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Mixing in fully chaotic flows
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Passive scalar mixing in fully chaotic flows is usually explained in terms of Lyapunov exponents, i.e., rates
of particle pair separations. We present a unified review of this approach~which encapsulates also other
nonchaotic flows! and investigate its limitations. During the final stage of mixing, when the scalar variance
decays exponentially, Lyapunov exponents can fail to describe the mixing process. The failure occurs when
another mixing mechanism, first introduced by Feredayet al. @Phys. Rev. E65, 035301~2002!#, leads to a
slower decay than the mechanism based on Lyapunov exponents. Here we show that this mechanism is
governed by the large-scale nonuniformities of the flow which are different from the small scale stretching
properties of the flow that are captured by the Lyapunov exponents. However, during the initial stage of
mixing, i.e., the stage when most of the scalar variance decays, Lyapunov exponents describe well the mixing
process. We develop our theory for the incompressible and diffusive baker map, a simple example of a chaotic
flow. Nevertheless, our results should be applicable to all chaotic flows.

DOI: 10.1103/PhysRevE.66.051205 PACS number~s!: 47.10.1g, 47.52.1j, 05.45.2a, 94.10.Lf
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I. INTRODUCTION

The mixing of a diffusive passive scalar quantityQ ad-
vected by a fluid flow can be characterized by the de
properties of the scalar field’s varianceE[*dx Q2

2(*dx Q)2 when no source of scalar is used to replenish
variance lost through mixing~no scalar forcing!. In fully
chaotic incompressible flows, where the term ‘‘fully’’ refe
to the absence of Kolmogorov-Arnold-Moser surfaces@1#,
effectively all trajectories are chaotic and no regions ex
where trajectories are integrable. Such flows exhibit an
ponential scalar variance decay in the long time limit@2–5#.
Pierrehumbert@2# also conjectured that the decay rate b
comes independent of molecular scalar diffusivity in t
limit of very small diffusivities. Antonsen, Fan, Ott, an
Garcia-Lopez@5# ~in the following AFOG96! have identified
and explained one mechanism that generates such an e
nential long-time variance decay~see also Ref.@6#!. In this
introduction, it is motivating to summarize and general
their train of thought, which even though heuristic is, nev
theless, instructive. In the main part of this paper we ident
in turn, a long-time variance decay mechanism that is c
ceptually different from AFOG96 and shows the limitatio
of their argument.

Separation of particle pairs. Incompressible two-
dimensional flows are such that, at any point and any ti
there is a direction along which velocity gradients cau
particle1 pairs to separate faster than in any other directi
and another direction along which particle pairs either c
tract ~as in straining flows! or simply do not separate no
contract at all~as in shearing flows!. We make this well-
known statement in the context of two-dimensional flows

1In this paper ‘‘particle’’ is used to mean ‘‘fluid element.’’
1063-651X/2002/66~5!/051205~17!/$20.00 66 0512
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convenience of exposition, but also because AFOG96 h
limited their own exposition to two-dimensional flows. How
ever, nothing prevents us, in principle, from extending t
statement and the following heuristic argumentation to
compressible three-dimensional flows.

Particle pair separations and scalar field gradient
AFOG96 effectively consider, on the one hand, the localiz
gradients of a scalar fieldQ(x,t), and on the other hand
vectors connecting the individual particles of particle pa
~particle pair vectors!. A flow can accelerate the decay of th
scalar field variance by causing the scalar field gradient
grow. In the long-time limit, after the gradients have orie
tated themselves orthogonal to the direction of fastest gr
ing particle separation, incompressibility implies that the
verse length scale defined by the local scalar gradient,
u(1/Q)¹Qu has the same time dependence as the loc
fastest growing particle pair separation. We denote this f
est growing separation byD1(x,t) and note that it poten-
tially has different growth rates in different positionsx. In
straining or chaotic flows, where the particle pair separat
D1 grows on average exponentially with time, the prop
tionality constant of gradient growth depends lik
u(1/Q)¹Qu}sinfD1 on the initial anglefÞ0,p between
the local gradient and the direction of the locally faste
growing particle separation@see Eqs.~13!–~17! in AFOG96#.
In shearing or vortical flows, however, where the partic
pair separationD1 grows on average linearly with time, th
initial condition is forgotten for long enough times and hen
the growth rate does not depend on the initial anglefÞ
6p/2. Dimensional considerations force us to write

U 1

Q
¹QU}s~f!

D1

a0
, ~1!

where a0 is some conserved characteristic area. The fu
©2002 The American Physical Society05-1
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tions s(f) and a0 express the dependence on initial con
tions for different types of flow. For straining or chaot
flows s(f)5sin(f), and for shearing or vortical flowss(f)
is constant. The particle separation also behaves differe
in different types of flow. AFOG96 only consider the case
fully chaotic flows whereh is a Lyapunov exponent an
D15D0eht for sufficiently long times. However, it is very
instructive not to limit ourselves to chaotic flows at this sta
and see how far we can go without specifying a particu
type of particle separation.

Gradients and variance decay. From the advection-
diffusion equation (D/Dt)Q5k¹2Q, where (D/Dt) is the
material~or hydrodynamic! derivative andk is the molecular
diffusivity of the scalarQ, we deduce that

D

Dt

1

2
Q252ku“Qu21k“•~Q“Q!, ~2!

which leads to

D

Dt
Q2522ks2~f!

D1
2

a0
2

Q212k“•~Q“Q!, ~3!

where we have absorbed a dimensionless constant of pro
tionality insidea0. In the case where the length scale of t
flow is much larger than the length scales of scalar fluct
tions, it might be assumed that the scalar length scales
slowly in space and, therefore, that gradients of terms invo
ing gradients ofQ are negligible. On this basis“•(Q“Q)
can be neglected in the last two equations leaving us wi

D

Dt
Q2'22ks2~f!

D1
2

a0
2

Q2. ~4!

A Lagrangian integration along a particle path starting a
point x gives

Q2~x,t !5Q0
2~x!expF22ka0

22s2~f!E
0

t

dtD1
2 G , ~5!

where the time integral is along the history of a particle p
i.e., a particle and the particle pair vector on this partic
Note that bothf andD1 are functions ofx. Hence, assum
ing without loss of generality that*dx Q50, the scalar vari-
anceE(t)[*dx Q22(*dx Q)2 takes the form

E~ t !5E~0!E dx
Q0

2~x!

E~0!

3expF22ka0
22s2~f!E

0

t

dtD1
2 ~x,t!G . ~* !

Star equation. Let us mark this equation by a star to di
tinguish it from all other equations in this paper and let
refer to it as the star equation. The reason why this equa
attracts our interest is twofold. The first reason is concept
this equation directly relates the decay of the scalar varia
which is a measure of mixing, to the growth of particle p
separations, which is a measure of stirring. It implies tha
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Lagrangian analysis of particle pair histories is enough
determine the rate of decay of the scalar variance.~A con-
ceptually similar yet very different formula in terms o
propagators has been given in the context of statistical fl
mechanics by Durbin@7# for the calculation of scalar vari
ance profiles in space and/or their time dependence.! The
second reason is that, despite the imperfect nature of its
ristic derivation, the star equation leads to right answers
only in some instances and regimes of two-dimensional
compressible and fully chaotic flows@5# but also when the
flow is a two-dimensional incompressible steady or sligh
unsteady vortex@8,9#.

Variance decay in chaotic flows. In the case of fully cha-
otic flows, AFOG96 have assumed that the anglesf are
randomly distributed and independent ofD1 and that the
integration over space in the star equation can be replace
an integration over the Lyapunov exponentsh and anglesf
leading to

E~ t !5E~0!E dhP~h,t !E
0

2pdf

2p

3expF2kL22sin2f
exp~2ht!21

h G , ~6!

whereP(h,t) is the probability density function forh, where
use has been made ofs(f)5sinf andD15D0eht, i.e., as-
suming a history with constant strain for each particle p
separation, and finally whereL is a characteristic length scal
of the initial scalar field such thata05LD0. The point that
AFOG96 make, which allows them to identify a mechanis
for exponential long-time variance decay, is that in the lon
time limit, @exp(2ht)21#/h is very large and the dominan
contribution to the integral comes from small values of sinf.
Hence, AFOG96 argue that in the case of fully chaotic flow
the dominant long-time contribution to the decay of sca
variance comes from gradients orientated close to the di
tion of largest positive Lyapunov exponent (f50,p) be-
cause these gradients are the last ones to survive mole
diffusion. A straightforward expansion aroundf50 andf
5p followed by thef integration does indeed lead to a
exponential decay ofE(t). AFOG96 go on to estimate
P(h,t) and find quantitative agreement between the ex
nential long-time decay predicted by their theory and
exponential long-time decay found in a computer simulat
of a case of fully chaotic scalar advection and diffusion.

