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Abstract. Factor models, all particular cases of the Generalized Dynamic Factor Model

(GDFM) introduced in Forni, Hallin, Lippi and Reichlin (2000), have become extremely

popular in the theory and practice of large panels of time series data. The corresponding

estimators rely on Brillinger’s dynamic principal components thus involving two-sided filters

leading to an extremely modest forecasting performance. No such problem arises with esti-

mators based on standard principal components, which have been dominant in this literature.

On the other hand, those other estimators require the assumption that the space spanned by

the factors has finite dimension, severely limiting the generality afforded by the GDFM. This

paper derives the asymptotic properties, namely consistency with exact rates of convergence,

for a semiparametric estimator of the parameters and common shocks for a general class

of GDFMs without relying on two-sided filters nor on the finite dimension assumption. A

Monte Carlo experiment corroborates our theoretical results and shows the potential of these

one-sided infinite dimensional GDFM, recently studied in Forni, Hallin, Lippi and Zaffaroni

(2014), for the purpose of out-of-sample forecasting.

JEL subject classification : C0, C01, E0.

Key words and phrases : Generalized dynamic factor models. Vector processes with singular

spectral density. One-sided representations for dynamic factor models. consistency and rates

for estimators of dynamic factor models.

1 Introduction

In the present paper we provide consistent estimation results for the Generalized Dynamic

Factor Model (GDFM) recently studied in Forni, Hallin, Lippi and Zaffaroni (2014) (FHLZ).

A GDFM, as introduced in Forni et al. (2000) and Forni and Lippi (2001), is a countably

infinite set of observable stochastic processes xit with the following decomposition:

xit = χit + ξit = bi1(L)u1t + bi2(L)u2t + · · ·+ biq(L)uqt + ξit, i ∈ N, t ∈ Z, (1.1)
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where ut = (u1t u2t · · · uqt)′ is a q-dimensional orthonormal unobservable white noise vector

and bif (L), i ∈ N, f = 1, . . . , q, are square-summable filters (L, as usual, stands for the

lag operator). Detailed assumptions on the common components χit and the idiosyncratic

components ξit are given below. Let us only recall here that the idiosyncratic components

and the common shocks uft are orthogonal at any lead and lag, and that the idiosyncratic

components are “weakly” cross-correlated (orthogonality is an extreme case).

The recent literature on Dynamic Factor Models is based on (1.1) under the assumption

that the space spanned by the stochastic variables χit, for t given and i ∈ N, is finite di-

mensional (the definition of the common components obviously implies that the dimension

of the space spanned by the variables χit, for t given and i ∈ N, is independent of t). Seminal

papers are Stock and Watson (2002a,b), Bai and Ng (2002). Under that assumption, model

(1.1) can be rewritten in the so-called static representation

xit = λi1F1t + λi2F2t + · · ·+ λirFrt + ξit

Ft = (F1t . . . Frt)
′ = N(L)ut.

(1.2)

Criteria to determine r consistently are given in Bai and Ng (2002) (see also Alessi et al. 2010

and the literature therein). The vectors Ft and the loadings λij can be estimated consistently

using the first r standard principal components, see Stock and Watson (2002a,b), Bai and

Ng (2002). Moreover, the second equation in (1.2) is usually specified as a singular VAR, so

that (1.2) becomes

xit = λi1F1t + λi2F2t + · · ·+ λirFrt + ξit

D(L)Ft = (I−D1L−D2L
2 − . . .−DpL

p)Ft = Kut,
(1.3)

where the matrices Dj are r × r while K is r × q. Under (1.3), Bai and Ng (2007) and

Amengual and Watson (2007) provide consistent criteria to determine q.

In GHLZ we argue that the finite-dimensional assumption is far from being innocuous.

For instance, (1.2) is so restrictive that even the very elementary model

xit = ai(1− αiL)−1ut + ξit, (1.4)
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where q = 1, ut is scalar white noise, and the coefficients αi are drawn from a uniform

distribution, is ruled out. In this case the space spanned, for a given t, by the common

components χit, i ∈ N, is easily seen to be infinite-dimensional unless the αi’s take only a

finite number of values.

The problem with models like (1.1), when the space spanned by the common components

is infinite-dimensional, is that estimation cannot be based on a finite number r of standard

principal components. The GDFM without finite-dimensional assumptions is studied in Forni

et al. (2000). They use q principal components in the frequency domain (Brillinger 1981) to

estimate the common components χit (criteria to determine q without assuming (1.2) or (1.3)

are obtained in Hallin and Lǐska, 2007 and Onatski, 2009). However, their estimator involves

the application of two-sided filters to the observable variables xit and hence is useless at the

end of the sample or for prediction.

In FHLZ we show how to obtain one-sided estimators without the finite-dimension as-

sumption. We impose the weaker condition that the common components have a rational

spectral density, that is, each filter bif (L) in (1.1) is a ratio of polynomials in L:

χit =
ci1(L)

di1(L)
u1t +

ci2(L)

di2(L)
u2t + · · ·+ ciq(L)

diq(L)
uqt, i ∈ N, f = 1, 2, . . . , q, (1.5)

where

cif (L) = cif,0 + cif,1L+ . . .+ cif,s1L
s1 and dif (L) = dif,0 + dif,1L+ . . .+ dif,s2L

s2

(the degrees s1 and s2 of the polynomials are assumed to be independent of i for the sake of

simplicity).

Denote by xt, χχχt, ξξξt the infinite-dimensional column vectors whose coordinates are the

variables xit, χit, ξit, respectively. Elaborating upon recent results by Anderson and Deistler

(2008a, b), in FHLZ we prove that for generic values of the parameters cif,k and dif,k (i.e.

apart from a lower-dimensional subset in the parameter space, see FHLZ for details), the

infinite-dimensional idiosyncratic vector χχχt = (χ1t χ2t · · · χnt · · · )′ has a unique autoregres-
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sive representation with block structure of the form

A1(L) 0 · · · 0 · · ·

0 A2(L) · · · 0

. . .

0 0 · · · Ak(L)
...

. . .


χχχt =



R1

R2

...

Rk

...


ut, (1.6)

where Ak(L) is a (q+ 1)× (q+ 1) polynomial matrix with finite degree and Rk is (q+ 1)× q.

Denoting by A(L) and R the (infinite) matrices on the left- and right-hand sides of (1.6),

using χχχt = xt − ξξξt, and setting Zt = A(L)xt:

Zt = Rut + A(L)ξξξt. (1.7)

Under the assumptions of the present paper the term A(L)ξξξt is an idiosyncratic component,

so that (1.7) is a a static representation of the form (4.8) with D(L) = I.

Thus, under the specification of a rational spectral density for the common components,

we obtain one-sided filters for the common components without the standard finite-dimension

restriction. Moreover, the large-dimensional VAR (1.6) is obtained by piecing tothether the

small-dimensional matrices Ak(L), each one depending only on the covariances of q + 1

common components. Therefore no curse of dimensionality occurs with our procedure.

Our estimation of the common components χit, the shocks ut and the filters bif (L) is

based on the sample analogues of representations (1.6) and (1.7):

(i) We start with a lag-window estimator of the spectral density matrix of the observed

vector xnt = (x1t x2t · · · xnt), call it Σ̂̂Σ̂Σx
n(θ).

(ii) Using the first q frequency domain principal components of Σ̂̂Σ̂Σx
n(θ), we construct an

estimator of the spectral density of χχχnt = (χ1t χ2t · · · χnt), call it Σ̂̂Σ̂Σχ
n(θ) (like in Forni

et al., 2000) Estimators of the autocovariances of χχχnt are then obtained from Σ̂̂Σ̂Σχ
n(θ), call

Γ̂̂Γ̂Γχn,h the estimator of the covariance between χχχnt and χχχn,t−h. The estimated covariances

Γ̂̂Γ̂Γχn,h are used to obtain estimators Âk(L).
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(iii) A blockwise estimator of the variables Zjt is obtained by applying the finite-degree

matrices Âk(L) to the observed variables xit. Inversion of the matrices Âk(L) provides

estimators for the filters bif (L). Estimators for the shocks uft and the entries of the

matrix R are obtained by using the first q time-domain principal components of the

variables Zit.

Our consistency results for the estimators described in (ii) and (iii) above are based on

recent results on lag-window spectral estimators in Shao and Wu (2007), Liu and Wu (2010)

as extended to the multivariate case in Wu and Zaffaroni (2014). Starting with the observable

time series xit, denoting by T the number of observations for each series and σ̂ij(θ) a lag-

window estimator of the cross spectrum between xit and xjt, the (i, j) entry of Σ̂̂Σ̂Σ(θ)), under

quite general assumptions on the processes xit, xjt and the kernel, these papers prove that

σ̂ij(θ) is consistent, as T →∞, uniformly with respect to θ with rate
√
BT logBT /T , where

BT is the size of the lag window. As an important innovation with respect to the previous

literature on spectral estimation, these results are obtained without assuming linearity or

Gaussianity of the processes xit.

The use of these results in our framework requires significant enhancement of the assump-

tions on the common shocks and the idiosyncratic components that we make in FHLZ. In

particular, (1) the vector ut, which is a white noise in FHLZ, is i.i.d. here, (2) the idiosyn-

cratic components depend on an infinite-dimensional i.i.d. vector. These, as well as other

changes in the assumptions with respect to FHLZ will be discussed in detail in the paper.

Under this enhanced set of assumptions we prove that the estimators Σ̂̂Σ̂Σχ(θ), Γ̂̂Γ̂Γχ and Âk(L)

are consistent with rate

ζnT = max
(√

n−1,
√
T−1BT logBT

)
, (1.8)

where BT diverges as T δ, with 1
3 < δ < 1.

Lastly, though model (1.7) is finite-dimensional, the series Zit are estimated, not observed.

As a consequence, the well-known results in factor literature (Stock and Watson, 2002a and
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b, Bai and Ng, 2002) do not immediately apply and proving consistency of the standard prin-

cipal components estimators for the shocks ut and the loadings Rk implies serious technical

complications. Still we are able to achieve consistency without losing in consistency rate,

which is, again, ζnT .

As we have pointed out in FHLZ, end of Section 4.5, though the dynamic model studied

in the present paper is more general than model (1.3), when a dataset is given, with finite n

and T , the static approach might perform well even if the data were generated by a model

not fulfilling the finite-dimension assumption. In the present paper the static and dynamic

methods have been applied to simulated data in several Monte Carlo experiments. A very

short summary of our results is that (i) when the data are generated by infinite-dimensional

models which are simple generalization of (4.8), the estimation of impulse-response functions

and predictions by the dynamic method is by far better than those obtained via the static

method; (ii) when the data are generated by (1.3), still the dynamic method performs slightly

better. Though not conclusive, our Monte Carlo results strongly suggest that the model

proposed in the present paper may be a competitive specification for dynamic factor models.

In Sections 2 and 3 we present and comment the assumptions and the estimators’ asymp-

totic properties respectively. Section 4 gives a detailed description of the Monte Carlo ex-

periments. Section 5 concludes. Short proofs are given in the body of the paper, the longer

ones in the Appendix

2 Assumptions

2.1 Common and idiosyncratic components

The Dynamic Factor Model studied in the present paper is a family of stochastic variables

{xit, χit, ξit, i ∈ N, t ∈ Z},

such that xit = χit + ξit. The variables xit and their components χit (called the common

components) and ξit (the idiosyncratic components) fulfill the assumptions listed below as
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Assumptions 1 through 10.

Assumption 1 There exist a natural number q > 0 and:

(1) A q-dimensional stochastic zero-mean process ut = (u1t u2t · · · uqt)′, t ∈ Z, and an

infinite-dimensional stochastic process ηηηt = (η1t η2t · · · )′, t ∈ Z.

(2) square-summable filters bif (L), i ∈ N, f = 1, . . . , q;

(3) coefficients βij,k, for i, j ∈ N, k = 0, 1, . . . ,∞, where
∑∞

j=1

∑∞
k=0 β

2
ij,k <∞ for all i ∈ N;

such that:

(i) the vector St = (u′t ηηη
′
t)
′ is i.i.d and orthonormal, i.e. E(StS

′
t) = I∞. In particular,

cov(uft, ηj,t−k) = 0, f = 1, . . . , q, j ∈ N, k = 0, 1, . . . ,∞;

(ii)

χit = bi1(L)u1t + bi2(L)u2t + · · ·+ biq(L)uqt

ξit =

∞∑
j=1

∞∑
k=0

βij,kηj,t−k.
(2.1)

Let us observe that neither ut nor the polynomials bif (L) are identified. For, rewriting

the second equation in (2.1) as χit = bi(L)ut, for any orthogonal matrix Q the common

component χit has the alternative representation χit =
[
bi(L)Q−1

]
[Qut] = b∗i (L)u∗t .

Note that (i) and the definition of ξit in (2.1) imply cov(uft, ξi,t−k) = 0 for all f, i, k.

Two differences with respect to FHLZ must be pointed out. Firstly, here ut is i.i.d., not only

white noise as in FHLZ. Secondly, unlike in FHLZ, the idiosyncratic components are modeled

as (infinite-order) moving averages of the infinite-dimensional i.i.d. vector ηηηt.

Assumption 2 Conditions on the filters bif (L).

(i) The filters bif (L) are rational. More precisely, bif (L) =
cif (L)
dif (L)

where

cif (L) = cif,0 + cif,1L+ · · ·+ cif,s1L
s1 and dif (L) = 1 + dif,1L+ · · ·+ dif,s2L

s2 , (2.2)

for i ∈ N, f = 1, . . . , q.

(ii) There exists φ > 1 such that none of the roots of dif (L) is less than φ in modulus, for

i ∈ N, f = 1, . . . , q.
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(iii) There exists Bχ, 0 < Bχ <∞, such that |cif,j | ≤ Bχ, i ∈ N, f = 1, . . . , q, j = 0, . . . , s1.

Under Assumption 2, the vectors χχχnt = (χ1t χ2t · · · χnt)′ have rational spectral density.

Assumption 3 Eigenvalues of the spectral density of the common components.

