and the following dependence on
their length scales is observed:

 

�i
�i�1

�

� Lsi
Lsi�1

�
��

(1)

where � lies between 0.31 and 0.51 for the various values
of Re2D above 5900. In fact, there is a tendency for � to
decrease with increasing Re2D. As shown in Rossi et al.
[13], the energy spectra of the multiscale flows used here
are continuous and scale as E�k� � k�p with p � 2:5. The
value of � consistent with p � 2:5 is � � 0:25 for a
k2E�k� strain-rate spectrum.

In the vicinity of a steady hyperbolic stagnation point,
fluid element pairs of initial separation �0 separate expo-
nentially, i.e., ��t� � �0e�t. To complete the characteriza-
tion of our multiscale stagnation point structure, we
estimate the extent of this vicinity, i.e., the area of direct
influence of each hyperbolic stagnation point. We define
this area of influence as the region around xs where the
velocity field depends linearly on distance from xs. In
suitable eigenframe coordinates, this is the area where u �
us � 
��x� xs�;���y� ys��. To quantify this area we
calculate Corr � u
us

max�u2;u2
s �

. This quantity Corr is found to

fluctuate around a constant value close to or not much
smaller than 1 in an area surrounding xs. Immediately
beyond this area, Corr drops off very steeply. This is the
area which we interpret as being the area of direct influence

of the hyperbolic stagnation point and we plot it in Fig. 3
for theM160 hyperbolic stagnation point and for each of the
four M40 hyperbolic stagnation points at four different
Re2D values.

Particle dispersion.—The Lagrangian trajectories
d
dtx�t;x0� � uL�t;x0� � u�x�t;x0�; t� and their statistics
are calculated starting from random initial positions x0 at
a time t � 0 well after the initial transient caused by the
sudden switch-on of the electric field. These trajectories
are integrated until t � 4LE=urms, and we extract statistics
of fluid element pair separations ��t�, specifically �m�t�
for m � 2, 3, 4, 5, 6, the averages being carried out over
many pairs of fluid elements (more than 106).

Pair statistics are initialized with initial separations
�0 � 1 pixel which is about 25 times smaller than the
size of the smallest magnet and therefore smaller than all
the length scales of the flow by the size of the smallest
magnets. Statistics such as mean square pair separations
are sensitive to the choice of �0 but the turbulent diffusiv-
ity d

dt�
2 is much less sensitive as shown recently in

Ref. [7]. In addition, d
dt�

2 allows us to clearly identify
different dispersion regimes such as the expected initial
ballistic dispersion �2 � t2, the final Brownian dispersion
�2 � t (see Ref. [13]) and a nontrivial Richardson-like
regime in an intermediate range of times between the
ballistic and the Brownian regimes.

Mean square pair separations are plotted in Figs. 4(a)
and 5(b) and obey approximate power laws �2 � t� for
about one decade in time (Re2D large enough). The ex-
ponents � lie roughly between 2 and 3.

In our steady Q2D laminar flows, any mechanism lead-
ing to algebraic separation rates with values of � larger
than 2 must necessarily be rooted in the flows’s multiscale
stagnation point structure. However, pairs at the vicinity of
straining stagnation points separate exponentially. Our
measurements of @�m=@t for m � 2, 3, 4, 5, 6 exhibit
oscillations in time, which appear weak for m � 2 (par-
ticularly at Re2D � 7400 where they hardly appear at all)
but are progressively more pronounced as m is made
larger; see Fig. 4. These oscillations can be interpreted as
resulting from a sequence of exponential separations