Variance decay in vortical flows. In the case of steady
vortical flows, as in the case of any steady shear flow,
particle separations grow linearly for sufficiently long tim
(Lht@D0), i.e., D1'Lht, where the local shear rateh is
given by h5V0g(x), V0 being the angular velocity of the
vortex at a distanceL from its center andg is an appropriate
dimensionless function of space. ChoosingL to be a length
scale characterizing the position of the initial scalar pa
with respect to the vortex, inserting this type of particle p
separation in the star equation witha05L2 and considering
s(f)5const, the star equation becomes
5-2
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MIXING IN FULLY CHAOTIC FLOWS PHYSICAL REVIEW E 66, 051205 ~2002!
E~ t !5E~0!E dx
Q0

2~x!

E~0!
expF2

2

3
Pe21g2~x!~V0t !3G ,

~7!

where Pe[V0L2k21. This equation is effectively the sam
as Eq.~2.12! in Ref. @8# except that these authors use non
mensionalized space and time variables, polar coordin
for their spatial integration, and an azimuthal Fourier ser
One can follow a nearly identical argumentation as that
Ref. @8# between their equations~2.12! and ~2.19! to obtain
the right decay law

E~0!2E~ t !}~Pe21V0
3t3!12D8 ~8!

in terms of the Kolmogorov capacityD8 ~fractal codimen-
sion,D8,1) of the spiral gradient structure imposed on t
scalar field by the two-dimensional vortex. This algebr
decay law of the scalar variance in a steady two-dimensio
vortex is valid in the time range 1!V0t!Pe1/3. It has al-
ready been obtained by a direct asymptotic analysis of
advection-diffusion equation without recourse to the s
equation and has also been computationally verified@8,9#.

Limitations of the star equation. The star equation pro
vides, therefore, good results in two extreme and diame
cally opposed cases of incompressible flow: fully chao
flows and steady vortices. Nevertheless, the extent of ap
cability of this equation and of the Lagrangian approach t
it encapsulates remains unclear. In this paper we show
the star equation can also be applied successfully to the e
time behavior of scalar variance decay in fully chaotic flo
However, we identify a mechanism that is conceptually d
ferent from the Lagrangian one of AFOG96 and which a
leads to long-time exponential variance decay in fully ch
otic flow. This mechanism is governed by the contract
directions of negative Lyapunov exponents and is not inc
porated in the star equation. In fact, the AFOG96 argum
based on the star equation predicts that there is no res
mixing in the contracting directions in the long-time limi
There must therefore be situations in cases of fully cha
flow and perhaps other flows too, where the Lagrangian
proach of the star equation cannot predict the right mix
properties and scalar variance decay. Generally, howe
both mechanisms should be expected to coexist. Depen
on initial conditions and relative strength, i.e., decay rates
both mechanisms, one or the other might prevail and de
mine mixing. We leave this issue for future study and co
centrate here specifically on the non-Lagrangian mechan
of scalar variance decay.

Our model. In this paper we focus our attention on th
incompressible baker map to which we add molecular dif
sion for the study of mixing. This map is a good model of t
stretch and fold mechanism that is at the heart of cha
advection. The entire paper is devoted to the effect of
baker map on a scalar field which is so orientated that o
the contracting direction of the map acts on it. This is exac
the situation for which the star equation predicts faster sc
variance decay than exponential in the long-time limit. Ne
ertheless the model yields exponential long-time behavio
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Outline of the paper. The model and its scalar decay pro
erties are given in Sec. II. In Sec. III we successfully app
the star equation to calculate the early time decay of
scalar variance. The vast majority of the variance is in f
lost in these early stages. Following the early time decay,
scalar variance decay is exponential in time and governed
a mechanism first introduced in Ref.@10#. We study this
decay mechanism in Secs. IV and V and explain it in ter
of large-scale nonuniformities of the map. Issues to do w
universality are also addressed in these sections. We
clude in Sec. VI.

II. THE INCOMPRESSIBLE AND DIFFUSIVE
BAKER MAP

Advection of baker map. The incompressible baker ma
@11# is an idealized model for advection by an incompre
ible fully chaotic two-dimensional flow. It is a time-discret
stretch and fold mechanism, which separates most initi
neighboring particle pairs exponentially. Exponential sepa
tion of particles is the key signature of chaotic advectio
Incompressible or area preserving means that one regio
mapped onto another region of equal area. This is in cont
with the classical baker map, which is contractive, i.e., o
region gets mapped onto a smaller region. The class
baker map therefore exhibits a strange attractor@11#, whereas
the incompressible baker map produces a space filling
vected scalar as is also the case of other chaotic incomp
ible flows @12#. It is noteworthy that there is a differenc
between a two-dimensional chaotic flow and the incompre
ible baker map: The baker map is a discontinuous function
space, producing large scalar field gradients that generall
not exist in two-dimensional flows. However this is not si
nificant for the following discussion because our focus w
be on the effect of large-scale nonuniformities of the sca
field rather than small-scale steep scalar gradients. Figu
shows the baker map acting on the unit square.

The stretch and fold mechanism translates into the ma

FIG. 1. Illustration of the incompressible baker map. The u
square is divided horizontally at a heighta. The resulting lower
rectangle is horizontally compressed by the factora and vertically
stretched by 1/a. Similarly, the upper rectangle is horizontally com
pressed byb and vertically stretched by 1/b. Finally, the upper
rectangle is moved down to the right to join the lower rectan
such that a unit square is regained.
5-3
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S xn

yn
D→5 S axn

1

a
yn
D , ynP@0,a#

S bxn1a

1

b
~yn2a!D , ynP]a,1].

~9!

The parametersa and b describe the degree of strainin
under this map. Due to incompressibility,a1b51. We as-
sume in this paper without loss of generality thata<b. The
action of the incompressible baker map on a scalar fi
Q(x,y) is simply given by

Q~xn ,yn!→Q~xn11 ,yn11!. ~10!

As we want to study the scalar variance decay in a situa
where the decay mechanism from AFOG96 does not oc
we consider a scalar field which is homogeneous in thy
direction, the direction of the positive Lyapunov expone
Then the map simplifies to a one-dimensional mapping of
scalar field,

Q~x!→H QS x

a D : xP@0,a#

QS x2a

b D : xP]a,1].

~11!

This one-dimensional map represents the advection contr
tion of our model, the incompressible and diffusive bak
map.

Diffusion. In order to study mixing processes, we al
have to consider diffusion of the scalar field. The diffusion
modeled by carrying out a diffusion step after each advec
step of the baker map. The diffusion step is described by
diffusion equation, with diffusivityk,

]

]t
Q~x,t !5k

]2

]x2
Q~x,t !, ~12!

acting on the scalar fieldQ for a certain timeT. Note that we
consider a scalar field which is homogenous in they direc-
tion, and therefore diffusion occurs only in thex direction. At
the boundaries of the unit interval, we assume perio
boundary conditions. The combination of the advection s
and a subsequent diffusion step yields the incompress
and diffusive baker map, which we study in this paper. T
map has already been studied in other contexts, e.g., in
namo theory@13,14#.

Fourier representation. For analytical and numerical rea
sons it proves useful to describe the incompressible, di
sive baker map in Fourier space. Numerically, it is easy
control the scalar diffusivity in the Fourier representatio
The Fourier representation also helps to understand the
lar variance decay in terms of transport of modes throu
Fourier space, the so-called interscale transfer. We write
periodic scalar fieldQ as a Fourier series
05120
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Q~x!5 (
n52`

`

Qnei2pnx. ~13!

Each Fourier coefficientQn is characterized by its mod
numbern which is related to a wave number byk52pn.
The Fourier coefficients can be calculated from the sca
field using

Qn5E
0

1

dxQ~x!e2 i2pnx. ~14!