Let ΣΣΣχ
n(θ) be the spectral density matrix of χχχnt and λχnj(θ) be its eigenvalues in decreasing

order. There exist real numbers αχf , f = 1, . . . , q, βχf , f = 0, . . . , q− 1, and a positive integer

nχ such that for n > nχ,

βχ0 ≥
λχn1(θ)

n
≥ αχ1 > βχ1 ≥

λχn2(θ)

n
≥ αχ2 > βχ2 ≥ · · · ≥ α

χ
q−1 > βχq−1 ≥

λχnq(θ)

n
≥ αχq > 0,

for all θ ∈ [−π, π].

Assumption 3 is an enhancement of the standard assumption on the eiegenvalues of the

common components. It will be used in our consistency proof, see in particular Lemma 3,

Appendix B.

Assumption 4 Cross and time dependence of the idiosyncratic components.

There exists finite positive numbers B, Bis, i ∈ N, s ∈ N, and ρ, 0 ≤ ρ < 1, such that

∞∑
s=1

Bis ≤ B, for all i ∈ N (2.3)

∞∑
i=1

Bis ≤ B, for all s ∈ N (2.4)

|βis,k| ≤ Bisρ
k, for all i, s ∈ N and k = 0, 1, . . . (2.5)

A consequence of (2.3) and (2.4) is that

∞∑
i=1

∞∑
s=1

BisBjs ≤ B2, for all j ∈ N. (2.6)

For, the right-hand side is

∞∑
s=1

(
Bjs

∞∑
i=1

Bis

)
≤ B

∞∑
s=1

Bjs ≤ B2.
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Conditions (2.3) and (2.4) are quite obviously satisfied in the “pure idiosyncratic” case

ξit = ηit and for finite “cross-section moving averages”, for example ξit = ηit + ηi+1,t. By

condition (2.5), the time dependence of the variables ξit declines geometrically at the common

rate ρ.

Under Assumption 4, setting βis(L) =
∑∞

k=0 βis,kL
k and ξit =

∑∞
s=1 βis(L)ηst and denot-

ing by ı the imaginary unit,

|βis(e−ıθ)| =

∣∣∣∣∣
∞∑
k=0

βis,ke
−ıkθ

∣∣∣∣∣ ≤
∞∑
k=0

|βis,k| ≤
∞∑
k=0

Bisρ
k ≤ Bis

1

1− ρ
.

Therefore, letting σξij(θ) be the cross spectral density between ξit and ξjt,

∞∑
i=1

|σξij(θ)| ≤
1

2π

∞∑
i=1

∞∑
s=1

|βis(e−ıθ)βjs(e−ıθ)| ≤ 1

2π(1− ρ)2

∞∑
i=1

∞∑
s=1

BisBjs

≤ B2 1

2π(1− ρ)2
,

(2.7)

by (2.6). Thus Assumption 4 implies that the cross spectra σξij(θ) are bounded, in θ, uniformly

in i and j. On the other hand, Assumption 2, (ii) and (iii), implies that σχij(θ) is bounded,

in θ, uniformly in i and j. Therefore σxij(θ) = σχij(θ) + σξij(θ) is bounded, in θ, uniformly in i

and j.

Define the spectral density matrices ΣΣΣξ
n(θ), ΣΣΣx

n(θ) and their eigenvalues λξnj(θ) and λxnj(θ)

in the same way as ΣΣΣχ
n(θ) and λχnj(θ).

Proposition 1 Under Assumptions 1 through 4,

(i) there exists Bξ > 0 such that

λξn1(θ) ≤ Bξ

for all n ∈ N and θ ∈ [−π, π]. (Thus the ξ’s are idiosyncratic, see FHLZ, Section 2.2.)

(ii) There exists nx ∈ N such that for n > nx and all θ ∈ [−π, π],

λxn1(θ)

n
> αχ1 >

λxn2(θ)

n
> αχ2 > · · · >

λxnq(θ)

n
> αχq ,

where the numbers αχj are defined in Assumption 3.

(iii) There exists Bx > 0 such that λxn,q+1(θ) ≤ Bx for all n ∈ N and θ ∈ [−π, π].
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Proof. The column and the row norm of ΣΣΣξ
n(θ) are

max
j=1,2,...,n

n∑
i=1

|σij(θ)| ≤ max
j=1,2,...,n

∞∑
i=1

|σij(θ)| ≤ B2 1

2π(1− ρ)2
,

by (2.7). On the other hand, the product of the row and the column norms, the square of the

column norm in our case, is greater or equal to the square of the spectral norm, see Lancaster

and Tismenetsky, p. 366, Exercise 11. As a consequence, setting Bξ = B2 1
2π(1− ρ)2 , we

have λξn1(θ) ≤ Bξ for all n and θ.

Regarding (ii), ΣΣΣx
n(θ) = ΣΣΣχ

n(θ) + ΣΣΣξ
n(θ) implies that λxnf (θ) ≥ λχnf (θ) + λξnn(θ) (this is one of

the Weyl’s inequalities, see Franklin (2000), p. 157, Theorem 1; see also Appendix B in the

present paper). By Assumption 3,

λxnf (θ)

n
≥
λχnf (θ) + λξnn(θ)

n
> αχf ,

for f = 1, . . . , q, and, for f = 2, . . . , q,

λxnf (θ)

n
≤
λχnf (θ) + λξn1(θ)

n
≤
λχnf (θ)

n
+
Bξ

n
≤ βχf−1 +

Bξ

n
< αχf−1,

if n > nχ and such that B
ξ

n < minf=1,2,...,q(α
χ
f − β

χ
f ).

For (iii), λxn,q+1 ≤ λ
χ
n,q+1(θ)+λξn1(θ) (another Weyl inequality). On the other hand, λχn,q+1(θ) =

0 for all θ. The result then follows from (i). �

Proposition 2 Under Assumptions 1 through 4, The cross-spectral densities σxij(θ) possess

derivatives of any order and are of bounded variation uniformly in i, j ∈ N, namely, there

exists Ax > 0 such that
ν∑
h=1

|σxij(θh)− σxij(θh−1)| ≤ Ax,

for all i, j, ν ∈ N and all partitions

−π = θ0 < θ1 < · · · < θν−1 < θν = π

of the interval [−π, π].
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Proof. Let h ≥ 0 and denote by γξij,h the covariance between ξit and ξj,t−h.

|γξij,h| =

∣∣∣∣∣
∞∑
k=0

∞∑
s=1

βis,kβjs,k+h

∣∣∣∣∣ ≤
∞∑
k=0

∞∑
s=1

BisBjsρ
kρk+h ≤ ρh

∞∑
k=0

ρ2k
∞∑
s=1

BisBjs ≤ ρh
B2

1− ρ2
,

by (2.6). If h < 0, γξij,h = E(ξitξj,t−h) = E(ξjtξi,t−(−h)) = γξji,−h. In conclusion

|γξij,h| ≤ ρ
|h| B2

1− ρ2
.

This implies that

σξij(θ) =
1

2π

∞∑
h=−∞

γξij,he
−ıhθ

has all derivatives. Moreover,

|σξij
′
(θ)| = 1

2π

∣∣∣∣∣
∞∑

h=−∞
(−ıh)γξij,he

−ıhθ

∣∣∣∣∣ ≤ B2

π(1− ρ2)

∞∑
h=1

hρh =
B2

π(1− ρ2)(1− ρ)2

This implies bounded variation of σξij(θ) uniformly in i and j. Bounded variation of σχij(θ),

uniformly in i and j, is an obvious consequence of Assumption 2. The conclusion follows

from σxij(θ) = σχij(θ) + σξij(θ). �

2.2 Autoregressive representation of the χ’s

In FHLZ we prove that, for generic values of the parameters cif,k and dif,k in (2.2), the

space spanned by uf,t−k, f = 1, 2, . . . , q, k ≥ 0, is equal to the space spanned by any

(q+ 1)-dimensional subvector of χχχt and its lags. In other words, ut is fundamental for all the

(q + 1)-dimensional subvectors of χχχt (but not for all q-dimensional subvectors). Moreover,

we prove that generically the (q + 1)-dimensional subvectors of χχχt have a finite and unique

autoregressive representation (see Section 4.1, Lemma 3 in particular). Following FHLZ, we

use these genericity results as a motivation forassuming that any (q+1)-dimensional subvector

of χχχt and its lags spans the space spanned by the u’s and has a unique finite autoregressive

representation.
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Assumption 5 Each vector χχχ
i1,i2,...,iq+1

t = (χi1t χi2t · · · χiq+1t)
′, with i1 < i2 < · · · < iq+1,

has an autoregressive representation

Ai1,i2,...,iq+1(L)χχχ
i1,i2,...,iq+1

t = Ri1,i2,...,iq+1ut, (2.8)

where

(i) Ai1,i2,...,iq+1(L) is of degree not greater than S = qs1 + q2s2, Ai1,i2,...,iq+1(0) = Iq+1,

(ii) Ri1,i2,...,iq+1 has rank q,

(iii) Representation (2.8) is unique among the autoregressive representations of order not

greater than S, i.e. if B(L)χχχ
i1,i2,...,iq+1

t = R̃ut, where the degree of B(L) does not exceed S

and B(0) = Iq+1, then B(L) = Ai1,i2,...,iq+1(L) and R̃ = Ri1,i2,...,iq+1.

An immediate consequence of Assumption 5 is that χχχt can be represented as in (1.6), that

is,

A1(L)


χ1t

χ2t

...

χq+1,t

 = R1ut, A2(L)


χq+2,t

χq+3,t

...

χ2(q+1),t

 = R2ut, . . . (2.9)

where the degrees of the polynomial matrices Ak(L) do not exceed S. Moreover, the matri-

ces Ak(L) are unique among the autoregressive representations of degree not greater than S.

Writing A(L) for the (infinite) block-diagonal matrix with diagonal blocks A1(L),A2(L), . . .,

and letting R = (R1′,R2′, · · · )′, we thus have

A(L)χχχt = Rut. (2.10)

The upper n × n submatrix of A(L) and the upper n × q submatrix of R are denoted

by An(L) and Rn respectively. If n = m(q + 1), so that the first m blocks of size q + 1 are

included,

An(L)χχχnt = Rnut. (2.11)

PZ: The block-diagonal structure of An(L) holds for every arbitrary partition of the indexes

1, 2, ..., n into blocks of size m. In other words, the choice of the partition is irrelevant. In

13



practical estimation, obviously, every partition could lead to slightly different results, a small

sample effect that vanishes asymptotically.

The following proposition is an immediate consequence of the fact that (2.10) is the

orthogonal projection of χχχt on its past values.

Proposition 3 Under Assumptions 1 through 5,

(i) Let A∗(L)χχχt = R∗vt, where degree(A∗(L)) ≤ S, then R∗ = RQ′, vt = Qut, A∗(L) =

A(L), where Q is a q × q orthogonal matrix.

(ii) Let r = (r1 · · · rq) be the row of R, or of Ri1,i2,...,iq+1, corresponding to χit. Then

rf = cif (0) = cif,0, f = 1, . . . , q.

Let ΨΨΨt = A(L)χχχt = Rut, let ΓΓΓΨ
n be the variance-covariance matrix of ΨΨΨnt, with eigenval-

ues µΨ
nj , in decreasing order.

Assumption 6 There exist real numbers αΨ
f , f = 1, . . . , q, βΨ

f , f = 0, . . . , q − 1, and a

positive integer nψ such that for n > nΨ,

βΨ
0 ≥

µΨ
n1

n
≥ αΨ

1 > βΨ
1 ≥

µΨ
n2

n
≥ αΨ

2 > βΨ
2 ≥ · · · ≥ αΨ

q−1 > βΨ
q−1 ≥

µΨ
nq

n
≥ αΨ

q > 0.

Note that the eigenvalues µΨ
nf depend on the coefficients cif,0, see Proposition 3(ii), but

are invariant if R and ut are replaced by RQ′ and Qut respectively.

We now show how (2.9), i.e. the matrices Ak(L) and (up to multiplication by an or-

thogonal matrix) Rk, can be constructed starting with the spectral density of the χ’s. This

procedure leads to our estimator as explained in Section 3, with the population quantities

replaced by their estimates.

(i) The nested spectral density matrices ΣΣΣχ
n(θ), n ∈ N, are known functions of the coeffi-

cients cif,s and dif,s.

(ii) Denote by χχχkt the k-th of the (q + 1)-dimensional subvectors of χχχt appearing in (2.9),

and call ΣΣΣχ
jk(θ) the (q + 1)× (q + 1) cross-spectral density between χχχjt and χχχkt . Then,

denoting by ΓΓΓχjk,s the covariance between χχχjt and χχχkt−s,

14



ΓΓΓχjk,s = E
(
χχχjtχχχ

k
t−s
′ )

=

∫ π

−π
eısθΣΣΣχ

jk(θ)dθ, (2.12)

where ı stands for the imaginary unit.

(iii) Using the autocovariance function ΓΓΓχkk,s, we obtain the minimum-lag matrix polynomial

Ak(L) and the variance-covariance function of the unobservable vectors

ΨΨΨ1
t = A1(L)χχχ1

t , ΨΨΨ2
t = A2(L)χχχ2

t , . . . (2.13)

Indeed, letting Ak(L) = Iq+1 −Ak
1L− · · · −Ak

SL
S , define

A[k] =
(
Ak

1 Ak
2 · · · Ak

S

)
, Bχ

k =
(
ΓΓΓχkk,1 ΓΓΓχkk,2 · · · ΓΓΓχkk,S

)
(2.14)

and

Cχ
jk =


ΓΓΓχjk,0 ΓΓΓχjk,1 · · · ΓΓΓχjk,S−1

ΓΓΓχjk,−1 ΓΓΓχjk,0 · · · ΓΓΓχjk,S−2
...

...

ΓΓΓχjk,−S+1 ΓΓΓχjk,−S+2 · · · ΓΓΓχjk,0

 . (2.15)

We have

A[k] = Bχ
k

(
Cχ
kk

)−1
= Bχ

k

(
Cχ
kk

)
ad

det
(
Cχ
kk

)−1
, (2.16)

where Fad denotes the adjoint of the square matrix F.

