Imperial College London

Professor Aldo Faisal

Faculty of EngineeringDepartment of Bioengineering

Professor of AI & Neuroscience
 
 
 
//

Contact

 

+44 (0)20 7594 6373a.faisal Website

 
 
//

Assistant

 

Miss Teresa Ng +44 (0)20 7594 8300

 
//

Location

 

4.08Royal School of MinesSouth Kensington Campus

//

Summary

 

Publications

Publication Type
Year
to

236 results found

Currie SP, Ammer JJ, Premchand B, Dacre J, Wu Y, Eleftheriou C, Colligan M, Clarke T, Mitchell L, Faisal A, Hennig MH, Duguid Iet al., 2020, Spatiotemporal organization of movement-invariant and movement-specific signaling in the output layer of motor cortex

<jats:title>Abstract</jats:title><jats:p>Motor cortex generates descending output necessary for executing a wide range of limb movements. Although movement-related activity has been described throughout motor cortex, the spatiotemporal organization of movement-specific signaling in deep layers remains largely unknown. Here, we recorded layer 5B population dynamics in the caudal forelimb area of motor cortex while mice performed a forelimb push/pull task and found that most neurons show movement-invariant responses, with a minority displaying movement specificity. Cell-type-specific imaging identified that movement-invariant responses dominated pyramidal tract (PT) neuron activity, with a small subpopulation representing movement type, whereas a larger proportion of intratelencephalic (IT) neurons displayed movement-specific signaling. The proportion of IT neurons decoding movement-type peaked prior to movement initiation, while for PT neurons this occurred during movement execution. Our data suggest that layer 5B population dynamics largely reflect movement-invariant signaling, with information related to movement-type being differentially routed through relatively small, distributed subpopulations of projection neurons.</jats:p>

Journal article

Ortega San Miguel P, Zhao T, Faisal AA, 2020, HYGRIP: Full-stack characterisation of neurobehavioural signals (fNIRS, EEG, EMG, force and breathing) during a bimanual grip force control task, Frontiers in Neuroscience, Vol: 14, Pages: 1-10, ISSN: 1662-453X

Brain-computer interfaces (BCIs) have achieved important milestones in recent years, but the major number of breakthroughs in the continuous control of movement have focused on invasive neural interfaces with motor cortex or peripheral nerves. In contrast, non-invasive BCIs have made primarily progress in continuous decoding using event-related data, while the direct decoding of movement command or muscle force from brain data is an open challenge.Multi-modal signals from human cortex, obtained from mobile brain imaging that combines oxygenation and electrical neuronal signals, do not yet exploit their full potential due to the lack of computational techniques able to fuse and decode these hybrid measurements.To stimulate the research community and machine learning techniques closer to the state-of-the-art in artificial intelligence we release herewith a holistic data set of hybrid non-invasive measures for continuous force decoding: the Hybrid Dynamic Grip (HYGRIP) data set. We aim to provide a complete data set, that comprises the target force for the left/right hand, cortical brain signals in form of electroencephalography (EEG) with high temporal resolution and functional near-infrared spectroscopy (fNIRS) that captures in higher spatial resolution a BOLD-like cortical brain response, as well as the muscle activity (EMG) of the grip muscles, the force generated at the grip sensor (force), as well as confounding noise sources, such as breathing and eye movement activity during the task.In total, 14 right-handed subjects performed a uni-manual dynamic grip force task within $25-50\%$ of each hand's maximum voluntary contraction. HYGRIP is intended as a benchmark with two open challenges and research questions for grip-force decoding.First, the exploitation and fusion of data from brain signals spanning very different time-scales, as EEG changes about three orders of magnitude faster than fNIRS.Second, the decoding of whole-brain signals associated with the use of

Journal article

Haar Millo S, Faisal A, 2020, Brain activity reveals multiple motor-learning mechanisms in a real-world task, Frontiers in Human Neuroscience, Vol: 14, ISSN: 1662-5161