The incompressible baker map~11! with diffusion ~12! is a
linear map and can therefore be written as a matrix acting
the Fourier coefficients

Qn~ l 11!5 (
m52`

`

MnmQm~ l !, ~15!

with Qn( l ) being the Fourier coefficients at time stept
5 lT. The matrixMnm , which we call thetransfer matrixin
the following, reads

Mnm5e24p2kTn22 ipan
sin~pan!

p

~b2a!m

~m2an!~m2bn!
~16!

for 0<a<0.5. If the denominator of a particular matrix e
ement has a resonance, i.e., eitherm2an50 or m2bn
50, the nondiffusive part of this transfer matrix element h
the valuea or b, respectively; all other matrix elements wit
the samen vanish. In the case wherea50.5, both factors in
the denominator vanish simultaneously, the resonances c
cide and hence the nondiffusive part of the transfer matri
(a1b)dm,n/25dm,n/2 . The transfer matrix conserves the r
ality of an advected field by fulfillingM 2n,2m5Mn,m* ,
whereby * denotes the complex conjugate. In the nondiff
sive casek50, the transfer matrix furthermore conserv
the variance of the field, i.e.,(kMk,n M 2k,2m5dnm . Finally,
we express the scalar varianceE( l )5*dxQ2(x,l )
2@*dxQ(x,l )#2 at time stepl in terms of the Fourier com-
ponentsQn( l ),

E~ l !52(
n51

`

uQn~ l !u2. ~17!

Analytical solutions. In the two special cases,a50 and
a5 1

2 , it is relatively straightforward to find an analytica
solution for the evolution of the Fourier coefficients and
analytical form for the scalar variance decay. Whena50, no
straining occurs and we are therefore left with pure diffus
of the initial modes. Assuming a sin-wave with period 1
initial condition, i.e., allQn50 exceptQ6157 i /2, we find
an exponential scalar variance decay

E~ l !ua505E~0!exp~28p2kTl !. ~18!

When a5 1
2 , the number of modes does not increase un

subsequent mappings. Instead, there is only one mode
5-4
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increasing wave numberk( l )52p2l . The decay of this
mode with amplitude 1 yields a superexponential decay
the scalar variance

E~ l !ua50.55E~0!expS 2
32

3
p2kT~4l21! D . ~19!

In comparison with the decay fora50, the above decay fo
a5 1

2 is much faster, which is due to the exponential tra
port of modes to higher wave numbers where they can de
very fast.~This superexponential decay is also observed
related dynamo models, see, for example, Eq. 3.1.8 in R
@15#.!

Numerical solutions. For 0,a, 1
2 , it proves difficult to

find an analytical solution of the incompressible diffusi
baker map. Nevertheless we can find numerical solution
Eq. ~15! and gain an insight into the mechanisms respons
for scalar variance decay. The numerical solutions are ca
lated from a truncated transfer matrix. The diffusive con
bution exp(24p2kTn2) of the transfer matrix~16! makes all
modes withunu@nd negligible,2 where

nd5
1

2pAkT
~20!

is a diffusive cutoff. It is therefore sufficient to consider on
transfer matrix elements up toN with N@nd . The truncated
matrix approximates well the behavior of the transfer mat
We have checked that with increasing truncation number,
results of matrix iterations quickly converge. Our simulati
employed up to 2048 Fourier modes, which allowed dif
sivities as small askT51028. Figures 2 and 3 show, respe
tively, the short- and long-time behaviors of the numerica
obtained variance decay. For short times, i.e.,l , l c in Fig. 2
~the crossover timel c is determined in Sec. III!, we observe
that, initially, the variance decays hardly at all, but th
within only only a few iterations almost all the variance
very quickly lost. AFOG96 referred to this decay range
the initial transient. The initial transient is followed by th
final decay range where, see Fig. 3, the remaining few
cent of the variance decay exponentially on average@2,3#
with superimposed oscillations@4#. For small enough diffu-
sivities, the average value of (d/dl)ln E does not appear to
significantly depend on diffusivity, see Fig. 3~a!. Further-
more, we observe that the largera, i.e., the more nonuni-
form the map, the slower the variance decays, see Fig. 3~b!.
These last three observations are investigated in more d
in Secs. IV and V.

III. THE INITIAL TRANSIENT

In this section we discuss the initial transient of the sca
variance decay. Note that the properties of the scalar s
trum during the initial transient were extensively discuss
in AFOG96. Here we derive an analytical approximation

2The only exception is the casea5
1
2 where the high wave-

number modes are the sole contribution to the variance.
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the variance decay using the star equation from Sec. I
assuming constant strain history in the case of the inco
pressible and diffusive baker map.

Variance decay and Lyapunov exponents.The successful
applications of the star equation (*) in Sec. I for long-tim
variance decay in fully chaotic and vortical flows motivate
to investigate its applicability in the context of the initia
transient decay in fully chaotic flows. In our model, the ang
f between the scalar gradients and the direction of the f
est growing particle separation isf5p/2. Assuming, simi-
larly to the derivation of Eq.~6!, a constant strain history fo
all particle pairs, the integration over space in (*) can
replaced by an integration over the distributionP(h,l ) of
finite time Lyapunov exponentsh ~see AFOG96 for a defini-

FIG. 2. Initial transient of the incompressible and diffusiv
baker map. Scalar varianceE decay under the incompressible an
diffusive baker map (L dispersive! and theab map (* nondisper-
sive! introduced in Sec. IV. Both maps have parametersa50.4 and
kT51026. ~a! The incompressible and diffusive baker map andab
map have the same decay as long asl< l c , wherel c is given in Eq.
~28!. ~b! For l . l c , the scalar variance decays exponentially und
the incompressible and diffusive baker map; however it decays
perexponentially under theab map.
5-5
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A. WONHAS AND J. C. VASSILICOS PHYSICAL REVIEW E66, 051205 ~2002!
tion of finite time Lyapunov exponents! at time-iterationl.
We make fora0 the same choice as AFOG96, that is,a0
5LD0 where we choseL to be 1/2p ~this choice ensures th
correct result for a plane wave scalar field with period
subject to uniform and constant strain, which is a refere
case for our initial condition!. The star equation becomes

FIG. 3. Semilogarithmic plot of scalar varianceE as a function
of time-iterationl. ~a! a50.3; six different diffusivitieskT ranging
from 1028 to 1023 ~number of Fourier modesN52048); decay
according to the largest modulus eigenvalue~30! of the truncated
transfer matrix (N5256) is indicated by the thick solid line. Not
that the average value of (d/dl)ln E, corresponding to the averag
slope of the plots, appears independent of diffusivity for sm
enough diffusivities. A more detailed investigation of diffusivi
dependence in Fig. 6 reveals that the decay factor depends at
like ln kT on the diffusivity. Note also that the average decay fac
is well described by the largest eigenvalue modulus of the trunc
transfer matrix. ~b! kT51026 ~number of Fourier modesN
5512); six different parametersa ranging from 0.2 to 0.45. Note
that the larger the value ofa, the faster is the decay. This mea
that the decay is slower when the map is less uniform. In b
graphs, the averaged decay rate is overlaid with oscillations. R
to Sec. IV for an explanation in terms of the pair of complex co
jugate eigenvalues.
05120
e

E~ l !5E~0!E
0

`

dhP~h,l !expS 2
4p2kT

h
~e2hl21! D .

~21!

AFOG96 have used the star equation to derive scalar v
ance decay in the long-time limit. Here we use Eq.~21! that
is derived from the star equation with an assumption of c
stant strain history to calculate the variance decay in
initial transient.

Analytical approximation to the variance decay. In order
to estimate the variance decay from Eq.~21!, we introduce
the cutoff diffusion approximation and also use a Gauss
approximation for the distribution of Lyapunov exponen
The expression~21! for the variance decay can be great
simplified by the cutoff diffusion approximation. If the argu
ment 4p2kT exp(2hl)/h of the first exponential in Eq.~21! is
much smaller than1

2 , the value of this exponential is ver
close to one. However if the argument is much larger than1

2 ,
the exponential vanishes.~Note that we have assumede2hl

@1, which is reasonable for sufficiently smallkT.! The ratio
E( l )/E(0) is therefore approximately equal to the integral
the distribution of finite time Lyapunov exponents over
range bounded from above by a cutoff valuehc where this
exponential abruptly jumps from one to zero. The value
this cutoff can be estimated by setting the argument of
exponential equal to12 and approximating the 1/h contribu-
tion of the argument by the average value 2/(ha1hb), where
ha52 ln a andhb52 ln b are the Lyapunov exponents co
responding to uniform straining bya andb respectively:

hc~ l !5
1

2l
ln

ha1hb

16p2kT
. ~22!

