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Abstract

The mixing and reaction properties of advected chemicals are determined
by the fractal dimension (or Kolmogorov capacity) D' of a cut through the
interface between the chemicals. We show that the amount m of reacted

chemicals scales like
m(0) —m(x) o V&',
where k is diffusivity of the chemicals. If interscale transfer produced by

the advecting flow has a linear time dependence, then the reaction rate of

chemicals scales like

0 1-3D’
57 [m(0) —m(t)] o« Vit

with time ¢. Both relations are valid in a range of times and diffusivities
where the diffusive length scales of the chemicals are within the range of
scales where the interface between the chemicals has a well-defined fractal

dimension. We apply both relations to the problem of chlorine deactivation,



ClO + NO; — CIONO;, over the mid-northern latitudes. We determine
numerically the Kolmogorov capacity of the interface between polar air which
is comparatively rich in ClO and mid-latitude air which is comparatively
rich in NO;. Additionally, we show empirically that interscale transfer by
the advecting flow can be well interpreted as having predominantly linear
interscale transfer in the range of times under consideration. We can therefore
explain diffusivity and time dependencies previously observed in numerical
simulations. Furthermore we can extrapolate the results of such simulations

down to realistically low diffusivities.

1 Introduction

Many geophysical processes in the ocean and atmosphere involve large scale advec-
tion of scalar fields. For example global circulation models are used to investigate
such processes. Modelling and simulating these processes continues to be a chal-
lenge. One major difficulty is to resolve fine enough scales in order to describe the
effects of small effective scalar diffusivities. Sufficient resolution is not only crucial
for the understanding of mixing processes but also for the modelling of reactions
between advected chemicals.

An example of such a process is chlorine deactivation over the mid-northern lat-
itudes [20]. In a cold arctic winter, polar stratospheric clouds may form. On these
clouds, heterogeneous reactions produce chlorine monoxide radicals, see [30, 11] or
[15] for an overview. The chlorine activated air may subsequently get transported
to the mid-northern latitudes [18] where it can catalytically deplete ozone under
the influence of light. This then results in increased UV radiation over the densely
populated mid-northern latitudes [31]. However chlorine may also become deacti-
vated before it can destroy ozone. One deactivation mechanism involves the reaction

between polar air, which is rich in chlorine monoxide, and mid-latitude air, which



is relatively rich in nitrogen oxides [22, 4]. It was observed in sonde [19] and air-
craft [25] data that the chlorine activated air has a fine filamental structure. This
filamental structure has to be resolved in order to model the deactivation process
[5, 10]. However state of the art simulations cannot currently resolve such small
scale structures [20, 5]. In this paper, we seek to understand how small scale scalar
geometry determines the mixing and reaction process of a scalar field in order to
parametrise subgrid scalar mixing and reaction.

It was shown that the geometrical properties of a scalar field determine the time
and diffusivity dependence of the mixing process, at least for some special initial
conditions and particular flows in a well defined range of scales and times. Examples
for this relation are a fractal scalar field without advection [26, 1], a patch of scalar
subject to advection by a fixed vortex [8] and a patch of scalar subject to advection
by an oscillating vortex [32]. In all three cases, the scalar field interface is either
fractal or spiral and its Kolmogorov capacity (or fractal dimension) [28] determines
the mixing process.

In this work, we present a generalisation of these results to a much wider class
of flows which allows us to explain the numerical simulation results of Tan et al.
[20] concerning chlorine deactivation and ozone depletion over the mid-northern
latitudes. The limitations of the present work are the same as those of the numerical
simulations of Tan et al.: initial conditions are defined in terms of sharp interfaces
between different chemicals, and the chemical reactions are fast and binary. Of
course, we should expect general initial conditions and chemical reactions to be
more involved than those considered here. However, the theory that we develop
does explain the results of Tan et al. and should therefore serve as a springboard
for the development of more comprehensive approaches in the future. The central
assumption of our theory is that the flow’s action results in the interface developing

a multi-scale geometrical structure with a scaling well approximated by a non-



trivial Kolmogorov capacity. As well as explaining the results of Tan et al. [20], our
approach provides a characterization of the stratospheric winds used by Tan et al.
in terms of Kolmogorov capacities and interscale transfer properties which might
be useful for future modelling of stratospheric mixing and reaction.

In section 2.1, we explain how to solve a reaction equation in terms of the so-
lution of the equivalent non-reactive mixing problem when the chemical reaction is
sufficiently fast. Then, in section 2.2, we show that if the advected scalar field has
a well-defined interfacial structure with a well- defined Kolmogorov capacity, the
Kolmogorov capacity determines the diffusivity scaling of the mixing process. In
section 3, we study the time dependence of mixing processes. If, additionally to the
Kolmogorov capacity, the interscale transfer of the flow is known to be linear or ex-
ponential, the time dependence of the mixing process can be calculated. Finally, in
section 4, we apply our theory to explaining the results of the numerical experiments

of Tan et al. [20] on chlorine deactivation over the mid-northern latitudes.

2 Diftusivity dependence of mixing and reaction

processes

In this section we investigate the diffusivity x dependence of the advection-diffusion-
reaction (ADR) process of chemicals. In the specific application that we consider in
section 4 this diffusivity is an effective diffusivity caused by the dynamics of horizon-
tal advection and vertical shear (see [9]). We show that under certain circumstances,

all moments m of the chemical fields fulfil
m(0) — m(k) o \/EI_D’ } (1)

The most important of these assumptions is that the chemical field should be char-
acterised by well-defined interfaces such that cuts through them have a well-defined

Kolmogorov capacity D’'. Both fractal and spiral interfaces can have well-defined



non-trivial values of their Kolmogorov capacity. In practice, the interfaces may have
a well-defined Kolmogorov capacity only in a range of scales €,,,in, < € K €mqz, S€€
for example figure 1. Then the power law range of (1) is restricted to diffusivities
whose corresponding diffusive length scale 7 is within this range. For example, the
corresponding long-time diffusive length scale for a scalar field in a shear flow is
given by = v/kt, whereas for a scalar field in a strain flow with strain rate o it
is 7 = Vko~1 (see section 2.2). The other assumptions used to obtain (1) are the

following;:
1. The advected chemicals are statistically isotropic and homogeneous

2. The chemicals are initially on/off scalar fields, i.e. in any small region, the
chemical concentration is either approximately constant (on) or effectively

zero (off).

