Mattevi group investigates precise synthesis of 2D materials for 3D functional printing of miniaturized devices and energy conversion applications.

Research Projects Accordion

(MO)CVD synthesis of 2D materials

We are dedicated to the large-area synthesis of various two-dimensional (2D) materials by chemical vapor deposition (CVD) or metal-organic chemical vapor deposition (MOCVD). We have realized the scalable growth of various atomically thin materials like graphene and transition metal dichalcogenides (TMDs) for the assembling of heterojunctions and electronic devices. We are now working on the synthesis of 2D magnetic materials by MOCVD. The atomically thin materials with intrinsic ferromagnetism or antiferromagnetism and controllable thickness/phase are expected to deliver opportunities to tailor spintronics properties for post-CMOS applications.

Relevant publications:

(1)         Och, M.; Anastasiou, K.; Leontis, I.; Zemignani, G.; Palczynski, P.; Mostaed, A.; Sokolikova, M. S.; Alexeev, E. M.; Bai, H.; Tartakovskii, A.; Lischner, J.; Nellist, P. D.; Russo, S.; Mattevi, C. Synthesis of Monolayered N-Type WSe2 from Solid State Inorganic Precursors. Nanoscale 2022. https://doi.org/10.1039/d2nr03233c.

(2)         Och, M.; Martin, M. B.; Dlubak, B.; Seneor, P.; Mattevi, C. Synthesis of Emerging 2D Layered Magnetic Materials. Nanoscale 2021, 13 (4), 2157–2180. https://doi.org/10.1039/d0nr07867k.

(3)         Wakamura, T.; Wu, N. J.; Chepelianskii, A. D.; Gueron, S.; Och, M.; Ferrier, M.; Taniguchi, T.; Watanabe, K.; Mattevi, C.; Bouchiat, H. Spin-Orbit-Enhanced Robustness of Supercurrent in Graphene/WS2 Josephson Junctions. Phys Rev Lett 2020, 125 (26). https://doi.org/10.1103/PhysRevLett.125.266801.

(4)         Zatko, V.; Galbiati, M.; Dubois, S. M. M.; Och, M.; Palczynski, P.; Mattevi, C.; Brus, P.; Bezencenet, O.; Martin, M. B.; Servet, B.; Charlier, J. C.; Godel, F.; Vecchiola, A.; Bouzehouane, K.; Collin, S.; Petroff, F.; Dlubak, B.; Seneor, P. Band-Structure Spin-Filtering in Vertical Spin Valves Based on Chemical Vapor Deposited WS2. ACS Nano 2019, 13 (12), 14468–14476. https://doi.org/10.1021/acsnano.9b08178.

(5)         Sherrell, P. C.; Palczynski, P.; Sokolikova, M. S.; Reale, F.; Pesci, F. M.; Och, M.; Mattevi, C. Large-Area CVD MoS2/WS2 Heterojunctions as a Photoelectrocatalyst for Salt-Water Oxidation. ACS Appl Energy Mater 2019, 2 (8), 5877–5882. https://doi.org/10.1021/acsaem.9b01008.

(6)         Wakamura, T.; Reale, F.; Palczynski, P.; Guéron, S.; Mattevi, C.; Bouchiat, H. Strong Anisotropic Spin-Orbit Interaction Induced in Graphene by Monolayer WS2. Phys Rev Lett 2018, 120 (10). https://doi.org/10.1103/PhysRevLett.120.106802.

(7)         Reale, F.; Palczynski, P.; Amit, I.; Jones, G. F.; Mehew, J. D.; Bacon, A.; Ni, N.; Sherrell, P. C.; Agnoli, S.; Craciun, M. F.; Russo, S.; Mattevi, C. High-Mobility and High-Optical Quality Atomically Thin WS 2. Sci Rep 2017, 7 (1). https://doi.org/10.1038/s41598-017-14928-2.

(8)         Pesci, F. M.; Sokolikova, M. S.; Grotta, C.; Sherrell, P. C.; Reale, F.; Sharda, K.; Ni, N.; Palczynski, P.; Mattevi, C. MoS2/WS2 Heterojunction for Photoelectrochemical Water Oxidation. ACS Catal 2017, 7 (8), 4990–4998. https://doi.org/10.1021/acscatal.7b01517.

2D Materials for Photoelectrocatalytic Oxidation Reactions and Electrocatalytic Reduction Reactions

We researched heterojunctions of atomically thin TMD sheets for the photo-assisted electrocatalytic water oxidation. These type II MoS2/WS2 heterojunctions benefited from the fast separation of photogenerated charge carriers across the junction that enabled the efficient solar-driven water oxidation. Now we research phase-selective synthesis of IrOx-based catalysts for water oxidation, looking at forming high surface area and low loading iridate electrocatalysts for the oxygen evolution reaction, enabling a goal of a reduced cost of operation.