Many recent studies found signatures of motor learning in neural beta oscillations (13–30Hz), and specifically in the post-movement beta rebound (PMBR). All these studies were in controlled laboratory-tasks in which the task designed to induce the studied learning mechanism. Interestingly, these studies reported opposing dynamics of the PMBR magnitude over learning for the error-based and reward-based tasks (increase versus decrease, respectively). Here we explored the PMBR dynamics during real-world motor-skill-learning in a billiards task using mobile-brain-imaging. Our EEG recordings highlight the opposing dynamics of PMBR magnitudes (increase versus decrease) between different subjects performing the same task. The groups of subjects, defined by their neural dynamics, also showed behavioural differences expected for different learning mechanisms. Our results suggest that when faced with the complexity of the real-world different subjects might use different learning mechanisms for the same complex task. We speculate that all subjects combine multi-modal mechanisms of learning, but different subjects have different predominant learning mechanisms.

Journal article

Rito Lima I, Haar Millo S, Di Grassi L, Faisal Aet al., 2020, Neurobehavioural signatures in race car driving: a case study, Scientific Reports, Vol: 10, Pages: 1-9, ISSN: 2045-2322

Recent technological developments in mobile brain and body imaging are enabling new frontiers of real-world neuroscience. Simultaneous recordings of body movement and brain activity from highly skilled individuals as they demonstrate their exceptional skills in real-world settings, can shed new light on the neurobehavioural structure of human expertise. Driving is a real-world skill which many of us acquire to different levels of expertise. Here we ran a case-study on a subject with the highest level of driving expertise—a Formula E Champion. We studied the driver’s neural and motor patterns while he drove a sports car on the “Top Gear” race track under extreme conditions (high speed, low visibility, low temperature, wet track). His brain activity, eye movements and hand/foot movements were recorded. Brain activity in the delta, alpha, and beta frequency bands showed causal relation to hand movements. We herein demonstrate the feasibility of using mobile brain and body imaging even in very extreme conditions (race car driving) to study the sensory inputs, motor outputs, and brain states which characterise complex human skills.

Journal article

Albert-Smet I, McPherson D, Navaie W, Stocker T, Faisal AAet al., 2020, Regulations & exemptions during the COVID-19 pandemic for new medical technology, health services & data

The rapid evolution of the COVID-19 pandemic has sparked a large unmet need for new or additional medical technology and healthcare services to be made available urgently. Healthcare, Academic, Government and Industry organizations and individuals have risen to this challenge by designing, developing, manufacturing or implementing innovation. However, both they and healthcare stakeholders are hampered as it is unclear how to introduce and deploy the products of this innovation quickly and legally within the healthcare system. Our paper outlines the key regulations and processes innovators need to comply with, and how these change during a public health emergency via dedicated exemptions. Our work includes references to the formal documents regarding UK healthcare regulation and governance, and is meant to serve as a guide for those who wish to act quickly but are uncertain of the legal and regulatory pathways that allow new a device or service to be fast-tracked.

Report

Shafti A, Tjomsland J, Dudley W, Faisal AAet al., 2020, Real-world human-robot collaborative reinforcement learning, Publisher: arXiv

The intuitive collaboration of humans and intelligent robots (embodied AI) inthe real-world is an essential objective for many desirable applications ofrobotics. Whilst there is much research regarding explicit communication, wefocus on how humans and robots interact implicitly, on motor adaptation level.We present a real-world setup of a human-robot collaborative maze game,designed to be non-trivial and only solvable through collaboration, by limitingthe actions to rotations of two orthogonal axes, and assigning each axes to oneplayer. This results in neither the human nor the agent being able to solve thegame on their own. We use a state-of-the-art reinforcement learning algorithmfor the robotic agent, and achieve results within 30 minutes of real-worldplay, without any type of pre-training. We then use this system to performsystematic experiments on human/agent behaviour and adaptation when co-learninga policy for the collaborative game. We present results on how co-policylearning occurs over time between the human and the robotic agent resulting ineach participant's agent serving as a representation of how they would play thegame. This allows us to relate a person's success when playing with differentagents than their own, by comparing the policy of the agent with that of theirown agent.