3. The chemicals’ diffusivities are sufficiently small, i.e. in the range of times
under consideration, the chemicals’ diffusive length-scale 7 is small in com-

parison with the overall length scale L of the problem.
4. The diffusivities of all chemicals are equal.

5. The chemicals’ reactions are so fast that they are limited by the advection-

diffusion process rather than by the speed of their reaction

Relation (1) is not only valid for ADR processes but also holds for advection-
diffusion (AD) processes provided the moment m is replaced with the second mo-
ment of the scalar field ©, i.e. the variance E = [ dz ©?. In both, the ADR and AD
cases, it is the interfacial Kolmogorov capacity which is identified as determining
the diffusivity scaling. This observation proves crucial in explaining the diffusivity
scalings found by Tan et al. in their numerical experiments on chlorine deactivation

in the stratosphere. Numerical experiments with more complicated chemistry and



initial spatial distributions of chemicals would require extensions of the present ap-
proach to incorporate more detailed chemistry and various multifractal properties
including concentration level dependent fractal dimensions (Kolmogorov capacities).
Finally, it should be pointed out that a similar relation was effectively derived in
[21] but in terms of a different fractal dimension defined in the context of chaotic
advection in open flows.

Relation (1) is derived in sections 2.1 and 2.2. In section 2.1, we reduce the
non-linear ADR problem to a linear AD problem. In section 2.2, we solve the
AD problem by analysing the geometry of a purely advected interface and then
quantifying the effect of diffusion on this interface. Assumption 1 is used in section

2.2.

2.1 Spatio-temporal chemical reactions

Overview. In this subsection we introduce the non-linear ADR system. With as-
sumption 4, the problem decouples. Assumption 5 then gives the solution of the full
non-linear problem in terms of a corresponding linear problem. Finally, assump-
tions 2 and 3 relate the variance of the linear solution to any moment of the full
solution.

The system of reaction equations. We study one of the simplest chemical reac-
tions, the binary reaction,

A+B->C. (2)

It is nevertheless not difficult to generalise the following results to more complicated
reactions and systems of reactions. The reaction kinetics for well mixed chemicals

which react according to (2), is described by

0 Ay = — 1A®) - BN, ®
2 B =~ [A0) - B ()
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where A(t), B(t) and C(t) are the time ¢t-dependent, non-negative chemical concen-
trations, +y is the reaction constant and « the order of the reaction kinetics. Allowing
the chemicals to be spatially advected and diffused, the fields A(x,t), B(x,t) and

C(x,t) obey the following system of ADR equations

0

S A+ (VV)A =ka ViA—-y[A-B]*, (6)
%B+(VV)B =kgV?’B—vy[A-B]*, (7)
%c +(vV)C =k V2C ++ [A-B]*, (8)

where v(x,t) is the advection velocity and k4, kp and k¢ diffusion constants of
the fields A,B and C respectively.

Decoupling of the reaction equations. We consider the case wherethe diffusivities
are equal for all chemicals, i.e. k4 = kB = k¢ = kK, see assumption 4. This is a
realistic assumption in the case where the diffusivity is an effective diffusivity due
to a fluid dynamical mixing process [9, 20]. Then the system of coupled nonlinear
partial differential equations can be partially decoupled by solving for the difference
of the fields

f(xa t) = A(X, t) - B(Xa t) . (9)
The field f is the solution of a linear AD equation
9 2
— + (VW) —kV?| f=0. (10)
ot
With field f, the decoupled equation for field A reads
0 2 @
a%—(vV)—nV A=—v[AA-N]". (11)

The equations for the other fields follow analogously. fields.
Relation between the solutions for f and for the chemical fields. Now we use

assumption 5 that chemical reactions are extremely fast. The speed of the chemical



reactions is therefore limited by the diffusion of the concentration fields. We refer

N

to this case as mixing-limited chemical reactions. It takes the time ¢4 =~ "7 for a

scalar to diffuse over a length scale 7.. In comparison, the chemical reaction occurs
2a—1

. -1 . . .
on a time scale ¢, = (fy g ) , where ¢y is the concentration of the chemicals.

Both time scales are approximately equal, i.e. t; = t., for a length scale

K
=, /—. 12
Ne ’)’C%a_l ( )

If the typical scale i of the chemical filament structures is much larger than 7.,
the diffusive process is much slower than the reactive process and the reaction is
mixing-limited. Assume in the following a mixing-limited reaction, i.e. the reaction
term in (11) is much larger than the diffusion term. The solution of (11) is then in

good approximation given by
A(x,t) = f(x,t) H[f(x,)] , (13)

where H is the Heaviside function which is 1 for positive arguments and vanishes
for all other arguments. This solution makes the non-linear reactive right hand side
of (11) vanish exactly and also satisfies the left hand side of (11), except around a
thin region where f = 0. However this region gets thinner with increasing
Furthermore, the solution is stable. If a field is slightly different from solution (13),
a large reaction constant will bring it almost immediately to (13). Note that (13)
assumes that initial conditions A(x,0) and B(x,0) are not simultaneously positive
at any point x. This is a reasonable assumption because if there were regions where
A and B are both initially non-zero, then the chemicals in these regions would
immediately react until one of the chemicals has vanished.