 

References:

1.    P.C. Sherrell, P. Palczynski, M.S Sokolikova, F. Reale, F.M. Pesci, M. Och, C. Mattevi, Large-area CVD MoS2/WS2 heterojunctions as a photoelectrocatalyst for salt-water oxidation, ACS Applied Energy Materials, 2019, 2 (8), 5877-5882, DOI: 10.1021/acsaem.9b01008.

2.    F.M. Pesci, M.S. Sokolikova, C. Grotta, P.C. Sherrell, F. Reale, K. Sharda, N. Ni, P. Palczynski, C. Mattevi, MoS2/WS2 heterojunction for photoelectrochemical water oxidation, ACS Catalysis, 2017, 7 (8), 4990-4998, DOI: 10.1021/acscatal.7b01517.

 

Aqueous Batteries and Supercapacitors

We investigate the fabrication of miniaturized energy storage devices based on aqueous electrolytes via 3D Printing. 

This research is funded by the European Research Council via the ERC - Proof of concept grant "3D Printed Zn-ion Batteries for Wearable Devices" and the ERC Consolidator grant "3D AddChip"

3D Printing of Functional Materials

We investigate the 3D Printing - Direct Ink Writing of advanced functional materials for energy storage and conversion. We have achieved the fabrication of various electrodes and devices with customized geometry, starting from aqueous ink formulations.

Relevant Publications

1)          Tagliaferri, S.; Panagiotopoulos, A.; Mattevi, C. Direct Ink Writing of Energy Materials. Mater. Adv. 2021, 2 (2), 540–563. https://doi.org/10.1039/d0ma00753f.

(2)         Tagliaferri, S.; Nagaraju, G.; Panagiotopoulos, A.; Och, M.; Cheng, G.; Iacoviello, F.; Mattevi, C. Aqueous Inks of Pristine Graphene for 3D Printed Microsupercapacitors with High Capacitance. ACS Nano 2021, 15 (9), 15342–15353. https://doi.org/10.1021/acsnano.1c06535.

(3)         Nagaraju, G.; Tagliaferri, S.; Panagiotopoulos, A.; Och, M.; Quintin-Baxendale, R.; Mattevi, C. Durable Zn-Ion Hybrid Capacitors Using 3D Printed Carbon Composites. J. Mater. Chem. A 2022, 10 (29), 15665–15676. https://doi.org/10.1039/D2TA03488C.

(4)         Pierin, G.; Grotta, C.; Colombo, P.; Mattevi, C. Direct Ink Writing of Micrometric SiOC Ceramic Structures Using a Preceramic Polymer. J. Eur. Ceram. Soc. 2016, 36 (7), 1589–1594. https://doi.org/10.1016/j.jeurceramsoc.2016.01.047.

Precise Synthesis of 2D Materials in Solution

Precise Synthesis of 2D Materials in Solution: We investigate new strategies to synthesise solution processable 2D materials. Our research discovered how the crystal phase (WSe2, WxMo1-xSe2), chemical composition (WxMo1-xSe2) and faceting (Bi2Te3) of atomically thin functional materials can be effectively controlled in a solution phase reaction. Precise solution phase synthesis works towards engineering functional 2D materials where the properties, such as electronic and catalytic, have to be controlled at the atomic scale.

 

References:

1.    M.S. Sokolikova, G. Cheng, M. Och, P. Palczynski, K.E. Hajraoui, Q.M. Ramasse, C. Mattevi, Tuning the 1T’/2H phases in WxMo1-xSe2 nanosheets, Nanoscale, 2023, DOI: 10.1039/D2NR05631C.

2.    M.S. Rider, M.S. Sokolikova, S.M. Hanham, M. Navarro-Cía, P.D. Haynes, D.K.K. Lee, M. Daniele, M. Cestelli Guidi, C. Mattevi, S. Lupi, V. Giannini, Experimental signature of a topological quantum dot, Nanoscale, 2020, 12 (44), 22817-22825, DOI: 10.1039/D0NR06523D.

3.    M.S. Sokolikova, P.C. Sherrell, P. Palczynski, V.L. Bemmer, C. Mattevi, Direct solution-phase synthesis of 1T’WSe2 nanosheets, Nature Communications, 2019, 10 (1), 1-8, DOI: 10.1038/s41467-019-08594-3.

4.    M.S. Sokolikova, P.C. Sherrell, P. Palczynski, V.L. Bemmer, C. Mattevi, Room-temperature growth of colloidal Bi2Te3 nanosheets, Chemical Communications, 2017, 53 (57), 8026-8029, DOI: 10.1039/C7CC03151C.

Contact Us!

Dr Cecilia Mattevi

Lecturer and Royal Society University Research Fellow
Department of Materials
Imperial College London
Exhibition road
London SW7 2AZUK

c.mattevi@imperial.ac.uk

Telephone:+44(0)2075940833