Working paper

Bachtiger P, Plymen CM, Pabari PA, Howard JP, Whinnett ZI, Opoku F, Janering S, Faisal AA, Francis DP, Peters NSet al., 2020, Artificial intelligence, data sensors and interconnectivity: future Opportunities for heart failure, Cardiac Failure Review, Vol: 6, Pages: e11-e11, ISSN: 2057-7540

A higher proportion of patients with heart failure have benefitted from a wide and expanding variety of sensor-enabled implantable devices than any other patient group. These patients can now also take advantage of the ever-increasing availability and affordability of consumer electronics. Wearable, on- and near-body sensor technologies, much like implantable devices, generate massive amounts of data. The connectivity of all these devices has created opportunities for pooling data from multiple sensors - so-called interconnectivity - and for artificial intelligence to provide new diagnostic, triage, risk-stratification and disease management insights for the delivery of better, more personalised and cost-effective healthcare. Artificial intelligence is also bringing important and previously inaccessible insights from our conventional cardiac investigations. The aim of this article is to review the convergence of artificial intelligence, sensor technologies and interconnectivity and the way in which this combination is set to change the care of patients with heart failure.

Journal article

Abbott W, Harston J, Faisal A, 2020, Linear Embodied Saliency: a Model of Full-Body Kinematics-based Visual Attention, bioRxiv

Linear Embodied Saliency: a Model of Full-Body Kinematics-based Visual Attention

Journal article

Deisenroth MP, Faisal AA, Ong CS, 2020, Mathematics for Machine Learning, Publisher: Cambridge University Press, ISBN: 9781108455145

Book

Beyret B, Shafti A, Faisal AA, 2020, Dot-to-Dot: Explainable Hierarchical Reinforcement Learning for Robotic Manipulation, IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Publisher: IEEE, Pages: 5014-5019, ISSN: 2153-0858

Conference paper

Beyret B, Shafti SA, Faisal A, 2020, Dot-to-dot: explainable hierarchical reinforcement learning for robotic manipulation, IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS), Publisher: IEEE, Pages: 1-6, ISSN: 2153-0866

Robotic systems are ever more capable of automationand fulfilment of complex tasks, particularly withreliance on recent advances in intelligent systems, deep learningand artificial intelligence in general. However, as robots andhumans come closer together in their interactions, the matterof interpretability, or explainability of robot decision-makingprocesses for the human grows in importance. A successfulinteraction and collaboration would only be possible throughmutual understanding of underlying representations of theenvironment and the task at hand. This is currently a challengein deep learning systems. We present a hierarchical deepreinforcement learning system, consisting of a low-level agenthandling the large actions/states space of a robotic systemefficiently, by following the directives of a high-level agent whichis learning the high-level dynamics of the environment and task.This high-level agent forms a representation of the world andtask at hand that is interpretable for a human operator. Themethod, which we call Dot-to-Dot, is tested on a MuJoCo-basedmodel of the Fetch Robotics Manipulator, as well as a ShadowHand, to test its performance. Results show efficient learningof complex actions/states spaces by the low-level agent, and aninterpretable representation of the task and decision-makingprocess learned by the high-level agent.

Conference paper

Tjomsland J, Shafti A, Faisal AA, 2019, Human-robot collaboration via deep reinforcement learning of real-world interactions, Publisher: arXiv

We present a robotic setup for real-world testing and evaluation ofhuman-robot and human-human collaborative learning. Leveraging thesample-efficiency of the Soft Actor-Critic algorithm, we have implemented arobotic platform able to learn a non-trivial collaborative task with a humanpartner, without pre-training in simulation, and using only 30 minutes ofreal-world interactions. This enables us to study Human-Robot and Human-Humancollaborative learning through real-world interactions. We present preliminaryresults, showing that state-of-the-art deep learning methods can takehuman-robot collaborative learning a step closer to that of humans interactingwith each other.