Properties of f and the chemical fields. We assume that the chemical fields are
initially on/off, see assumption 2. With definition (9) of f follows that f has a
trinary structure, i.e. its initial values are either +fy, 0 or —fy. The value +fy

corresponds to a region where we find chemical A and similarly, the value — fy



corresponds to a region where we find chemical B. During the AD process, f
maintains its trinary structure as long as assumption 3 is fulfilled, i.e. as long as
the diffusive length scale 7 is small in comparison with the overall length scale L.
Here it is assumed that the “on” amount of field A reacts completely with the “on”
amount of field B. If this assumption was not fulfilled, an appropriate background
field would have had to be added to f. From f’s trinary structure and (13) it then
follows that the chemical fields keep their on/off structure for as long as 7 remains
much smaller than L.

Relation between the variance of f and the chemical field moments. The overall
reaction of the chemicals may be measured by the chemicals total amounts or masses

m, which is their first order moment, e.g.

ma = /dx A(x) . (14)

From the trinary structure of field f follows that the variance, or second moment,

E = [dz f? of f can be related to the masses m:
E=fo-(ma+mg). (15)
The reaction equation (2) gives
ma —mp = const . (16)

This allows us to express the mass m of chemical field A in terms of the variance
E of field f,
E

mq = — + const. (17)
fo

Equivalent relations hold for all other moments of A because an arbitrary power n

of the on/off field A is given by A™ = fJ'"' A and therefore all moments are related

%/dmf:f—lél/d:cf". (18)

The moments of chemicals B and C follow analogously.



2.2 Diffusive properties of on/off fields

Overview. In this subsection we study the relation between geometry and the
spectral properties of a field characterized by well-defined interfacial structure which
is statistically homogeneous and isotropic, see assumption 1. Knowing the spectrum
of such a field, we can predict its diffusivity dependence.

Geometry of interface and its relation to the spectrum. If the interface of an
on/off field is isotropic, homogeneous and has a well-defined Kolmogorov capacity,
the spectrum of the field is a power law I' x k~P [28]. The power law exponent p is

then given by the Kolmogorov capacity D' of a cut through the interface
D'+p=2. (19)

The Kolmogorov capacity D’ is defined by the exponent —D' of the box-counting
function, which gives the number of boxes of size € needed to cover the cut. It is
often more convenient to measure the Kolmogorov capacity D of the whole interface
than the Kolmogorov capacity D' of a cut through the interface. For many fractals,
among them fractals with Hausdorff dimension equal to their Kolmogorov capacity,

the relation between the D’ and D reads (see [6], p. 93 and references therein)
D-d=D', (20)

where d is the Euclidan dimension of the interface. Note that in realistic cases, the
interface has a well-defined Kolmogorov capacity only in a range of scales €,,;, <
€ K €maqg, see figure 1. Then the power law spectrum is restricted to a range of
wavenumbers from 27— to 2. This means we can only apply the following theory

for diffusivities whose diffusive length scale 7 is inside the range €,,in K 1 < €maz-

Spectrum and diffusive properties. Diffusion smoothes out spatial structures

which are much smaller than a diffusive length scale 7, or equivalently, which have

10
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Figure 1: Schematic plot of the number N of boxes with size € needed to cover an
interface advected by a two-dimensional flow. Power law behaviour can be observed
in a range of scales [€min, Emaz)- Length scales outside this range do not show power
law behaviour, indicated by the dotted line. The Kolmogorov capacity D is well-

defined where the box-counting function has a well-defined power law.

wavenumbers larger than a diffusive cut-off

2
kqg=—. 21
= (21)

However diffusion does not affect spatial structures which are much larger than the
diffusive length scale. The diffusive length scale 7 depends on the type of flow, time
t and diffusivity k. For shear flows, the long-time diffusive length scale is simply

the classical diffusive length scale!
n=vVkt. (22)

In straining flows, the diffusive length scale becomes a constant in the long time
limit

n=vVko 1, (23)

Tn a shear flow we find two diffusive length scales: v/t perpendicular to the direction of shear

and VK3 along the direction of shear [2]. In the long time limit, the smallest structures therefore

correspond to the direction perpendicular to the shear

11



with o being the strain rate. Note that in both of these cases, as well as in most non-
turbulent flows, the diffusive length scale has the same dependence on diffusivity,
i.e. § o v/k. Hence the diffusive cut-off scales like kg oc x /2. Noting that the
spectrum I is the variance per wavenumber k, the dependence of the scalar variance

FE on the diffusive cut-off k4 is given by

E0) — E(ky) = koo dk T(k) . (24)

Here we have assumed a sharp diffusive cut-off, which is a good approximation as
long as most of the variance has not yet diffused. Using I'(k) o k™7 with (19) in

(24), we obtain the diffusivity dependence of the variance:
E©) - E(r) < V&' 7. (25)

This result as well as the following eq. (27) have already been obtained with less
generality but higher rigour in the special cases considered in references [1, 2, 8, 26,
32].

Application. This result can now be used to predict diffusive properties of the
field f, see definition (9). Assuming we know the purely advective evolution of
the on-off chemical fields, we can calculate the Kolmogorov capacity D' of their
interface. Then we establish the scaling of the variance of f with (25). Using (25)
along with (17) and (18) we obtain relation (1) for the moments of the chemical
fields A and B. From the reaction equation (2) follows m4(t) + mc(t) = const.
and hence the diffusivity dependence for the production of chemical C' can also be
deduced from (1):

mo (k) = me(0) o v (26)
Note that we assume that the initial conditions are such that chemicals A and B
neighbour each other directly. i.e. there is no gap between the fields A and B. If
there was an initial gap, the results would only be applicable for diffusivities and

corresponding diffusive length scales larger than the distance separating the regions

12



containing reactive chemicals. The theory in this section can be applied to the

numerical experiments of Tan et al. [20] and we do so in section 4.