@�m=@t / e�
�i�
m t where i � 3, 2, 1 label exponentials in a
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FIG. 4 (color online). Two-particle dispersion, Re2D � 7400,
(a) �2=L2
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FIG. 3 (color online). Left: Dimensionless mean stagnation
point strain rates versus Re2D. Right: Areas of direct influence
of stagnation points related to M160 and M40 for various Re2D.
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sequence of three. Indeed, we find that such a sequence of
exponentials fits the data well for all values of Re2D. ��3�m ,
��2�m , and ��1�m are well-defined for all m in the respective
time ranges 0 to 4=�3, �5� 2�=�2 to 5=�2, and �8� 2�=�1

to 8=�1. This sequence of exponentials is further corrobo-
rated by the finding that (for all Re2D) ��i�m � m��i where
��i are comparable to the average stagnation point strain
rates �i. Specifically, ��3=�3 is about 1, ��2=�2 is about
0.8, ��1=�1 is about 0.4, with standard deviation 0.1 across
Reynolds numbers.

These findings suggest that, over the entire range of
Reynolds numbers, pairs separate on average as a result
of successive exponential straining actions by the stagna-
tion points directly imposed by the three scales of EM
forcing. The fact that the exponential separation rates
appear in sequence with exponents closely related to the
average stagnation point strain rates �i suggests a
Richardson-like locality. The pair separation rate is first
imposed by the ‘‘smallest’’ straining stagnation points
corresponding to Ls3, then by the intermediate straining
stagnation points corresponding to Ls2 and finally by the
‘‘largest’’ stagnation point which corresponds to Ls1.
Hence, the multiscale stagnation point structure of our
flows drives pair diffusion in a Richardson-like manner.
The oscillations superimposed on this behavior are weaker
as Re2D increases because the multiscale nature of distinct
and ordered strain rates are better defined (see model
calculation in Ref. [13] where it is shown that a succession
of exponentials can give rise to power-law growth).

In the light of these results and conclusions we do not
claim that �2 has an exact power-law dependence on time.
However, as argued in Refs. [5,13], a statistical sequence of
exponential separation events (where pairs stay together
for long and then suddenly separate) can integrate into an
approximate power-law time dependence of �2. Indeed,
the data are well fitted by �2 � t� over nearly a decade of
times bounded from above by 2LE=urms. The values of �
are given in Fig. 5 as function of Re2D. They are extracted
from best power-law fits of d

dt�
2 over the range 0:2 �

turms=LE � 2.
The values of � are found to increase with Re2D while

the topology of the flow does not change significantly:

there is no increase in the number of stagnation points
nor a systematic increase of the stagnation points’s area
of influence (Fig. 3). This increase of � toward an approxi-
mately constant value beyond Re2D � 5900 is correlated
with a steep decrease of the ratio of the large-scale turnover
time, LE=urms, to the bottom friction’s viscous time, H2=�
(see Fig. 5). This ratio reaches 1 at Re2D � 5900 and is
smaller for larger values of Re2D. Hence, the Re2D inde-
pendent value of � is reached once the bottom friction has
been overcome by the EM forcing.

Conclusion.—It is perhaps an amusing coincidence that
this asymptotic value of � is close to 3, which is the value
predicted for and observed in isotropic homogeneous tur-
bulence [3,8–10]. It is nevertheless striking that our pair
separation statistics exhibit Richardson-like locality and
�2 � t� with � � 3 even though our flows are laminar,
steady and Q2D. As shown, a power-law multiscale distri-
bution of stagnation point strain rates is fully achieved only
when Re2D � 5900 which perfectly corresponds with the
onset of a constant � value close to 3 and a bottom friction
that has been overcome by the EM force field. Only at such
high values of Re2D are the stagnation point strain rates
clearly distinct and ordered by stagnation point length
scales (themselves ordered in approximate proportion to
magnet sizes irrespective of Re2D) according to (1). Note
that the variations in � are correlated with redistributions
of the three stagnation point strain rates relative to each
other (Fig. 3). We observe a maximum � of about 3.2
(Re2D � 7400) in the case where (1) fits the data best.
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FIG. 5 (color online). (a) Richardson-like exponent, �, (�2 �
t�) and ratio LE=urms to H2=� as function of Re2D; (b) two-
particle dispersion, �2=L2
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