Assumption 7 There exist a real d such that

det Cχ
kk > d > 0,

for all k ∈ N.

PZ: Non-singularity of the Cχ
kk is necessary for existence of the A[k]. However, we require a

slightly stronger condition to ensure that the A[k] are (uniformly) bounded, in norm, as n

and hence k diverge to infinity.

Now define Zt = A(L)xt and consider the following factor model for Zt:

ΨΨΨt = Rut

ΦΦΦt = A(L)ξξξt

Zt = ΨΨΨt + ΦΦΦt.

(2.17)
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Proposition 4 Let ΓΓΓΦ
n the variance-covariance matrix of ΦΦΦnt = (Φ1t Φ2t · · · Φnt) and µΦ

nj

its j-th eigenvalue. Under Assumptions 1 through 7 there exists BΦ > 0 such that µΦ
n1 ≤ BΦ

for all n ∈ N.

Proof. Let λΦ
nj(θ) be the j-th eigenvalue of the spectral density matrix of ΦΦΦnt. We want

to prove that there exists CΦ > 0 such that λΦ
n1(θ) ≤ CΦ for all n and θ. Because λΦ

n1(θ)

is non-decreasing as n increases, for all θ (see Forni and Lippi, 2001), we can assume that

n = m(q + 1). The spectral density of ΦΦΦnt is

An(e−ıθ)ΣΣΣξ
n(θ)A′n(eıθ),

where An(L) (see equation (2.11)) has the matrices Ak(L) on the diagonal. If a(θ) is an

n-dimensional complex column vector such that a(θ)′a(θ) = 1 for all θ, we have

a(θ)′An(e−ıθ)ΣΣΣξ
n(θ)A′n(eıθ)a(θ) ≤ λξn1(θ)

(
a′(θ)An(e−ıθ)A′n(eıθ)a(θ)

)
≤ λξn1(θ)λAn

1 (θ),

where λAn
1 (θ) is the first eigenvalue of An(e−ıθ)A′n(eıθ), which is Hermitian, non-negative

definite. By Proposition 1 supn λ
ξ
n1(θ) ≤ Bξ. Moreover, given the diagonal structure of

An(L), λAn
1 (θ) = supk=1,2,...,m λ

Ak

1 (θ) ≤ supk∈N λ
Ak

1 (θ), where λA
k

1 (θ) is the first eigenvalue

of Ak(e−ıθ)Ak ′(eıθ). Assumptions 2 and 7 imply that supk∈N λ
Ak

1 (θ) ≤ DΦ for some DΦ > 0

and all θ. On the other hand,

λΦ
n1(θ) = sup a(θ)′An(e−ıθ)ΣΣΣξ

n(θ)A′n(eıθ)a(θ) ≤ BξDΦ,

the sup being over all the vectors a(θ) such that a(θ)′a(θ) = 1.

Lastly,

µΦ
n1 = sup b′ΓΓΓΦ

nb =

∫ π

−π

(
b′ΣΣΣΦ

n (θ)b
)
dθ ≤

∫ π

−π
λΦ
n1(θ)dθ ≤ 2πBξDΦ,

the sup being over all the n-dimensional column vectors b such that b′b = 1. �

Note that ΦΦΦt and ΨΨΨt are orthogonal, a consequence of Assumption 1(i). In view of

Assumption 6 and Proposition 4, the model (2.17) is a special case of (1.3), with r = q and

N(L) = Iq.

16



3 Estimation: asymptotics

Our estimation procedure follows the same steps as the population construction in Section

2.2, with the population spectral density of the x’s replaced with an estimator Σ̂̂Σ̂Σx
n(θ) fulfilling

Assumption 9. Based on Forni et al. (2000), we obtain the estimator Σ̂̂Σ̂Σχ
n(θ) by means of the

first q frequency-domain principal components of the x’s (using the first q eigenvectors of

Σ̂̂Σ̂Σx
n(θ)). Then the matrices Γ̂̂Γ̂Γχjk, B̂χ

jk, Ĉχ
jk and Ân(L) are computed as natural counterparts

of their population versions in Section 2.2. Lastly, estimators for Rn and ut are obtained

via a standard principal component analysis of Ẑnt = Â(L)xnt. Consistency with exact rate

of convergence ζnT , as defined in equation (1.8), for all the above estimators are provided in

Propositions 7 through 11.

Explicit dependence on the index n has been necessary in Section 2. From now on, it

will be convenient to introduce a minor change in notation, dropping n whenever possible.

In particular,

(i) ΣΣΣx(θ) =
(
σxij(θ)

)
i,j=1,...,n

and λxf (θ) replace ΣΣΣx
n(θ) and λxnf (θ), respectively.

(ii) ΛΛΛx(θ) denotes the q × q diagonal matrix with diagonal elements λxf (θ).

(iii) Px(θ) denotes the n×q matrix the q columns of which are the unit-modulus eigenvectors

corresponding to ΣΣΣx(θ)’s first q eigenvalues. The columns and entries of Px(θ) are

denoted by Px
f (θ) and pxif (θ), respectively.

(iv) ΣΣΣχ(θ) =
(
σχij(θ)

)
i,j=1,...,n

, λχf (θ), ΛΛΛχ(θ), Pχ(θ), ΣΣΣξ(θ), etc. are defined as in (i).

(v) All the above matrices and scalars depend on n; the corresponding estimators,

Σ̂̂Σ̂Σx(θ), λ̂xf (θ), Λ̂̂Λ̂Λx(θ), P̂x(θ) and Σ̂̂Σ̂Σχ(θ), λ̂χf (θ), Λ̂̂Λ̂Λχ(θ), P̂χ(θ)

(precise definitions are provided below) depend both on n and the sample xit, i =

1, . . . , n, t = 1, . . . , T . For simplicity, we say that they depend on n and T .

(vi) The same notational change applies to ΓΓΓψn and related eigenvalues and eigenvectors.
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(vii) A(L) and R, denoting the upper left n × n and n × q submatrices of A(L) and R,

respectively, are used instead of An(L) and Rn; Â(L) and R̂ stand for their estimated

counterparts.

(viii) To avoid confusion, however, we keep explicit reference to n in xnt, χχχnt, Znt etc.,

with estimated counterparts of the form χ̂̂χ̂χnt, Ẑnt, etc.; thus, we write, for instance,

Znt = A(L)xnt = Rut + ΦΦΦnt.

(ix) Lastly, if F is a matrix, we denote by F̃ the conjugate transposed of F and by ||F|| the

spectral norm of F (see Appendix B).

3.1 Estimation of ΣΣΣx
n(θ)

The following definition, coined by Wu (2005), generalizes the usual measures of time depen-

dence for stochastic processes.

Definition 1 Physical dependence. Let εεεt be an infinite-dimensional i.i.d. stochastic vector

process and let

zt = F (εεεt, εεεt−1, . . .),

where F : [R × R×] · · · → R is a measurable function. Let εεε∗ be an infinite-dimensional

stochastic vector with the same distribution as εεεt, such that εεε∗ and εεεt are independent for all

t. Assume that zt has finite p moment for p > 0. For k ≥ 0 define

δ
[zt]
kp = (E (|F (εεεk, . . . , εεε0, εεε−1, . . .)− F (εεεk, . . . , εεε

∗, εεε−1, . . .)|p))1/p .

Assumption 8 There exist p, A, with p > 4, 0 < A <∞, such that

E (|uft|p) ≤ A, E (|ηit|p) ≤ A, (3.1)

for all i ∈ N and f = 1, . . . , q.

The main result of the section, that the estimate of the cross spectral density between xit

and xjt converges uniformly with respect to the frequency and to i and j, see Proposition 6,

requires the following results on the p-th moments and the physical dependence of the x’s.
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Proposition 5 Under Assumptions 1 through 8, there exist ρ1 and A1, 0 < ρ1 < 1 and

0 < A1 <∞, such that

E (|xit|p) ≤ A1, δ
[xit]
kp ≤ A1ρ

k
1, (3.2)

for all i ∈ N.

Proof. For the first inequality, (E (|xit|p))
1
p = (E (|χit + ξit|p))

1
p ≤ (E (|χit|p))

1
p +(E (|ξit|p))

1
p ,

by the Minkovski inequality. Then, again using the Minkovski inequality, condition (2.3) and

Assumption 8,

(E (|ξit|p))
1
p =

(
E

(∣∣∣∣∣
∞∑
s=1

∞∑
k=0

βis,kηs,t−k

∣∣∣∣∣
p)) 1

p

≤
∞∑
s=1

∞∑
k=0

(E (|βis,kηs,t−k|)p)
1
p

≤
∞∑
s=1

∞∑
k=0

|βis,k|E (|ηs,t−k|p)
1
p ≤ A

1
p

∞∑
s=1

∞∑
k=0

Bisρ
k ≤ A

1
pB

1

1− ρ
.

An analogous inequality can be obtained for the common components, using Assumption 2

and the first of inequalities (3.1). The conclusion follows.

As regards the second inequality, for k ≥ 0,

ξik − ξ∗ik =
∞∑
s=1

βis,k(ηsk − η∗s),

where ξ∗ik has the same definition of ξik with ηs0 replaced by η∗s . Then, using the Minkovski

inequality, condition (2.3) and Assumption 8,

δ
[ξit]
k,p =

(
E

(∣∣∣∣∣
∞∑
s=1

βis,k(ηsk − η∗s)

∣∣∣∣∣
p)) 1

p

≤
∞∑
s=1

(E (|βis,k(ηsk − η∗s)|p))
1
p

≤ ρk
∞∑
s=1

Bis (E (|ηsk − η∗s)|p))
1
p ≤ ρk2BA

1
p .

An analogous inequality can be ontained for the common components, using Assumption 2

and the first of inequalities (3.1), with ρ replaced by φ−1, φ being defined in Assumption 2.
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Then:

δ
[xit]
kp = (E |xit − x∗it|p)

1
p =

(
E (|(χit − χ∗it) + (ξit − ξ∗it)|p)

1
p

)
≤ (E (|χit − χ∗it|)

p)
1
p + (E (|ξit − ξ∗it|)

p)
1
p

= δ
[χit]
kp + δ

[ξit]
kp .

The conclusion follows. �

Consider now the lag-window estimator of the spectral density ΣΣΣx
n(θ):

Σ̂̂Σ̂Σx
n(θ) =

1

2π

T−1∑
k=−T+1

K

(
k

BT

)
e−iθΓ̂̂Γ̂Γxn, (3.3)

where Γ̂̂Γ̂Γk = 1
T
∑T

t=|k|+1 xtxt−|k|.

Assumption 9 (i) The kernel function K is even, bounded, with support [−1, 1]. More-

over, (1) for some κ > 0 it satisfies limu→0 |K(u) − 1| = O(|x|κ), (2)
∫∞
−∞K

2(u)du < ∞,

(3)
∑

j∈Z sup|s−j|≤1 |K(jw)−K(sw)| = O(1) as w → 0.

(ii) For some c1, c2 > 0, δ and δ such that 0 < δ < δ < 1 < δ(2κ+ 1),

c1T
δ ≤ BT ≤ c2T

δ.

Proposition 6 Under Assumptions 1 through 9, there exists C > 0, independent of i and

j, such that

E

(
max
|h|≤BT

∣∣σ̂xij(θ∗h)− σxij(θ∗h)
∣∣2) ≤ C (T−1BT logBT

)
, (3.4)

where θ∗h = πh/BT , for all T ∈ N.

See Appendix A for the proof.

3.2 Estimation of σχij(θ) and γχij,k

Our estimator of the spectral density matrix of the common components χχχnt is the Forni et

al. (2000) estimator

Σ̂̂Σ̂Σχ(θh) = P̂x(θh)Λ̂̂Λ̂Λx(θh) ˜̂Px(θh).
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Proposition 7 Under Assumptions 1 through 7,

max
|h|≤BT

|σ̂χij(θ
∗
h)− σχij(θ

∗
h)| = OP (ζnT ) ,

where θ∗h = πh/BT , as T →∞ and n→∞.

See Appendix B for the proof.

Our estimator of the covariance γχij,` of χit and χj,t−` is, as in Forni et al. (2005),

γ̂χij,` =
π

BT

∑
|h|≤BT

eı`θ∗h σ̂χij(θ
∗
h), (3.5)

where θ∗h = πh/BT . Recalling that

γχij,` =

∫ π

−π
eı`θσχij(θ)dθ,

we have

|γ̂χij,` − γ
χ
ij,`| ≤

π

BT

∑
|h|≤BT

|eı`θ∗h σ̂χij(θ
∗
h)− eı`θ∗hσχij(θ

∗
h)|

+

∣∣∣∣∣∣ πBT
∑
|h|≤BT

eı`θ∗hσχij(θ
∗
h)−

∫ π

−π
eı`θσχij(θ)dθ

∣∣∣∣∣∣
≤ π

BT

∑
|h|≤BT

|σ̂χij(θ
∗
h)− σχij(θ

∗
h)|

+
π

BT

∑
|h|≤BT

max
θ∗h−1≤θ≤θ

∗
h

|eı`θ∗hσχij(θ
∗
h)− eı`θσχij(θ)|

≤ π max
|h|≤BT

|σ̂χij(θ
∗
h)− σχij(θ

∗
h)| +

πB

BT

∑
|h|≤BT

max
θ∗h−1≤θ≤θ

∗
h

|eı`θ∗h − eı`θ|

+
π

BT

∑
|h|≤BT

max
θ∗h−1≤θ≤θ

∗
h

|σχij(θ
∗
h)− σχij(θ)|

≤ π max
|h|≤BT

|σ̂χij(θ
∗
h)− σχij(θ

∗
h)|

+
πB

BT

∑
|h|≤BT

(
|eı`θ∗h−1 − eı`θ̃∗h−1 |+ |eı`θ̃∗h−1 − eı`θ∗h−1 |

)
+
π

BT

∑
|h|≤BT

(
|σχij(θ

∗
h−1)− σχij(θ̌

∗
h−1)|+ |σχij(θ̌

∗
h−1)− σχij(θ

∗
h)|
)
,

(3.6)
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where: (a) B is the bound in Proposition 1(i), (b) θ̃∗h−1 and θ̌∗h−1 are points in the interval

[θh−1, θh] where the functions of θ, |ei`θ∗s − ei`θ| and σij(θ
∗
s) − σij(θ)|, respectively, attain a

maximum. Of course, the function eı`θ is of bounded variation, while the functions σχij(θ)

are of bounded variation by Assumption 2, so that the second and third terms are (1/BT ).