3 Time dependent mixing

We now predict the time-dependent mixing of a scalar field from its geometry be-
cause Tan et al. [20] calculated time dependencies as well as dependencies on
diffusivities. If the interface of the field has a well-defined Kolmogorov capacity

0 < D' <1, i.e. its spectrum is a power law, we find for the rate of variance decay
0 1-3D'
57 LE(0) — E(t)] o Vit : (27)

This result is valid if the flow reduces the size of advected scalar structures linearly
with time, as is for example the case for shear flows. The result (27) is valid even if
the Kolmogorov capacity D' changes with time as long as criterion (37) is fulfilled.
However if a flow reduces the size of advected scalar structures exponentially with
time, as is for example the case for straining flows, the rate of variance decay is
given by

0

5; [BO0) = E(t)] cexp[(1 - D)o ], (28)

where o is the average strain rate. The proportionality constants for both results
are chosen such that the reaction rate becomes a continuous function. Both results
are valid as long as the diffusive cut-off k4 is well within the scaling range of the
spectrum. The results can readily be applied to the ADR process of chemicals by
substituting the variance E with the mass m of chemicals, as described in section
2.

In section 3.1 linear as well as exponential interscale transfer are defined and
ways to determine the interscale transfer of a given flow, including examples, are
discussed. The derivation of result (27) for linear interscale transfer starts in section

3.2 with a description of the time-dependence of the spectrum of a fractal scalar field

13



undergoing linear interscale transfer. The diffusion of such a field is then calculated
in cut-off diffusion approximation. Finally, if the Kolmogorov capacity varies with
time, a criterion (37) is given which indicates distributions of interscale transfer
rates for which (27) is applicable. The result (28) for exponential interscale transfer
is given in section 3.3. Firstly, the time dependent spectrum is derived and the rate
of mixing calculated. Then we discuss the case where the flow has a distribution of

different exponential interscale transfer rates.

3.1 Linear and exponential interscale transfer

Definition of interscale transfer. Every scalar field can be decomposed into a su-
perposition of waves, where each wave is characterised by its wavenumber k. The
flow action generally changes the wavenumbers with time. Two distinct time de-
pendences can be observed. First, an average linear growth in time after an initial
period, i.e. t > 1,

k(t) = k(0) st . (29)

We refer to this behaviour as linear interscale transfer. The linear interscale transfer
rate is characterised by the parameter s. Second, an average exponential growth in

time, referred to as exponential interscale transfer, is defined by

k(t) o k(0) exp(ot) (30)

with exponential interscale transfer rate o > 0.

Measuring interscale transfer. In most cases, it is convenient to determine the
interscale transfer of a flow by measuring how the distances between pairs of tracer
particles grow. Many of these pairs may separate on average either linearly or
exponentially with time. The growth of separation can be directly related to the
interscale transfer. Identifying point pairs as belonging to the same trough or crest

of a wave, we find that neighbouring troughs or crests have to reduce their distance,

14



i.e. increase their wavenumber, to ensure the incompressibility of the flow. Instead
of measuring point separations it is also possible to analyse the flow field derivatives.

Calculating the Jacobian
J = =: (31)

of the 2-dimensional flow v, we find that, locally, the flow is either a strain flow,
i.e. it has two real eigenvalues, if —det J = a2 + bc > 0; a shear flow, i.e. it has one
real eigenvalue, if a® + bc = 0; or a rotational flow, i.e. it has no real eigenvalue, if
a® + be < 0 (see for example [14]). Note that if velocity fields are given on discrete
points, it may be too inaccurate to calculate the velocity field derivatives. In this

case the method based on particle separations may be giving more reliable results.

3.2 Linear interscale transfer and mixing

Mizing by linear interscale transfer. In this subsection we consider flows with linear

interscale transfer (29) and an initial power law spectrum
L(k)=To(Lk) ™" . (32)

Our aim is to calculate how much variance AFE is lost by diffusion in each time
interval At. We estimate AFE in the cut-off diffusion approximation, see section
2.2. The diffusive cut-off of a flow with linear interscale transfer is equivalent to the
cut-off in a shear flow (22), i.e. kg = % To estimate AE, we have to determine
the flux of scalar variance through the diffusive cut-off k; in time At¢. Instead of
calculating the temporal change of spectrum (32) due to interscale transfer [8], it
is more convenient, in particular when describing flows with exponential interscale
transfer later, to introduce an effective cut-off k. which represents the cut-off acting
on the time-independent initial spectrum. The effective cut-off k.. has two contri-

butions. First, the movement of the cut-off towards smaller wave numbers due to
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1/2

diffusion, i.e. kg o< t~'/# and second, the interscale transfer of variance to larger

wavenumbers, i.e. k(t) = k st. Both contributions result in
k _
Koer o€ s—‘i xt73/2 . (33)

The change of variance AE due to diffusion is then simply

O kege

AE = F(keff) . W

At (34)

Note that k.. depends on the interscale transfer rate s. Generally, different regions
of the flow may have different interscale transfer rates s. Hence we introduce a
probability distribution function of interscale transfer rates P(s), resulting in a

change of variance

[ 2=\ P
AE:—FO/ds P(s) ( S‘T) -sz%t—f’/z-m. (35)

Expressing the spectral exponent with the Kolmogorov capacity, see (19), the time-
scaling of the variance decay (27) follows in the limit At — 0.

