[3/07/21] Understanding soaring coronavirus cases and the effect of contagion policies in the UK. The number of new daily SARS-CoV-2 infections experienced an abrupt increase during the last quarter of 2020 in almost every European country. The phenomenological explanation offered was a new mutation of the virus, first identified in the UK. We use publicly available data in combination with a time-delayed controlled SIR model, which captures the effects of preventive measures on the spreading of the virus. We are able to reproduce the waves of infection occurred in the UK with a unique transmission rate, suggesting that the new SARS-CoV-2 variant is as transmissible as previous strains. Our findings indicate that the sudden surge in cases was, in fact, related to the relaxation of preventive measures and social awareness. We also simulate the combined effects of restrictions and vaccination campaigns in 2021, demonstrating that lockdown policies are not fully effective to flatten the curve. For effective mitigation, it is critical that the public keeps on high alert until vaccination reaches a critical threshold. This study and its findings has been published in Vaccines.
[12/01/21] A finite-volume method for fluctuating dynamical density functional theory. Stochastic gradient flow equations are of crucial importance within the framework of fluctuating hydrodynamics and dynamic density functional theory. Our study, recently published in Journal of Computational Physics, proposes a scheme dealing with general free-energy functionals, including, for instance, external fields or interaction potentials. This allows us to simulate a range of physical phenomena where thermal fluctuations play a crucial role, such as nucleation and other energy-barrier crossing transitions. A positivity-preserving algorithm for the density is derived based on a hybrid space discretization of the deterministic and the stochastic terms and different implicit and explicit time integrators. We show through numerous applications that not only our scheme is able to accurately reproduce the statistical properties (structure factor and correlations) of physical systems, but also allows us to simulate energy barrier crossing dynamics, which cannot be captured by mean-field approaches.