Using Proposition 7 we obtain that |γ̂χij,` − γ
χ
ij,`| is OP (ζnT ) +O(1/BT ).

Assumption 10 The lower bound δ in Assumption 9 must satisfy δ > 1/3.

Proposition 8 Under Assumptions 1 through 10, for each ` ≥ 0,

|γ̂χij,` − γ
χ
ij,`| = OP (ζnT ) , (3.7)

as T →∞ and n→∞.

3.3 Estimation of Ak(L) and ΓΓΓψjk

Under our assumptions, the common component satisfies the block-diagonal vector autore-

gression (1.5) of finite order. If the χt were observed, estimation by OLS would be appropriate.

However, although we do not observe the χt, we do have (consistent) estimates of their au-

tocovariance function. This leads to the Yule-Walker estimator of both the autoregressive

coefficients as well as of the one-step ahead innovation covariance matrix. The definition of

the estimators Â[k]and Γ̂̂Γ̂ΓΨ
jk is straightforward from (2.14), (2.15) and (2.16).

Proposition 9 Under Assumptions 1 through 10,

‖Â[k] −A[k]‖ = OP (ζTn) and ‖Γ̂̂Γ̂ΓΨ
jk −ΓΓΓΨ

jk‖ = OP (ζnT )

as T →∞ and n→∞.

See Appendix C for the proof.

22



3.4 Estimation of R and ut

We start with Znt = ΨΨΨnt + ΦΦΦnt = Rut + ΦΦΦnt. The covariance matrix of ΨΨΨnt is

RR′ = PΨΛΛΛψPΨ′ = PΨ(ΛΛΛΨ)1/2(ΛΛΛΨ)1/2PΨ′,

where ΛΛΛΨ is q × q with the non-zero eigenvalues of RR′ on the main diagonal, while

PΨ is n × q with the corresponding eigenvectors on the columns. Thus we have the

representation

Znt = PΨ(ΛΛΛΨ)1/2vt + ΦΦΦnt = Rvt + ΦΦΦnt,

say, where vt = Hut, with H orthogonal. Note that, given i and f , the entry (i, f)

of R depends on n, so that the matrices R are not nested; nor is vt independent of

n. However, the product of each row of R by vt yields the corresponding coordinate

of ΨΨΨnt and is therefore independent of n.

Our estimator of R = Pψ(ΛΛΛψ)1/2 is R̂ = P̂z(Λ̂̂Λ̂Λz)1/2, where P̂z and Λ̂̂Λ̂Λz are the

eigenvectors and eigenvalues, respectively, of the empirical variance-covariance matrix

of Ẑnt = Â(L)xnt, that is, xnt filtered with the estimated matrices Â(L). This, as

already observed, is the reason for the complications we have to deal with in Appendix

D.

Proposition 10 Under Assumptions 1 through 10,

‖R̂i −RiŴ
z‖ = OP(ζnT ),

as T → ∞ and n → ∞, where Ri is the i-th row of R, and Ŵz is a q × q diagonal

matrix, depending on n and T , whose diagonal entries equal either 1 or −1.

See Appendix D for the proof.

Let us point out again that the i-th row of R depends on n. Therefore, Propo-

sition 10 only states that the difference between the estimated entries of R̂ and the
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entries of R converges to zero (upon sign correction), not that the estimated entries

converge. Now suppose that the common shocks can be identified by means of econom-

ically meaningful statements. For example, suppose that we have good reasons to claim

that the upper q× q matrix of the “structural” representation is lower triangular with

positive diagonal entries (an iterative scheme for the first q common components).

As is well known, such conditions determine a unique representation, denote it by

Zt = R∗u∗t + ΦΦΦt, or Znt = R∗u∗t + ΦΦΦt, where the n × q matrices R∗ are nested. In

particular, starting with Znt = Rvt + ΦΦΦnt, there exists exactly one orthogonal matrix

G(R) (actually G(R) only depends on the q × q upper submatrix of R) such that

R∗ = RG(R). Thus, while the entries of R depend on n, the entries of RG(R) do

not.

Applying the same rule to R̂ we obtain the matrices R̂∗ = R̂G(R̂). It is easily seen

that each entry of R̂∗ (depending on n and T ) converges to the corresponding entry

of R∗ (independent of n and T ) at rate ζTn.

Lastly, define the population impulse-response functions as the entries of the n ×

q matrix B(L) = A(L)−1R∗ and their estimators as those of B̂(L) = Â(L)−1R̂∗.

Denoting by Bif (L) = Bif,0+Bif,1L+· · · and B̂if (L) = B̂if,0+B̂if,1L+· · · , respectively,

such entries, Propositions 9 and 10 imply that |B̂if,k−Bif,k| = OP (ζnT ) for all i, f and

k.

An iterative identification scheme will be used in Section 4 to compare different

estimates of the impulse-response functions.1

Our estimator of vt is simply the projection of ẑt on P̂z(Λ̂z)−1/2, namely,

v̂t = ((Λ̂z)1/2P̂z′P̂z(Λ̂z)1/2)−1(Λ̂z)1/2P̂z′ẑt = (Λ̂z)−1/2P̂z′ẑt.

For that estimation v̂t we have the following consistency result.

1All just-identifying rules considered in the SVAR literature can be dealt with along the same lines,

see Forni el al. (2009).
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Proposition 11 Under Assumptions 1 through 10,

‖v̂t − Ŵzvt‖ = OP(ζnT ),

as T →∞ and n→∞, where Ŵz is a q × q diagonal matrix, depending on n and T ,

whose diagonal entries equal either 1 or −1.

See Appendix E for the proof.

4 A simulation exercise

In the present section we evaluate the performance of the methods studied in the present

paper, referred to as FHLZ. We focus on (i) estimation of impulse response function,

(ii) estimation of structural shocks and (iii) 1-step-ahead forecasts. Regarding (i) and

(ii), we compare FHLZ with model (1.3), which has been studied in Forni et al. (2009)

and is referred to as FGLR. As regards (iii), the results of FHLZ are compared to the

method in Stock and Watson (2002a), referred to as SW. Let us recall that both FGLR

and SW assume the existence of a static factor representation. We generate artificial

data according to two simple models: (I) a dynamic factor model with no static factor

representation (so that neither FGLR nor SW are consistent) and (II) a model having

a static factor representation (under which all methods are consistent).

4.1 Data generating processes

We consider the following data generating processes.

Model I (with no static factor representation)

xit = ai1(1− αi1L)−1u1t + ai1(1− αi2L)−1u2t + ξit.
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We generate ujt, j = 1, 2 and ξit, i = 1, . . . , n, t = 1, . . . , T as Gaussian, unit vari-

ance, independent variables; aji as independent variables, uniformly distributed on

the interval [−1, 1]; αji as independent variables, uniformly distributed on the interval

[−0.8, 0.8].

Estimation of the shocks and the impulse-response functions requires an identifica-

tion rule. Our exercise is based on a Choleski identification scheme on the first q vari-

ables. Precisely, denote by Bq(0) the matrix with bif (0), i = 1, 2, . . . , q, f = 1, 2, . . . , q,

in the (i, f) entry, and H be the lower triangular matrix with positive diagonal en-

tries such that HH′ = bq(0)bq(0)′. Then the “structural” shocks, denoted by u∗t , and

the impulse-response functions, denoted by b∗i (L), are b∗i (L) = bi(L)Bq(0)−1H and

u∗t = H′Bq(0)′ut.

Model II (with static factor representation)

xit = λi1F1t + λi2F2t + · · ·+ λirFrt + ξit

Ft = DFt−1 + Kut.

Here Ft = (F1t . . . Frt)
′ and ut = (u1t . . . uqt)

′, D is r× r and K is r× q. Again, ujt,

j = 1, . . . , q and ξit, i = 1, . . . , n, t = 1, . . . , T are Gaussian, unit variance, independent

white noises. Moreover, λhi, h = 1, . . . , r, i = 1, . . . , n and the entries of K are

independently, uniformly distributed on the interval [−1, 1]. Finally, the entries of D

are generated as follows: first we generated entries independently, uniformly distributed

on the interval [−1, 1]; second, we divided the resulting matrix by its spectral norm

to obtain unit norm; third, we multiplied the resulting matrix by a random variable

uniformly distributed on the interval [0.4, 0.9], to ensure stationarity while preserving

sizable dynamic responses. Precisely, bi(L) = λλλi(I − DL)−1K, λλλn being the 1 × r

matrix having λih as its (i, h) entry. To identify the “structural” shocks u∗t and the

corresponding impulse response functions b∗i (L)(L) we impose a Cholesky identification

scheme on the first q variables as in Model I.
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4.2 Estimation details and accuracy evaluation

Let b∗if (L) =
∑∞

k=0 b
∗
if,kL

k be the i, f entry of b∗i (L). Our target is estimation of b∗if,k,

i = 1, . . . , n, f = 1, . . . , q, k = 0, . . . , K and u∗ft, f = 1, . . . , q, t = 1, . . . , T , as well as

forecasting of xiT+1, i = 1, . . . , n.

The structural impulse response functions and the structural shocks are estimated

by the FHLZ method and the FGLR method. For FHLZ, the number of lags for each

q+ 1-dimensional VAR is determined by the BIC criterion. The contemporaneous and

lagged covariances of the common components needed to compute the VAR coefficients

are estimated by the FHLR (2000) dynamic principal component method, with lag

window T
2
3 . As regards FGLR, we estimate a VAR for the principal components of

the data. The number of principal components is either assumed known or determined

by Bai and Ng’s ICp2 criterion, the number of lags is determined by the BIC criterion.

The number of structural shocks is assumed known: such condition is obviously needed

when estimating the structural shocks and impulse response functions. Identification

is obtained by imposing the Cholesky scheme above.

Regarding prediction, FHLZ forecasts are computed by filtering the estimated

shocks with the estimated impulse response functions.2 The number of structural

shocks is no longer assumed known. Rather, it is estimated by using Hallin and Liska’s

(2007) method.3 SW forecasts are obtained by regressing the x’s onto either the lagged

principal components and the lagged x’s (just the first lag), or the lagged principal

components alone. The former method correspond to the original Stock and Wat-

son’s (2002a) method; the latter is motivated by the fact that in both of the models

2When averaging over different re-orderings of the variables, we compute the average after filtering,

rather than applying the average of the filters to the average of the shocks.
3We used the log criterion ICT

2;n with penalty function p1 and lag window equal to
√
T . The “second

stability interval” was evaluated over the grid nj = Round(3n/4 + jn/40), Tj = T , j = 1, . . . , 10.
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above the idiosyncratic components are serially uncorrelated. The number of principal

components is determined with Bai and Ng’s ICp2 criterion.

The estimation error for the impulse-response functions is defined as the normalized

sum of the squared deviations of the estimated from the “structural” impulse response

coefficients. Precisely, let b̂∗if,k be the estimated impulse-response coefficient of variable

i, shock f , lag k: the estimation error of the impulse response functions is measured

by ∑n
i=1

∑q
f=1

∑K
k=0

(
b̂∗if,h − b∗if,h

)2

∑n
i=1

∑q
f=1

∑K
k=0(b∗if,k)

2
.

The truncation lag K is set to 60. Similarly, denoting with û∗ft the estimate of u∗ft, the

estimation error of the “structural” shocks is measured by∑q
f=1

∑T
t=1

(
û∗ft − u∗ft

)2∑q
f=1

∑T
t=1(u∗ft)

2
.

Finally, the accuracy of the forecast is measured by the sum of the squared devi-

ations of the forecasts from the unfeasible forecasts obtained by filtering the true

structural shocks with the true structural impulse response functions, i.e. xPiT+1 =∑q
f=1

∑T
k=1 b

∗
if,ku

∗
fT+1−k. Again, we normalize by dividing by the sum of the squared

targets: ∑n
i=1

(
x̂iT+1 − xPiT+1

)2∑n
i=1(xPiT+1)2

.

Model I is evaluated for different sample size combinations, with n = 30, 60, 120, 240

and T = 60, 120, 240, 480. Model II is evaluated for a fixed sample size with n = 120

and T = 240, but different configurations of q and r, i.e. r = 4, 6, 8, 12 and q = 2, 4, 6,

r > q.4 For each couple (n, T ), Model I, and (r, q), Model II, we generate 500 data sets

and compute the average MSE.

4We impose r > q since for the case r = q, method FHLZ, the regressors of the q + 1-dimensional

VARs are asymptotically collinear.
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4.3 Results

Table 1 reports results for the impulse response functions and structural shocks, Model

I. PZ: Recall that the asymptotic properties of the estimates are independent of the

particular partition adopted to constuct the (q + 1)-dimensional blocks. To mitigate a

finite-sample effect that could arise, we average the results across several partitions. It

turns out that the results quickly stabilize by considering a limited number of partitions.

We present the results corresponding to the average across a number of partitions

equal to 30. The upper panel reports results for method FHLZ without averaging over

different partitions of the variables in the data set, whereas the central panel reports

results for FHLZ when averaging.

The static factor estimates (lower panel), despite being theoretically inconsistent,

approach the target as n and T get larger. The estimation error of both response

functions and shocks reduces by over 70% when passing from the smallest to the largest

panel. Indeed, the number of estimated static factors increases with n and T , so that

the static model better approximates the theoretical model.5 As expected, for large

n and T the performance is comparable to FHLZ without averaging, but for small

samples the error is larger, particularly for impulse response functions. FHLZ with

averaging dominates the static method for all n-T configurations. For small samples,

the error of the estimated impulse response functions is about 30-35% smaller.