Role of changing dimensions. In some flows, in particular the one studied in sec-
tion 4, the Kolmogorov capacity, and therefore the exponent of the scalar spectrum,
may change with time. A flow with pure linear interscale transfer has a constant
Kolmogorov capacity. However in some flows, linear interscale transfer may account
for most of the scalar interscale transfer but a few flow regions may have a different
interscale transfer and cause a time dependent spectral slope p(t). In this case, the

change in scalar variance (35) has an additional time dependent term

glp(t)] = / ds P(s) s?01 | (36)

This term depends on the distribution of interscale transfer rates and the variation
of the spectral slope. Generally, the broader the distribution of transfer rates, the
larger the influence of this term. However as long as the relative influence of this

term is small, result (27) is also valid for time dependent Kolmogorov capacities.
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The influence of this term can be estimated with the minimal p,,;, and maximal

Pmaz values of p(t). The term is negligible if its relative variation is small, i.e.

|g(pmz'n) - g(pmaz)|
min[g(pmaz)a g(pmzn)]

<1. (37)

3.3 Exponential interscale transfer and mixing

Mizing by exponential interscale transfer. In this section we assume a flow with
exponential interscale transfer, again advecting a scalar field with initial power
law scalar spectrum (32). Following the arguments in the previous section 3.2,
we calculate the change of scalar variance AE per time interval At in the cut-off
diffusion approximation. In the case of exponential interscale transfer, there is only
one time-dependent contribution to the effective cut-off k., because the diffusive
cut-off becomes time-independent kg = 2m,/Z, see (23). Therefore the only time-

dependent contribution to k. is the interscale transfer term (30), i.e.
ke = kg exp(—0o't) . (38)

The change of variance AE is then obtained with (34),

-p
2r L /<
AE = -Ty (Lﬁ) 210 \/% exp(—ot)-At, (39)

exp(o t)

which gives (28). In contrast to the case with linear interscale transfer, the expo-
nential interscale transfer causes a much faster rate of decay. Obviously result (28)
is only valid for times when a significant part of the spectrum has not yet decayed.
If the interscale transfer has transported most of the spectrum to wavenumbers
beyond the diffusive cut-off, a different mechanism of decay sets in [7, 33].

Distribution of interscale transfer rates. For many flows, different flow regions
may have different rates of interscale transfer. We can generalise our result in these
cases by introducing the distribution of exponential interscale transfer rates P(o),

which is equivalent to the introduction of the distribution of linear interscale transfer
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rates in section 3.2. Then we find for the rate of variance decay

% [B(0) — B(t)] / do P(o) exp (1= D')o4] . (40)

Depending on the distribution of interscale transfer rates, the rate of variance decay
is a superposition of exponentials with different rates of decay. In contrast to the
case with linear interscale transfer, no simpler dependence on time for the rate of
variance decay can be derived. In the linear case we were able to generalise the

result because the interscale transfer rates appeared as factors.

4 Chlorine deactivation in the mid-northern lati-

tudes

4.1 Diffusivity dependence of chlorine deactivation

Previous results. The theory developed in sections 2 and 3 can now be used to
explain the deactivation of chlorine in mid-northern latitudes, i.e. 30°N to 60°N, in
the numerical experiments of Tan et al.[20] . Tan et al. have studied a deactivation
process [22, 4] where ClO mixes with mid-northern latitude air, which is rich in

nitrogen oxides NO,, and therefore deactivates? to chlorine nitrate
ClO+ NOy; = CIONO,. (41)

They observed, in situations where the diffusivities are as close as possible to the
realistic diffusivities, that the produced amount of chlorine nitrate has a power law

dependence on the effective diffusivity of the chemicals:

MclIONO, (KJ) X K,ﬂ . (42)

2When the CIO gets bound in CIONO; it cannot deplete ozone anymore. However if the
CIONO3 gets broken up again by some mechanism and sets free chlorine radicals, it can indirectly

cause ozone depletion.
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Day 3 Range of diffusivities & in m2s~!

3 0.60 2.88 x 10%...6.68 x 107
70.45 2.88 x 10%...4.12 x 108

11 0.30 2.88 x 10%...4.12 x 10°

Table 1: Exponent 3 of the dependence of CIONQO; production (42) on the dif-
fusivity x for different days. Each exponent was measured in the given range of

diffusivities. Values are taken from Tan et al. [20].

They used an initial condition called Axisymm—090192, where the CIO rich air is
north of 60°N and the NO5 rich air is south of 55°N. For scalar advection on the
475 K isentrope, which is approximately at 20 km altitude, Tan et al. started their
simulation on 9 January 1992 and observed after 3, 7 and 11 days the exponents
as given in table 1, see their figure 7.

Limitations of direct simulations. The numerical simulation of the ADR process
by Tan et al. employed effective diffusivities which were only as low as k = 2.88 x 10*

m2s~!, whereas realistic effective diffusivities are somewhere between 6 x 10° m2s~

1
and 1.25 x 10* m2s~! with s = 10®> m?s~! being a more credible upper limit [20, 29].
The lower the diffusivity, the finer the structures that have to be resolved. However
it is currently computationally extremely expensive to resolve the length scales of
a few kilometers which would be required to simulate realistically low diffusivities.
State of the art simulations can only resolve structures of a few hundred kilometers
[20, 5]. Nevertheless, this deactivation process depends crucially on resolving the
fine scale structures [5, 10]. The simulation by Tan et al. gives therefore only an
upper bound to the production of chlorine nitrate. The approach presented here
firstly confirms and explains the power law observed by Tan et al. in terms of the

Kolmogorov capacity of the chemicals and, secondly, extends its validity to realistic

values of the diffusivity.
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Applicability of our theory. The ClO deactivation reaction (41) is a binary
reaction like (2). For the relation (26) between the production of chemical C, in
this case chlorine nitrate, and the geometry of the advected field to be valid, we
have to verify that all chemicals have the same diffusivities, that all concentration
fields are initially on/off fields and that the reaction is mixing limited. Analysing
the model of Tan et al. [20], we find that all these conditions are fulfilled. The
diffusivity of chemicals in an isentropic layer of the stratosphere is identical for
all different chemical species because it is an effective diffusivity caused by the
dynamics of horizontal advection and vertical shear [9]. The fields’ initial condition
has on/off character. Finally, the chemical reactions are mixing limited. The width
of filaments for diffusivities as low as k = 10®> m?s~! is = 20 x 10® m [20]. This
length-scale is an order of magnitude larger than the scale 7. = 10 m, which
follows with ¢y = 10° cm 3molec and v = 1012 ¢cm3molec 1s! from (12). Hence
reactions are mixing limited because 7 >> 7.