Now we turn to approximating the distribution of finite tim
Lyapunov exponents. For the incompressible baker map,
distribution is given by@16#

P~h,l !5 (
n50

l S l

nDa l 2nbndS h2ha1
n

l
~ha2hb! D .

~23!

In the vicinity of the maximum

hmax5
1
2 ~ha1hb!2 1

4 ~ha2hb!2 ~24!

of the distribution, the binomial coefficient

S l

nD
multiplied by a l 2nbn can be approximated by a normal di
tribution

P~h,l !'A 2l

p~ha2hb!2
expF22l S h2hmax

ha2hb
D 2G . ~25!

Note that this is a valid approximation during the initial tra
sient because, as we determine below, the initial transien
the range of times where the scalar variance decay is de
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MIXING IN FULLY CHAOTIC FLOWS PHYSICAL REVIEW E 66, 051205 ~2002!
mined by the Lyapunov exponents in the vicinity of th
maximum rather than the tails of the distribution of fini
time Lyapunov exponents. IntegratingP(h,l ) as given by
Eq. ~25! over h in cutoff diffusion approximation~22!, we
obtain the estimate

E~ l !5E~0!erfFA4l
hc~ l !2hmax

ha2hb
G ~26!

for the decay of scalar variance during the initial transie
where

erf~x!5
1

A2p
E

2`

x

dy expS 2
y2

2 D ~27!

is the error function.
Discussion of approximation. Figure 4 shows a compari

son of E( l ) obtained by a full numerical solution of th
incompressible and diffusive baker map and the approxi
tion ~26!. We observe satisfactory agreement between
numerical solution and our analytical approximation sugge
ing that it is sufficient to know the Lyapunov exponents
Lagrangian property of the chaotic flow, for a satisfacto
description of the variance decay during the initial transie
The approximation~26! is valid as long as most of the var
ance has not yet decayed, see Sec. IV. Most of the varia
has decayed when the cutoff for the Lyapunov expone

FIG. 4. Comparison of full direct numerical calculation of th
variance decay under the incompressible and diffusive baker
with the approximation~26!. The scaling with diffusivitykT of the
time needed for most of the decay to occur, and of the temp
width of the decay region, are indicated by solid arrows. Interm
diate approximations such as the Lagrangian approach based o
star equation and Lyapunov exponents~which assumes a constan
strain history! leading to Eq.~21!, the cutoff diffusion approxima-
tion that uses Eq.~22! and the full approximation~26! that also uses
the Gaussian form of the distribution of Lyapunov exponents
also given. The parameters of the simulation arekT51026 anda
50.4, yieldingl c59, i.e., the approximations are valid up to iter
tion 9.
05120
t,

a-
e
t-

t.

ce
ts

~22! is smaller than the smallest Lyapunov exponenthb .
Therefore for iterationsl . l c , where

l c5
1

2hb
ln

ha1hb

16p2kT
, ~28!

which is derived fromhb5hc( l c), the approximation~26! to
the variance decay is not valid any longer. We have verifi
numerically in a variety of cases~different values ofa and
kT) that l c is indeed the crossover time in Fig. 2 and that E
~26! is a good approximation forE( l ) in the initial transient
range that is bounded from above by a time of orderl c . ~The
logarithmic dependence of a critical mixing time such asl c
has already been noted in previous studies, e.g., Ref.@17#.!

Dependence on diffusivity. When the diffusivity kT
changes, the time dependence of the variance changes in
ways. For smallerkT, the time around which most of th
variance suddenly decays increases, but very slowly, in
proportionally to2 ln kT. This follows, for example, from
Eq. ~28!. The number of time iterations required for th
sudden decay to happen also increases with decreasingkT,
but even more slowly. A quick calculation based on Eq.~26!
shows that the width of the decay region scales l
A2 ln kT. The initial transient decay regime of a scalar a
vected by a fully chaotic flow appears, therefore, to be a c
where the dissipation rate is not independent of diffusiv
but where this dependence is extremely weak, in fact lo
rithmic.

IV. THE LONG-TIME EXPONENTIAL DECAY

In this section we begin with reviewing the explanation
long-time exponential variance decay in terms of eigenval
of the transfer matrix and dispersion of modes@10#. This
explanation serves as a foundation for the remainder of
paper, where we explain the variance decay in terms of la
scale nonuniformities of the map.

Exponential decay for long-times. In the final decay
range, l @ l c , the variance decay cannot be captured by
purely Lagrangian description based on the star equation
Lyapunov exponents. Calculating the long-time decay fr
the star equation in the guise of Eq.~21! with Eq. ~23!, we
find a superexponential variance decay. This calculation
viously disagrees with the numerical results of Sec. II, wh
suggest an exponential variance decay whenaÞ0.5 in the
long-time limit, see Fig. 3. As discussed in Sec. I, it is t
additional integration over different orientations of the sca
gradient in the star equation that produces the expone
decay obtained by AFOG96. However, we have delibera
chosen the initial conditions such that all scalar gradients
aligned with the inward straining and therefore no such
eraging effect applies in our case.

Final decay in terms of eigenvectors and values. Let us
first explain the observed long-time exponential variance
cay and its oscillations in terms of eigenvectors and eig
values of the truncated transfer matrix~16!, see also Ref.
@10#. For each eigenvaluel with eigenvectoren the trun-
cated transfer matrix also has the complex conjugate eig
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A. WONHAS AND J. C. VASSILICOS PHYSICAL REVIEW E66, 051205 ~2002!
valuel* with eigenvectorẽnªe2n* . This is a consequenc
of the conservation of reality,M 2n,2m5Mn,m* , of the trans-
fer matrix. After a few iterations, the eigenvectors with t
largest modulus eigenvalues provide the largest contribu
to the scalar field and therefore control the scalar field de
in the long term. At every iteration stepl, the eigenvectors
are multiplied by their corresponding eigenvalues leading
the long-time approximation

Qn~ l !'l len1l* l ẽn , ~29!

where l and l* now symbolize the two largest modulu
eigenvalues anden , ẽn their respective eigenvectors. We ca
culate the variance decay using Eq.~17! and find an expo-
nential decay superimposed on a potentially oscillatory c
tribution:

E~ l !}ulu2l1 (
n51

N

Re~l2lene2n!, ~30!

where Re gives the real part of its argument. The avera
decay factorE( l 11)/E( l ) is therefore given byulu2 ~after
oscillations have been averaged out!. The oscillations stem
from the projection of the powers of the complex eigenva
onto the real axis and can be observed in Fig. 3. They are
only present in the incompressible and diffusive baker m
but also in other chaotic flows@4#. Furthermore, the average
decay factor does indeed appear to be well approximate
the modulus of the largest modulus eigenvalues of the tr
cated transfer matrix even for rather small values of the tr
cationN, see Fig. 5. The fact that this agreement occurs e

FIG. 5. Convergence of the largest eigenvalue modulusulu with
increasing truncationN for different a. ulu is calculated from a
numerical eigenvalue analysis of the truncated transfer matrix.
compared with the largest eigenvalue modulus reference valueul0u
that is calculated from a direct numerical solution of the varian
decay, i.e., theul0u are the square roots of the decay rates in Ta
I. We observe that even for small values ofN ~particularly whena
is small!, the largest eigenvalue modulusulu comes close to the
reference valueul0u.
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for small values ofN is important because it implies that it i
not the discontinuities in the scalar field generated by
incompressible and diffusive baker map that are respons
for the exponential decay. Such discontinuities require m
wave numbers to be resolved, more than a truncation w
N55 or 10 would permit in most of our cases where t
diffusivity is very small.

Parameter dependence of decay. In Fig. 3~a! we observe
that for small enough diffusivities, the time derivative of th
logarithm ofE( l ) seems to become independent of diffus
ity. A more detailed investigation in Fig. 6 reveals that t
averaged decay factor depends at most like ln(kT) on diffu-
sivity. The average decay factors for differenta are given by
the ‘‘diamonds’’L in Fig. 7 and in Table I. We observe tha
the largera, i.e., the more nonuniform the map, the smal
the decay factor.