Forecast results (Table 2) are very similar. Not surprisingly, the SW method (cen-

tral and lower panels) performs better when lagged x’s are not included among the

regressors, owing to the fact that the idiosyncratic components are serially uncorre-

lated. Indeed, we are comparing forecasts of the common components of the x’s, i.e.

the χ’s, rather than the x’ themselves. FHLZ forecasts (with averaging) over-performs

5The average r̂ is 2.01 for n = 30, T = 60 and 4.00 for n = 240, T = 480.
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Table 1: Model I, estimated impulse response functions and structural shocks. Average

normalized MSE across 500 generated data sets with different size. For the static method,

the number of static factors is determined by Bai and Ng’s ICp2 criterion.

Impulse response functions Structural shocks

T 60 120 240 480 60 120 240 480

n method FHLZ, no averaging

30 0.456 0.321 0.235 0.167 0.465 0.362 0.293 0.247

60 0.424 0.301 0.223 0.168 0.366 0.281 0.225 0.191

120 0.426 0.294 0.211 0.148 0.345 0.241 0.181 0.139

240 0.415 0.299 0.232 0.150 0.314 0.232 0.189 0.126

n method FHLZ, averaging

30 0.369 0.259 0.191 0.122 0.387 0.308 0.261 0.209

60 0.338 0.250 0.183 0.122 0.306 0.247 0.200 0.155

120 0.332 0.242 0.178 0.125 0.271 0.209 0.168 0.131

240 0.337 0.245 0.181 0.126 0.264 0.198 0.156 0.117

n static factor method (FGLR)

30 0.542 0.445 0.375 0.328 0.456 0.372 0.301 0.256

60 0.511 0.421 0.313 0.250 0.374 0.300 0.215 0.178

120 0.507 0.396 0.246 0.153 0.353 0.272 0.199 0.133

240 0.493 0.324 0.233 0.155 0.341 0.255 0.197 0.123

SW for all n-T configurations, with an improvement ranging from 30 to 40%.6 Observe

that here we no longer impose the correct q, but estimate it with Hallin and Likska’s

6FHLZ without averaging, not reported here, performs better than SW , consistently with results

in Table 1.
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Table 2: Model I, 1-step-ahead forecasts. Normalized sum of square deviation from the pop-

ulation forecasts: average across 500 generated data sets with different size. For the dynamic

method, the number dynamic factors is determined by Hallin and Liska’s log criterion. For

the static method, the number of static factors is determined by Bai and Ng’s ICp2 criterion.

T = 60 T = 120 T = 240 T = 480

method FHLZ

n = 30 0.575 0.424 0.378 0.297

n = 60 0.494 0.360 0.285 0.204

n = 120 0.449 0.321 0.247 0.161

n = 240 0.430 0.301 0.222 0.141

static factor method (SW), with lagged x’s

n = 30 1.060 0.699 0.650 0.523

n = 60 0.932 0.648 0.551 0.403

n = 120 0.867 0.592 0.430 0.266

n = 240 0.871 0.545 0.363 0.226

static factor method (SW), no lagged x’s

n = 30 0.898 0.693 0.667 0.572

n = 60 0.790 0.640 0.549 0.430

n = 120 0.734 0.556 0.400 0.253

n = 240 0.716 0.460 0.322 0.211

(2007) criterion, so that both forecasts in the upper an central panels are feasible.

Table 3 shows results for Model II, estimation of the structural impulse response

functions and shocks. Here both FHLZ and FGLR are consistent. FHLZ (with av-

eraging, upper panel) outperforms FGLR for almost all r-q configurations. In the
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present model, Bai and Ng’s criterion underestimates the number of factors.7 Hence,

we computed the (unfeasible) FGLR estimation obtained by imposing the correct r

(lower panel), to see whether the above result can be ascribed to underestimation of r.

For r = 4, FGLR performs remarkably better (and better than FHLZ) when impos-

ing the correct number of factors; but this is no longer true for larger r, particularly

when estimation of the structural shocks is concerned. For instance, with r = 12,

underestimation of r improves estimation of the shocks rather than worsening it.

Forecasts errors, reported in Table 4, confirm the above result. FHLZ performs

better than SW for most r-q configurations, with the exception of q = 2, r = 8, 12, for

which results are similar. The forecast error is considerably smaller for q = 6 (about

25%).

5 Conclusions

An estimate of the common-components spectral density matrix Σ̂̂Σ̂Σχ is obtained using

the frequency-domain principal components of the observations xit. The central idea

of the present paper is that, because Σ̂̂Σ̂Σχ has large dimension but small rank q, a

factorization of Σ̂̂Σ̂Σχ can be obtained piecewise. Precisely, the factorization of Σ̂̂Σ̂Σχ only

requires the factorization of (q+1)-dimensional subvectors of χχχt. Under our assumption

of rational spectral density for the common components, this implies that the number

of parameters to estimate grows at pace n, not n2.

The rational spectral density assumption has also the important consequences

that χχχt has a finite autoregressive representation and that the dynamic factor model

can be transformed into the static model zt = Rvt + φφφt, where zt = A(L)xt. We

construct estimators for A(L), R and vt starting with a standard non-parametric es-

7On average, r̂ is smaller than r for all n and T configurations.
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Table 3: Model II, estimated impulse response functions and structural shocks. Average

normalized MSE across 500 generated data sets with different configurations of static and

dynamic factors. For the static method, the number of static factors is determined by Bai

and Ng’s ICp2 criterion.

Impulse response functions Structural shocks

r 4 6 8 12 4 6 8 12

q method FHLZ

2 0.126 0.115 0.125 0.108 0.170 0.117 0.120 0.100

4 0.119 0.106 0.083 0.245 0.148 0.091

6 0.097 0.102 0.229 0.152

method FGLR, r determined with ICp2

2 0.138 0.128 0.138 0.126 0.208 0.136 0.137 0.129

4 0.107 0.117 0.091 0.237 0.165 0.109

6 0.092 0.114 0.220 0.167

method FGLR, r assumed known

2 0.100 0.119 0.125 0.106 0.159 0.146 0.157 0.149

4 0.103 0.105 0.090 0.217 0.165 0.125

6 0.090 0.114 0.215 0.179

timator of the spectral density of the x’s. This implies a slower rate of convergence

as compared to the usual T−1/2. However, in Section 3, we prove that our estimators

for A(L), R and vt do not undergo any further reduction in their speed of convergence.

The main difference of the present paper with respect to previous literature on

GDFM’s is that although we make use of a parametric structure for the common

components, we do not make the standard, but quite restrictive assumption that our
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Table 4: Model II, 1-step-ahead forecasts. Normalized sum of square deviation from the

population forecasts: average across 500 generated data sets with different configurations

of static and dynamic factors. For the dynamic method, the number dynamic factors is

determined by Hallin and Liska’s log criterion. For the static method, the number of static

factors is determined by Bai and Ng’s ICp2 criterion.

r = 4 r = 6 r = 8 r = 12

method FHLZ

q = 2 0.436 0.423 0.379 0.387

q = 4 0.358 0.378 0.345

q = 6 0.365 0.386

static factor method (SW), no lagged x’s

q = 2 0.530 0.534 0.374 0.375

q = 4 0.372 0.426 0.390

q = 6 0.472 0.522
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dynamic factor model has a static representation of the form (1.3). Section 4 provides

important empirical support to the richer dynamic structure of unrestricted GDFM’s.
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Appendix

A Proof of Proposition 6

Summing and subtractingE(σ̂xij(θ
∗
h)) within the absolute value intoE

(
max|h|≤BT

∣∣σ̂xij(θ∗h)− σxij(θ∗h)∣∣2)
and re-arranging, gives

E

(
max
|h|≤BT

∣∣σ̂xij(θ∗h)− σxij(θ∗h)∣∣2) ≤ E

(
max
|h|≤BT

∣∣σ̂xij(θ∗h)− Eσ̂xij(θ∗h)∣∣2)+

(
max
|h|≤BT

∣∣Eσ̂xij(θ∗h)− σxij(θ∗h)∣∣2) .
The result follows by deploying Theorem 5 of Wu and Zaffaroni (2014) with ν∗ = 1

to the first term on the right hand side. In fact the second term on the right hand

side, the squared bias, turns out to be of smaller order since, by the smoothness of the

σxij(θ), then by standard arguments (see for instance Theorem 4.10 of Hannah (1970))

max|h|≤BT

∣∣Eσ̂xij(θ∗h)− σxij(θ∗h)∣∣2 = O(B−2κ
T ) = O(T−2δκ). This term goes to zero faster

than O(BT logBT/T ) whenever 1 < δ(2κ+ 1). Q.E.D.

B Proof of Proposition 7

The proof below closely follows Forni et al. (2009). Denote by µj(A), j = 1, 2, . . . , s,

the (real) eigenvalues, in decreasing order, of a complex s × s Hermitian matrix A,

and by ‖B‖ =
√
µ1(B̃B) the spectral norm of an s1 × s2 matrix B. The norm ‖B‖

coincides with the Euclidean norm of B when B is a column matrix and is equal to

|µ1(B)| when B is square and hermitian. Recall that, if B1 is s1× s2 and B2 is s2× s3,

then

‖B1B2‖ ≤ ‖B1‖‖B2‖. (B.1)

We will use of the following inequality: for any two s × s Hermitian matrices A1 and

A2,
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|µj(A1 + A2)− µj(A1)| ≤ ‖A2‖, j = 1, . . . , s. (B.2)

This is an obvious consequence of the Weyl’s inequality µj(A1+A2) ≤ µj(A1)+µ1(A2)

(Franklin, 2000, p. 157, Theorem 1).

The proof of Proposition 7 is divided into several intermediate propositions. Let

a1 < a2 < · · · < aM be integers, and put M = {a1, a2, · · · , aM}. Denote by SM the n×

M matrix with 1 in entries (aj, j) and zero elsewhere, and define ρT = T/BT logBT .

As most of the arguments below depend on equalities and inequalities that hold for

all θ ∈ [−π π], the notation has been simplified by dropping θ. Moreover, properties

holding for max|h|≤BT
F (θh), where F is some function of θ, are often phrased as holding

for F uniformly in θ. Lastly, all lemmas in this Appendix hold, and are proved under

Assumptions 1 through 10.

Lemma 1 As T → ∞ and n→∞,

(i) max|h|≤BT
n−1‖Σ̂̂Σ̂Σx −ΣΣΣx‖ = OP(ρ

−1/2
T );

(ii) given M, max|h|≤BT
n−1/2‖S ′M(Σ̂̂Σ̂Σx −ΣΣΣx)‖ = OP(ρ

−1/2
T );

(iii) max|h|≤BT
n−1‖Σ̂̂Σ̂Σx −ΣΣΣχ‖ = OP(max(n−1, ρ

−1/2
T ));

(iv) given M, max|h|≤BT
n−1/2‖S ′M(Σ̂̂Σ̂Σx −ΣΣΣχ)‖ = OP(max(n−1/2, ρ

−1/2
T )) = OP(ζnT ).

Proof. Since

µ1((Σ̂̂Σ̂Σx −ΣΣΣx)(
˜̂
Σ
˜̂
Σ̂̃Σx − Σ̃̃Σ̃Σx)) ≤ trace((Σ̂̂Σ̂Σx −ΣΣΣx)(

˜̂
Σ
˜̂
Σ̂̃Σx − Σ̃̃Σ̃Σx)) =

n∑
i=1

n∑
j=1

|σ̂xij − σxij|2.

Because

n−2 max
|h|≤BT

n∑
i=1

n∑
j=1

|σ̂xij − σxij|2 ≤ n−2

n∑
i=1

n∑
j=1

max
|h|≤BT

|σ̂xij − σxij|2,

statement (i) follows from (3.4), see Proposition 6, and Markov inequality. Because

trace
(
S ′M(Σ̂̂Σ̂Σx −ΣΣΣx)(

˜̂
Σ
˜̂
Σ̂̃Σx − Σ̃̃Σ̃Σx)SM

)
=
∑
i∈M

n∑
j=1

|σ̂xij − σxij|2,

statement (ii) follows in the same way. As regards (iii), ΣΣΣx = ΣΣΣχ+ΣΣΣξ implies Σ̂̂Σ̂Σx−ΣΣΣχ =

Σ̂̂Σ̂Σx − ΣΣΣx + ΣΣΣξ, so that, by the triangle inequality for matrix norm, ‖Σ̂̂Σ̂Σx − ΣΣΣχ‖ ≤
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‖Σ̂̂Σ̂Σx − ΣΣΣx‖ + ‖ΣΣΣξ‖. The statement follows from (i) and the fact that ‖ΣΣΣξ‖ = λξ1 is

bounded. Statement (iv) is obtained in a similar way, using (ii) instead of (i). �

Lemma 2 As T → ∞ and n→∞,

(i) max|h|≤BT
n−1

∣∣∣λ̂xf − λχf ∣∣∣ = OP(max(n−1, ρ
−1/2
T )) for f = 1, 2, . . . , q;

(ii) Letting

Gχ =

 Iq if λχq = 0,

n(ΛΛΛχ)−1 otherwise,
and Ĝx =

 Iq if λ̂xq = 0,

n(Λ̂̂Λ̂Λx)−1 otherwise,
,

max|h|≤BT
n−1‖ΛΛΛχ‖ and max|h|≤BT

‖Gχ‖ are O(1), max|h|≤BT
n−1‖Λ̂̂Λ̂Λx‖ and max|h|≤BT

‖Ĝx‖

are OP(1);

Proof. Setting A1 = ΣΣΣχ and A2 = Σ̂̂Σ̂Σx−ΣΣΣχ, (B.2) yields |λ̂xf−λ
χ
f | ≤ ‖Σ̂̂Σ̂Σx−ΣΣΣχ‖; hence,

statement (i) follows from Lemma 1 (iii). Boundedness of n−1‖ΛΛΛχ‖ and ‖Gχ‖, uni-

formly in θ, is a consequence of Assumption 3. Boundedness in probability of n−1‖Λ̂̂Λ̂Λx‖

and ‖Ĝx‖, uniformly in θ, follow from statement (i). �

Lemma 3 As T → ∞ and n→∞,

(i) max|h|≤BT
n−1‖P̃χP̂xΛ̂̂Λ̂Λx −ΛΛΛχP̃χP̂x‖ = OP(max(n−1, ρ

−1/2
T ));

(ii) max|h|≤BT
‖ ˜̂PxPχP̃χP̂x − Iq‖ = OP(max(n−1, ρ

−1/2
T ));

(iii) there exist diagonal complex orthogonal matrices Ŵq = diag(ŵ1 ŵ2 · · · ŵq),

|ŵj|2 = 1, j = 1, . . . , q depending on n and T , such that max|h|≤BT
‖ ˜̂PxPχ − Ŵq‖ =

OP(max(n−1, ρ
−1/2
T )).