Working paper

Faisal A, Hermano K, Antonio P, 2019, Proceedings of the 3rd International Congress on Neurotechnology, Electronics and Informatics, Setúbal, Publisher: Scitepress, ISBN: 978-989-758-161-8

Book

Hermano K, Pedotti A, Faisal A, 2019, Proceedings of the 4th International Congress on Neurotechnology, Electronics and Informatics 2016, ISBN: 978-989-758-204-2

Book

Subramanian M, Songur N, Adjei D, Orlov P, Faisal Aet al., 2019, A.Eye Drive: gaze-based semi-autonomous wheelchair interface, 41st International Engineering in Medicine & Biology Society (EMBC 2019), Publisher: IEEE

Existing wheelchair control interfaces, such as sip & puff or screen based gaze-controlled cursors, are challenging for the severely disabled to navigate safely and independently as users continuously need tointeract with an interface during navigation. This putsa significant cognitive load on users and prevents them from interacting with the environment in other forms during navigation. We have combined eyetracking/gaze-contingent intention decoding with computervision context-awarealgorithms and autonomous navigation drawn fromself-driving vehicles to allow paralysed users to drive by eye, simply by decoding natural gaze about where the user wants to go: A.Eye Drive. Our “Zero UI” driving platform allows users to look and interact visually with at an objector destination of interest in their visual scene, and the wheelchairautonomously takes the user to the intended destination, while continuously updating the computed path for static and dynamic obstacles. This intention decoding technology empowers the end-user by promising more independence through their own agency.

Conference paper

Ricotti V, Kadirvelu B, Auepanwiriyakul C, Zeng S, Selby V, Voit T, Faisal Aet al., 2019, Daily life digital biomarkers for longitudinal monitoring of Duchenne muscular dystrophy with wearable sensors, 24th International Annual Congress of the World-Muscle-Society (WMS), Publisher: PERGAMON-ELSEVIER SCIENCE LTD, Pages: S109-S109, ISSN: 0960-8966

Conference paper

Ricotti V, Kadirvelu B, Rabinowicz S, Selby V, Voit T, Faisal Aet al., 2019, Full-body behaviour analytics reveals DMD disease state within the first few steps of the 6-minute-walk test, 24th International Annual Congress of the World-Muscle-Society (WMS), Publisher: PERGAMON-ELSEVIER SCIENCE LTD, Pages: S108-S109, ISSN: 0960-8966

Conference paper

Ricotti V, Kadirvelu B, Selby V, Voit T, Faisal Aet al., 2019, Towards high-resolution clinical digital biomarkers for Duchenne muscular dystrophy, 24th International Annual Congress of the World-Muscle-Society (WMS), Publisher: PERGAMON-ELSEVIER SCIENCE LTD, Pages: S108-S108, ISSN: 0960-8966

Conference paper

Faisal A, 2019, Ethomic digital biomarkers, 24th International Annual Congress of the World-Muscle-Society (WMS), Publisher: PERGAMON-ELSEVIER SCIENCE LTD, Pages: S206-S206, ISSN: 0960-8966

Conference paper

Khwaja M, Ferrer M, Jesus I, Faisal A, Matic Aet al., 2019, Aligning daily activities with personality: towards a recommender system for improving wellbeing, ACM Conference on Recommender Systems (RecSys), Publisher: ACM, Pages: 368-372

Recommender Systems have not been explored to a great extentfor improving health and subjective wellbeing. Recent advances inmobile technologies and user modelling present the opportunityfor delivering such systems, however the key issue is understand-ing the drivers of subjective wellbeing at an individual level. Inthis paper we propose a novel approach for deriving personalizedactivity recommendations to improve subjective wellbeing by maxi-mizing the congruence between activities and personality traits. Toevaluate the model, we leveraged a rich dataset collected in a smart-phone study, which contains three weeks of daily activity probes,the Big-Five personality questionnaire and subjective wellbeingsurveys. We show that the model correctly infers a range of activ-ities that are ’good’ or ’bad’ (i.e. that are positively or negativelyrelated to subjective wellbeing) for a given user and that the derivedrecommendations greatly match outcomes in the real-world.