Although this simple analysis in terms of eigenvalues c
predict the exponential long-time decay of the variance
nevertheless fails to explain why a Lagrangian descript
based on the star equation fails and why the decay factors
so weakly dependent on diffusivity. The remainder of th
section addresses this issue.

Dispersion causes exponential decay. The Lagrangian de-
scription of variance decay fails because it does not take
account the dispersion of modes during the mapping proc
which becomes very important after the initial transient.
dispersion3 we mean that the transfer matrixMnm does not
simply map a scalar mode, characterized by its mode num
m, to a single other moden as a description in terms o

3Note that this concept of dispersion must not be confused wi
distribution of finite time Lyapunov exponents, which may al
cause a transfer of variance from one mode to several other mo
In the case of finite time Lyapunov exponents, the ‘‘dispersion’’
modes is caused by a local spatial average whereas our definitio
dispersion considers the entire flow.

is

e
e

FIG. 6. Variation of the decay factorulu2 with diffusivity kT in
the casea50.475 that is the case whereulu2 varies the most with
diffusivity. The decay factor varies withkT slightly less steeply
than lnkT.
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MIXING IN FULLY CHAOTIC FLOWS PHYSICAL REVIEW E 66, 051205 ~2002!
Lyapunov exponents would suggest, but instead maps m
m onto an entire distribution of modes. See, for instance, F
8 for a schematic illustration of the concept of dispersion a
an example of dispersion for the incompressible and di
sive baker map. Generally most of the variance containe
the initial modem is transported to larger mode numbe
However, dispersion may cause a small fraction of the ini
variance to be transferred to the same or even lower m
numbers thanm. This remnant amount of variance can
quantified by the remnanceR(m), which is defined as the
sum of contributions to the variance, which end up at
same or lower mode numbers after one iteration:

FIG. 7. Modulus of scalar field largest modulus eigenvalueulu,
i.e., square root of the averaged decay factorulu2, for different
straining ratesa. L, Eigenvalues obtained by a numerical soluti
of the incompressible and diffusive baker map with diffusivitykT
51026; solid line, analytical solution~44! for the eigenvalue in the
Gaussian description without boundary corrections, see Sec. V B
both cases, the eigenvalues decrease with increasinga. However,
the decay behaviors are different because the corresponding
have different large-scale nonuniformities, see Secs. IV and V.
eigenvalues are also given in Table I.

TABLE I. Square root of the averaged decay factors~oscillation
averaged out!, i.e., eigenvalue moduli, for the incompressible a
diffusive baker maplustd and the diffusive baker map in the Gaus
ian description without boundary correctionsluGauss, see Eq.~44!.
The values of the incompressible and diffusive baker map are
tained by an exponential fit to the numerically calculated decay
kT51026.

a lustd luGauss

0.45 0.44 0.51
0.40 0.52 0.52
0.35 0.59 0.55
0.30 0.66 0.58
0.25 0.72 0.63
0.20 0.79 0.68
0.15 0.83 0.76
0.10 0.89 0.82
05120
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R~m!52(
n51

m

uMnmu2. ~31!

Figure 9 shows the remnance of the incompressible and
fusive baker map for differenta. We observe that the rem
nance scales likeR(m)}m21 for largem, which can also be
verified analytically. Due to this scaling, the remnance
only important for the lowest modes.4 This suggests that a
every iteration step, there exists a fraction of variance t
remains at the lowest modes. It is this remnant fraction
variance that causes the exponential variance decay, i.e.
lowest modes control the exponential variance decay. T
remnant fraction must be equal toulu2 because the varianc
decay occurs by multiples ofulu2 @see Eq.~30! with aver-
aged out oscillations#. The remaining fraction 12ulu2 of
variance, originally contained in the lowest modes, gets
each iteration step transported to larger wave numbers. S
finally reaches high enough wave numbers where diffus
can eliminate the variance.

Decay factor independent of diffusivity. The dispersion
~remnance! decay mechanism also explains qualitative
why the decay factor becomes nearly independent of o
least extremely weakly dependent on diffusivity when diff
sivity is small enough. This mechanism operates only at
largest scales of the flow. A small diffusivity, however, on
acts at much smaller scales and can therefore not influe
the decay factor very much.

Lyapunov exponents fail because of lacking scale sep
tion. Considering that the exponential variance decay is c
trolled by the largest scales of the flow, it is not surprisi
that the Lagrangian description based on the star equa
and Lyapunov exponents fails to describe the exponen
variance decay. As we have pointed out in Sec. I, this
proach based on particle pair separation can predict varia
decay when the spatial scales over which the flow varies
much larger than the scales over which the scalar field var
This condition ceases to be fulfilled for the incompressi
and diffusive baker map in the long-time limit beyond th
initial transient.

ab map. To emphasize the role of mode dispersion, let
investigate fully chaotic maps without mode dispersion. A
first example, consider the incompressible and diffus
baker map fora50.5. The transfer matrix~16! in this case is
nondispersive and therefore produces superexponential
ance decay~19!. We obtain a second example of a nond
persive map by constructing a map with the same strain
properties as the incompressible and diffusive baker map
no mode dispersion. Analyzing the transfer matrix~16!, we
see that it has resonances, i.e., comparatively large va
wheneverm2an'0 or m2bn'0. If a resonance condi
tion is met exactly, the corresponding matrix element ta
the valuea or b, respectively. These resonances lead t

4The importance of the lowest modes can also be inferred fr
the first few elements of the transfer matrix. The eigenvalues of
truncated transfer matrix quickly converge towards the measu
value of variance decay, see Fig. 5.
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FIG. 8. Dispersion of modes.~a! Schematic illustration of dispersion with wave numbers ofthex and intensity on they axis. A sharp
distribution of wave numbers~indicated by the vertical arrow! is mapped onto a broad distribution of modes~indicated by dotted line!. ~b!
Dispersion of the baker map: Modulus of transfer matrix elements fora50.3 and vanishing diffusivity. A mode with mode numberm
53 is mapped onto a broad distribution of modes, indicated by dotted lines.
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transport of modes to higher wave numbers, i.e., a mode
wave numberk and amplitudeA is mapped approximately to
two modes with wave numbersk/a andk/b and amplitudes
aA and bA, respectively. When the resonance condition
not met precisely, the resonance is smeared out and ther
the transport of modes is dispersive. A simplified version
the incompressible and diffusive baker map is therefore
tained by assuming that the transfer matrix has only sh
resonances, i.e., nondispersive transport of modes. In the
lowing we refer to this nondispersive baker map as theab
map. Introducing a continuous mode distributionP(k), the
evolution ofP(k) under theab map is given by

P~k!→D~k!@aP~ak!1bP~bk!#, ~32!

where the diffusive factorD(k) models diffusion. From the
diffusive term exp(24p2kTn2) in Eq. ~16!, we infer D(k)
5exp(2kTk2). Figure 2 compares scalar variance decay

FIG. 9. Double-logarithmic plot of remnanceR over mode num-
berm for a50.2, 0.3, 0.4, and 0.45. The dashed line indicates 1m
scaling. The remnance is larger for smallera at anym, and for large
m the remnance decays like 1/m.
05120
th

s
ore
f
-

rp
ol-

-

der the incompressible and diffusive baker map and theab
map. As long as the majority of modes is not transpor
beyond the diffusive cutoff, i.e.,l , l c , both maps evolve
almost identically. However forl . l c the incompressible and
diffusive baker map and theab map evolve differently. The
incompressible and diffusive baker map develops an ex
nential decay but theab map decays superexponentially. W
expect these results because the incompressible and diffu
baker map is dispersive whereas theab map is not. Note
that theab map is very similar to the Lagrangian deca
description ~21! in terms of Lyapunov exponents derive
from the star equation. The sole difference between the
descriptions is that theab map does not require the assum
tion of constant strain. Therefore the variance decay ca
lated with theab map in Fig. 2 agrees even better with th
full numerical solution than the decay according to t
Lyapunov description~21! in Fig. 4.