Proof. Using inequality (B.1) and ‖P̃χ‖ = ‖P̂x‖ = 1, ‖P̃χP̂xΛ̂̂Λ̂Λx − ΛΛΛχP̃χP̂x‖ =

‖P̃χ(Σ̂̂Σ̂Σx − ΣΣΣχ)P̂x‖ ≤ ‖Σ̂̂Σ̂Σx − ΣΣΣχ‖. Statement (i) thus follows from Lemma 1 (iii).

Turning to (ii), set

a = ˜̂PxPχP̃χP̂x, b =
[
˜̂PxPχP̃χP̂x

]
n−1Λ̂̂Λ̂ΛxĜx = ˜̂PxPχ

[
P̃χP̂xn−1Λ̂̂Λ̂Λx

]
Ĝx,

c = ˜̂PxPχ
[
n−1ΛΛΛχP̃χP̂x

]
Ĝx=

[
n−1 ˜̂PxΣΣΣχP̂x

]
Ĝx, d =

[
n−1 ˜̂PxΣ̂̂Σ̂ΣxP̂x

]
Ĝx = n−1Λ̂̂Λ̂ΛxĜx,
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and f = Iq: we have∥∥∥ ˜̂PxPχP̃χP̂x − Iq

∥∥∥ ≤ ‖a− b‖+ ‖b− c‖+ ‖c− d‖+ ‖d− f‖. (B.3)

Using Lemma 2, statement (i), and the boundedness in probability, uniformly in θ,

of ‖ ˜̂PxPχ‖, ‖Ĝx‖ and ‖ ˜̂PxPχP̃χP̂x‖, all terms on the right-hand side of inequality

(B.3) can be shown to be OP(max(n−1, ρ
−1/2
T )), uniformly in θ.

As regards (iii), note that, from statement (i), n−1 ˜̂Px
hP

χ
k(λχk−λ̂xh) = OP(max(n−1, ρT

−1/2)).

Assumption 3 (asymptotic separation of the eigenvalues λχf (θ)) implies that, for h 6= k,

˜̂Px
hP

χ
k = OP(max(n−1, ρT

−1/2)). Moreover, from statement (ii),
∑q

f=1 |
˜̂Px
hP

χ
f |2 − 1 =

OP(max(n−1, ρT
−1/2)). Therefore

| ˜̂Px
hP

χ
h|

2 − 1 = (| ˜̂Px
hP

χ
h| − 1)(|P̃χ

hP̂
x
h|+ 1) = OP(max(n−1, ρT

−1/2)).

The conclusion follows. �

Note that Lemma 3 clearly also holds for n−1‖ ˜̂PxPχΛΛΛχ−Λ̂̂Λ̂Λx ˜̂PxPχ‖, ‖P̃χP̂x ˜̂PxPχ − Iq‖

and ‖ ˜̂PχP̂x − ˜̂Wq‖.

Lemma 4 Given M, as T → ∞ and n→∞,

max
|h|≤BT

‖S ′M(Pχ(ΛΛΛχ)1/2Ŵq − P̂x(Λ̂̂Λ̂Λx)1/2)‖ = OP(ζnT ). (B.4)

Proof. We have

‖S ′M(Pχ(ΛΛΛχ)1/2Ŵq − P̂x(Λ̂̂Λ̂Λx)1/2)‖ ≤ ‖S ′M(n1/2PχŴq − n1/2P̂x)(n−1ΛΛΛχ)1/2‖

+‖S ′MP̂x(n−1/2(ΛΛΛχ)1/2 − n−1/2(Λ̂̂Λ̂Λx)1/2)‖.

By Lemma 2 (i), thus, we only need to prove that

‖n1/2S ′MPχŴq − n1/2S ′MP̂x‖ = OP(max(n−1/2, ρT
−1/2)).

Firstly, we show that, uniformly in θ,
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‖n1/2S ′MPχ‖ = O(1). (B.5)

Assumption 2 implies that σχii =
∑q

f=1 λ
χ
f |p

χ
if |2 = O(1), uniformly in θ. As all the

terms in the sum are positive, λχf |p
χ
if |2 = (λχf/n)n|pχif |2 also is O(1), uniformly in θ.

Assumption 3 implies that λχf/n is bounded away from zero uniformly in θ, so that

n|pχif |2 must be O(1), uniformly in θ. Hence, the eigenvalues of nS ′MPχP̃χSM are O(1)

uniformly in θ; (B.5) follows. Next, define

g = n1/2S ′MPχ
[
Ŵq

]
, h = n1/2S ′MPχ

[
P̃χP̂x

]
= n1/2S ′MPχ[P̃χP̂xΛ̂x/n](Λ̂x/n)−1,

i = n1/2S ′MPχ[(Λχ/n)P̃χP̂x](Λ̂x/n)−1 = [n−1/2S ′MΣΣΣχ]P̂x(Λ̂x/n)−1,

and
j = [n−1/2S ′MΣ̂̂Σ̂Σx]P̂x(Λ̂x/n)−1 = n1/2S ′MP̂x.

Using (B.5), Lemma 3 and Lemma 1 (iv), we obtain that ‖g − h‖ and ‖h − i‖ are

OP(max(n−1, ρT
−1/2)), while ‖i− j‖ is OP(max(n−1/2, ρT

−1/2)); the result follows. �

Note that the eigenvectors Pχ are defined up to post-multiplication by a complex

diagonal matrix with unit modulus diagonal entries. In particular, using the eigen-

vectors ΠΠΠχ = PχŴq, (B.4) would hold for ΠΠΠχ(ΛΛΛχ)1/2 − P̂x(Λ̂̂Λ̂Λx)1/2 . For the sake of

simplicity, we avoid introducing a new symbol and henceforth refer to the result of

Lemma 4 as

max
|h|≤BT

‖S ′M(Pχ(ΛΛΛχ)1/2 − P̂x(Λ̂̂Λ̂Λx)1/2)‖ = OP(max(n−1/2, ρT
−1/2)). (B.6)

In the same way, the result of Lemma 3(iii) will be referred to as

‖ ˜̂PxPχ − Iq‖ = OP(max(n−1, ρT
−1/2)).

Proposition 7 now follows from the fact that Σ̂̂Σ̂Σχ = P̂xΛ̂̂Λ̂Λx ˜̂Px and ΣΣΣχ = PχΛΛΛχP̃χ.
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C Proof of Proposition 9

Firstly, note that, as the last term in (3.6) contains

πG

BT

BT∑
s=−BT +1

max
αs≤θ≤βs

|eı`θs − eı`θ|,

convergence in (3.7) is not uniform with respect to `. However, estimation of the matri-

ces Bχ
k and Cχ

jk only requires the covariances γ̂ij,` with ` ≤ S, where S is finite. There-

fore, Proposition 8 implies that ‖B̂χ
k−Bχ

k‖ and ‖Ĉχ
jk−Cχ

jk‖ are OP(max(n−1/2, ρ
−1/2
T )).

From (2.16), applying (B.1),

‖Â[k] −A[k]‖ ≤ ‖B̂χ
k‖‖(Ĉ

χ
kk)
−1 − (Cχ

kk)
−1 ‖+ ‖B̂χ

k −Bχ
k‖‖ (Cχ

kk)
−1 ‖.

By Assumption 2, ‖Bχ
k‖ ≤ W for some constant W > 0, so that ‖B̂χ

k‖ is bounded in

probability. By Assumptions 2 and 7, ‖ (Cχ
kk)
−1 ‖ ≤ W1 for some W1 > 0. Observ-

ing that the entries of (Cχ
kk)
−1 are rational functions of the entries of Cχ

kk, and that

det (Cχ
kk) > 0 by Assumption 7, Proposition 8 implies that ‖(Ĉχ

kk)
−1 − (Cχ

kk)
−1 ‖ is

OP(max(n−1/2, ρ
−1/2
T )). Thus ‖Â[k] − A[k]‖ is OP(max(n−1/2, ρ

−1/2
T )). As regards Γ̂̂Γ̂Γψjk,

using (B.1),

‖Â[j]Ĉχ
jkÂ

[k] −A[j]Cχ
jkA

[k]‖ ≤ ‖Â[j]Ĉχ
jk‖‖Â

[k] −A[k]‖+ ‖Â[j]‖‖Ĉχ
jk −Cχ

jk‖‖A
[k]‖

+‖Â[j] −A[j]‖‖Cχ
jkA

[k]‖.

The conclusion follows. Q.E.D.

D Proof of Proposition 10

Consider the static model Znt = Rvt + ΦΦΦnt. If Znt = A(L)xnt were observed, i.e. if

the matrices A(L) were known, then Proposition 10, with an estimator of R based on

the empirical covariance ΓΓΓz of the Znt, would be straightforward. However, we only
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have access to Ẑnt = Â(L)xt and its empirical covariance matrix Γ̂̂Γ̂Γ
z
, which makes the

estimation ofR significantly more difficult. The consistency properties of our estimator

follow from the convergence result (D.4) in Lemma 11, which establishes the asymptotic

behavior of the difference ΓΓΓz− Γ̂̂Γ̂Γ
z
; Lemmas 5 through 10 are but a preparation for that

crucial result. All lemmas in this Appendix hold, and are proved under Assumptions 1

through 10.

Lemma 5 For f = 1, . . . , q, as T → ∞ and n→∞,

(i) | pχif |= O(n−1/2) and | p̂xif |= OP(n−1/2), uniformly in θ;

(ii) for any positive integer d, n−1
∑n

i=1 | p
χ
if |d and n−1

∑n
i=1 | p̂xif |d are O(n−d/2) and

OP(n−d/2), respectively, uniformly in θ.

Proof. The first part of (i) already has been taken care of in the proof of Lemma 4.

Lemma 4 and Assumption 2 jointly imply that σ̂xii =
∑q

f=1 λ̂
x
f |p̂xif |2 = OP(1), uniformly

in θ. As all the terms in the sum are positive, λ̂xf |p̂xif |2 = (λ̂xf/n)n|p̂xif |2 is OP(1) as well,

uniformly in θ. Lemma 2 (i) and Assumption 3 imply that λ̂xf/n is OP(1) and bounded

away from zero in probability uniformly in θ. The conclusion follows.

Statement (ii) is proved by induction. First consider Pχ
f . When d = 1, n−1

∑n
i=1 |p

χ
if |

is bounded by (n−1
∑n

i=1 |p
χ
if |2)1/2, which is O(n−1/2). Assume now that the result holds

for d− 1, d ≥ 2. Summing by parts and using part (i) of this Lemma,

n−1

n∑
i=1

| pχif |
d = n−1

n∑
i=1

| pχif |
d−1| pχif |

= n−1 | pχnf |
n∑
i=1

| pχif |
d−1 −n−1

n−1∑
i=1

i∑
s=1

| pχsf |
d−1 (| pχi+1,f | − | p

χ
if |)

≤ |pχnf |n−1

n∑
i=1

| pχif |
d−1= O(n−1/2 n−(d−1)/2) = O

(
n−d/2

)
,

the inequality holding because without loss of generality (reordering) we can assu-

me | pχi+1,f |≥| p
χ
if |. The same argument applies to P̂x

f . �

44



Lemma 6 As T → ∞ and n→∞,

max
|h|≤BT

∥∥∥∥Pχ (ΛΛΛχ)1/2 Ŵq − P̂x
(

Λ̂̂Λ̂Λx
)1/2

∥∥∥∥ = OP(n1/2 max(n−1, ρ
−1/2
T )). (D.1)

Proof. The left-hand side of (D.1) equals the left-hand side of (B.4) when SM is re-

placed by In. The proof goes along the same lines as that of Lemma 4. Firstly, ‖n1/2Pχ‖

is O(n1/2). Both ‖g − h‖ and ‖h − i‖ are OP(n−1/2 max(n−1, ρ
−1/2
T )). As for ‖i − j‖,

the conclusion follows from Lemma 1 (iii). �

Lemma 7 For f = 1, . . . , q, as T → ∞ and n→∞,

(i) |pχif − p̂xif | = OP(n−1/2 max(n−1/2, ρ
−1/2
T )), uniformly in θ;

(ii) n−1

n∑
i=1

|pχif − p̂
x
if | = OP(n−1/2 max(n−1, ρ

−1/2
T )), uniformly in θ.

Proof. Starting with (i), by (B.6), pχif (λ
χ
f )1/2 − p̂x(λ̂xf )

1/2 = OP(max(n−1/2, ρ
−1/2
T )).

Now,

pχif (λ
χ
f )1/2 − p̂x(λ̂xf )1/2 = pχif

(
(λχf )1/2 − (λ̂xf )

1/2
)

+ (λ̂xf )
1/2
(
pχif − p̂

x
if

)
. (D.2)

For the first term on the right-hand side of (D.2),

pχif

(
(λχf )1/2 − (λ̂xf )

1/2
)

= n1/2pχif
(λχif − λ̂

x
if )/n

((λχf )1/2 + (λ̂xf )
1/2)/n1/2

= OP(max(n−1, ρ
−1/2
T )),

by Lemma 2(i), Assumption 3 and Lemma 7(i) above. Thus, (λ̂xf )
1/2
(
pχif − p̂xif

)
is

OP(max(n−1/2, ρ
1/2
T )). By Assumption 3, n−1/2(λ̂xf )

1/2 is bounded away from zero. The

conclusion follows.