Conference paper

Khwaja M, Vaid SS, Zannone S, Harari GM, Faisal A, Matic Aet al., 2019, Modeling personality vs. modeling personalidad: In-the-wild mobile data analysis in five countries suggests cultural impact on personality models, Proceedings of the ACM on Interactive, Mobile, Wearable and Ubiquitous Technologies, Vol: 3, Pages: 1-24, ISSN: 2474-9567

Sensor data collected from smartphones provides the possibility to passively infer a user’s personality traits. Such models canbe used to enable technology personalization, while contributing to our substantive understanding of how human behaviormanifests in daily life. A significant challenge in personality modeling involves improving the accuracy of personalityinferences, however, research has yet to assess and consider the cultural impact of users’ country of residence on modelreplicability. We collected mobile sensing data and self-reported Big Five traits from 166 participants (54 women and 112men) recruited in five different countries (UK, Spain, Colombia, Peru, and Chile) for 3 weeks. We developed machine learningbased personality models using culturally diverse datasets - representing different countries - and we show that such modelscan achieve state-of-the-art accuracy when tested in new countries, ranging from 63% (Agreeableness) to 71% (Extraversion)of classification accuracy. Our results indicate that using country-specific datasets can improve the classification accuracybetween 3% and 7% for Extraversion, Agreeableness, and Conscientiousness. We show that these findings hold regardless ofgender and age balance in the dataset. Interestingly, using gender- or age- balanced datasets as well as gender-separateddatasets improve trait prediction by up to 17%. We unpack differences in personality models across the five countries, highlightthe most predictive data categories (location, noise, unlocks, accelerometer), and provide takeaways to technologists andsocial scientists interested in passive personality assessment.

Journal article

Shafti SA, Orlov P, Faisal A, 2019, Gaze-based, context-aware robotic system for assisted reaching and grasping, International Conference on Robotics and Automation 2019, Publisher: IEEE, ISSN: 2152-4092

Assistive robotic systems endeavour to support those with movement disabilities, enabling them to move againand regain functionality. Main issue with these systems is the complexity of their low-level control, and how to translate thisto simpler, higher level commands that are easy and intuitivefor a human user to interact with. We have created a multi-modal system, consisting of different sensing, decision makingand actuating modalities, to create intuitive, human-in-the-loopassistive robotics. The system takes its cue from the user’s gaze,to decode their intentions and implement lower-level motionactions and achieve higher level tasks. This results in the usersimply having to look at the objects of interest, for the robotic system to assist them in reaching for those objects, grasping them, and using them to interact with other objects. We presentour method for 3D gaze estimation, and action grammars-basedimplementation of sequences of action through the robotic system. The 3D gaze estimation is evaluated with 8 subjects,showing an overall accuracy of 4.68±0.14cm. The full systemis tested with 5 subjects, showing successful implementation of 100% of reach to gaze point actions and full implementationof pick and place tasks in 96%, and pick and pour tasks in76% of cases. Finally we present a discussion on our results and what future work is needed to improve the system.

Conference paper

Komorowski M, Celi LA, Badawi O, Gordon AC, Faisal AAet al., 2019, Understanding the artificial intelligence clinician and optimal treatment strategies for sepsis in intensive care

In this document, we explore in more detail our published work (Komorowski,Celi, Badawi, Gordon, & Faisal, 2018) for the benefit of the AI in Healthcareresearch community. In the above paper, we developed the AI Clinician system,which demonstrated how reinforcement learning could be used to make usefulrecommendations towards optimal treatment decisions from intensive care data.Since publication a number of authors have reviewed our work (e.g. Abbasi,2018; Bos, Azoulay, & Martin-Loeches, 2019; Saria, 2018). Given the differenceof our framework to previous work, the fact that we are bridging two verydifferent academic communities (intensive care and machine learning) and thatour work has impact on a number of other areas with more traditionalcomputer-based approaches (biosignal processing and control, biomedicalengineering), we are providing here additional details on our recentpublication.