Dispersion and large-scale nonuniformity of the strainin
field. Having established that dispersion causes the expo
tial variance decay of the incompressible and diffusive ba
map in the first place, we now argue that dispersion itsel
caused by the nonuniformity of the advecting flow or map.
the case wherea50.5 the straining of the map is uniform
and produces a uniform scalar field. This is also the one c
where the incompressible and diffusive baker map is not
persive. However, asa decreases away from 0.5, the strai
ing field of the map becomes increasingly nonuniform a
hence the map also because increasingly dispersive, as
sured by the remnance which increases with decreasinga.
Clearly, dispersion and nonuniformity appear to be correla
in the case of the incompressible and diffusive baker m
But could there be a causal relation between the two wh
might be valid quite generally over a wide class of flows? W
investigate this question by comparing maps that have
same straining properties but are differently organized
space. The dispersion by such maps can be analyzed
means of the Fourier transforms of the scalar fields that t
produce. Figure 10 shows two examples of scalar fields
are produced by maps with identical straining properties
5-10
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FIG. 10. Scalar field made up
of ten sine waves with wave num
ber 2p320 and 20 sine waves
with wave number 2p340. ~a!
The waves are arranged such th
they are uniform on a large scale
~b! the waves are arranged suc
that they are nonuniform on a
large scale,~c! Fourier transform
of ~a!, ~d! Fourier transform of
~b!. The more nonuniform field
~b! has a more dispersive spec
trum.
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that both scalar fields have the same subfield componen
truncated sine waves. However the spatial arrangemen
subfield components is different for both maps. The field
Fig. 10~a! is more uniform than the field in Fig. 10~b! be-
cause all large scale sections in~a! are comparable, wherea
in ~b! different kinds of large-scale sections can be fou
The Fourier representation of field~a!, see~c!, is less disper-
sive, i.e., has narrower peaks around the maxima, than
Fourier components of field~b!; see~d!. Indeed our example
of Fig. 10 suggests that there is a general causal rela
between spatial nonuniformity of a map~and consequently
that of its advected field! and dispersion of interscale tran
fer. Note that Pedrizetti and Vassilicos@18# have described
scalar interscale transfer in vortical flows in terms of a tra
fer matrix, which is also dispersive, and have found a sim
relation between the dispersion caused by the transfer m
and the spatial nonuniformity of the shear field in the vort

V. GAUSSIAN DESCRIPTION OF CHAOTIC MAPS

The large-scale nonuniformities of a chaotic map infl
ence the long-time variance decay of the map. To illustr
this point further, we introduce the Gaussian description
the incompressible and diffusive baker map. Using
Gaussian description, we can show that two chaotic m
with, for the intents and purposes of this paper, identi
distributions of finite time Lyapunov exponents but differe
large-scale nonuniformities have different long-time varian
decay rates. The first map, the Gausian description of
incompressible and diffusive baker map of the previous s
tions, is discussed in Sec. V A. We show that the Gauss
description reproduces the variance decay. In Sec. V B,
proceed by introducing a second map which, in compari
with the incompressible and diffusive baker map, has diff
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ent large-scale nonuniformities but the same distribution
finite time Lyapunov exponents. Changing the large-sc
nonuniformities while keeping the distribution of Lyapuno
exponents is the key advantage of the Gaussian descrip
and the reason why we introduce it in this section. Note t
we do not introduce the Gaussian description to provide
improved algorithm to simulate advection-diffusion pr
cesses. The Gaussian description is not well suited for
task. First, its memory requirements grow exponentially w
simulation time. Second, it is only applicable for on
dimensional chaotic maps. Nevertheless, the ability of
Gaussian description to describe chaotic maps with differ
large-scale nonuniformities but identical distributions
Lyapunov exponents allows us to show that the large-sc
nonuniformities have a significant influence on the rate
variance decay.

A. Introduction of Gaussian description and application to the
incompressible and diffusive baker map

Definition of Gaussian description. We introduce the
Gaussian descriptionof a chaotic map by studying the com
bined effect of strain and diffusion on a Gaussian scalar fi

gs~x!5expS 2
x2

4s2D . ~33!

Any Gaussian remains a Gaussian under uniform strain
diffusion. Even if the Gaussian is subject to nonunifor
strain, it quickly returns to its initial shape under the infl
ence of diffusion.~We have verified that the bell-shape
curves in Fig. 11~c! are well fitted by Gaussians!. Therefore
Gaussians are convenient for the study of chaotic maps
an example, we study the incompressible and diffusive ba
5-11
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A. WONHAS AND J. C. VASSILICOS PHYSICAL REVIEW E66, 051205 ~2002!
FIG. 11. Evolution of Gaussians in the vicinity of the bounda
Field Q plotted against positionx.
05120
map~11! and~12! in the Gaussian representation. Assume
incompressible and diffusive baker map with a Gaussian
tial condition

Q~x,0!5A1
(0)gs

1
(0)~x2x1

(0)!2ḡ. ~34!

Our initial condition is characterized by the amplitudeA1
(0) ,

by the widths1
(0) ~which shall be much smaller than 1, th

size of the mapped interval!, and by the peak centerx1
(0)

~which shall be well inside the mapped unit interval!. The
mean ḡ is subtracted to obtain a field with vanishin
average.5 We assume that this specific initial condition h
no influence on the character of the long-time decay.

Uniform Gaussian description. Consider the application
of one iteration step of the incompressible and diffus
baker map and assume, for the time being, that the Gaus
remains well inside the mapped interval. First, one peak
mapped on two peaks: one peak resulting from a comp
sion witha and the other from a compression withb. Then,
diffusion acts for a timeT and the peaks become wider an
lower. Hence, at every iteration, one Gaussian is mapped
two new Gaussians with modified amplitudes, widths, a
centers. Because the problem is linear, the scalar field afl
iterations can be written as a superposition of Gaussians

Q~x,l !5S (
n51

2l

An
( l )gs

n
( l )~x2xn

( l )!D 2ḡ. ~35!

In the Gaussian description, the field is fully characterized
the set of parametersAn

( l ) , sn
( l ) , andxn

( l ) . From the defini-
tions ~11! and~12! of the incompressible and diffusive bake
map, the evolution of the parameters follows, see the App
dix,

xn
( l )→H xn

( l 11)5axn
( l )

x2l1n
( l 11)

5a1bxn
( l ) ,

~36!

An
( l )→5 An

( l 11)5An
( l )S 11

kT

~asn
( l )!2D 21/2

A2l1n
( l 11)

5An
( l )S 11

kT

~bsn
( l )!2D 21/2

,

~37!

sn
( l )→H sn

( l 11)5AkT1~asn
( l )!2

s2l1n
( l 11)

5AkT1~bsn
( l )!2.

~38!

Studying the long-time evolution of the parameters, we fi
that the widthss approach values between

sa5A kT

12a2
and sb5A kT

12b2
. ~39!

5In Sec. V B, we describe and discuss an alternative metho
obtain a field with vanishing average.

.
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The minimal widthsa is given by a Gaussian which is sub
ject to purea strain. Similarly, the maximal widthsb is
given by a Gaussian subject to pureb strain. When the peak
have reached their final range of widths, the amplitude e
lution becomes relatively insensitive to the precise value
the width. For each iteration step, the amplitude reduct
factor is then comparable to the corresponding strain ratea
or b. If a Gaussian is subject to a single strain rate, this
indeed the exact solution.

Large-scale nonuniformities and boundary conditions. If
the straining properties of the incompressible and diffus
baker map were completely uniform or if the nonunifor
straining at the boundaries of the unit interval could be
glected, the field evolution and variance decay would
given by Eqs.~36!–~38!. However for the standard incom
pressible and diffusive baker map, whereaÞb, this is not
the case. At the boundaries of the unit interval, regions w
different straining properties come to neighbor each ot
directly because of the periodicity of the flow domain. T
boundaries thus feel the effect of the large-scale nonuni
mities and thereby influence the rate of scalar variance de
Below, we first study in some detail the influence of t
boundary conditions of the incompressible and diffus
baker map. Then, in Sec. V B, we modify the boundary c
ditions and show that they have a significant influence on
variance decay.