Regarding (ii), taking modulus and summing over i = 1, ..., n in (D.2) yields

n−1/2(λ̂xf )
1/2

n∑
i=1

|pχif−p̂
x
if | ≤ n−1/2

n∑
i=1

|pχif (λ
χ
f )1/2−p̂x(λ̂xf )1/2|+ n−1/2|(λχf )1/2−(λ̂xf )

1/2|
n∑
i=1

|pχif |.
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Regarding the first term on the right-hand side, by Jensen’s inequality and Lemma 6:
n∑
i=1

∣∣∣pχif (λχf )1/2− p̂x(λ̂xf )1/2
∣∣∣ ≤ n1/2

( n∑
i=1

∣∣∣pχif (λχf )1/2− p̂x(λ̂xf )1/2
∣∣∣2 )1/2

= OP(nmax(n−1, ρ
−1/2
T )).

Lemma 2(i)-(ii) and Lemma 5(ii) provide bounds for the second term. �

Lemma 8 For any integer d ∈ N, for f = 1, . . . , q, as T → ∞ and n→∞,

n−1

n∑
i=1

| pχif − p̂
x
if |d= OP((n−1 max(n−1, ρ−1

T ))d/2), (D.3)

uniformly in θ.

Proof. By induction. Lemma 7(ii) implies that n−1
∑n

i=1 | p̂
χ
if−p

χ
ij | isOP((n−1 max(n−1, ρ−1

T ))1/2).

In fact, to avoid unnecessary complications, we consider here a slightly looser bound

than the one provided by Lemma 7. Assume now that d ≥ 2 and that the result holds

for d− 1. Using summation by parts,

n−1

n∑
i=1

| pχif − p̂
x
if |d= n−1

n∑
i=1

| pχif − p̂
x
if |d−1| pχif − p̂

x
if |

=| pχnf − p̂
x
nf | n−1

n∑
i=1

| pχif − p̂
x
if |d−1

− 1

n

n−1∑
i=1

i∑
k=1

| pχkf − p̂
x
kf |d−1 (| pχi+1,f−p̂

x
i+1,f |−| p

χ
if−p̂

x
if |)

≤ | pχnf−p̂
x
nf |

1

n

n∑
i=1

| pχif−p̂
x
if |d−1= | pχnf−p̂

x
nf |OP

(
(n−1 max(n−1, ρ−1

T ))(d−1)/2
)

since without loss of generality we can assume | pχi+1,f− p̂xi+1,f |≥| p
χ
if− p̂xif |. The result

follows from Lemma 7(i). �

Lemma 9 For n→∞ and T →∞, uniformly in θ,

(i) n−2

n∑
i=1

n∑
j=1

| σ̂χij(θ)− σ
χ
ij(θ)|d = OP((max(n−1, ρ−1

T ))d/2);
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(ii) n−1

n∑
i=1

| σ̂χij(θ)− σ
χ
ij(θ) |d= OP((max(n−1, ρ−1

T ))d/2) for any 1 ≤ j ≤ n;

(iii) n−1

n∑
i=1

| σ̂χii(θ)− σ
χ
ii(θ) |d= OP((max(n−1, ρ−1

T ))d/2).

Proof. We have

σ̂χij − σ
χ
ij = (λ̂x1 − λ

χ
1 )p̂xi1

¯̂pxj1 + · · ·+ (λ̂xq − λχq )p̂xiq
¯̂pxjq + λχ1 p̂

x
i1(¯̂pxj1 − p̄

χ
j1)

+λχ1 p̄
χ
j1(p̂xi1 − p

χ
i1) + . . .+ λχq p̂

x
iq(

¯̂pxjq − p̄
χ
jq) + λχq p̄

χ
jq(p̂

x
iq − p

χ
iq).

Using the triangular and Cr inequalities, by Lemmas 2, 5 and 8,

n−2

n∑
i=1

n∑
j=1

| σ̂χij − σ
χ
ij |d

≤ (3q)d−1
(
| λχ1 − λ̂x1 |d

(
n−1

n∑
i=1

| p̂xi1 |d
)2

+ · · ·+ | λχq − λ̂xq |d
(
n−1

n∑
i=1

| p̂xiq |d
)2
)

+ (3q)d−1(λχ1 )d
(
n−2

n∑
i=1

| p̂xi1 |d
n∑
j=1

| pχj1 − p̂xj1 |d +n−2

n∑
j=1

| pχj1 |d
n∑
i=1

| pχi1 − p̂xi1 |d
)

+ · · ·

+ (3q)d−1(λχq )d
(
n−2

n∑
i=1

| p̂xiq |d
n∑
j=1

| pχjq − p̂xjq |d +n−2

n∑
j=1

| pχjq |d
n∑
i=1

| pχiq − p̂xiq |d
)

= OP((max(n−1, ρ
−1/2
T ))d) +OP((max(n−1, ρ−1

T ))d/2) = OP((max(n−1, ρ−1
T ))d/2).

Statement (i) follows. For statement (ii),

n−1

n∑
i=1

| σ̂χij − σ
χ
ij |d

≤ (3q)d−1
(
| λχ1 − λ̂x1 |d|p̂xj1|d n−1

n∑
i=1

|p̂xi1|d + · · ·+ | λχq − λ̂xq |d |p̂xjq|d n−1

n∑
i=1

| p̂xiq |d
)

+ (3q)d−1(λχ1 )d
( ∣∣pχj1 − p̂xj1∣∣d n−1

n∑
i=1

|p̂xi1|
d +

∣∣pχj1∣∣d n−1

n∑
i=1

| pχi1 − p̂xi1 |d
)

+ · · ·

+ (3q)d−1(λχq )d
(∣∣pχjq − p̂xjq∣∣d n−1

n∑
i=1

∣∣p̂xiq∣∣d +
∣∣pχjq∣∣d n−1

n∑
i=1

| pχiq − p̂xiq |d
)

= OP((max(n−1, ρ
−1/2
T ))d) +OP((max(n−1, ρ−1

T ))d/2) = OP((max(n−1, ρ−1
T ))d/2).
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Statement (iii) follows along the same lines, by setting j = i.

�

Lemma 10 For n→∞ and T →∞,

n−2

S∑
`=0

n∑
i=1

n∑
j=1

| γ̂χij,` − γ
χ
ij,`|

d and for any 1 ≤ j ≤ n n−1

S∑
`=0

n∑
i=1

| γ̂χij,` − γ
χ
ij,` |

d

are OP

(
(max(n−1, ρ−1

T ))d/2
)
.

Proof. We have |γ̂χij,` − γ
χ
ij,`| ≤ Uij + V` +Wij, where Uij, V` and Wij are the terms

in the last line of (3.6). Using the Cr inequality we get

n−2

n∑
i=1

n∑
j=1

|γ̂χij,0−γ
χ
ij,0|d ≤ n−23d−1

n∑
i=1

n∑
j=1

Udij+n−23d−1

n∑
i=1

n∑
j=1

Vd` +n−23d−1

n∑
i=1

n∑
j=1

Wd
ij.

The first term on the right-hand side is bounded using Lemma 9. Because ` takes only

a finite number of values, the second term is O(B−dT ) (see the proof of Proposition 9).

Because the functions σxij are of bounded variation uniformly in i and j, see Proposition

2, the third term is O(B−dT ). The same argument used to obtain Proposition 8 applies.

The second statement is proved in the same way. �

We are now able to state and prove the main lemma of this section. Assume,

without loss of generality, that n increases by blocks of size q+1, so that n = m(q+1).

Lemma 11 Denoting by Ẑ the T ×n matrix with Ẑit in entry (t, i), let Γ̂̂Γ̂Γz = Ẑ′Ẑ/T.

Then, as n→∞ and T →∞,

n−1‖Γ̂̂Γ̂Γz −ΓΓΓz‖ = OP(ζnT ) and n−1/2‖S ′M(Γ̂̂Γ̂Γz −ΓΓΓz)‖ = OP(ζnT ), (D.4)

where Γz is the population covariance matrix of Znt.

Proof. Denote by Γ̌z = Z′Z/T the empirical covariance matrix we would compute

from the Znt, were the matrices A(L) known. We have

‖Γ̂̂Γ̂Γz −ΓΓΓz‖ ≤ ‖Γ̂̂Γ̂Γz − Γ̌̌Γ̌Γz‖+ ‖Γ̌̌Γ̌Γz −ΓΓΓz‖, (D.5)
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so that the lemma can be proved by showing that (D.4) holds with ‖Γ̂̂Γ̂Γz −ΓΓΓz‖ replaced

by any of the two terms on the right-hand side of (D.5). Consider firstly ‖Γ̌̌Γ̌Γz − ΓΓΓz‖.

Using A(L) = In −A1L− · · · −ASL
S, where

As =


A1
s 0 · · · 0

0 A2
s · · · 0

...
. . .

0 0 · · · Am
s

 ,

s = 1, . . . , S and A0 = In, we obtain

‖Γ̌̌Γ̌Γz−ΓΓΓz‖2≤
S∑
s=0

S∑
r=0

‖AsΓ̂̂Γ̂Γ
x
s−rA

′
r−AsΓΓΓ

x
s−rA

′
r‖2 =

S∑
s=0

S∑
r=0

‖As

(
Γ̂̂Γ̂Γxs−r−ΓΓΓxs−r

)
A′r‖2,

(D.6)

which is a sum of (S + 1)2 terms, where we set Γ̂̂Γ̂Γxs−r = T−1
∑T

t=1 xt−rx
′
t−s. Inspection

of the right-hand side of (D.6) shows that (D.4) holds, with ‖Γ̂̂Γ̂Γz − ΓΓΓz‖ replaced with

‖Γ̌̌Γ̌Γz −ΓΓΓz‖, under Assumptions 2, 7 and Propositions 2 and 6.

Turning to ‖Γ̂̂Γ̂Γz − Γ̌̌Γ̌Γz‖, since ‖Γ̂̂Γ̂Γz − Γ̌̌Γ̌Γz‖2 ≤
∑S

s=0

∑S
r=0 ‖ÂsΓ̂̂Γ̂Γ

x
s−rÂ

′
r − AsΓ̂̂Γ̂Γ

x
s−rA

′
r‖2,

it is sufficient to prove that (D.4) holds with ‖Γ̂̂Γ̂Γz − ΓΓΓz‖ replaced with any of the

‖ÂsΓ̂̂Γ̂Γ
x
s−rÂ

′
r −AsΓ̂̂Γ̂Γ

x
s−rA

′
r‖’s. Denoting by ajsα the α-th column, with 1 ≤ α ≤ q + 1, of

Aj
s
′
, we have

‖ÂsΓ̂̂Γ̂Γxs−rÂ
r′ −AsΓ̂̂Γ̂Γxs−rA

r ′‖2 ≤
m∑
j=1

m∑
k=1

q+1∑
α=1

q+1∑
β=1

(
âj′sαΓ̂̂Γ̂Γ

x
jk,s−râ

k
rβ − aj′sαΓ̂̂Γ̂Γ

x
jk,s−ra

k
rβ

)2

≤ 2
m∑
j=1

m∑
k=1

q+1∑
α=1

q+1∑
β=1

(
(âjsα − aj′sα)Γ̂̂Γ̂Γxjk,s−râ

k
rβ

)2

+ 2
m∑
j=1

m∑
k=1

q+1∑
α=1

q+1∑
β=1

(
aj′sαΓ̂

x
jk,s−r(â

k
rβ − akrβ)

)2

,

(D.7)

where Γ̂̂Γ̂Γxjk,s−r is the (j, k)-block of Γ̂̂Γ̂Γxs−r, and the second inequality follows from applying

the Cr inequality to each term of the form

(âj′sαΓ̂̂Γ̂Γ
x
jk,s−râ

k
rβ − aj′sαΓ̂̂Γ̂Γ

x
jk,s−ra

k
rβ)2 = ((âjsα − ajsα)′Γ̂̂Γ̂Γxjk,s−râ

k
rβ − aj′sαΓ̂̂Γ̂Γ

x
jk,s−r(â

k
rβ − akrβ))2.
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The two terms on the right-hand side of (D.7) can be dealt with in the same way.

Let us focus on the first of them. Using twice the Cauchy-Schwartz inequality, then

subsequently the Cr and Jensen inequalities, we obtain

m∑
j=1

m∑
k=1

q+1∑
α=1

q+1∑
β=1

((âjsα − ajsα)′Γ̂̂Γ̂Γxjk,s−râ
k
rβ)2

≤
m∑
j=1

m∑
k=1

q+1∑
α=1

q+1∑
β=1

((âjsα − ajsα)′(âjsα − ajsα
)
âk′rβΓ̂̂Γ̂Γ

x′
jk,s−rΓ̂̂Γ̂Γ

x
jk,s−râ

k
rβ

=
m∑
k=1

q+1∑
β=1

m∑
j=1

q+1∑
α=1

(âjsα − ajsα)′(âjsα − ajsα)âk′rβΓ̂̂Γ̂Γ
x′
jk,s−rΓ̂̂Γ̂Γ

x
jk,s−râ

k
rβ

≤
m∑
k=1

q+1∑
β=1

[ m∑
j=1

[ q+1∑
α=1

(âjsα − ajsα)′(âjsα − ajsα)
]2]1/2[ m∑

j=1

(
âkrβ
′Γ̂̂Γ̂Γxjk,s−r

′Γ̂̂Γ̂Γxjk,s−râ
k
rβ

)2]1/2
= m

[ m∑
j=1

[ q+1∑
α=1

(âjsα − aj′sα)(âjsα − ajsα)
]2]1/2 1

m

m∑
k=1

q+1∑
β=1

[ m∑
j=1

(
âk′rβΓ̂̂Γ̂Γ

x′
jk,s−rΓ̂̂Γ̂Γ

x
jk,s−râ

k
rβ

)2]1/2
≤ AB, say,

where

A = m(q + 1)1/2
[ m∑
j=1

q+1∑
α=1

(
(âjsα − ajsα)′(âjsα − ajsα)

)2]1/2
,

B =
1

m

m∑
k=1

q+1∑
β=1

[ m∑
j=1

(
âk′rβΓ̂̂Γ̂Γ

x′
jk,s−rΓ̂̂Γ̂Γ

x
jk,s−râ

k
rβ

)2 ]1/2
≤
[
(q + 1)/m

m∑
k=1

q+1∑
β=1

m∑
j=1

(
âk′rβΓ̂̂Γ̂Γ

x′
jk,s−rΓ̂̂Γ̂Γ

x
jk,s−râ

k
rβ

)2 ]1/2
= C, say.

