LhARA: the Laser-hybrid Accelerator for Radiobiological Applications
LhARA, the Laser-hybrid Accelerator for Radiobiological Applications, has been conceived as a highly flexible source of proton and ion beams for the elucidation of the micro-biophysical processes that determine the response of tissue to particle beams. The technologies that will be demonstrated in LhARA have the potential to drive a step-change in clinical practice allowing particle-beam therapy to be delivered in completely new regimens, combining a variety of ion species in a single treatment fraction and exploiting ultra-high dose rates. By creating a system that incorporates dose-deposition imaging in a fast feedback-and-control system, LhARA has the potential to remove the requirement for a large gantry, laying the foundations for “best in class” treatments to be made available to the many.
In LhARA, a high-power pulsed laser will be used to drive the creation of a large flux of protons or ions which are captured and formed into a beam by strong-focusing plasma lenses. The plasma (Gabor) lenses provide the same focusing strength as high-field solenoids at a fraction of the cost. Rapid acceleration will be performed using a fixed-field alternating-gradient accelerator (FFA), thereby preserving the unique flexibility in the time, energy, and spatial structure of the beam afforded by the laser-driven source.
As a hybrid accelerator, LhARA will combine established technologies with the unique features of a laser accelerator. As a result, LhARA will be able to deliver much higher dose rates than any other approach currently available,
and would be capable of delivering high doses of radiation to multiple labs at the same time, allowing multiple experiments to be performed in parallel. The concept for LhARA was recently published, bringing the realisation of the facility a step closer.
Imperial contribution
Imperial's involvement is coordinated by the Centre for Clinical Applications of Particles (CCAP). Imperial personnel devised the original concept for LhARA and played the seminal role in forging the multidisciplinary LhARA collaboration. Imperial now leads the collaboration in the design of the facility. Imperial personnal have leading roles in the specification and development of the laser-driven source, the Gabor-lens capture and focusing system, and the fixed-field alternating-gradient accelerator.
Contacts
Prof. Ken Long
Prof. Ken Long
Academic
Dr Jaroslaw Pasternak
Dr Jaroslaw Pasternak
Academic
Dr Jurgen Pozimski
Dr Jurgen Pozimski
Academic
Group members: Titus-Stefan Dascalu, Ajit Kurup, Hin-Tung Lau, Ken Long, Josie McGarrigle, Jaroslaw Pasternak, Juergen Pozimski, Rebecca Taylor