Boundary conditions. Let us now investigate the effect o
the boundary conditions on the evolution of a Gaussian.
peak center comes within about a peak width of the left-
right-hand boundary of the mapped unit interval, the Gau
ian becomes subject to strain, which is nonuniform acr
the width of the Gaussian. The evolution of the Gaussia
amplitude, width, and center is then different from the u
form case above. We study the case of nonuniform st
numerically. Figure 11 depicts an example of a Gauss
coming close to the boundary, where it can experience
effect of nonuniform strain. Figure 11~a! shows a Gaussian
which, under subsequentb stretchings, has come close to th
right-hand boundary of the unit interval atx51. Due to its
finite width, a fraction of the field is now outside the mapp
interval. As a consequence of the periodicity of the flo
domain, this fraction returns to the left-hand boundaryx
50). The result of the stretch step of the incompressible
diffusive baker map is plotted in Fig. 11~b!. The peak section
at the right-hand boundary is mapped on two new peak
tions. One is strained withb50.6 and moved bya50.4. It
therefore remains at the right-hand boundary. The othe
strained witha and hence moves directly left ofx50.4. The
peak section at the left-hand boundary is also mapped on
new peak sections. One strained witha at the left-hand
boundary and the other strained withb, directly right of x
50.4. Finally, diffusionk acts for a timeT, see Fig. 11~c!.
All cut and pasted peak sections again approach the Gau
shape. The peak atx'0.4 has a lower amplitude than th
peaks at the boundary because most of it was subjec
greater strain. However its amplitude is slightly larger th
0.4, the amplitude that corresponds to the case of unif
strain with a50.4. Similarly, the peak at the boundary
slightly smaller than in the uniform case due to some con
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bution by the strongera straining. The peak widths and cen
ters also deviate from the uniform values.

Systematic study of boundary conditions for differe
straining rates. For other combinations of straining ratesa
andb, we find similar behavior. In particular, after the di
fusion step, all peaks return to the Gaussian shape, e
though they have been subjected to nonuniform strain. F
ure 12 quantifies the effect of the Gaussian’s distance fr
the boundary on its amplitude evolution for different comb
nations of straining rates. Consider the example of the
compressible and diffusive baker map witha50.4 andb
50.6. Let us follow the evolution of a Gaussian close to t
right-hand boundary of the mapped unit interval. The amp
tude reduction factorg for one iteration of the Gaussian i
given by diamonds in Fig. 12. Initially, the Gaussian is p
sitioned three widthss away from the boundary. The reduc
tion factor atd523 can be read off Fig. 12,g50.6. This is
the uniform result because the peak is far enough from
boundary. However at the next iteration step it has mov
within 1.8 widths from the boundary and we begin to o
serve a slight reduction in the amplitude reduction factor.
the following iterations the peak gets ever closer to
boundary and the amplitude reduction factor decreases
nally it reaches a stable distance of about 0.4 widths aw
from the boundary. At this fixed point the amplitude redu
tion factor is g50.52. With the same incompressible an
diffusive baker map, we can also study the evolution o
Gaussian at the left-hand boundary of the unit interval. Th
widths away from the boundary, we find again the unifo
value for the amplitude reduction factor (d53,g50.4). With
subsequent iterations, the amplitude reduction factor

FIG. 12. Evolution of Gaussians in nonuniform strain for diffe
ent strain rates. The three solid curves give the evolution of Ga
sians in the strain-diffusive situation described in Fig. 11 forL:
a50.4; *: a50.3; 1: a50.2. The Gaussian’s amplitude redu
tion factor g for each iteration is plotted against the Gaussia
distanced from the borderline between the regions with differe
strain. The distanced is measured in multiples of the Gaussian
width s. Negative values refer to the left-hand side of the bounda
positive values to the right-hand side. Fixed points of the evolut
are indicated by dotted circles with horizontal lines, from bottom
top corresponding toa50.4, 0.3, 0.2.
5-13
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creases, as more and more of the peak gets subject to we
b strain. The peak center even crosses the boundary
reaches the same fixed point. For other values ofa and b,
similar behavior can be observed in Fig. 12.

Comparison with numerical solution. We are now in a
position to compare the solutions of the incompressible
diffusive baker map obtained by Fourier decomposition w
solutions using Gaussian description, i.e., Eqs.~36!–~38! and
boundary corrections from Fig. 12. We determine the ti
dependence of the variance decay in Gaussian descriptio
superimposing all Gaussians in real space and then calc
ing the variance of the resulting fields. We observe go
agreement between the variance decay in Gaussian des
tion and the variance decay calculated from numerical s
tions of the incompressible and diffusive baker map us
Fourier decomposition, see Fig. 13~the decay without
boundary corrections in the figure may be omitted!. Further-
more, we find by comparing the scalar fields themselves
the fields in Gaussian description are very similar to, a
share the same features as, the fields calculated from
Fourier modes, see Fig. 14.

In summary, we have shown that if the following thre
conditions are fulfilled~see paragraph ‘‘Definition of Gauss
ian description’’!, the Gaussian description allows us to d
scribe the evolution of the incompressible and diffus
baker map:~i! the diffusionkT is small enough so that th
Gaussian widths are small in comparison with the map
unit interval;~ii ! the long-time decay does not depend on
initial condition; ~iii ! Gaussians under nonuniform strain c
be sufficiently well approximated by the Gaussians. Ho

FIG. 13. Comparison of variance decay in Gaussian descrip
with and without boundary corrections fora50.3. Solid line: De-
cay without boundary correction. Dotted line: Decay with bound
correction; asymptotic decay rates are indicated by straight s
lines. The final range of the solution without boundary correctio
decays like 0.662l according to Eq.~44!. In contrast, the final range
of the standard incompressible and diffusive baker map decays
0.582l , see Fig. 7. Note that the numerical simulation of the Gau
ian description is limited to a small number of iterations because
memory requirements of the simulation grow exponentially.
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ever, it should be noted that it is generally not useful
calculate decay factors in Gaussian approximation. T
memory required to keep track of all the Gaussians gro
exponentially with the number of iterations and hen
quickly reaches extremely large values. The main advant
of the Gaussian description is that it enables us to change
behavior of the map at the boundary and therefore the ef
of the large-scale nonuniformities.

B. Decay factor of Gaussian description
without boundary conditions

Variation of boundary conditions. Instead of using the
curves in Fig. 12 to describe the behavior at the boundar
the incompressible and diffusive baker map in the Gauss
description, we could imagine infinitely many differen
curves and therefore equally many different Gaussian
scriptions with different boundary corrections. All thes
Gaussian descriptions have the same small-scale stretc
properties~with the exception of a tiny region around th
boundaries!. Although the Lyapunov exponents of all thos
maps are the same, the decay factors are different as
show now. In particular, we study one example of su
modified boundary conditions, namely the map where
Gaussians evolve according to the uniform evolution~36!–
~38! and no additional corrections are considered. The
vantage of this particular example is that it is analytica
tractable. Note that there is no real space physical model
has these particular boundary corrections. The Gaussian

n

y
id
s

ke
-
e

FIG. 14. Comparison of scalar field solutions. Solid line~upper
graph!: Numerical solution of the standard incompressible and d
fusive baker map obtained in Fourier space and transformed to
space. Dotted line~lower graph!: Numerical solution of the incom-
pressible and diffusive baker map in Gaussian description w
boundary corrections. Both solutions are calculated fora50.3 and
kT51026 ~they are rescaled and slightly displaced to allow ea
comparison!. We observe that both solutions have very simi
structure. All spikes, whose positions can be obtained by mapp
the spike at the right-hand boundary with Eq.~36!, have comparable
positions and amplitudes.
5-14



ar
m

ed
l

a

lu
f

ith
ly
e

ll
th
s

av
in

us
re
ld
f
s

si
u

e
an

ly

n
ld
ion

he
s
h
cr
is
ca
tiv
-

an
n-
run
l for
e-
e
-

a-

he

we

ring
ans.
ined
the
ans.

.
of
set
t

gen-

ion
ri-
ne
es

rd
on
ns,
oth
ent
den-
i-
ale
e-
ere
e it
r-

hat
ain-
ow

the
nce

MIXING IN FULLY CHAOTIC FLOWS PHYSICAL REVIEW E 66, 051205 ~2002!
scription is therefore a method for changing the bound
conditions and hence the effects of large-scale nonunifor
ties of the incompressible and diffusive baker map.

Simplified Gaussian description. The uniform evolution
~36!–~38! can be further simplified by assuming a weight
width s̄5asa1bsb for all Gaussians, where the minima
and maximal widthssa/b are given by Eq.~39!. This ap-
proximation turns out to be a very good approximation
long as all widths are comparable, which is the case fora not
too small. The uniform evolution is then given by the evo
tions of the centers~36! and the approximated evolution o
the amplitudes

An
( l )→H An

( l 11)5aAn
( l )

A2l1n
( l 11)

5bAn
( l ) .