First consider A. Letting aj′sα = (ajsα,1 a
j
sα,2 · · · a

j
sα,q+1), note that ajsα,δ = e′αA

[j]gsδ,

where eα and gsδ are the α-th and (s− 1)(q+ 1) + δ-th unit vectors in the (q+ 1)- and

(q + 1)S-dimensional canonical bases, respectively. Writing, for the sake of simplicity,

Bj and Cj instead of Bχ
j and Cχ

jj, as defined in (2.14) and (2.15), we obtain, from

(B.1), and applying subsequently the Cr, the triangular, the Cr again and then twice
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the Cauchy-Schwartz inequalities,

[ m∑
j=1

q+1∑
α=1

(
(âjsα − ajsα)′(âjsα − ajsα)

)2 ]1/2

≤ (q + 1)1/2
( m∑
j=1

q+1∑
α=1

q+1∑
δ=1

(âjsα,δ − a
j
sα,δ)

4
)1/2

= (q + 1)1/2
( m∑
j=1

q+1∑
α=1

q+1∑
δ=1

[
eα

(
(B̂j −Bj)Ĉ

−1
j + BjĈ

−1
j (Ĉj −Cj)C

−1
j

)
gsδ

]4 )1/2

≤ 23/2(q + 1)3/2
( m∑
j=1

‖(B̂j −Bj)Ĉ
−1
j ‖4 + ‖BjĈ

−1
j (Ĉj −Cj)C

−1
j ‖4

)1/2

≤ 23/2(q + 1)3/2
([ m∑

j=1

‖B̂j −Bj‖8
]1/2[ m∑

j=1

‖Ĉ−1
j ‖8

]1/2
+
[ m∑
j=1

‖Ĉj −Cj‖8
]1/2[ m∑

j=1

‖B̂jĈ
−1
j ‖8‖C−1

j ‖8
]1/2)1/2

≤ 23/2(q + 1)3/2
([ m∑

j=1

‖B̂j −Bj‖8
]1/2[ m∑

j=1

‖Ĉ−1
j ‖8

]1/2
+
[ m∑
j=1

‖Ĉj −Cj‖8
]1/2[ m∑

j=1

‖B̂j‖16
] 1

4
[ m∑
j=1

‖Ĉ−1
j ‖16‖C−1

j ‖16
] 1

4
)1/2

.

Denoting by bjiδ the entries of Bj, i = 1, . . . , q+1, δ = 1, . . . , S(q+1), the Cr inequality

and Lemma 10 entail

m∑
j=1

‖B̂j −Bj‖8 ≤
m∑
j=1

( q+1∑
i=1

S(q+1)∑
δ=1

(b̂jiδ − b
j
iδ)

2
)4

≤ (q + 1)6S3

m∑
j=1

q+1∑
i=1

S(q+1)∑
δ=1

(b̂jiδ − b
j
iδ)

8 = OP(m(max(n−1, ρ−1
T ))4).

In a similar way, one can prove that
∑m

j=1 ‖Ĉj − Cj‖8 is OP(m(max(n−1, ρ−1
T ))4).

Moreover, Assumptions 2 and 7 together with Lemma 10 imply that
∑m

j=1 ‖B̂j‖16 and∑m
j=1 ‖C

−1
j ‖16, as well as

∑m
j=1 ‖Ĉ

−1
j ‖8 and

∑m
j=1 ‖Ĉ

−1
j ‖16, are OP (m).
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Collecting terms:

A = m(q + 1)1/2
[ m∑
j=1

q+1∑
α=1

(
(âjsα − ajsα)′(âjsα − ajsα)

)2]1/2
≤ 23/2(q + 1)2m

( m∑
i=1

‖Âi
s −Ai

s‖4
)1/2

= OP

(
m3/2 max(n−1, ρ−1

T )
)
. (D.8)

Turning to C, we obtain, by means of similar methods,

C ≤ ((q + 1)/m)1/2
{[ m∑

k=1

( q+1∑
β=1

(âk′rβâ
k
rβ)2

)2]1/2[ m∑
j=1

( m∑
k=1

(
trace[Γ̂̂Γ̂Γx′jk,s−rΓ̂̂Γ̂Γ

x
jk,s−r]

)4)1/2]}1/2

≤ ((q + 1)/m)1/2
{[

(q + 1)
m∑
k=1

q+1∑
β=1

(âk′rβâ
k
rβ)4

]1/2[ m∑
j=1

( m∑
k=1

(
trace[Γ̂̂Γ̂Γx′jk,s−rΓ̂̂Γ̂Γ

x
jk,s−r]

)4)1/2]}1/2

≤ (q + 1)1/2
[
(q + 1)4

m∑
k=1

q+1∑
α=1

q+1∑
β=1

(âkr,αβ)8
]1/4[

m−1

m∑
j=1

m∑
k=1

(
trace[Γ̂̂Γ̂Γx′jk,s−rΓ̂̂Γ̂Γ

x
jk,s−r]

)4]1/4
≤ (q + 1)3/2

[ m∑
k=1

q+1∑
α=1

q+1∑
β=1

(âkr,αβ)8
]1/4[

((q + 1)6/m)
m∑
j=1

m∑
k=1

q+1∑
α=1

q+1∑
β=1

(γ̂xjk,αβ(s− r))8
] 1

4

= OP(m1/2),

where γ̂xjk,αβ(s− r) stands for the (α, β) entry of Γ̂̂Γ̂Γxjk,s−r. Collecting terms yields

m−1‖ÂsΓ̂
x
s−rÂ

′
r −AsΓ̂

x
s−rA

′
r‖ ≤

(
1

m2
AC
)1/2

= OP (ζnT ) , r, s = 0, ..., S.

Now consider the second statement in (D.4). Again, it is sufficient to prove that

it holds with ‖Γ̂̂Γ̂Γz − ΓΓΓz‖ replaced with any of the ‖ÂsΓ̂̂Γ̂Γ
x
s−rÂ

′
r −AsΓ̂̂Γ̂Γ

x
s−rA

′
r‖. Without

loss of generality, we can assume that the number M of elements selected by SM is of

the form M = M∗(q + 1) for some integer M∗. The two terms on the right-hand side

of (D.7) must be dealt with separately. In the first of those two terms, substituting the

summation
∑M∗

k=1 for
∑m

k=1 gives

m∑
j=1

M∗∑
k=1

q+1∑
α=1

q+1∑
β=1

(
(âjsα − ajsα)′Γ̂̂Γ̂Γxjk,s−râ

k
rβ

)2

= OP

(
m(max(n−1, ρ−1

T ))
)
.
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Indeed, the left-hand side is bounded by a product DE , say, where

D = m1/2(q + 1)1/2
[ m∑
j=1

q+1∑
α=1

(
(âjsα − ajsα)′(âjsα − ajsα)

)2 ]1/2
and

E =
M∗∑
k=1

q+1∑
β=1

( 1

m

m∑
j=1

(
âk′rβΓ̂̂Γ̂Γ

x′
jk,s−rΓ̂̂Γ̂Γ

x
jk,s−râ

k
rβ

)2
)1/2

can be bounded along the same lines as A and B are in the proof of the first statement.

As for the second term of (D.7), using arguments similar to those used in the first

part of the proof, we obtain
M∗∑
k=1

m∑
j=1

q+1∑
α=1

q+1∑
β=1

(
(âksα − aksα)′Γ̂̂Γ̂Γx′jk,s−ra

j
rβ

)2

≤ m
[ M∗∑
k=1

[ q+1∑
α=1

(âksα − aksα)′(âksα − aksα)
]2]1/2[ 1

m

m∑
j=1

q+1∑
β=1

[ M∗∑
k=1

(aj′rβΓ̂̂Γ̂Γ
x
jk,s−rΓ̂̂Γ̂Γ

x′
jk,s−ra

j
rβ)2

]1/2]
= FG, say.

It easily follows from Proposition 9 that F = OP(mζ2
nT ) , while G = OP(1) can be

obtained using the arguments used to bound C in the proof of the first statement.

Collecting terms, we obtain, as desired,

m−1/2‖S ′M(ÂsΓ̂
x
s−rÂ

′
r −AsΓ̂

x
s−rA

′
r)‖ = Op (ζnT ) , r, s = 0, ..., S.

�

Starting with Lemma 11, which plays here the same role as Proposition 6 does for

the proof of Proposition 7, we can easily prove statements that replicate in this context

Lemmas 1, 2, 3 and 4, using the same arguments used in Section B, with x, χ and ξ

replaced by Z, Ψ and Φ respectively. Precisely:

(I) In the results corresponding to Lemma 1 we obtain the rate ζnT for (i), (ii), (iii)

and (iv). Note that no reduction from 1/n to 1/
√
n occurs between (iii) and

(iv), as in Lemma 1. For, (iii) has OP(ζnT ) + O(1/n) = OP(ζnT ), while (iv) has

OP(ζnT ) +O(1/
√
n) = OP(ζnT ).
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(II) The same rate ζnT is obtained for the results of Lemma 2.

(III) The same holds for Lemma 3. The orthogonal matrix in point (iii), call it again

Ŵq, has either 1 or −1 on the diagonal. Thus ˜̂Wq = Ŵq.

(IV) Lastly, Lemma 4 becomes

‖S ′M
(

P̂z
(

Λ̂̂Λ̂Λz
)1/2

−Pψ
(
ΛΛΛψ
)1/2

Ŵq

)
‖ = OP (ζnT ) . (D.9)

Going over the proof of Lemma 4, we see that ‖c−d‖ has the worst rate, whereas

here ‖a− b‖, ‖b− c‖ and ‖c− d‖ all have rate OP(ζnT ).

(V) Moreover, in the same way as the proof of Lemma 4 can be replicated to obtain

(D.9), the proof of Lemma 6, see below, can be replicated to obtain:

‖P̂z(Λ̂̂Λ̂Λz)1/2 −Pψ(Λψ)1/2Ŵq‖ = OP

(
n1/2ζnT

)
. (D.10)

E Proof of Proposition 11

Let

v̂t = ((Λ̂z)1/2P̂z′P̂z(Λ̂z)1/2)−1(Λ̂z)1/2P̂z′Ẑt = (Λ̂z)−1/2P̂z′Ẑt

= (Λ̂z)−1/2P̂z′(Â(L)−A(L))xt + ((Λ̂z)−1/2P̂z′ − Ŵz(Λψ)−1/2Pψ′)A(L)xt

+Ŵz(Λψ)−1/2Pψ′A(L)ξt + Ŵz(Λψ)−1/2Pψ′Pψ(Λψ)1/2vt. (E.11)

Considering the first term on the right hand side of (E.11),

‖(Λ̂z)−1/2P̂z′
(
Â(L)−A(L)

)
xt‖ = ‖(Λ̂z/n)−1/2P̂z′n−1/2(Â(L)−A(L) xt‖

≤ ‖(Λ̂z/n)−1/2‖‖P̂z′‖‖n−1/2(Â(L)−A(L))xt‖.
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Since ‖(Λ̂z/n)−1/2‖ = OP(1) and ‖P̂z‖ = 1, by (D.8), we get

‖n−1/2(Â(L)−A(L))xt‖ ≤ n−1/2

p∑
r=0

[ m∑
i=1

xi′t−r(Â
i
r −Ai

r)
′(Âi

r −Ai
r)x

i
t−r
]1/2

≤
p∑
r=0

(
n−1

m∑
i=1

(xi′t−rx
i
t−r)

2
)1/4(

n−1

m∑
i=1

( q+1∑
j=1

q+1∑
h=1

(âir,jh − air,jh)2
)2)1/4

≤
p∑
r=0

(
n−1

m∑
i=1

(xi′t−rx
i
t−r)

2
)1/4(

(q + 1)3n−1

m∑
i=1

‖Âi
r −Ai

r‖4
)1/4

= OP (ζnT )

setting xt = (x1′
t ...x

i′
t ...x

m′
t )′ for sub-vectors xit of size (q + 1)× 1.

Next, considering the second term on the righthand side of (E.11),

‖
(

(Λ̂z)−1/2P̂z′ − Ŵz(Λψ)−1/2Pψ′
)

A(L)xt‖

= ‖(Λ̂z/n)−1
(

(Λ̂z)1/2P̂z′ − ŴzΛ̂z(Λψ)−1/2Pψ′
)

A(L)xt/n‖

= ‖(Λ̂z/n)−1
(

(Λ̂z)1/2P̂z′ − Ŵz[Λ̂z −Λψ + Λψ](Λψ)−1/2Pψ′
)

A(L)xt/n‖

≤ ‖(Λ̂z/n)−1‖‖
(

(Λ̂z)1/2P̂z′ − Ŵz(Λψ)1/2Pψ′
)
‖‖A(L)xt/n‖

+‖(Λ̂z/n)−1‖‖Ŵz(Λ̂z −Λψ)(Λψ)−1/2Pψ′‖‖A(L)xt/n‖ = OP (ζnT ) ,

since, by (D.10), ‖(P̂z(Λ̂z)1/2 −Pψ(Λψ)1/2Ŵz)‖ = OP

(
n1/2ζnT

)
, and

‖Â(L)xt/n‖ = n−1/2
(
x′tÂ

′(L)Â(L)xt/n
)1/2

≤ n−1/2

p∑
r=0

(
x′t−rÂ

′
rÂrxt−r/n

)1/2

≤ n−1/2

p∑
r=0

(x′t−rxt−r/n)1/2(λ1(Â′rÂr))
1/2 = OP(n−1/2),

boundedness of λ1(Â′rÂr) being a consequence of Assumptions 2 and 7 . As for the third

term on the right hand side of (E.11), (Λψ)−1/2Pψ′A(L)ξt is OP(n−1/2). To conclude,

note that Ŵz(Λψ)−1/2Pψ′Pψ(Λψ)1/2vt = Ŵzvt. �
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