Simulation. To predict the diffusivity scaling of the total mass (26), the Kol-
mogorov capacity of the advected scalar interface has to be calculated. We carry
out a two-dimensional contour advection simulation which is a good approximation
of the atmospheric processes because of the stable stratification of the stratosphere.
The scalar interface is represented by a point set which preserves the continuity of
the filament. The advection algorithm increases the number of points representing
the interface to compensate for the interface stretching. The advection of each in-
terface point uses a second order accurate Runge-Kutta integration. The interface
is advected by divergence free winds from the European Centre for Medium-Range
Weather Forecasts which were interpolated to the 475 K isentrope. The dataset
starts on 9 January 1992 and ends on 24 January 1992 (we have also used another
dataset for some checks which starts on 1 January 1995 and ends on 16 January

1995). The winds are defined on a grid with longitudinal and latitudinal resolu-
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tion of about 4°. The temporal resolution is 6 hours. Between grid points and
time slices, the winds are interpolated linearly. The temporal and spatial resolution
of the wind-field suggests that interfaces of filaments as small as 70 km are cor-
rectly positioned [12]. The relative positioning of interfaces is presumably even less
sensitive to the resolution of the wind-field. Therefore we expect the Kolmogorov
capacities derived from advection by this large-scale wind-field to be accurate.

Results of advection process. Our initial interface lies at 60°N, see figure 2 day 0,
corresponding to CIO rich air north of 60°N and N O rich air south of this latitude.
We have chosen this particular initial condition because it is close to the Axisymm-
090192 initial condition of Tan et al. [20] and therefore allows us to compare our
results with theirs. Note that the small initial gap of 5° or 550 km between CI1O
and NQO, rich air in the simulation of Tan et al. is not important for the results
of our simulation. Consider firstly that this length scale decreases quickly during
the advection process and secondly that the diffusive length scale is in the order of
magnitude of 100 km. Figure 2 shows the advected interface at days 0, 3, 7, 11 and
15. We observe the production of more and more small scale curl and fold structures
with time. These structures give rise to a non-trivial Kolmogorov capacity.

Box counting analysis. We use a box-counting algorithm to determine the Kol-
mogorov capacity of the interface. Standard box-counting algorithms divide the
embedding space of the interface into equally sized boxes and count the number
of boxes needed to cover the interface. However it is impossible to cover a sphere
with equally sized squares. Therefore a special covering of the sphere had to be
employed. First, a spiral with equally spaced arms is constructed on the sphere. It
is only in a small region around the pole which has the size of the arm spacing where

the spacing is not well-defined. The spiral reads with longitude A and latitude ¢

A=z mod 27 ; (43)

T, (44)



day 00 P day 03

day 07 e day 11

day 15

Figure 2: Stereographic projections of an interface and 10% tracer particles on dif-
ferent days. The graphs are obtained by a two-dimensional contour advection sim-
ulation which is based on measured stratospheric winds on the 475 K isentrope.
The interface is given by a solid line, the tracer particles as points. Latitudes are
depicted by dotted lines in 10° intervals, with latitudes 30°N to 60°N indicated
by numerals 30 to 60. Initially, on 9 January 1992, the interface was aligned with
the ¢ = 60°N latitude. With time, more and more curl and fold structures are

produced which give rise to a non-trivial Kolmogorov capacity.
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where € is the distance between spiral arms, R the radius of the sphere and z the
parametrisation of the spiral. The length L of the spiral can be expressed in terms

of its parametrisation x:

Liz) = 2”€R2 [1-cos (5= )] - (45)

Second, boxes are defined by the spiral arms and orthogonal cuts of the spiral at
equal distances e. Then it is easy to number all boxes, beginning from the centre.

Calculating the parameter
R
2o = 27 INT [— (f - 90)] £ (46)
€ \2

corresponding to a point (A, ), the number n of its surrounding box is given by

n = INT [L($°)] .

. (47)
An algorithm based on spiral coverings of the sphere proved to be faster and less
memory intensive than a standard box-counting algorithm based on embedding the
sphere in a 3-dimensional space and applying the box-counting to this embedding
space. The box-counting analysis here is carried out over the interface in the mid-
northern latitudes 30°N to 60°N because we are interested in the reaction rates in
this region.

Results of box-counting. The results of the box-counting after each day of ad-
vection are given in figure 3. We observe that on all days, the box-counting curves
are not too far from linear, which implies that power law behaviour on intermediate
scales might well approximate the box-counting functions. The power law exponents
of the box-counting functions define the Kolmogorov capacities of the interface for
different days. It is known that ozone distributions in the atmosphere do indeed
show fractal properties, for example measured by Hurst exponents [23, 24].

Measurements of Kolmogorov capacities. In order to analyse the power law

behaviour of the box-counting N (e) in more detail, we have used an algorithm [27]
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10 107 107

Figure 3: Time-evolution of the interface box-counting function. The abscissa of
the logarithmic plot gives the length scale € as fraction of the earth’s radius. The
ordinate denotes the number of boxes N needed to cover the interface. The curves
are box-counting analyses carried out on all odd days 1,3,5,...,15. The lower a
curve, the shorter was the corresponding advection of the interface. All interfaces
can be reasonably well fit with a power law for intermediate scales. The power law
exponent increases with time. Power laws corresponding to Kolmogorov capacities