Working paper

Gottesman O, Johansson F, Komorowski M, Faisal A, Sontag D, Doshi-Velez F, Celi LAet al., 2019, Guidelines for reinforcement learning in healthcare, Nature Medicine, Vol: 25, Pages: 16-18, ISSN: 1078-8956

In this Comment, we provide guidelines for reinforcement learning for decisions about patient treatment that we hope will accelerate the rate at which observational cohorts can inform healthcare practice in a safe, risk-conscious manner.

Journal article

Peng X, Ding Y, Wihl D, Gottesman O, Komorowski M, Lehman L-WH, Ross A, Faisal A, Doshi-Velez Fet al., 2018, Improving Sepsis Treatment Strategies by Combining Deep and Kernel-Based Reinforcement Learning., AMIA 2018 Annual Symposium, Pages: 887-896

Sepsis is the leading cause of mortality in the ICU. It is challenging to manage because individual patients respond differently to treatment. Thus, tailoring treatment to the individual patient is essential for the best outcomes. In this paper, we take steps toward this goal by applying a mixture-of-experts framework to personalize sepsis treatment. The mixture model selectively alternates between neighbor-based (kernel) and deep reinforcement learning (DRL) experts depending on patient's current history. On a large retrospective cohort, this mixture-based approach outperforms physician, kernel only, and DRL-only experts.

Conference paper

Liu Y, Gottesman O, Raghu A, Komorowski M, Faisal AA, Doshi-Velez F, Brunskill Eet al., 2018, Representation Balancing MDPs for Off-Policy Policy Evaluation, Thirty-second Annual Conference on Neural Information Processing Systems (NIPS)

We study the problem of off-policy policy evaluation (OPPE) in RL. In contrastto prior work, we consider how to estimate both the individual policy value and average policy value accurately. We draw inspiration from recent work in causal reasoning, and propose a new finite sample generalization error bound for value estimates from MDP models. Using this upper bound as an objective, we develop a learning algorithm of an MDP model with a balanced representation, and show that our approach can yield substantially lower MSE in a common synthetic domain and on a challenging real-world sepsis management problem.

Conference paper

Parbhoo S, Gottesman O, Ross AS, Komorowski M, Faisal A, Bon I, Roth V, Doshi-Velez Fet al., 2018, Improving counterfactual reasoning with kernelised dynamic mixing models, PLoS ONE, Vol: 13, ISSN: 1932-6203

Simulation-based approaches to disease progression allow us to make counterfactual predictions about the effects of an untried series of treatment choices. However, building accurate simulators of disease progression is challenging, limiting the utility of these approaches for real world treatment planning. In this work, we present a novel simulation-based reinforcement learning approach that mixes between models and kernel-based approaches to make its forward predictions. On two real world tasks, managing sepsis and treating HIV, we demonstrate that our approach both learns state-of-the-art treatment policies and can make accurate forward predictions about the effects of treatments on unseen patients.

Journal article

Komorowski M, Celi LA, Badawi O, Gordon AC, Faisal Aet al., 2018, The Artificial Intelligence Clinician learns optimal treatment strategies for sepsis in intensive care, Nature Medicine, Vol: 24, Pages: 1716-1720, ISSN: 1078-8956