~40!

Now we employ a different method to construct a field w
vanishing mean. We use an initial condition of two close
neighboring Gaussians~33! whose amplitudes have the sam
modulus but opposite signs. The Gaussians’ centers sha
only a small distance apart, in fact much smaller than
width of the peaks. We call this combination of two Gaus
ians adouble Gaussian,

d~x!5x expS 2
x2

4s̄2D . ~41!

The double Gaussian and all its mappings obviously h
vanishing mean. Previously, we have ensured vanish
mean by simply subtracting the mean of the mapped Ga
ians. The previous method has the advantage of being
tively insensitive to the correct positioning of the scalar fie
because all Gaussians have positive amplitude and there
only interfere constructively. Without boundary correction
the peak positions are known exactly. The double Gaus
representation is then advantageous because the do
Gaussians amplitude corresponds directly to the amplitud
the scalar field. It is easy to show that the double Gaussi
amplitude decreases by a factor approximately equal toa2

undera strain with subsequent diffusion step, and, similar
by a factor approximately equal tob2 underb strain with
diffusion. This modifies the evolution of amplitudes~40! to

An
( l )→H An

( l 11)5a2An
( l )

A2l1n
( l 11)

5b2An
( l ) .

~42!

Analytical solution. We now derive an analytical solutio
for the long-time decay factor by comparing the scalar fie
for subsequent iterations. We use a special initial condit
where the first double Gaussian’s center is atx0

(0)51. This
initial condition ensures that, after one iteration, half of t
Gaussians fall on positions previously occupied by Gau
ians. Although we use a special initial condition to derive t
decay factor, we expect our results for the Gaussian des
tion to be independent of this specific initial condition. Th
expectation is motivated by the fact that the final range de
of the incompressible and diffusive baker map is insensi
to initial conditions. Almost all initial conditions of the in
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compressible and diffusive baker map contain at least
infinitely small contribution of the slowest decaying eige
mode. This contribution dominates the decay in the long
and ensures that the long-time variance decay is identica
almost all initial conditions and thus insensitive to the sp
cific choice for the initial condition. Consider now one of th
2l Gaussians afterl iterations. It is characterized by its am
plitudeAn

l and centerxn
( l ) . From Eq.~42!, it follows that the

amplitude can be related to the binary notation of its indexn,
for example

n50 0 1 0 1 1••• 1,

An5a2 a2 b2 a2 b2 b2
••• b2. ~43!

Each 0 in the binary notation corresponds to a multiplic
tion with a2, and each 1 corresponds to ab2 multiplier. The
last multiplier to be applied is on the left-hand end of t
binary series. After one further iteration, we have 2l 11 Gaus-
sians in total. At the position of our previous Gaussian,
find a new Gaussian with amplitudeAnb2. The direct left-
hand neighbor of this Gaussian has an amplitudeAn a2. In
the final decay range, the distance between any neighbo
Gaussians is much smaller than the width of the Gaussi
We can therefore combine two Gaussians to one comb
Gaussian by adding their amplitudes. We then obtain
same scalar field when adding up the combined Gaussi
The combined Gaussian has an amplitude (a21b2)An , and
we may locate it at the positionxn of the previous Gaussian
Carrying out this procedure for all the neighboring pairs
Gaussians, we find a set of Gaussians very similar to the
of Gaussians afterl iterations, the only difference being tha
all amplitudes are reduced by a factora21b2. The field in
the final decay range is hence in an eigenstate with an ei
value

l5a21b2. ~44!

This prediction for the decay factor in Gaussian descript
without boundary corrections can be verified by a compa
son with the numerical simulations. Figure 13 shows o
example of the numerical evolution which indeed match
the prediction.

Discussion. Comparing the decay factors of the standa
incompressible and diffusive baker map with our soluti
~44! for Gaussian description without boundary correctio
see Fig. 7, we find a remarkable difference between b
decay factors. This difference must be due to the differ
boundary corrections, because both maps are otherwise i
tical. As pointed out above, by modifying boundary cond
tions one can modify the quantitative effect of the large-sc
nonuniformities of the map. In an incompressible on
dimensional map, boundaries are in fact the only place wh
the nonuniformities of the map can be introduced becaus
is here that regions with different uniform straining prope
ties join. In conclusion, our investigation has revealed t
the large-scale nonuniformities rather than small-scale str
ing properties determine the variance decay of a chaotic fl
when the AFOG96 mechanism is not relevant. Also,
large-scale nonuniformities are responsible for the influe
5-15
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of the boundary conditions on the rate of scalar varia
decay and therefore for the nonuniversal value of this ra

VI. CONCLUSION

We have studied the decay of scalar variance under
incompressible and diffusive baker map as an example
mixing in chaotic flows and maps. We have shown that
variance decay during the initial transient, i.e., the range
times when most of the variance decays, can be well
scribed by a general relation (*) between the scalar varia
decay and the particle pair separations. Using the star e
tion, we have even obtained an analytical approximation
the variance decay in this range of times. We have a
shown that the general relation (*) explains both spiral m
ing in a vortex and early time chaotic mixing as two differe
manifestations of the same general process.

Despite its success during the initial transient, in the fi
range of variance decay the star equation fails to describe
decay, at least in our model. Previously, AFOG96 used
successfully to explain exponential scalar variance decay
different chaotic flow. However, for the incompressible a
diffusive baker map, the star equation predicts superex
nential variance decay rather than the observed expone
variance decay. Therefore we have identified a mechanis
variance decay based on dispersion/remnance, i.e., the
that at each iteration of the map a certain amount of varia
from a mode with wave numbern remains at the same o
smaller wave numbers. Studying two examples, we h
confirmed that without dispersion/remnance, the incompre
ible and diffusive baker map has indeed superexponen
variance decay as predicted by the star equation.
dispersion/remnance controlled variance decay also exp
why the decay becomes independent of small enough d
sivity. Generally, our mechanism and the mechanism
AFOG96 coexist. The mechanism that leads to the slo
decay ultimately determines the variance decay in a gi
chaotic flow.

Dispersion itself is caused by the large-scale nonunifor
ties of the flow. Introducing the Gaussian description of
incompressible and diffusive baker map, we can change
boundary conditions and thereby the effect of the large-s
nonuniformities of the map. Hence by changing the bou
ary conditions we obtain different variance decay factors
the same straining properties of the map. The rate of varia
decay is therefore nonuniversal.

APPENDIX: EVOLUTION OF A GAUSSIAN UNDER
STRAIN AND DIFFUSION

In this appendix, we study the evolution of Gaussia
under strain and diffusion and derive the parameter evolu
in Gaussian description~37! and ~38!.

A well-known solution of the one-dimensional diffusio
equation~12! is a Gaussian with width increasing propo
tional to Akt:

Q~x,t !5
M

A4pkt
expS 2

x2

4kt D . ~A1!
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The Gaussian’s mean*dx Q is in this notation given by its
amplitude parameterM. In the following, we use this solu
tion to describe the evolution of any Gaussian,

gs,A~x!5A expS 2
x2

4s2D , ~A2!

with amplitudeA and widths under the combined effect o
strain and diffusion.

Let us first consider the effect of a straina. The strain
transforms the space coordinate according tox→x/a, the
amplitude is not affected by the straining process. The Ga
sian’s evolution, expressed in parametersA and s, is then
given by

A→A, ~A3!

s→as. ~A4!

Assume now that the Gaussian is subject to diffusion fo
time T. We can easily calculate the Gaussian’s width a
amplitude after the diffusion process by writing it in terms
the solution~A1! of the diffusion equation. If the paramete
of the solution are chosen as

M5A4psA, ~A5!

t5
s2

k
, ~A6!

the solution has amplitudeA and width s. The Gaussian
after the diffusion process is then simply obtained by cal
lating the solution fort1T,

Q~x,t1T!5
A4psA

A4pkS s2

k
1TD

expF 2
x2

4kS s2

k
1TD G .

~A7!

Comparing Eq.~A7! with the initial Gaussian, the diffusion
process, expressed in parameters, reads

A→ s

As21kT
A, ~A8!

s→As21kT. ~A9!

Combining the straining process~A5!, ~A6! with the diffu-
sion process~A8!, ~A9! yields the evolution of the Gaussian
in the Gaussian description~37! and ~38!.
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