1 and 1.5 are depicted by dotted lines.
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that automatically detects the exponent and scaling range that best fits a given
N(e). The algorithm also provides a measure for the quality of the power law in
terms of the standard deviation of possible exponent distributions. The results of
this analysis are given in figure 4. These results suggest that, for the intents and
purposes of this application, Kolmogorov capacities can be assigned to the box-
counting functions in a range of scales from (on average) €min, = 4 X 1072 R, to
€maz = 1 x 107! R,, where R, = 6370 km is the earth’s radius. Both length scales
can be translated into diffusivities k using the minimal diffusive length scale Vo~
in a flow with average strain rate ¢, which can be measured to be ¢ = 0.25 d~! by
analysing the growth of the length of the advected interface [16], see figure 7. The
resulting diffusivities are k = 2x 103 m2s~! and k = 1 x10°m?2s~!. Both diffusivities
give respectively the lower and upper bound of the applicability of our theory and
specifically (26). The lower bound is a realistic value for effective diffusion in the
stratosphere. We also observe that on the first three days, the interface has a
Kolmogorov capacity D = 1, i.e. it is a line like object. However after day 3, the
Kolmogorov capacity increases about linearly with time to reach about D = 1.5
on day 15. For longer times, we expect that the Kolmogorov capacity eventually
becomes a constant, which may be 2, the value corresponding to a space-filling
interface. All in all, our box-counting analysis reveals that, on intermediate length
and time scales relevant to our problem, a first approximation scaling behaviour can
be observed. Using this first approximation results of our box-counting analysis and
relation (26), we are now in a position to predict how the reaction rate depends on
diffusivity k.

Comparison with previous results. For days 7 and 11, the days Tan et al. have
investigated, we find Kolmogorov capacities of D = 1.144+0.06 and D = 1.324+0.08,
respectively. With (26), the diffusivity dependence of CIONO2 production (42) is

given by f = 0.43 £ 0.03 and 8 = 0.34 &+ 0.04, respectively. This is in agreement
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Figure 4: Kolmogorov capacities of the advected interface on different days. The

Kolmogorov capacities are obtained with an algorithm [27] that automatically de-

tects the exponent and scaling range best fitting a given box-counting function. The

upper limit of the scaling range is €42 = 0.1R, and the lower limits €,,;, detected

by the algorithm are given at the upper left corner of the plot in units of 1 R,.

Error bars correspond to standard deviations of possible fit exponent distributions.

The dotted line denotes a linear interpolation of the growth of the dimension with

time between days 3 to 15. The Kolmogorov capacities together with 26) allow us

to predict how the reaction rate depends on the diffusivity.
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with the results by Tan et al. who found 8 = 0.45 and 8 = 0.30, respectively.
Note that our theory cannot be applied on day 3, which was also investigated
by Tan et al. Generally, our theory is restricted to days when the interface has
developed a non trivial Kolmogorov capacity. On day 3, the Kolmogorov capacity
is almost identical to its topological dimension. Furthermore the prediction breaks
down for diffusivities larger than 1 x 106 m2s~!, because for larger diffusivities,
the corresponding length scales are outside the scaling region of the box-counting
function. Hence in this region no well-defined power law for the spectrum exists.

Extension of previous results. Not only do our results agree with Tan et al.,
they also extend the power law for the reaction rates to realistic diffusivities, which
were previously not accessible to numerical simulations. Our results show that the
power laws extend to diffusivities as low as k = 2 x 10® m?s~!. Additionally it
is possible to predict power laws for even longer advection periods than previously
investigated. For example after 15 days, the interface has a Kolmogorov capacity of
D = 1.48 £ 0.05, which means we expect the total amount of CIONO; to depend
on the diffusivity & like 0-26%0-03,

Rates of ozone depletion. It is also possible to apply our results to the calculation
of the rate of ozone depletion. Assuming that ozone never depletes completely, the
Molina cycle [13] leads to the rate of ozone depletion being proportional to the square
of the ClO concentration. Because we consider effectively on/off fields, the square
of the ClO concentration is proportional to the CIO mass, see (18). Therefore the
rate of ozone depletion r = Ocp, /0t, where co, is the ozone concentration, obeys a
power law equivalent to (1): r(0) — r(k) \/EI_DI. This diffusivity dependence is
again valid for diffusivities K = 2 x 10® m?s~! to k = 1 x 106m?s~!. Figure 5 shows
the predicted rates of ozone depletion and compares them with results by Tan et
al. In contrast to the full simulation of an ADR process, the simple tracking of

the interface evolution and subsequent box-counting analysis is numerically much
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cheaper. The current numerical analysis takes less than one hour on a standard

workstation.

4.2 Time dependence of chlorine deactivation

Measurement of interscale transfer. In section 3 we have developed a method to
predict the chemical reaction rate dependence on time. In order to apply our results,
we have to establish the interscale transfer properties of the wind field. We measure
interscale transfer by tracking the separation of tracer particle pairs in the vicinity
of the interface. We observe for winds measured on the 475 K isentrope in two
periods (from 09/01/92 to 24/01/92 and 01/01/95 to 16/01/95) that particle pairs
separate linearly both on average and typically. This result does not seem to depend
critically on the initial positions of the particles within the polar and mid-latitude
regions. Figure 6a shows the linearly growing average separation between particle
pairs in the vicinity of the interface. Following individual pairs, we observe that
most pairs separate slowly; only a few pairs seem to separate much faster. In
order to investigate the behaviour of individual particle pairs in detail, we have

calculated linear and exponential fits to each particle pair separation. The quality

of each fit is assessed by calculating err = \/1/N Y .(s; — fi)2, where s; and f; are
respectively the separation and the fit to the separations at time step i =1,..., N.
The histogram in figure 6b shows the ratio of errors for the linear and the exponential
fits. We observe that 46% of all trajectories are better fitted by a linear rather than
by an exponential growth. For most of the remaining trajectories, the linear fit is
only slightly worse than the exponential fit, suggesting that the particle separation
is still well approximated by a linear function. The linear particle pair separation,
both on average and typically, can be explained by assuming that on the time scales
under consideration most of the flow behaves like a shear flow with the exception

of only a few isolated straining or chaotic regions which cause fast exponential
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Figure 5: Diffusivity s [m? s~!] dependence of the rate of ozone depletion r(k)
[ppbv/d] for selected days. The scaling of r(0) — (k) is calculated with (1) and
the fractal dimensions from figure 4. Diamonds represent results [20] which were
obtained by a numerical solution of (6) to (8). We observe that for increasing time,
the diffusivity dependence becomes shallower due to the increased dimension of
the chemicals’ interface. The multiplicative constant of the power law is chosen to
fit the results [20] for an initial CIO concentration of 2 ppbv and an initial NO,