Sepsis is the third leading cause of death worldwide and the main cause of mortality in hospitals1–3, but the best treatment strategy remains uncertain. In particular, evidence suggests that current practices in the administration of intravenous fluids and vasopressors are suboptimal and likely induce harm in a proportion of patients1,4–6. To tackle this sequential decision-making problem, we developed a reinforcement learning agent, the artificial intelligence (AI) Clinician, which learns from data to predict patient dynamics given specific treatment decisions. Our agent extracted implicit knowledge from an amount of patient data that exceeds many-fold the life-time experience of human clinicians and learned optimal treatment by having analysed myriads of (mostly sub-optimal) treatment decisions. We demonstrate that the value of the AI Clinician’s selected treatment is on average reliably higher than the human clinicians. In a large validation cohort independent from the training data, mortality was lowest in patients where clinicians’ actual doses matched the AI policy. Our model provides individualized and clinically interpretable treatment decisions for sepsis that could improve patient outcomes.

Journal article

Ruiz Maymo M, Shafti S, Faisal AA, 2018, FastOrient: lightweight computer vision for wrist control in assistive robotic grasping, The 7th IEEE RAS/EMBS International Conference on Biomedical Robotics and Biomechatronics, Publisher: IEEE

Wearable and Assistive robotics for human graspsupport are broadly either tele-operated robotic arms or actthrough orthotic control of a paralyzed user’s hand. Suchdevices require correct orientation for successful and efficientgrasping. In many human-robot assistive settings, the end-useris required to explicitly control the many degrees of freedommaking effective or efficient control problematic. Here we aredemonstrating the off-loading of low-level control of assistiverobotics and active orthotics, through automatic end-effectororientation control for grasping. This paper describes a compactalgorithm implementing fast computer vision techniques toobtain the orientation of the target object to be grasped, bysegmenting the images acquired with a camera positioned ontop of the end-effector of the robotic device. The rotation neededthat optimises grasping is directly computed from the object’sorientation. The algorithm has been evaluated in 6 differentscene backgrounds and end-effector approaches to 26 differentobjects. 94.8% of the objects were detected in all backgrounds.Grasping of the object was achieved in 91.1% of the casesand has been evaluated with a robot simulator confirming theperformance of the algorithm.

Conference paper

Woods B, Subramanian M, Shafti A, Faisal AAet al., 2018, Mecbanomyograpby based closed-loop functional electrical stimulation cycling system, 7th IEEE International Conference on Biomedical Robotics and Biomechatronics (Biorob), Publisher: IEEE, Pages: 179-184, ISSN: 2155-1774

Functional Electrical Stimulation (FES) systems are successful in restoring motor function and supporting paralyzed users. Commercially available FES products are open loop, meaning that the system is unable to adapt to changing conditions with the user and their muscles which results in muscle fatigue and poor stimulation protocols. This is because it is difficult to close the loop between stimulation and monitoring of muscle contraction using adaptive stimulation. FES causes electrical artefacts which make it challenging to monitor muscle contractions with traditional methods such as electromyography (EMG). We look to overcome this limitation by combining FES with novel mechanomyographic (MMG) sensors to be able to monitor muscle activity during stimulation in real time. To provide a meaningful task we built an FES cycling rig with a software interface that enabled us to perform adaptive recording and stimulation, and then combine this with sensors to record forces applied to the pedals using force sensitive resistors (FSRs); crank angle position using a magnetic incremental encoder and inputs from the user using switches and a potentiometer. We illustrated this with a closed-loop stimulation algorithm that used the inputs from the sensors to control the output of a programmable RehaStim 1 FES stimulator (Hasomed) in real-time. This recumbent bicycle rig was used as a testing platform for FES cycling. The algorithm was designed to respond to a change in requested speed (RPM) from the user and change the stimulation power (% of maximum current mA) until this speed was achieved and then maintain it.

Conference paper

This data is extracted from the Web of Science and reproduced under a licence from Thomson Reuters. You may not copy or re-distribute this data in whole or in part without the written consent of the Science business of Thomson Reuters.

Request URL: http://wlsprd.imperial.ac.uk:80/respub/WEB-INF/jsp/search-html.jsp Request URI: /respub/WEB-INF/jsp/search-html.jsp Query String: id=00539811&limit=30&person=true&page=3&respub-action=search.html