concentration of 0.6 ppbv.
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separation. This picture of linear particle separation may seem to contradict the
exponential growth of the whole interface, see figure 7, and the common belief
that advection in the stratosphere has chaotic character [17, 3], i.e. exponential
particle pair separation. The exponential growth of the interface can in principle
be explained by the existence of only a few straining or chaotic regions in the flow.
The exponential growth in these regions is sufficient to inundate the linear growth of
most of the interface in the remaining regions. It would be useful to carry out a more
detailed study of particle pair separation in the stratosphere to confirm this view.
It is certainly not sufficient to measure finite time “Lyapunov exponents” by fitting
exponentials to the observed separation trajectories because using such a standard
algorithm, we observe distributions of finite time “Lyapunov exponents”, see figure
8, which are comparable to existing results [17] although we know, at least in our
case, that particle pairs may equally well be interpreted to be separating linearly
both on average and typically. Note however that on time scales longer than the
ones considered here, particle pairs may well separate exponentially. For example
if, for long enough times, the straining or chaotic regions visit all regions of the flow
and, furthermore, if particle pairs remain in these regions for a time sufficiently long
to align themselves with the main straining direction, the average long time particle
separation would be exponential.

In summary, here we take the view that particle pairs in the vicinity of the
interface separate linearly both on average and typically on the time scales relevant
to our problem. Therefore we assume that the flow has dominantly linear inter-
scale transfer and we show that the consequence of this assumption for the time
dependence of reaction rates agrees with other numerical observations.

Time dependent mixing properties. Having established that the stratospheric
wind field can be interpreted as having predominantly linear interscale transfer on

the time-scales under consideration, we can predict the rate of CIONQO; production
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Figure 6: a) Growth of two-particle separations in radians for advection by a strato-
spheric wind field. Solid line: average growth of the separation between 500 tracer
particle pairs; Dotted/dashed lines: Growth of the separation of selected tracer
particle pairs. We observe that most particle pairs seem to separate linearly both
on average (solid line) and typically (dotted lines). Only a few particle pairs sepa-
rate suddenly exponentially (dashed lines). b) Histogram of the ratio of the error
of a linear fit err;;, to the particle separation and the error of an exponential fit
erT;p t0 the particle separation. The separation of 46% of particle pairs is better
described by a linear fit than by an exponential fit. The separation behaviour of
most remaining particle pairs is still well approximated by a linear fit. Initially, the
tracer pairs for both figures were in a narrow band around the initial interface, i.e.
between latitudes 58°N and 62°N. The initial separation between two particles of

a pair was 2°.
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Figure 7: Growth of total length L of an interface in a stratospheric wind field.
The overall interface grows exponentially, the dotted line is a fit to an exponential,
although the majority of points only separate linearly with time, cf. figure 6. The
interface length is given in multiples of the earth’s radius Rg = 6370 km. See figure

2 for details of the advection process.

Figure 8: Histogram of finite time “Lyapunov exponents”. The Lyapunov exponents
are obtained by an exponential fit to the 500 particle pair separations used for figure
6. Note that the distances between tracer particle pairs are not rescaled during the
advection process because the average maximal separation is only 0.25 rad (14°)
which is not much larger than the distance of about 4° between the grid points

where the wind field is defined.
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using (27) (where E has been replaced by the mass of CIONO;) and also the
measured dimensions from figure 4. Integrating the rate of CIONO2 production
allows us to compare our results with the results of Tan et al. [20], see figure
9. We find that the total production of CIONQ- increases about linearly with
time which was also observed by Tan et al. For comparison, we have plotted the
decay behaviour in the case of exponential interscale transfer. As expected, this
case shows completely different behaviour for the production of CIONQO,. This is
another indication that the interscale transfer of the flow is indeed linear and not

exponential.

5 Conclusion

We have presented a new method to calculate the scalar variance dependence on the
diffusivity from a snapshot of an on/off scalar field. Furthermore, we have shown
that the method can be extended to mixing limited reactions of chemicals subject
to advection. We have also predicted time dependent mixing for those cases where
it is known that the flow has either linear or exponential interscale transfer. This
new method is generally applicable to mixing and reaction processes of fractal and
spiral chemical fields. We have studied one application of our method in detail:
ClO deactivation in the lower stratosphere over the mid-northern latitudes. Not
only have we recovered the diffusivity and time-dependence of chlorine deactivation,
previously computed by Tan et al. [20], but we have furthermore extended their
results for longer times and in particular for smaller more realistic diffusivities. In
order to predict the time-dependence of chlorine deactivation, we have determined
the interscale transfer of some stratospheric wind-fields. The results suggest that
particle pairs separate on average linearly in the stratosphere (on a time scale of

about 10 days) and consequently that the interscale transfer is dominantly linear.
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Figure 9: Predictions for time dependent mixing. The curves for linear interscale
transfer are our predictions for the production of CIONQOs. The curves for expo-
nential interscale transfer are drawn for comparison. a) Reaction rate calculated
with Kolmogorov capacities as given in figure 4 and from (29) for linear interscale
transfer and from (30) for exponential interscale transfer with a stretching rate of
0.25 d~!, taken from figure 7. We observe that in the case of linear interscale trans-
fer, the reaction rate becomes about constant after 5 days, whereas in the case of
exponential interscale transfer the reaction rate continues to grow. b) Integration
of curves in figure a) gives the total amount of reacted chemicals. We observe a
linear like growth of the produced chemical in agreement with the results by Tan

et al. [20].
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This result challenges the conventional view that advection in the stratosphere is
fully chaotic and suggests instead that there are only a few chaotic regions in the

stratosphere which are separated by regions where the flow is of shearing nature.
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